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Thermal concurrence mixing in a one-dimensional Ising model
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We investigate the entanglement arising naturally in a one-dimensional Ising chain in a magnetic field in an
arbitrary direction. We find that for different temperatures, different orientations of the magnetic field give
maximum entanglement. In the high-temperature limit, this optimal orientation corresponds to the magnetic
field being perpendicular to the Ising orientation direction. In the low-temperature limit, we find that
varying the angle of the magnetic field very slightly from théirection leads to a rapid rise in entanglement.

We also find that the orientation of the magnetic field for maximum entanglement varies with the field
amplitude. Furthermore, we have derived a simple rule for the mixing of concurrémossasure of entangle-
menj) due to the mixing of pure states satisfying certain conditions.
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[. INTRODUCTION (qubits, each interacting with its nearest neighbors by a cou-
pling that is proportional tar,® o,. This coupling can be
Entanglement, the rather counterintuitive nonlocal corrediagonalized in a basis of disentangled states. Naively, one
lations exhibited by quantum systems, has recently becommight think that this implies a complete absence of entangle-
one of the most valuable resources in quantum informatiomnent in the Ising model. However, an external magnetic field
processindg1]. Over the past few years, it has developed intowith a component, however small, along a direction perpen-
a quantifiable physical resour2—4] in an analogous man- dicular to thez axis is sufficient to make the eigenstates
ner to energy. Thus, the amount of entanglement preserntangled.
naturally in complex physical systenisystems with many We start in Sec. Il by considering, analytically, the case of
interacting componenksiow becomes a relevant question to two qubits interacting via the Ising interaction in a magnetic-
ask. Condensed-matter physicists have long investigated cdiield orthogonal to the direction. In Sec. I, we formulate a
relations between parts of composite systems. Entanglemetiteorem for the concurrence mixing due to occupation of
is the quantumor nonlocal part of these correlations. As both the ground and the excited states. Next, in Sec. IV, we
such, it can behave very differently from the total correla-consider numerically the variation of entanglement with the
tions. For example, while correlations are averaged on mixerientation of magnetic field. Before concluding, in Sec. V
ing states, entanglement generally decreases. The topic @fe show that the kinds of behavior found for two qubits also
variation of entanglement in condensed-matter systems withold for many qubits.
respect to the variation of external parameters such as tem-
perature, field components, etc., is a relatively unexplored II. TWO QUBITS WITH ISING INTERACTION
and potentially rich area of study. In this context, as a simple
initial model, Arnesen, Bose, and Vedral have studied the The Hamiltonian for an isotropic quantum Ising model
variation of entanglement with temperature and magnetidVith nearest-neighbor couplings in an external magnetic field
field in a one-dimensionallD) isotropic finite Heisenberg €an in the most general form be expressed as
chain [5]. Prior to that, Nielsen had investigated the en-
tanglement t_)etween two qubits interacting via the Heisen- |:|=JE t}iz&szfé'E ;k’ 2.1
berg interaction at a non-zero temperatifpand O’Connor i) K
and Wootters have investigated the entanglement in the
ground state of an antiferromagnetic isotropic Heisenbergvhere the indices, j, andk label theN spins. Here we will
ring [7]. In Ref.[5], the entanglement at a nonzero tempera.COI’lSider systems in one spatial dimension with periodic
ture, being that of a thermal state, was caltedrmal en- boundary conditions so théth spin also couples to the first
tanglement Subsequently, Wang has studied the quantuns$pin. Thus, we have a quhbiing. First we will consider the
Heisenberg<Y model[8] and the two-qubit anisotropéXz  case ofN=2. Our Hamiltonian can then be written as
model[9] in a similar context. R R
In this paper, we are going to study the thermal entangle- H=2J &Z® &Z-f- é-(&®f+f® o). (2.2
ment in the 1D Ising model in an external magnetic field
[10]. Ising-like interactions form the basic coupling in many The usual form of the Ising model has a magnetic field only
proposals for experimental systems that can be used to pemong thez axis. This case has no entanglement at all, since
form quantum computation, see, for examglel-14. The the Hamiltonian is diagonal in the standard disentangled ba-
1D Ising model describes a set of linearly arranged spinsis {|00),|01),|10),|11)}, where|0) stands for spin up and
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Magnetic field amplitude (B) FIG. 2. Contour plot of the tangle of two qubits obeying an Ising

]J_-|amiltonian with couplingd, in a perpendicular magnetic fiels)

for temperaturest. The parameter space lies entirely within the
nonclassical region, except for a thin line Bt 0. Unfortunately,
with our resolution this cannot be visualized.

