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Thermal concurrence mixing in a one-dimensional Ising model
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We investigate the entanglement arising naturally in a one-dimensional Ising chain in a magnetic field in an
arbitrary direction. We find that for different temperatures, different orientations of the magnetic field give
maximum entanglement. In the high-temperature limit, this optimal orientation corresponds to the magnetic
field being perpendicular to the Ising orientation (z direction!. In the low-temperature limit, we find that
varying the angle of the magnetic field very slightly from thez direction leads to a rapid rise in entanglement.
We also find that the orientation of the magnetic field for maximum entanglement varies with the field
amplitude. Furthermore, we have derived a simple rule for the mixing of concurrences~a measure of entangle-
ment! due to the mixing of pure states satisfying certain conditions.
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I. INTRODUCTION

Entanglement, the rather counterintuitive nonlocal cor
lations exhibited by quantum systems, has recently bec
one of the most valuable resources in quantum informa
processing@1#. Over the past few years, it has developed in
a quantifiable physical resource@2–4# in an analogous man
ner to energy. Thus, the amount of entanglement pre
naturally in complex physical systems~systems with many
interacting components! now becomes a relevant question
ask. Condensed-matter physicists have long investigated
relations between parts of composite systems. Entanglem
is the quantumor nonlocal part of these correlations. A
such, it can behave very differently from the total corre
tions. For example, while correlations are averaged on m
ing states, entanglement generally decreases. The top
variation of entanglement in condensed-matter systems
respect to the variation of external parameters such as
perature, field components, etc., is a relatively unexplo
and potentially rich area of study. In this context, as a sim
initial model, Arnesen, Bose, and Vedral have studied
variation of entanglement with temperature and magn
field in a one-dimensional~1D! isotropic finite Heisenberg
chain @5#. Prior to that, Nielsen had investigated the e
tanglement between two qubits interacting via the Heis
berg interaction at a non-zero temperature@6# and O’Connor
and Wootters have investigated the entanglement in
ground state of an antiferromagnetic isotropic Heisenb
ring @7#. In Ref. @5#, the entanglement at a nonzero tempe
ture, being that of a thermal state, was calledthermal en-
tanglement. Subsequently, Wang has studied the quant
HeisenbergXY model@8# and the two-qubit anisotropicXXZ
model @9# in a similar context.

In this paper, we are going to study the thermal entang
ment in the 1D Ising model in an external magnetic fie
@10#. Ising-like interactions form the basic coupling in man
proposals for experimental systems that can be used to
form quantum computation, see, for example,@11–14#. The
1D Ising model describes a set of linearly arranged sp
1050-2947/2001/64~4!/042302~7!/$20.00 64 0423
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~qubits!, each interacting with its nearest neighbors by a c
pling that is proportional toŝz^ ŝz . This coupling can be
diagonalized in a basis of disentangled states. Naively,
might think that this implies a complete absence of entang
ment in the Ising model. However, an external magnetic fi
with a component, however small, along a direction perp
dicular to thez axis is sufficient to make the eigenstat
entangled.

We start in Sec. II by considering, analytically, the case
two qubits interacting via the Ising interaction in a magnet
field orthogonal to thez direction. In Sec. III, we formulate a
theorem for the concurrence mixing due to occupation
both the ground and the excited states. Next, in Sec. IV,
consider numerically the variation of entanglement with t
orientation of magnetic field. Before concluding, in Sec.
we show that the kinds of behavior found for two qubits a
hold for many qubits.

II. TWO QUBITS WITH ISING INTERACTION

The Hamiltonian for an isotropic quantum Ising mod
with nearest-neighbor couplings in an external magnetic fi
can in the most general form be expressed as

Ĥ5J(
^ i , j &

ŝz
i ŝz

j 1BW •(
k

ŝW k, ~2.1!

where the indicesi, j, andk label theN spins. Here we will
consider systems in one spatial dimension with perio
boundary conditions so theNth spin also couples to the firs
spin. Thus, we have a qubitring. First we will consider the
case ofN52. Our Hamiltonian can then be written as

Ĥ52J ŝz^ ŝz1BW •~ ŝW ^ Î 1 Î ^ ŝW !. ~2.2!

