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The general conditions for the orthogonal product states of the multistate systems to be used in quantum key
distribution(QKD) are proposed, and a novel QKD scheme with orthogonal product states ixX@dd8bert
space is presented. We show that this protocol has many distinct features such as great capacity and high
efficiency. The generalization toX n systems is also discussed and an asymptotic limit of 1/2 for the eaves-
dropper’s success probability is obtained.
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I. INTRODUCTION are only available one after the other, then there are various
cases that orthogonal states cannot be cloned.

Cryptography is created to satisfy the people’s desire of For the multistate systems, Bennettal. have shown that
transmitting secret messages. With the development of quaere are orthogonal product pure states in the33Hilbert
tum computation, especially the proposal of Shor’s algorithnspace and proved that these states may have some degree of
[1], the base of the most important classic cryptographigionlocality without entanglemerjtl1]. There was also an
scheme was shocked. But at the same time, the principles éxperimental demonstration of three mutually orthogonal po-
quantum mechanics have also shed new light on the field darization state$12], where biphotons are used as multistate
cryptography as these fundamental laws guarantee the s8ystems.
crecy of quantum cryptosystems. Any intervention of an We propose the general conditions for the orthogonal
eavesdropper, Eve, must leave some trace that can be deroduct states of the multistate composite systems to be used
tected by the legal users of the communication channel. Alin QKD, then present a QKD scheme with the orthogonal
kinds of quantum key distributiofQKD) schemes, such as product states of a’83 system that has several distinct fea-
the Bennett-Brassard 19§BB84) protocol[2], the Bennett tures, such as high efficiency and great capacity. The gener-
1992(B92) protocol[3], and the electron paramagnetic reso-alization to then-state systems, and eavesdropping is ana-
nance (EPR scheme[4] have been proposed. Recently, lyzed where a limit of 1/2 for the success probability of an
quantum cryptography with three-state systems was also irefficient eavesdropping strategy is foundrelsecomes large
troduced[5]. Experimental research on QKD is also pro- enough.
gressing fast, for instance, the optical-fiber experiment of
BB84 and B92 protocols have been realized up to 446 || e QKD SCHEME WITH ORTHOGONAL PRODUCT
and QKD in free space for the B92 scheme has been STATES
achieved over 1 km distan¢&].

In Ref. [8], Goldenberg and Vaidman first presented a In the present QKD scheme with orthogonal product
guantum cryptography based on orthogonal states. Thestates in then X n Hilbert space, the transmission processing
there is the quantum-cryptographic scheme involving twads the same as the QKD scheme with common orthogonal
truly orthogonal statef9]. The basic technique is to split the stateq8]. The information is encoded in the holistic state of
transfer of one bit of information into two steps, ensuringthe two particles, and these two particles are sent separately
that only a fraction of the bit of information is transmitted at to ensure that any eavesdropper cannot hold both particles at
a time. Then the no-cloning theorem of orthogonal stateshe same time. Since only an orthogonal product state are
[10] guarantee its security. Based on the impossibility ofemployed, operations on one subsystem have no effect on the
cloning nonorthogonal mixed states, the no-cloning theorenother. There are some basic conditions for any set of or-
of orthogonal states says that the t¢ay more orthogonal thogonal product states in thestate composite systems to
statesp;(AB) of the system composed éfandB cannot be be used in the present QKD scheme: for any density matrix
cloned if the reduced density matrices of the subsystem thatf any subsystemp;(P) there must be at least opg(P) that
is available first(say A) pi(A)=Trg[pi(AB)] are nonor- is both nonidentical and nonorthogonal gdP). (P repre-
thogonal and nonidentical, and if the reduced density matrisents subsyster or B; i andj represent different states of
ces of the second subsystem are nonorthogonal. It is a vetie set). Then from the point of view of any subsystda0],
surprising result since it means that entanglement is not vitahe standard no-cloning theorefi3] is satisfied, and this
for preventing cloning of orthogonal states. In the case of guarantees the security of the protocol. What is more, we can
composite system made of two subsystems, if the subsystemi@nsmit 2 logn bits of information, double the value of the

existing QKD protocol with usual orthogonal staf&s9]. It

is evident that this is the maximal information that can be
*Electronic address: cfli@ustc.edu.cn transmitted by ther X n system.
Electronic address: gcguo@ustc.edu.cn For a 2<X2 system, there are obviously no such orthogo-
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nal product states that satisfy the orthogonal states cryptog- B
raphy conditions. The reason is thapif( P) are nonidentical

> 10> 2>
and nonorthogonal tp(P), then py(A)® po(B) cannot be :
orthogonal top,(A) ® p1(B). 1> 1 2 3
Next, we consider the 83 system. A general set of or- 4
thonormal product states in this Hilbert space is as follows AlO> | 7 | 9 |
W,1=|1)a(al 1)s+b|0)e), o> L[5 6