FIG. 1. Energy levels with corresponding eigenstates. The coe
ficients a, b, ¢, andd are functions ofB, and the state$d =)
=(|00)+|11))/2 and|¥ +)=(|01)+|10))/2 are the four Bell
states.

For zero temperature, only the lowest-energy level is
opulated. The tangle of this pure state can easily be calcu-
ted from the density matrix, fd8>0,

|1) stands for spin down. However, in this paper, we will
consider the cases when the magnetic field is not parallel t
the z axis.

J? 1
T= = .
J2+B%2 1+(B/J)?

Orthogonal fields (2.6

Let us first study the special case when the magnetic field
is perpendicular to theaxis, sayB=B x. Our system is now For finite temperature, the analytical expressions are compli-

described by the following Hamiltonian: cated, so we present them graphically in Fig. 2, a contour
R o o plot of the tangler, as a function of magnetic-field amplitude
H=2Jo,00,+B(o®1+1®0,). (2.3 B and the temperaturé.

From Eq.(2.6), it is clear that the entanglement is highest
In this section, we will usel>0, without loss of generality for nearly vanishing magnetic fields and decreases with in-
[16]. We are going to investigate the entanglement in thiscreasing field amplitude. Physically this is because the field
two-qubit Ising ring. In this paper, we will use the squaredtends to align the qubit spins in a different disentangled state
concurrencd4,15, called the tangler, as a measure of en- from the spin-spin coupling; it is the trade off between the
tanglement. To calculate this, first we need to define thdield and the Ising interaction that produces the entangle-
product matrixR of the density-matrix and its spin-flipped ment. For a strong field&>J) the spins will become com-

matrix, p=(o,® o) p* (o,® 7). Hence, we have pletely aligned along the field direction, whereupon the en-
ey ey tanglement will drop to zero. However, E@.6) is not valid

for strictly B=0, in which limit it seems to predict maximal
entanglement. At preciseB=0, in fact, no entanglement is
present(the eigenstates are same as those of the usual Ising
Hamiltonian without any magnetic fieldHence, there is a
guantum phase transitiofl0] at the pointB=0 when the
C=maxA;—A;~A3= N0, 2.9 entanglement jumps from zero to maximal even for an infini-

_ tesimal increase dB. As we will see later, this point is only
where the\; are the square roots of the eigenvalue®Roin  one noint on a transition line fdB fields along thez axis.
decreasing order. In this method, the standard basis, | ot ys now turn our attention to the more realistic case of
{/00),/01),[10),|11)}, must be used. As usual for entangle- on7ero temperatures. For a general pure state, only one of
ment measures, the tangle ranges frortn@ entanglement e eigenvalues of EG2.4) is nonzero and therefore equal to
to 1, when the two qubits are maximally entangled. the tangle. This statement is provedliemma lin the next

For finite temperatures we need the density-mairfer a  gection. For low temperature and magnetic field, BT
system that is at thermal equilibrium. This is given by < it is a good approximation to assume that only the two
=e "7z, wherez=tr(e""'T) is the partition functiorfus-  lowest-energy levels are populated. This becomes clear when
ing units where the Boltzmann constak=1). We then  we look at Fig. 1 in the regimB<J. The lowest two levels
solve the time-independent Schinger equation for our qu- are much closer to each other compared with their separation
bits. The energy levels of our Hamiltoni#®2.3) are, in rising  from the third lowest-energy levél.e., the second excited
order, — 2/3%+B?,—2J,23,2,/3%+B?, as in Fig. 1. statg. Thus, when the temperature is low, only the lowest

R=pp=p(0,®0,)p*(0,®0,). (2.9

Now concurrence is defined by
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two levels appear in the state of the system. We will findget the concurrence to t@=|<a|<}y® (}y| a)|=2|ad—bg].
(Theorem 1, next sectigrthat, in our case, the combination Thys, for a pure state, concurrence can be defined as the

of the two Iowes't states also cqmpines their concurrences iy <1 te expectation value of the opera&g@ (}y_ By trac-
the following weighted subtraction: ing out one qubit and solving for the eigenvalues, which are
_ _ equal to the square of the Schmidt coefficiegitof the re-