The usual form of the Ising model has a magnetic field o
along thez axis. This case has no entanglement at all, si
the Hamiltonian is diagonal in the standard disentangled
sis $u00&,u01&,u10&,u11&%, whereu0& stands for spin up and
©2001 The American Physical Society02-1
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u1& stands for spin down. However, in this paper, we w
consider the cases when the magnetic field is not paralle
the z axis.

Orthogonal fields

Let us first study the special case when the magnetic fi
is perpendicular to thez axis, sayBW 5B xW . Our system is now
described by the following Hamiltonian:

Ĥ52J ŝz^ ŝz1B~ ŝx^ Î 1 Î ^ ŝx!. ~2.3!

In this section, we will useJ.0, without loss of generality
@16#. We are going to investigate the entanglement in t
two-qubit Ising ring. In this paper, we will use the squar
concurrence@4,15#, called the tanglet, as a measure of en
tanglement. To calculate this, first we need to define
product matrixR of the density-matrixr and its spin-flipped
matrix, r̃5(ŝy^ ŝy)r* (ŝy^ ŝy). Hence, we have

R[rr̃5r~ŝy^ ŝy!r* ~ ŝy^ ŝy!. ~2.4!

Now concurrence is defined by

C5max$l12l22l32l4,0%, ~2.5!

where thel i are the square roots of the eigenvalues ofR, in
decreasing order. In this method, the standard ba
$u00&,u01&,u10&,u11&%, must be used. As usual for entangl
ment measures, the tangle ranges from 0~no entanglement!
to 1, when the two qubits are maximally entangled.

For finite temperatures we need the density-matrixr for a
system that is at thermal equilibrium. This is given byr

5e2Ĥ/T/Z, whereZ5tr(e2Ĥ/T) is the partition function~us-
ing units where the Boltzmann constant,kB51). We then
solve the time-independent Schro¨dinger equation for our qu
bits. The energy levels of our Hamiltonian~2.3! are, in rising
order,22AJ21B2,22J,2J,2AJ21B2, as in Fig. 1.

FIG. 1. Energy levels with corresponding eigenstates. The c
ficients a, b, c, and d are functions ofB, and the statesuF6&
5(u00&6u11&)/A2 and uC6&5(u01&6u10&)/A2 are the four Bell
states.
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For zero temperature, only the lowest-energy level
populated. The tangle of this pure state can easily be ca
lated from the density matrix, forB.0,

t5
J2

J21B2
5

1

11~B/J!2
. ~2.6!

For finite temperature, the analytical expressions are com
cated, so we present them graphically in Fig. 2, a cont
plot of the tanglet, as a function of magnetic-field amplitud
B and the temperatureT.

From Eq.~2.6!, it is clear that the entanglement is highe
for nearly vanishing magnetic fields and decreases with
creasing field amplitude. Physically this is because the fi
tends to align the qubit spins in a different disentangled s
from the spin-spin coupling; it is the trade off between t
field and the Ising interaction that produces the entang
ment. For a strong field (B@J) the spins will become com
pletely aligned along the field direction, whereupon the e
tanglement will drop to zero. However, Eq.~2.6! is not valid
for strictly B50, in which limit it seems to predict maxima
entanglement. At preciselyB50, in fact, no entanglement i
present~the eigenstates are same as those of the usual I
Hamiltonian without any magnetic field!. Hence, there is a
quantum phase transition@10# at the pointB50 when the
entanglement jumps from zero to maximal even for an infi
tesimal increase ofB. As we will see later, this point is only
one point on a transition line forB fields along thez axis.

