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Quantum key distribution scheme with orthogonal product states
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The general conditions for the orthogonal product states of the multistate systems to be used in quantum key
distribution~QKD! are proposed, and a novel QKD scheme with orthogonal product states in the 333 Hilbert
space is presented. We show that this protocol has many distinct features such as great capacity and high
efficiency. The generalization ton3n systems is also discussed and an asymptotic limit of 1/2 for the eaves-
dropper’s success probability is obtained.
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I. INTRODUCTION

Cryptography is created to satisfy the people’s desire
transmitting secret messages. With the development of q
tum computation, especially the proposal of Shor’s algorit
@1#, the base of the most important classic cryptograp
scheme was shocked. But at the same time, the principle
quantum mechanics have also shed new light on the fiel
cryptography as these fundamental laws guarantee the
crecy of quantum cryptosystems. Any intervention of
eavesdropper, Eve, must leave some trace that can be
tected by the legal users of the communication channel.
kinds of quantum key distribution~QKD! schemes, such a
the Bennett-Brassard 1984~BB84! protocol @2#, the Bennett
1992~B92! protocol@3#, and the electron paramagnetic res
nance ~EPR! scheme@4# have been proposed. Recent
quantum cryptography with three-state systems was also
troduced@5#. Experimental research on QKD is also pr
gressing fast, for instance, the optical-fiber experiment
BB84 and B92 protocols have been realized up to 48 km@6#,
and QKD in free space for the B92 scheme has b
achieved over 1 km distance@7#.

In Ref. @8#, Goldenberg and Vaidman first presented
quantum cryptography based on orthogonal states. T
there is the quantum-cryptographic scheme involving t
truly orthogonal states@9#. The basic technique is to split th
transfer of one bit of information into two steps, ensuri
that only a fraction of the bit of information is transmitted
a time. Then the no-cloning theorem of orthogonal sta
@10# guarantee its security. Based on the impossibility
cloning nonorthogonal mixed states, the no-cloning theor
of orthogonal states says that the two~or more! orthogonal
statesr i(AB) of the system composed ofA andB cannot be
cloned if the reduced density matrices of the subsystem
is available first~say A) r i(A)5TrB@r i(AB)# are nonor-
thogonal and nonidentical, and if the reduced density ma
ces of the second subsystem are nonorthogonal. It is a
surprising result since it means that entanglement is not v
for preventing cloning of orthogonal states. In the case o
composite system made of two subsystems, if the subsys

*Electronic address: cfli@ustc.edu.cn
†Electronic address: gcguo@ustc.edu.cn
1050-2947/2001/64~4!/042301~4!/$20.00 64 0423
f
n-

ic
of
of
se-

de-
ll

-

n-

f

n

en
o

s
f
m

at

i-
ry
al
a
ms

are only available one after the other, then there are var
cases that orthogonal states cannot be cloned.

For the multistate systems, Bennettet al. have shown that
there are orthogonal product pure states in the 333 Hilbert
space and proved that these states may have some deg
nonlocality without entanglement@11#. There was also an
experimental demonstration of three mutually orthogonal
larization states@12#, where biphotons are used as multista
systems.

We propose the general conditions for the orthogo
product states of the multistate composite systems to be
in QKD, then present a QKD scheme with the orthogon
product states of a 333 system that has several distinct fe
tures, such as high efficiency and great capacity. The ge
alization to then-state systems, and eavesdropping is a
lyzed where a limit of 1/2 for the success probability of
efficient eavesdropping strategy is found asn becomes large
enough.

II. THE QKD SCHEME WITH ORTHOGONAL PRODUCT
STATES

In the present QKD scheme with orthogonal produ
states in then3n Hilbert space, the transmission processi
is the same as the QKD scheme with common orthogo
states@8#. The information is encoded in the holistic state
the two particles, and these two particles are sent separa
to ensure that any eavesdropper cannot hold both particle
the same time. Since only an orthogonal product state
employed, operations on one subsystem have no effect on
other. There are some basic conditions for any set of
thogonal product states in then-state composite systems t
be used in the present QKD scheme: for any density ma
of any subsystemr i(P) there must be at least oner j (P) that
is both nonidentical and nonorthogonal tor i(P). (P repre-
sents subsystemA or B; i and j represent different states o
the set.! Then from the point of view of any subsystem@10#,
the standard no-cloning theorem@13# is satisfied, and this
guarantees the security of the protocol. What is more, we
transmit 2 log2n bits of information, double the value of th
existing QKD protocol with usual orthogonal states@8,9#. It
is evident that this is the maximal information that can
transmitted by then3n system.

For a 232 system, there are obviously no such orthog
©2001 The American Physical Society01-1
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nal product states that satisfy the orthogonal states cryp
raphy conditions. The reason is that ifr0(P) are nonidentical
and nonorthogonal tor1(P), thenr0(A) ^ r0(B) cannot be
orthogonal tor1(A) ^ r1(B).