C=max{|woCo=w1C4l.0}, @7 maining density matrix, we find that the concurrence also

where the index O refers to the ground state, while 1 refers t§an be written a€=2|cqCy|.

the excited state anal, andw;, are the weights of the ground ~ Theorem 1. Consider two pure states of the same system

and excited states, respectively. The weights can be aryrm) and|ay). If the spin-flip overlap is zero, i.g.

weights from the statistics, for example, Maxwell-Boltzmann A

statistics or Fermi-Dirac statistics. We call tliencurrence (amloy@oy|ay) =0, (3.3

mixing In our case, the first excited state is the Bell State’then the concurrence of the mixture of the two pure states
[7)=(102)~|10))/ V2, which hasr=1, and Eq.(2.7) re- with weights w, can be expressed as

duces to
J Crixed= [WmCm=WnChl. (3.9
C:‘WO 12+ B2 Wil 28 Proof. Let p;=|a;){«;|, i=m,n, be our two pure states.
From our lemma, we have
In general, the first term in the above equation is larger than _
the second, and in this case the concurrence decreases with PiPi|Uio>:Ci2|Uio>, (3.9
temperature a®, decreases and; increasesc.f. Fig. 2. In
Fig. 2, we also see that, for a given temperature, the en- pipilu)=0, k=1,2,3, (3.6

tanglement can be increased by adjusting the magnetic field

and is generally largest for some intermediate value of thevhere|u;o)=|a;) and|uy)=oy,® o,lai). Let us write our
magneuc field. Thl§ effect' can be understood by nqtlng thafixed statep as a weighted average of the pure density
W, increases Wlth'InCI’eaSIr'I@ as the energy separation be- matricesp=Ww,pm+W,p,,. Sincep is an antilinear transfor-
tween the levels increase, bat\/J2+B? decreases. As a mation of p, we also havep=w, p+W,p,. Using these

result, the combined function reaches a peak as we Bary . . .
. , . ssumptions, we can write down the product matrix
and decreases subsequently, inducing analogous behavior 37

the concurrence. ~ 2 o~ ~ ~ 2 ~
PP =W mPmT WWn(pmpn+ pnpm) T Whpnpen - (3.7)

lll. CONCURRENCE MIXING Our condition(3.3) makes the cross terms drop out, since

In this section, we are going to formulate and prove a
useful concurrence mixing theorem. We begin with a lemma

that illustrates the method used in the theorem. The results ¢f ,ihermore condition3.3) together with Eq.(3.5) gives
Lemma 1 appear in Ref4]. . . the following relation:
Lemma 1. Lep be a pure density matrix. Then the prod-

uct matrix R=pp, wherep=(oy®@ oy) p* (0y® ), has only  p/p;|ujo)=| e )il oy @ 0| @) ei| oy @ 0| @) = 8 CF|ujo).
one nonzero eigenvalue, and its value is the concurrence (3.9
squared, i.e., the tangle. For a general pure state)

=a|00) +b|01)+¢|10)+d|11) the concurrence is Equationsg3.7)—(3.9) give two of the four eigenequations of
the product matrix

pipi=la)(ai|oy@oylaj)ajlo@0,=0. (3.9

C=2|ad—bc| (3.1 N
. _ N pplvi)=(8imWACE+ 8i,WACH)|v;), (3.10
or, written as a Schmidt decomposition=Q|cc,|, where ' mmm
c; are the two Schmidt coefficients. where|v;)=|u;o) =| ;). Since these two eigenvectors only
Proof. Consider a general pure density-maipix | a){a|. span two dimensions in the four-dimensional space, we can
By writing out the product matrix always find another two vectofg; ), k= 2,3 which are lin-

ear independent of each other and orthogonal to the two
eigenstates. Thus, the last two eigenvectors |agg= &y

~ 1 _ . . .
we see directly thafup)=|«a) is an eigenstate with eigen- ®oy|ay), k=2,3, both with zero eigenvalue. Equatithb)

-~ X P, . , now gives our mixed concurrence formula.
value [{a|oy@oy| ). It is always possible to find three Theorem 1 applies to any system with a mixture of two

more vectorgay ), k=1,2,3, all of them linearly indepen- pyre states satisfying conditiof.3. It can easily be ex-
dent of each other and orthogonallte). Thus, the remain-  tended to apply to the mixing of more pure states. The re-
ing three eigenvectors can be written|ag) = oy ® aylat), quirement is then that conditiai3.3) must hold for all pairs
k=1,2,3, all with eigenvalue zero. From E@.5), we now  of pure states.