Let us now turn our attention to the more realistic case
nonzero temperatures. For a general pure state, only on
the eigenvalues of Eq.~2.4! is nonzero and therefore equal
the tangle. This statement is proved inLemma 1in the next
section. For low temperature and magnetic field, i.e.,B,T
!J, it is a good approximation to assume that only the t
lowest-energy levels are populated. This becomes clear w
we look at Fig. 1 in the regimeB!J. The lowest two levels
are much closer to each other compared with their separa
from the third lowest-energy level~i.e., the second excited
state!. Thus, when the temperature is low, only the lowe

f-

FIG. 2. Contour plot of the tangle of two qubits obeying an Isi
Hamiltonian with couplingJ, in a perpendicular magnetic fieldB,
for temperaturesT. The parameter space lies entirely within th
nonclassical region, except for a thin line atB50. Unfortunately,
with our resolution this cannot be visualized.
2-2
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THERMAL CONCURRENCE MIXING IN A ONE- . . . PHYSICAL REVIEW A 64 042302
two levels appear in the state of the system. We will fi
~Theorem 1, next section! that, in our case, the combinatio
of the two lowest states also combines their concurrence
the following weighted subtraction:

C5max$uw0C02w1C1u,0%, ~2.7!

where the index 0 refers to the ground state, while 1 refer
the excited state andw0 andw1 are the weights of the groun
and excited states, respectively. The weights can be
weights from the statistics, for example, Maxwell-Boltzma
statistics or Fermi-Dirac statistics. We call thisconcurrence
mixing. In our case, the first excited state is the Bell sta
uC2&5(u01&2u10&)/A2, which hast51, and Eq.~2.7! re-
duces to

C5Uw0

J

AJ21B2
2w1U . ~2.8!

In general, the first term in the above equation is larger t
the second, and in this case the concurrence decreases
temperature asw0 decreases andw1 increases~c.f. Fig. 2!. In
Fig. 2, we also see that, for a given temperature, the
tanglement can be increased by adjusting the magnetic
and is generally largest for some intermediate value of
magnetic field. This effect can be understood by noting t
w0 increases with increasingB as the energy separation b
tween the levels increase, butJ/AJ21B2 decreases. As a
result, the combined function reaches a peak as we varB,
and decreases subsequently, inducing analogous behavio
the concurrence.

III. CONCURRENCE MIXING

In this section, we are going to formulate and prove
useful concurrence mixing theorem. We begin with a lem
that illustrates the method used in the theorem. The resul
Lemma 1 appear in Ref.@4#.

Lemma 1. Letr be a pure density matrix. Then the pro

uct matrix R5rr̃, wherer̃5(ŝy^ ŝy)r* (ŝy^ ŝy), has only
one nonzero eigenvalue, and its value is the concurre
squared, i.e., the tangle. For a general pure state,ua&
5au00&1bu01&1cu10&1du11& the concurrence is

C52uad2bcu ~3.1!

or, written as a Schmidt decomposition, C52uc0c1u, where
ci are the two Schmidt coefficients.

Proof. Consider a general pure density-matrixr5ua&^au.
By writing out the product matrix

rr̃5ua&^auŝy^ ŝyua&^auŝy^ ŝy , ~3.2!

we see directly thatuu0&5ua& is an eigenstate with eigen
value z^auŝy^ ŝyua& z2. It is always possible to find thre

more vectorsuak
'&, k51,2,3, all of them linearly indepen

dent of each other and orthogonal toua&. Thus, the remain-
ing three eigenvectors can be written asuuk&5ŝy^ ŝyuak

'&,
k51,2,3, all with eigenvalue zero. From Eq.~2.5!, we now
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get the concurrence to beC5u^auŝy^ ŝyua&u52uad2bcu.
Thus, for a pure state, concurrence can be defined as
absolute expectation value of the operatorŝy^ ŝy . By trac-
ing out one qubit and solving for the eigenvalues, which
equal to the square of the Schmidt coefficientsci of the re-
maining density matrix, we find that the concurrence a
can be written asC52uc0c1u.