— * __ A%
Vo=|1)a(b*[1)g—2%[0)e), FIG. 1. The graphical depiction of the set of orthogonal product

states in the ¥ 3 Hilbert space.
W3=(c[1)a+d|0)a)[2)s,

IIl. EAVESDROPPING AND THE GENERALIZATION

V4= (d*[1)a—c*[0)a)[2)s, TO THE n-STATE SYSTEM
We=|2)a(e|0)g+f[2)g), We first consider one efficient eavesdropping strategy. In
this strategy, Eve measures the first particle from Alice and
We=|2)a(f*|0)g—€*|2)g), sends it to Bob. She measures the second particle corre-
sponding to the measurement result of the first one and sends
= + it to Bob.
F7=(@l0)athi2))lL)s, The particular eavesdropping is as follows: Eve intercepts
V= (h*|0)a—g*[2)2)|1)s, particleA and makes an orthogonal measurement in the basis
{|0),|1),]2)}. Suppose particld is found in statg1),, Eve
Wo=]0)Al0)g, (1) knows that the two-particle states AfandB areV,, V¥,

with probability 1/9, respectively, o¥ 3, ¥, with probabil-

Wherea7 b, C, d, e f, o, h are Comp'ex numberS, add|2 |ty |C|2/9 and|d|2/9, l’eSpeCtiyely. Then.She sends it to BOb
+|b|2=|c|2+|d|?=|e|2+|f|2=|g|?+|n|2=1, the single- When par_tcheB comes, she intercepts it too and measures it
particle basis statg®), |1), and|2) are orthonormal. in the basig{|2),a|1)g+b|0)g ,b*[1)g—a*[0)g} and then

This set of states has been proven to have some degree $nds it to Bob. If Eve sees that partideis in all)g
nonlocality without entanglement, when=b=c=d=e=f  +b|0)s or b*|1)g—a*[0)g, then obviously, (ignoring
—g=h=1/\/2 [11]. For the general case, no Satisfactorynqlse, she knovys that the two-particle statedis or \PQ: In
proof for the existence of the nonlocality has yet been foundthis case, she is lucky enough to conceal from Alice and
But if they satisfy the conditions mentioned above, they carBob, for the two-particle state is not disturbed. And if Eve
still be used in this QKD scheme. finds particleB in state|2)g, then the two-particle state is

The process of this QKD scheme is as follows: Alice V'3 Or W4, which has collapsed tfi)A|2)g . then Bob has
prepares two particlea and B randomly in one of the nine the partial probability ofc|? or |d|® to find the two-particle
orthogonal product states shown above and sends patticle State in¥3 or W, respectively. So it is clear that for the case
to Bob, and when Bob receives it, he informs Alice throughwhere Eve measures the partidein the state|1),, the
an open classical channel. Then Alice sends out parficle Probability for her to eavesdrop without being detected is
When particlesA and B are both in the hand of Bob, he (2+]c|*+|d|*)/9. Analyzed in the same way, the total prob-
makes a collective orthogonal measurement using the bas@ility that Eve eavesdrops the key information without be-
of Egs.(1) to determine in which state the two-particle sys-ing detected is
tem has been prepared. After a sequence of this procedure,
they can share a random bit string, which is the raw key. In P3=5/9+2(|c|[*+|d|*+[h[*+]g|*)/9. (2
order to find possible eavesdropping, Alice and Bob ran-
domly compare some bits to verify whether the correlationsThen it is evident thalP; gets the minimal value of 7/9 when
have been destroyed. If the key is true with as high a problc|?=|d|?=|h|?=|g|?=1/2.
ability as they require, it can be believed that there is no We depict this set of states in thex3 Hilbert space in a
eavesdropper and all of the rest of the results can be used sisual graphical way11] as Fig. 1 shows. The four domi-
a cryptographic key. Otherwise, all the key is discarded anchoes represent the four pairs of states that involve superpo-
it must be redistributed. sition of the basis statd®), |1), or |2). It is obvious that

What is vital to this scheme is that Alice sends the secondhis figure is fourfold rotation symmetric, and we will show
particle only when the first one reaches Bob, to eliminate thdater that this symmetry is one of the basic requirements for
possibility of any eavesdropper to possess the two particlethere to be two symmetrical eavesdropping strategies. From
at the same time. This protocol has some distinct features. Athis figure we can obviously see that all the states included in
all of the raw key, except a small portion chosen for check-one row, where particlé is in basis states, can be eaves-
ing eavesdroppers are usable, it is very efficiemearly  dropped without being detected in this strategy. But for all
100%), and it has large capacity sinceJ@dits information  other states, there is only a certain probability, the fourth
is transmitted by a 3 system. power of the modulus of the probability amplitude of the
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B where a; g is the probability amplitude of the superposi-
Tk
13> 11> 10> 12> tion states of particlé\ in the basis states ariha3 |, =1
T T I
|1 2 3 for any|l)g, k andi, and|l)g means that particl8 is in the
4 basis statél g, k denotes dominoes in ling)g, i, denotes