P;:|a><a|a’y®a’y|a><a|‘}y®‘}y: (3.2
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FIG. 3. Contour plot of the tangle at zero temperature in a Car- FIG. 4. Contour plot of the tangle at zero temperature in a
tesian coordinate system. Note that the line of nonentangled stat&®herical coordinate system.
atB,=0 for |B,|]<2J cannot be seen.
when the tangle is plotted as a function of the amplitide
In our case, it would have been interesting if, when in-and angled.
cluding all four levels, the concurrence could be calculated We notice that the region arouri,=0 for all |B,|<2J
as has the highest possible entanglement. At exactlB,at 0
there should not bany entanglement, the white region of
Fig. 3 indicates a quantum phase transitionBat=0 (the
. (3.1) sharpness of the transition being illustrated by the fact that
the zero entanglement line Bt =0 is so thin that it is in-
I¥isib|e). For small angle®, there are two energy levels close

reduces to Eq(3.4) as expected. In fact, for a three-level fo the energy+— 2J with corresponding states close to t_he
approximation(involving the first three leve)s Eq. (3.1)  Bel states|¥ “)=(|01) = |10))/ (2. Thus, we get a maxi-
with w3=0 is correct, however, the exact four-level concur-mally entangled qubit pair in the limit. However, &
rence is not in agreement with E@.11), because condition =B,z, with |B,|<2J, the states are degenerate with no en-
(3.3 does not hold for mixing the ground state with the third tanglement as a result. In the caBg>2J (B,<—2J) the
excited state. ground state is always the nonentangled state (|00)).
Also, notice thatd= 7/2 corresponds to our earlier orthogo-
IV. ARBITRARY FIELDS nal case, thus, the tangle follows Eg.6). Even whenB,| is
increased to the point where it starts to dominate, the spins
In Sec. Il we treated a case of a magnetic-field orthogonalill simply align along B, and give a disentangled state.
to the Ising direction. We are now going to generalize this toThus, the entanglement falls off with increasing strength of
arbitrary magnetic fields. The new Hamiltonian can be writ-the magnetic field in either direction.

3
C= max [ZWKCK—Z w;C;,0
ke{0,1,2,3 =0

If the highest two weights are set to zero, this expressio

ten Let us now look at the case of finite temperat(treermal
entanglement The first excited state isV ~) which lies at
H=2J0,®0,+B(sin6) (@1 +100,) the energy— 2J. This state is totally independent of a mag-
L netic field, thus, the tangle corresponding to this state forms
+B(cosh) (o, +1®0,), (4.)  a constant plane at one. Fortunately, conditi8r8) in our

theorem is also satisfied, which makes Exj7) valid, allow-

where# is the angle between the magnetic field and the Isingng us to gain an intuitive insight into where the entangle-
direction. It is sufficient to consider a variation 8fin a  ment comes from. In Figs. 5 and 6, a numerical solution is
plane containing the Ising direction, because in three spatiadhown at a low temperature. These plots and the following
dimensions, the Hamiltonian possesses rotational symmetigontour plots at nonzero temperatures in this paper, are cal-
about thez axis. From here and onwards we choose to speeulated numerically by diagonalizing the product matrix
cially study theantiferromagneticcase withJ>0, since the in Eq. (2.4) and then applying Eq.2.5). Note how fast the
ferromagnetic caseJ&0) does not have any spin-ordering tangle drops to zero for a loyB,| component. This does not
competition in thez direction. contradict the concurrence mixing formula, as the weights

The expression for the tangle is analytically solvable.also depend on the magnetic field through the energy. The
However, because of a difficult cubic equation in the diagofast drop in the tangle is due to the degenerady,at0. The
nalization, the expressions are complicated, so we presesmallness of the energy difference at low values|Bf|
the results in graphical form. At zero temperature, Fig. 3makes the two levels almost equally populated even for
shows our solution when the tangle is plotted as a function osmall temperatures. The line of zero entanglemerg,at 0
B,=Bsin# andB,=B cos#, and Fig. 4 shows the solution for T=0 has broadened into a region of almost zero en-
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Entanglement, T =0.01J Entanglement, T =0.03J classical limit, i.e., at very high temperatures, all entangle-