Theorem 1. Consider two pure states of the same sys
uam& and uan&. If the spin-flip overlap is zero, i.e.,

^amuŝy^ ŝyuan&50, ~3.3!

then the concurrence of the mixture of the two pure sta
with weights wi , can be expressed as

Cmixed5uwmCm2wnCnu. ~3.4!

Proof. Let r i5ua i&^a i u, i 5m,n, be our two pure states
From our lemma, we have

r i r̃ i uui0&5Ci
2uui0&, ~3.5!

r i r̃ i uuik&50, k51,2,3, ~3.6!

whereuui0&5ua i& and uuik&5ŝy^ ŝyua ik
' &. Let us write our

mixed stater as a weighted average of the pure dens
matricesr5wmrm1wnrn . Sincer̃ is an antilinear transfor-
mation of r, we also haver̃5wmr̃m1wnr̃n . Using these
assumptions, we can write down the product matrix

rr̃5wm
2 rmr̃m1wmwn~rmr̃n1rnr̃m!1wn

2rnr̃n . ~3.7!

Our condition~3.3! makes the cross terms drop out, since

r i r̃ j5ua i&^a i uŝy^ ŝyua j&^a j uŝy^ ŝy50. ~3.8!

Furthermore, condition~3.3! together with Eq.~3.5! gives
the following relation:

r i r̃ i uuj 0&5ua i&^a i uŝy^ ŝyua i&^a i uŝy^ ŝyua j&5d i j Cj
2uuj 0&.

~3.9!

Equations~3.7!–~3.9! give two of the four eigenequations o
the product matrix

rr̃uv i&5~d imwm
2 Cm

2 1d inwn
2Cn

2!uv i&, ~3.10!

where uv i&5uui0&5ua i&. Since these two eigenvectors on
span two dimensions in the four-dimensional space, we
always find another two vectorsuak

'&, k52,3 which are lin-
ear independent of each other and orthogonal to the
eigenstates. Thus, the last two eigenvectors areuvk&5ŝy

^ ŝyuak
'&, k52,3, both with zero eigenvalue. Equation~2.5!

now gives our mixed concurrence formula.
Theorem 1 applies to any system with a mixture of tw

pure states satisfying condition~3.3!. It can easily be ex-
tended to apply to the mixing of more pure states. The
quirement is then that condition~3.3! must hold for all pairs
of pure states.
2-3
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In our case, it would have been interesting if, when
cluding all four levels, the concurrence could be calcula
as

C5 max
kP$0,1,2,3%

H 2wkCk2(
i 50

3

wiCi ,0J . ~3.11!

If the highest two weights are set to zero, this express
reduces to Eq.~3.4! as expected. In fact, for a three-lev
approximation~involving the first three levels!, Eq. ~3.11!
with w350 is correct, however, the exact four-level concu
rence is not in agreement with Eq.~3.11!, because condition
~3.3! does not hold for mixing the ground state with the th
excited state.

IV. ARBITRARY FIELDS

In Sec. II we treated a case of a magnetic-field orthogo
to the Ising direction. We are now going to generalize this
arbitrary magnetic fields. The new Hamiltonian can be w
ten

Ĥ52J ŝz^ ŝz1B~sinu!~ŝx^ Î 1 Î ^ ŝx!

1B~cosu!~ŝz^ Î 1 Î ^ ŝz!, ~4.1!

whereu is the angle between the magnetic field and the Is
direction. It is sufficient to consider a variation ofB in a
plane containing the Ising direction, because in three spa
dimensions, the Hamiltonian possesses rotational symm
about thez axis. From here and onwards we choose to s
cially study theantiferromagneticcase withJ.0, since the
ferromagnetic case (J,0) does not have any spin-orderin
competition in thez direction.