Next, we consider the 333 system. A general set of or
thonormal product states in this Hilbert space is as follow

C15u1&A~au1&B1bu0&B),

C25u1&A~b* u1&B2a* u0&B),

C35~cu1&A1du0&A)u2&B ,

C45~d* u1&A2c* u0&A)u2&B ,

C55u2&A~eu0&B1 f u2&B),

C65u2&A~ f * u0&B2e* u2&B),

C75~gu0&A1hu2&A)u1&B ,

C85~h* u0&A2g* u2&A)u1&B ,

C95u0&Au0&B , ~1!

wherea, b, c, d, e, f, g, h are complex numbers, anduau2
1ubu25ucu21udu25ueu21u f u25ugu21uhu251, the single-
particle basis statesu0&, u1&, andu2& are orthonormal.

This set of states has been proven to have some degr
nonlocality without entanglement, whena5b5c5d5e5 f
5g5h51/A2 @11#. For the general case, no satisfacto
proof for the existence of the nonlocality has yet been fou
But if they satisfy the conditions mentioned above, they c
still be used in this QKD scheme.

The process of this QKD scheme is as follows: Ali
prepares two particlesA andB randomly in one of the nine
orthogonal product states shown above and sends particA
to Bob, and when Bob receives it, he informs Alice throu
an open classical channel. Then Alice sends out particleB.
When particlesA and B are both in the hand of Bob, h
makes a collective orthogonal measurement using the b
of Eqs.~1! to determine in which state the two-particle sy
tem has been prepared. After a sequence of this proced
they can share a random bit string, which is the raw key
order to find possible eavesdropping, Alice and Bob r
domly compare some bits to verify whether the correlatio
have been destroyed. If the key is true with as high a pr
ability as they require, it can be believed that there is
eavesdropper and all of the rest of the results can be use
a cryptographic key. Otherwise, all the key is discarded
it must be redistributed.

What is vital to this scheme is that Alice sends the sec
particle only when the first one reaches Bob, to eliminate
possibility of any eavesdropper to possess the two parti
at the same time. This protocol has some distinct features
all of the raw key, except a small portion chosen for che
ing eavesdroppers are usable, it is very efficient~nearly
100%), and it has large capacity since log29 bits information
is transmitted by a 333 system.
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III. EAVESDROPPING AND THE GENERALIZATION
TO THE n-STATE SYSTEM

We first consider one efficient eavesdropping strategy
this strategy, Eve measures the first particle from Alice a
sends it to Bob. She measures the second particle co
sponding to the measurement result of the first one and s
it to Bob.

The particular eavesdropping is as follows: Eve interce
particleA and makes an orthogonal measurement in the b
$u0&,u1&,u2&%. Suppose particleA is found in stateu1&A , Eve
knows that the two-particle states ofA and B are C1 , C2
with probability 1/9, respectively, orC3 , C4 with probabil-
ity ucu2/9 andudu2/9, respectively. Then she sends it to Bo
When particleB comes, she intercepts it too and measure
in the basis$u2&B ,au1&B1bu0&B ,b* u1&B2a* u0&B% and then
sends it to Bob. If Eve sees that particleB is in au1&B
1bu0&B or b* u1&B2a* u0&B , then obviously, ~ignoring
noise!, she knows that the two-particle state isC1 or C2. In
this case, she is lucky enough to conceal from Alice a
Bob, for the two-particle state is not disturbed. And if E
finds particleB in stateu2&B , then the two-particle state i
C3 or C4, which has collapsed tou1&Au2&B , then Bob has
the partial probability ofucu2 or udu2 to find the two-particle
state inC3 or C4, respectively. So it is clear that for the ca
where Eve measures the particleA in the stateu1&A , the
probability for her to eavesdrop without being detected
(21ucu41udu4)/9. Analyzed in the same way, the total pro
ability that Eve eavesdrops the key information without b
ing detected is

P355/912~ ucu41udu41uhu41ugu4!/9. ~2!

Then it is evident thatP3 gets the minimal value of 7/9 whe
ucu25udu25uhu25ugu251/2.

We depict this set of states in the 333 Hilbert space in a
visual graphical way@11# as Fig. 1 shows. The four domi
noes represent the four pairs of states that involve supe
sition of the basis statesu0&, u1&, or u2&. It is obvious that
this figure is fourfold rotation symmetric, and we will sho
later that this symmetry is one of the basic requirements
there to be two symmetrical eavesdropping strategies. F
this figure we can obviously see that all the states include
one row, where particleA is in basis states, can be eave
dropped without being detected in this strategy. But for
other states, there is only a certain probability, the fou
power of the modulus of the probability amplitude of th