2 , 08 2 - ment fades away as expected because the state is completely
2 06 2 0.6 mixed. o .
o © 0.4 o O 0.4 We can use the two-level approximation to get an estimate
0.2 0.2 of the angle creating maximal entanglement. Let us first es-
2 v 2 . .
2> 0 2 o o0 2 timate the ground-state energy, Since we know _that theT
BN BN lowest two energy levels are very close and the first excited

state is —2J, we can use the approximation 2J+ e

Entanglement, T = 0.09J : i " - )
~—4J while solving for eigenvalues of the Hamiltonian

Entanglement, T =0.27J

(’ Ho.a 0.8 (4.2). The ground-state energy is then
0.6 0.6
0.4 0.4 2
4B
) 0.2 - e=—2)— ——1. (4.2)
- a— 4)°—B?
B

FIG. 5. Cont lots of the tangle in Cartesi dinates § For the above approximation to hold, we must operate in a
r1e. ». lontour plots o the tangle In Lartesian coordinales 1ot 4inn ot too close to the polesBy= +2J. This gives the
various finite temperatured, The dashed line represents an esti-

) . ; following energy difference between the two lowest levels
mation of the maximum tangle using only the lowest two energy

levels|[cf. Eq. (4.1D)]. 2
4Bg,

Ae=—-2)—e=—J. 4.3

tanglement in the finite-temperature casempare Figs. 3 4J2—B§

and 5.

It is also interesting to see that there exists an amgle Unfortunately, this approximation is not good enough. In fur-
= §*(B,T), where the entanglement is maximum for a giventher calculations, the equations grow and soon become hope-
temperature and amplitude. This feature can be explainelgss. So now we need to find a better energy approximation.
heuristically if we assume that witB, and B, fixed, the = Observe that the two terms of the ground-state enetg®)
entanglement should change continuously with temperature€an be considered as the first two terms in a Taylor expansion
We know that increasing the temperature widens the lowef the kind 1+ x. This suggests that we instead write
entanglement zone arou®}=0 and the entanglement has
to fall off for large |B,|. So it is expected that at some inter- Ae 435
mediate value ofB,| (and henced) the maximal entangle- e=—2J\/1+ TR\ (44
ment will be reached. As we increase the temperature further, 4°-B;
the near-zero entanglement zone centered ar8yrd wid- . .
ens even more and pushes the entanglement maxima away.to Le_t us, frpm this equation and onwards, measure energy
higher and higher values dB,|. The highest value of the in units ofJ, i.e., Ietq:l. When we solve for the eigenstates
tangle tends more and more towards orthogonal figtis 2nd Plug them into Eq.(3.1), the zero-temperature-
Figs. 5 and & The preferred angle traverses fraf=0 at  COncurrence becomes approximately
zero temperaturé-ig. 4) to =m/2 atT~J (Fig. 6). In the

1
Entanglement, T = 0.01J Entanglement, T = 0.03J Co Ji+Ae 49
0.8 0.8 Notice that the energy approximation in E¢.4) has now
=50 g'i 8'2 given us a concurrence approximation, which simplifies to
0.2 02 the exact expressidisquare root of E¢(2.6)] in the orthogo-
— b nal field limit. For nonzerd,, this formula remains an ex-
B/J cellent approximatiorfas we have verified numerically

Let us next investigate how the concurrence varies with

Entanglement, T = 0.09J R i o
the magnetic-fieldB at a fixed-finite temperature. From the

0.8
<50 0.6
0.4
0.2
00 1 2
B/

0.8 concurrence mixing theoreii3.4) we get an approximation
8'2 of the thermal concurrence. Recall that the first excited state
02 is | ¥ ™) with concurrenceC; = 1. Thus, to find the maximum

entanglement we need to solve

0=V5C=V5(WeCo—W;)=(1+Cg)VsWe+WsV5Co,

FIG. 6. Contour plots of the tangle in spherical coordinates. The

angle, resulting in the maximum entanglement for a given

(4.9

magnetic-field amplitude, varies as a function of the amplitude and
temperature. The dashed line represents an estimation of the magince w;=1—wg. If w; are weights following Maxwell-

mum tangle using only the lowest two energy lejels Eq.(4.10].