The expression for the tangle is analytically solvab
However, because of a difficult cubic equation in the diag
nalization, the expressions are complicated, so we pre
the results in graphical form. At zero temperature, Fig
shows our solution when the tangle is plotted as a function
Bx5B sinu and Bz5B cosu, and Fig. 4 shows the solutio

FIG. 3. Contour plot of the tangle at zero temperature in a C
tesian coordinate system. Note that the line of nonentangled s
at Bx50 for uBzu,2J cannot be seen.
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when the tangle is plotted as a function of the amplitudeB
and angleu.

We notice that the region aroundBx50 for all uBzu,2J
has the highest possible entanglement. At exactly atBx50
there should not beany entanglement, the white region o
Fig. 3 indicates a quantum phase transition atBx50 ~the
sharpness of the transition being illustrated by the fact t
the zero entanglement line atBx50 is so thin that it is in-
visible!. For small anglesu, there are two energy levels clos
to the energy22J with corresponding states close to th
Bell statesuC6&5(u01&6u10&)/A(2. Thus, we get a maxi-
mally entangled qubit pair in the limit. However, atBW

5BzzW, with uBzu,2J, the states are degenerate with no e
tanglement as a result. In the caseBz.2J (Bz,22J) the
ground state is always the nonentangled stateu11& (u00&).
Also, notice thatu5p/2 corresponds to our earlier orthogo
nal case, thus, the tangle follows Eq.~2.6!. Even whenuBxu is
increased to the point where it starts to dominate, the sp
will simply align along Bx and give a disentangled stat
Thus, the entanglement falls off with increasing strength
the magnetic field in either direction.

Let us now look at the case of finite temperature~thermal
entanglement!. The first excited state isuC2& which lies at
the energy22J. This state is totally independent of a ma
netic field, thus, the tangle corresponding to this state fo
a constant plane at one. Fortunately, condition~3.3! in our
theorem is also satisfied, which makes Eq.~2.7! valid, allow-
ing us to gain an intuitive insight into where the entang
ment comes from. In Figs. 5 and 6, a numerical solution
shown at a low temperature. These plots and the follow
contour plots at nonzero temperatures in this paper, are
culated numerically by diagonalizing the product matrixR,
in Eq. ~2.4! and then applying Eq.~2.5!. Note how fast the
tangle drops to zero for a lowuBxu component. This does no
contradict the concurrence mixing formula, as the weightswi
also depend on the magnetic field through the energy.
fast drop in the tangle is due to the degeneracy atBx50. The
smallness of the energy difference at low values ofuBxu
makes the two levels almost equally populated even
small temperatures. The line of zero entanglement atBx50
for T50 has broadened into a region of almost zero

r-
tes

FIG. 4. Contour plot of the tangle at zero temperature in
spherical coordinate system.
2-4
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THERMAL CONCURRENCE MIXING IN A ONE- . . . PHYSICAL REVIEW A 64 042302
tanglement in the finite-temperature case~compare Figs. 3
and 5!.

It is also interesting to see that there exists an anglu
5u* (B,T), where the entanglement is maximum for a giv
temperature and amplitude. This feature can be expla
heuristically if we assume that withBx and Bz fixed, the
entanglement should change continuously with temperat
We know that increasing the temperature widens the lo
entanglement zone aroundBx50 and the entanglement ha
to fall off for large uBxu. So it is expected that at some inte
mediate value ofuBxu ~and henceu) the maximal entangle
ment will be reached. As we increase the temperature furt
the near-zero entanglement zone centered aroundBx50 wid-
ens even more and pushes the entanglement maxima aw
higher and higher values ofuBxu. The highest value of the
tangle tends more and more towards orthogonal fields~cf.
Figs. 5 and 6!. The preferred angle traverses fromu50 at
zero temperature~Fig. 4! to u5p/2 at T'J ~Fig. 6!. In the

FIG. 6. Contour plots of the tangle in spherical coordinates. T
angle, resulting in the maximum entanglement for a giv
magnetic-field amplitude, varies as a function of the amplitude
temperature. The dashed line represents an estimation of the m
mum tangle using only the lowest two energy levels@cf. Eq.~4.10!#.

