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Quantitative wave-particle duality in multibeam interferometers
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We propose quantitative measures of wave properties and particle properties for multibeam interferometers.
We show that these quantities are connected by a few fundamental inequalities which express wave-particle
duality. Our analysis includes which-way detection schemes and quantum erasure. The inequalities derived
here are a generalization of similar limits which were studied previously in the special case of two-beam
interferometers. In addition, we propose alternative measures that express the available information more
efficiently, and we show that these measures fulfill similar inequalities.
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A quantitative version of wave-particle duality was first pinge on a secondh-port beam splitter that redistributes
investigated in 1979 by Wootters and Zufdf. They studied population between the beams, thus creatimyitput beams
interferometers in which one obtains incomplete which-waythat exhibit interference. The interfering quantum objects
information, and showed that a surprisingly strong interfer-could be almost everything, such as photons, electrons, neu-
ence pattern can be retained in this case. The easiest way ttons, atoms, molecules, etc. For simplicity, we will refer to
obtain incomplete which-way information is to use beams ofthem as “atoms” in the rest of the paper. The following
different intensities, e.g., by making one slit larger than thediscussion applies to anyport beam splitter independently
other in a double-slit experiment. The wave properties anaf how the beam splitter works in detail. We simply treat the
particle properties of such a system can be measured by thmam splitter as a black box that performs a unitary transfor-
visibility V and predictabilityP, respectively. Wave-particle mation on the n beams. Note that for any given
duality is expressed bp?+V?<1. In recent years, this re- n-dimensional unitary transformation, one can construct a
lation was generalized to which-way detection schef@ed  correspondingi-port beam splittef9].
and quantum erasurgl]. A brief historical review on the The first beam splitter in Fig. 1 may have arbitrary split-
theoretical and experimental aspects of the subject can keng ratios, i.e., the intensities of its output beams may differ
found in Ref.[5]. Surprisingly, all this research dealt exclu- even if there is only one input beam. We assume, however,
sively with two-way interferometers. In the outlook of their that the second beam splitter has a §plitting ratio. Hence
1995 paper, Jaeger, Shimony, and Vaidm@ asked the state vector representing an output beam of the second
whether similar quantities with similar limits exist in multi- beam splitter has the generic form
beam interferometers, but nobody has given an answer yet.

In this paper, we analyze multibeam interferometers. The e
key to a quantitative treatment of wave-particle duality lies 1 | ¢z
in finding useful measures of the wave properties and the lby=—| . |, 1.9
particle properties. In Sec. |, we present our definitions of Vn :
such quantities, and show that they obey the same limit as in g'¢n

the two-beam case. Sections Il and Il extend our analysis to
which-way detection schemes and quantum erasure. We

prove that all the wave-particle duality inequalities knownWhﬁtre we chg)sg th? th?.meln fronttqf the secor:dt_bear_lrjh
for two-beam interferometers also hold for our definitions inSP'I"ef @S & DasiS of states for a matrix representation. the

multibeam interferometers. In Secs. IV and V, we compareOhases‘Pi can be varied mdepende_ntly by properly moQ|fy—
the measure of which-way information that proves useful in"Y the second beam splitter. Equivalently, and experimen-
the present context with the standard measure of information

introduced by Shannadj6], and with a measure for quantum

2L/
information recently introduced by Brukner and Zeilinger
[7,8]. Based on this discussion, we propose and analyze al- / /
ternative measures for the wave and particle properties in E— <:
Sec. VI.

I. VISIBILITY AND PREDICTABILITY

FIG. 1. Scheme of a four-beam interferometer. The incoming
Consider am-beam interferometer, such as the4 ex-  peam(left) is split into four beams by a four-port beam splitter. The
ample shown in Fig. 1. A beam of quantum objects hits a&eams are redirected, e.g., by four individual mirrors, such that all
n-port beam splitter, which splits the incoming beam into  beams impinge on another four-port beam splitter. This beam split-
beams. Next these beams are redirected so that they all iner produces four output beams that exhibit interference.