Boltzmann statistics, we have
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e c/T 1 Entanglement, N=3,a=1 Entanglement, N=4,a=1
o T e el 14e AdT 4.7 2 0.15 e 0.06
2.0 0.1 2.0 0.04
. . . m m
Inserting Eqs(4.5) and(4.7) into Eq.(4.6) gives the follow- 0.05 0.02
ing condition for maximum entanglement: -2 -2
2 g 2 2 g 2
T(1+e*N=2(1+Ae)(1+ 1+ Ae). 4.8 X x
( ) ( )( ) ( ) Entanglement, N=5,a =1 Entanglement, N=6,a=1
In the region we are interested in, where temperature is 2 04 2 008
not bigger than~20% of the coupling constaid the tem- o S 0.04
perature is also much smaller thAre, and Eq.(4.8) can be o0 G0 o 0.02
further simplified to ) 2
-2 2 -2
B BS/J

4
AezTInT. 4.9
FIG. 7. Contour plots of the tangle at temperatlire0.10J. N
'%s the number of qubits in the chain aae-1 means that entangle-

Remember that the ground-state energy is still a function Of ent is measured between two neighboring qubits.

the magnetic field. In order to fix the temperatuke; has to
be fixed, i.e., maximum entanglement is reached in the cross, ~ ~ . . . .
section between the energy surface and the constant ener} 72® ¢z IS significantly reduced. In such circumstances, it
plane that follows from Eq4.9). From Eq.(4.3), it is clear IS mainly the competition betweeB,o, and Byo, (albeit
that this is described by an ellipse irBgB, plane. Using the aided by the smalr,® o, interactior) which determines the
field amplitudeB as a parameter, the angle resulting in maxi-entanglement. Thus, the high-entanglement values Bear

mum tangle is given by =0 present for the two qubifand all other everN) cases
disappear for oddN. Note also that the entanglement in the
. Ae 4-B? odd N case is somewhat larger in magnitude compared with
sing* == 4 Ae g7 (410  the everN case. This is a result of the fact that the two-terms

o,® o, andB,o, compete for the type of ordering(parallel
assuming thatB|> \/e. Equation(4.10 is shown as dashed ©F antiparallel neighboring spinsin the evenN case, this

lines in Fig. 5. competition is much stronger and this tends to lower the
Another way to parametrize the optimum line is to Bat er_ltanglement by redgcing the net effectzafrdering terms
be the parameter and solve B with respect tax-ordering terms. As the numbét of qubits
in the chain is increased, the difference between even and

B2 odd N chains should disappeélvecause for larg®l, adding
B,==* Ae( 1- Z) , (4.11 or removing an extra qubit from the chain should not make a
significant difference This effect is clearly seen in Fig. 7
where the difference in appearance between the plotslfor
=3 andN=4 is much greater than that betweNr5 and
N=6.
Entanglement can also be calculated between nonneigh-

with |B,|<2. This is shown as dashed lines in Fig. 6. Again,
keep in mind that Eqs(4.10 and (4.11 follow from the
assumption thale~0, and therefore the dashed lines are
not valid around the poles &,= *=2 in Figs. 5 and 6.

Entanglement, N=4,a=2 Entanglement, N=5,a=2
V. QUBIT RINGS 0.14
2 0.03 2 0.12
As the expressions for the thermal tangle of the general = 0 002 8:88
two-qubit case are already quite complicated, we cannot ex- @ oot © oo
pect to find any easily manageable analytic expressions in ) 0.02
the many-qubit case. Instead, we have performed numerical 2 0 2 2 0 2
. . ) . . B /J B /J
simulations, which gives the entanglement between neigh- X X
boring qubits as shown in Fig. 7. Entanglement, N=6,a=2 Entanglement, N=7,a=2
The behavior for evem rings is quite similar to that of 2 0.04 2 0.08
the two-qubit case. To understand why there is an extra low- 5 ' > 0.06
entanglement zone arou}=0 in the case of od# rings, o0 002 a0 0.04
one has to go back the basic cause for entanglement arising o 0.02
in the Ising chain. It results from the competition between 2 BO/J 2 2 BO/J
the termo,® o, + B, o, trying to impose spin order in the X

direction andB, o, trying to impose spin order in the di- FIG. 8. Contour plots of the tangle at temperatlire0.10). N
rection. In the odd qubit case, it is impossible for all neigh-is the number of qubits in the chain ane-2 means that entangle-
boring spins to be oriented oppositely, so the ordering powemment is measured in pairs with one qubit in between.