FIG. 5. Contour plots of the tangle in Cartesian coordinates
various finite temperatures,T. The dashed line represents an es
mation of the maximum tangle using only the lowest two ene
levels @cf. Eq. ~4.11!#.
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classical limit, i.e., at very high temperatures, all entang
ment fades away as expected because the state is comp
mixed.

We can use the two-level approximation to get an estim
of the angle creating maximal entanglement. Let us first
timate the ground-state energy,e. Since we know that the
lowest two energy levels are very close and the first exc
state is 22J, we can use the approximation22J1e
'24J while solving for eigenvalues of the Hamiltonia
~4.1!. The ground-state energy is then

e522J2
4Bx

2

4J22Bz
2

J. ~4.2!

For the above approximation to hold, we must operate i
region not too close to the poles atBz562J. This gives the
following energy difference between the two lowest level

De522J2e[
4Bx

2

4J22Bz
2

J. ~4.3!

Unfortunately, this approximation is not good enough. In fu
ther calculations, the equations grow and soon become h
less. So now we need to find a better energy approximat
Observe that the two terms of the ground-state energy~4.2!
can be considered as the first two terms in a Taylor expan
of the kindA11x. This suggests that we instead write

e522JA11
De

J
522JA11

4Bx
2

4J22Bz
2
. ~4.4!

Let us, from this equation and onwards, measure ene
in units ofJ, i.e., letJ51. When we solve for the eigenstate
and plug them into Eq.~3.1!, the zero-temperature
concurrence becomes approximately

C05
1

A11De
. ~4.5!

Notice that the energy approximation in Eq.~4.4! has now
given us a concurrence approximation, which simplifies
the exact expression@square root of Eq.~2.6!# in the orthogo-
nal field limit. For nonzeroBz , this formula remains an ex
cellent approximation~as we have verified numerically!.

Let us next investigate how the concurrence varies w
the magnetic-fieldBW at a fixed-finite temperature. From th
concurrence mixing theorem~3.4! we get an approximation
of the thermal concurrence. Recall that the first excited s
is uC2& with concurrenceC151. Thus, to find the maximum
entanglement we need to solve

0W 5¹W BW C5¹W BW ~w0C02w1!5~11C0!¹W BW w01w0¹W BW C0 ,

~4.6!

since w1512w0. If wi are weights following Maxwell-
Boltzmann statistics, we have

e

d
xi-

r

y

2-5
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w05
e2e0 /T

e2e0 /T1e2e1 /T
'

1

11e2De/T
. ~4.7!

Inserting Eqs.~4.5! and~4.7! into Eq.~4.6! gives the follow-
ing condition for maximum entanglement:

T~11eDe/T!52~11De!~11A11De!. ~4.8!

In the region we are interested in, where temperatur
not bigger than;20% of the coupling constantJ, the tem-
perature is also much smaller thanDe, and Eq.~4.8! can be
further simplified to

De5T ln
4

T
. ~4.9!

Remember that the ground-state energy is still a function
the magnetic field. In order to fix the temperature,De has to
be fixed, i.e., maximum entanglement is reached in the c
section between the energy surface and the constant en
plane that follows from Eq.~4.9!. From Eq.~4.3!, it is clear
that this is described by an ellipse in aBxBz plane. Using the
field amplitudeB as a parameter, the angle resulting in ma
mum tangle is given by

sinu* 56A De

42De

42B2

B2
, ~4.10!

assuming thatuBu.Ae. Equation~4.10! is shown as dashe
lines in Fig. 5.