FIG. 1. The graphical depiction of the set of orthogonal prod
states in the 333 Hilbert space.
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superposition states of particleA in the basis states, for Eve’
successful eavesdropping. Then the total probability isP3.
Now let us consider the case of then3n system. Since we
only utilize orthogonal product states, and any superposi
of n basis states that covers all the grids of any row~any
column! in the graphic depiction will surely be distinguishe
by Eve, this will have no use in the present QKD scheme
other words, any set of states including such a superpos
state will violate the above conditions, then the possible
perposition states can just be the ones of less thann basis
states that cover no more thann21 grids of the figures. The
434 system can be depicted in Fig. 2. We can see that
only difference between the figures of the 333 and 434
systems is that there are four states in the center of th
34 system, which can be eavesdropped without being
tected. Then, generalized straightforwardly, the 2n32n sys-
tem can be analyzed in a similar way as the (2n21)3(2n
21) system. Thus, here we take the (2n21)3(2n21) sys-
tem for example. (n52,3,4, . . . ,.)

Figure 3 depicts a set of orthogonal product states of
535 system, which is generalized straightforwardly fro
the 333 system. For any complete set of orthogonal prod
states, the success probability for Eve to eavesdrop with
being detected is

P55F9P3181S (
k,i ,J

uaJi k
u3&B

u41 (
k,i ,J

uaJi k
u4&B

u4D G Y 25,

~3!

FIG. 2. The graphical depiction of the set of orthogonal prod
states in the 434 Hilbert space.

FIG. 3. The graphical depiction of the set of orthogonal prod
states in the 535 Hilbert space.
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whereaJi k
u l &B

is the probability amplitude of the superpos

tion states of particleA in the basis states and(JaJi k
u l &B

2 51

for any u l &B , k and i, andu l &B means that particleB is in the
basis stateu l &B , k denotes dominoes in lineu l &B , i k denotes
the superposition states in dominok, and Ji k

denotes the

basis states that superposition statei k involves,P3 is Eve’s
success probability for the 333 system and 8/25 is the prob
ability for states in rowu3&A and u4&A . We know from the
graph that the dominoes in columnu3&B andu4&B cover four
grids in total~if five grids are covered, all the states in th
column can be eavesdropped without being detected! and we
have shown thatJi k

<4. It can be proved easily thatP5

reaches its minimal value 17/25 whenP3 gets its minimal
value and only one domino is in columnu3&B or u4&B and
uaJi k

u l &B
u251/4. This corresponds to the set of states depic

in Fig. 3. Then for the (2n11)3(2n11) system, the suc-
cess probability is

P2n115F ~2n21!2P2n2114n1S (
k,i ,J

uaJi k
u2n21&B

u4

1 (
k,i ,J

uaJi k
u2n&B

u4D G Y ~2n11!2. ~4!

The minimal probability can be obtained similarly:

min$P2n11%5@~2n21!2 min$P2n21%14n12#/~2n11!2

51/21~114n!/2~2n11!2, ~5!

wheren>1. We can deduce immediately that this value a
proaches 1/2 whenn gets large enough.

Of course, there are other ways of plotting the graph sy
metrically. But this set of states is the most secure. In fa
the value of min$P2n11% can be deduced straightforward
from the symmetry of the plot. For any vertical domino co
tributes 1/(2n11)2 to this value, any state in the horizont
dominoes and the state in the center each contributes 1n
11)2. Due to the symmetry, there are at least 2n vertical or
horizontal dominoes and@(2n11)221#/2 states in the hori-
zontal dominoes.

For the 2n32n system, the same result can be reach
That is to say there is a limit of the probability of success
eavesdropping when the Hilbert space becomes la
enough. And it is evident that in this strategy only particleA
may be demolished, and particleB is not infected at all. The
function of the operation toB that depends on the result o
the measurement onA is just to extract more information.

Eve may adopt the complementary eavesdropping s
egy, in which Eve tries to eavesdrop some information
intercepting and operating only on the second particleB,
which may cause demolition to it. Then for the set of sta
in the n3n systems, whose graphic depictions are fourfo
rotation symmetric, the probability to eavesdrop some inf
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mation without being detected is equal to that of the fi
strategy, i.e.,Pn . But for those states without such symm
try, it can be verified that one of the success probabilities
the complementary strategies is larger thanPn . So we em-
ploy the symmetric states in the present scheme.

Of course, there are other strategies, for example, she
hold up the first particleA and send out a substitute partic
C to Bob. WhenB comes, she makes a collective measu
ment under the two-particle orthogonal basis, then sends
a particleD in the state ofB. In this strategy, Eve can eave
drop the information entirely, but the probability for her
pass the checking process is only 1/n, which tends to zero
for the state of particleC is randomly chosen from an
n-dimensional Hilbert space.
o

p
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IV. CONCLUSION

We have proposed the general conditions for the ortho
nal product states to be used in QKD, then presented a Q
scheme with the orthogonal product states of a 333 system
that has several distinct features, such as high efficiency
great capacity. The generalization to then-state systems, and
eavesdropping is analyzed where an asymptotic limit of
for the success probability of an efficient eavesdropp
strategy is found asn becomes large enough.
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