042302-6



THERMAL CONCURRENCE MIXING INAONE . .. PHYSICAL REVIEW A 64 042302

boring qubits with the results shown in Fig. 8 for next- fixed magnitudg to an optimal direction. This can be re-
nearest neighbors. Again, we observe that the dVarase garded asnagnetically induce@ntanglement. The pairwise
has lower entanglement on average than theNddse. Also  entanglement between next-nearest neighbors can be maxi-
in the odd qubit case, the entanglement between next-nearasized by rotating the field to a different direction. We have
neighbors is somewhat complementary to that between neaalso proved a theorem of mixing of concurrences that is ap-
est neighborgthis can be seen, for example, by placing theplicable to any system in which the pure states in the mixture
plots forN=5 in the two cases on top of each othérhus, have no spin-flip overlap.

the amount of entanglement between pairs of nearest neigh- So far, we have have only considered pairwise entangle-
bors and pairs of next-nearest neighbors can be controlled byent. In future work, we will estimate the entanglement be-

varying the field direction. tween three or more qubits in the ring and also focus on
investigating ways to detect the natural entanglement in Ising
VI. CONCLUSIONS models, and on investigation of the entanglement in the large

) ) ) variety of available condensed-matter models of interacting
In this paper, we have investigated the natural thermakysiems.

entanglement arising in an Ising ring with a magnetic field in
an arbitrary direction. We have investigated two qubits ana-
lytically and three through seven qubits numerically. One of
the most interesting results is the fact that for a given tem- This work was funded by the UK Engineering and Physi-
perature, thénearest neighbor, pairwisentanglement in the cal Sciences Research Council and the European Union
ring can be maximized by rotating the magnetic fi¢dd  Project EQUIP(Contract No. IST-1999-11053

ACKNOWLEDGMENTS

[1] C.H. Bennett and D.P. DiVincenzo, Natufleondon 404, 247 sity Press, Cambridge, 1999
(2000. [11] D.G. Cory, A.F. Fahmy, and T.F. HavelNuclear Magnetic

[2] V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys. Resonance Spectroscopy; An Experimental Accessible Para-
Rev. Lett.78, 2275(1997); V. Vedral and M.B. Plenio, Phys. digm for Quantum ComputingProceedings of the Fourth
Rev. A57, 1619(1998. Workshop on Physics and Computati@omplex Systems In-

[3] C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher, stitute, Boston, MA, 1996
Phys. Rev. A53, 2046 (1996; S. Popescu and D. Rohrlich, [12] B.E. Kane, NaturéLondon 393 133(1998.

ibid. 56, 3319(1997. [13] J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der
[4] W.K. Wootters, Phys. Rev. LetB0, 2245(1998. Wal, and S. Lloyd, Scienc285, 1036(1999.
[5] M.C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. L8ft. [14] H.J. Briegel and R. Raussendorf, Phys. Rev. L8, 910
017901(2001). (2002); R. Raussendorf and H.J. Briegidid. 86, 5188(2001).
[6] M.A. Nielsen, Ph.D. thesis, University of New Mexico, [15] In this paper we only consider entanglement between pairs of
1998. qubits, tangle thus refers to the two-tangle throughout, V. Coff-
[7] K.M. O’Connor and W.K. Wootters, Phys. Rev.68, 052302 man, J. Kundu, and W.K. Wootters, Phys. Rev6A 052306
(2001); W.K. Wootters, e-print quant-ph/0001114. (2000.
[8] X. Wang, Phys. Rev. &4, 012313(2002). [16] For nonzero field, substituting]— —J merely exchanges the
[9] X. Wang, Phys. Lett. 281, 101 (2002J. roles of the different Bell states, as can be seen by inverting the
[10] S. SachdevQuantum Phase Transition€ambridge Univer- energy axis in Fig. 1.

042302-7