the superposition states in domirkp and Ji, denotes the

basis states that superposition stigténvolves, P is Eve’s

success probability for the>33 system and 8/25 is the prob-

ability for states in row{3), and|4),. We know from the

graph that the dominoes in colum)g and|4)g cover four

8 7 grids in total(if five grids are covered, all the states in this
i column can be eavesdropped without being detecad we

have shown that]iks4. It can be proved easily thd®s

reaches its minimal value 17/25 whéh gets its minimal
value and only one domino is in colunB)g or |4)g and

superposition states of particlein the basis states, for Eve'’s |a‘]ik||>B|2: 1/4. This corresponds to the set of states depicted
successful eavesdropping. Then the total probabilitf?4s in Fig. 3. Then for the (8+1)X(2n+1) system, the suc-
Now let us consider the case of the<n system. Since we cess probability is
only utilize orthogonal product states, and any superposition
of n basis states that covers all the grids of any r@my
column in the graphic depiction will surely be distinguished p _
by Eve, this will have no use in the present QKD scheme. In an+im K
other words, any set of states including such a superposition
state will violate the above conditions, then the possible su- 4 2
perposition states can just be the ones of less thhasis +k% |a3ik|2“>B| }/ (2n+1)% “)
states that cover no more than-1 grids of the figures. The
4X 4 system can be depicted in Fig. 2. We can see that the
only difference between the figures of thex3 and 4x4  The minimal probability can be obtained similarly:
systems is that there are four states in the center of the 4
X4 system, which can be eavesdropped without being de- ]
tected. Then, generalized straightforwardly, thiec2n sys- ~ MiN{Pn. 1} =[(2n—1)?min{P,, 1} +4n+2]/(2n+1)?
tem can be analyzed in a similar way as th&{2L) X (2n _ 2
—1) system. Thus, here we take then(21) < (2n—1) sys- 1/2+(1+4n)/2(2n+1)%, ©
tem for example.§=2,34...,.)
Figure 3 depicts a set of orthogonal product states of thgneren=1. We can deduce immediately that this value ap-
5x5 system, which is generalized straightforwardly from yq5ches 1/2 when gets large enough.
the 3xX 3 system. For any complete set of orthogonal producP Of course, there are other ways of plotting the graph sym-
states, the success probability for Eve to eavesdrop withoyhetrically. But this set of states is the most secure. In fact,
being detected is the value of mifiP,,, ! can be deduced straightforwardly
from the symmetry of the plot. For any vertical domino con-
> ey |3>B|4+ > ey, 4>B|4” / 25, tributes 1/(2+ 1)? to this value, any state in the horizontal
kig o Kig dominoes and the state in the center each contributes 1/(2
) +1)2. Due to the symmetry, there are at least\&rtical or
B horizontal dominoes and2n+ 1)?— 1]/2 states in the hori-
zontal dominoes.
3> 11> 10> 12> K> For the 21X 2n system, the same result can be reached.
: : ' That is to say there is a limit of the probability of successful
B>{[1 2 3 4 | : .
eavesdropping when the Hilbert space becomes large

> = 1718 enough. And it is evident that in this strategy only partigle
16 Eil:l 19 u may be demolished, and partidieis not infected at all. The
A10> ||15] | Ba 0

function of the operation t® that depends on the result of
14 3 H the measurement ofy is just to extract more information.
2> 5 2221
| 5L B (2220 ]

Eve may adopt the complementary eavesdropping strat-
i egy, in which Eve tries to eavesdrop some information by
M> L |12 11 10 9 | intercepting and operating only on the second partile
' ' ' which may cause demolition to it. Then for the set of states
FIG. 3. The graphical depiction of the set of orthogonal productin the nXn systems, whose graphic depictions are fourfold
states in the X5 Hilbert space. rotation symmetric, the probability to eavesdrop some infor-

5
B> - 13
o> |11
9
I

[2>

FIG. 2. The graphical depiction of the set of orthogonal product
states in the X4 Hilbert space.

(2n—1)2P,,_;+4n+

2 |CVJik\2n—1>B|4

P5:{9P3+ 8+

||oo\lc\u]||
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mation without being detected is equal to that of the first IV. CONCLUSION
strategy, i.e.P,,. But for those states without such symme-
try, it can be verified that one of the success probabilities fOlha

the complementary strategies is larger i SO we em-  gcneme with the orthogonal product states oba33system

ploy the symmetric states in the present scheme. that has several distinct features, such as high efficiency and
Of course, there are other strategies, for example, she C&fteat capacity. The generalization to thetate systems, and

hold up the first particléA and send out a substitute particle eavesdropping is analyzed where an asymptotic limit of 1/2

C to Bob. WhenB comes, she makes a collective measurefor the success probability of an efficient eavesdropping
ment under the two-particle orthogonal basis, then sends ogtrategy is found am becomes large enough.

a particleD in the state oB. In this strategy, Eve can eaves-
drop the information entirely, but the probability for her to

We have proposed the general conditions for the orthogo-
| product states to be used in QKD, then presented a QKD

pass the checking process is only,1Which tends to zero, ACKNOWLEDGMENT
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