Another way to parametrize the optimum line is to letBz
be the parameter and solve forBx ,

Bx56ADeS 12
Bz

2

4 D , ~4.11!

with uBzu,2. This is shown as dashed lines in Fig. 6. Aga
keep in mind that Eqs.~4.10! and ~4.11! follow from the
assumption thatDe'0, and therefore the dashed lines a
not valid around the poles atBz562 in Figs. 5 and 6.

V. QUBIT RINGS

As the expressions for the thermal tangle of the gen
two-qubit case are already quite complicated, we cannot
pect to find any easily manageable analytic expression
the many-qubit case. Instead, we have performed nume
simulations, which gives the entanglement between ne
boring qubits as shown in Fig. 7.

The behavior for evenN rings is quite similar to that of
the two-qubit case. To understand why there is an extra l
entanglement zone aroundBz50 in the case of oddN rings,
one has to go back the basic cause for entanglement ar
in the Ising chain. It results from the competition betwe
the termŝz^ ŝz1Bzŝz trying to impose spin order in thez
direction andBxŝx trying to impose spin order in thex di-
rection. In the odd qubit case, it is impossible for all neig
boring spins to be oriented oppositely, so the ordering po
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of ŝz^ ŝz is significantly reduced. In such circumstances
is mainly the competition betweenBzŝz and Bxŝx ~albeit
aided by the smallŝz^ ŝz interaction! which determines the
entanglement. Thus, the high-entanglement values neaBz
50 present for the two qubit~and all other evenN) cases
disappear for oddN. Note also that the entanglement in th
odd N case is somewhat larger in magnitude compared w
the evenN case. This is a result of the fact that the two-term
ŝz^ ŝz andBzŝz compete for the type ofz ordering~parallel
or antiparallel neighboring spins!. In the evenN case, this
competition is much stronger and this tends to lower
entanglement by reducing the net effect ofz-ordering terms
with respect tox-ordering terms. As the numberN of qubits
in the chain is increased, the difference between even
odd N chains should disappear~because for largeN, adding
or removing an extra qubit from the chain should not mak
significant difference!. This effect is clearly seen in Fig. 7
where the difference in appearance between the plots foN
53 andN54 is much greater than that betweenN55 and
N56.

Entanglement can also be calculated between nonne

FIG. 8. Contour plots of the tangle at temperatureT50.10J. N
is the number of qubits in the chain anda52 means that entangle
ment is measured in pairs with one qubit in between.

FIG. 7. Contour plots of the tangle at temperatureT50.10J. N
is the number of qubits in the chain anda51 means that entangle
ment is measured between two neighboring qubits.
2-6
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boring qubits with the results shown in Fig. 8 for nex
nearest neighbors. Again, we observe that the evenN case
has lower entanglement on average than the oddN case. Also
in the odd qubit case, the entanglement between next-ne
neighbors is somewhat complementary to that between n
est neighbors~this can be seen, for example, by placing t
plots for N55 in the two cases on top of each other!. Thus,
the amount of entanglement between pairs of nearest ne
bors and pairs of next-nearest neighbors can be controlle
varying the field direction.

VI. CONCLUSIONS

In this paper, we have investigated the natural therm
entanglement arising in an Ising ring with a magnetic field
an arbitrary direction. We have investigated two qubits a
lytically and three through seven qubits numerically. One
the most interesting results is the fact that for a given te
perature, the~nearest neighbor, pairwise! entanglement in the
ring can be maximized by rotating the magnetic field~at
.
.
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,

,
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fixed magnitude! to an optimal direction. This can be re
garded asmagnetically inducedentanglement. The pairwis
entanglement between next-nearest neighbors can be m
mized by rotating the field to a different direction. We ha
also proved a theorem of mixing of concurrences that is
plicable to any system in which the pure states in the mixt
have no spin-flip overlap.

So far, we have have only considered pairwise entan
ment. In future work, we will estimate the entanglement b
tween three or more qubits in the ring and also focus
investigating ways to detect the natural entanglement in Is
models, and on investigation of the entanglement in the la
variety of available condensed-matter models of interact
systems.
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