A. Generalized visibility

1050-2947/2001/64)/0421139)/$20.00 64 042113-1 ©2001 The American Physical Society



STEPHAN DLRR PHYSICAL REVIEW A 64 042113

tally often more easily, this can also be done by inserting points of (1 —1) independent phases; . (The overall phase
variable phase shifters—one into each beam in front of thef |b) is irrelevant) Of course, any measure of the wave

second beam splitter. character should be independent of our coordinate system.
The probability that an atom leaves the interferometer irHence we are left withr(—1)? independent real numbers
output beanib) is from which to construct a measure of the wave character of
- the system.
1 : The situation for large is somewhat similar to statistical
= = — . —i(ej—eK) . . . .
I=(b[p|b) n le ,Zfl pik€ T, (1.2 mechanics: We are considering a system with many degrees

of freedom and we are not really interested in keeping track
wherep is the statistical operator representing the state of thef all the details of the system. Instead, we would like to
atoms in front of the second beam splitter. The use of alefine a “macrovariable” that characterizes global features
statistical operatofinstead of a state vectormllows us to of the system. This macrovariable should somewhat corre-
include possible interactions of the atom with its environ-spond to our fuzzy concept of the wave character of the

ment in the formalism. system. We therefore propose the following criteria for a
Using p'=p and T{p}=1 (where Tr denotes the trage measure of the wave properties which we lagel
we can rewrite Eq(1.2) as (1) It should be possible to give a definition ¥fthat is

based only on the interference pattérnwithout explicitly
B referring to the matrix elements of.
=511 211 ?;, |piklcode;—ec—argpy) |, (1.3 (2) V should vary continuously as a function of the matrix
elements ofp.
where arg denotes the phase of a complex number,zi.e., (3) If the system shows no interferen@ee., | = 1/n inde-
=|z|e' 292, Note thatl depends only on the off-diagonal el- pendent of allp;), V should reach its global minimum.
ements ofp. In the case of a two-beam interferometer, we (4) If p represents a pure statee., p?=p) and alln

obtain beams are equally populatéde., all p;;=1/n), V should
L reach its global maximum.
I(@1—¢2)=3[1+2[p1]cod @1~ po—argps,)]. (5) V considered as a function in the parameter space
(p11:P12, - - - spnn) Should have only global extrema, no lo-
Here the visibility is used as a standard measure for the wav%al ones.

(6) V should be independent of our choice of the coordi-
nate system, i.e., insensitive to resetting the zero points of
! meo— ! min the phases; and insensitive to changing the numbering of
V= (I (1.5 the beams.
max © T min In the following, we propose and pursue only one defini-
¢ tion, although this is clearly not the only possible choice.
Instead of focusing on the extrema of the interference pat-
tern, as in Eq(1.5), rather we consider moments of the func-
V=2|pqJ. (1.6) tion 1(¢q,0,, ... ,¢,). We denote the average over all the
phases by---),, i.e.,

properties of the system. The visibility is usually defined by

wherel . and | i, denote the maximum and minimum o
the interference patteri{¢,— ¢,). This yields

Note that the two-beam interference pattga). (1.4)] is
fully characterized by a single complex number,. The

2 2 27

phase ofpq, is only referenced to our choice of the coordi- (f)o= nf de,q dey- - de,f (1.7
nate system, and can be set to zero by resetting the zero point (2m)"Jo 0 0
of ¢;— ¢,. So all the remaining information about the two-
beam interference pattern is containedgy|. Precisely this  for any function f(¢1,¢,, ... ,¢,). We easily obtain the
information is expressed by the visibility, as is obvious fromfirst and second moments of the interference patf&m
Eq. (1.6). (1.3)],

Our aim is to find a quantitative measure of the wave
character forn-beam interferometers. However, definition 1
(1.5 is not necessarily the best starting point for a generali- <|><p:ﬁ' 19
zation, because multibeam interference patterns can have
many local extrema and their relative position in the 1
(e1,02, - ..,¢,) parameter space can vary. This variety is ((A|)2><,,= ZA /2 z |ij|2, (1.9
due to the large number of off-diagonal matrix elementp of n i k#j

in Eq. (1.3). One-half ofp’s n(n—1) off-diagonal elements

is fixed byp'=p, but the other half can vary independently, whereAl =1—(1), denotes the deviation dffrom its mean
only limited by the conditiorp=0. The interference pattern value. If the beams are incoherent, we haJe=0 indepen-

is therefore fully characterized byn—1) real numbers: the dent of all phases;. The root mean squar@ms) spread
modulus and phase of the off-diagonal elementg oDur \/((AI)2>¢ therefore is some measure of the amount of inter-
choice of the coordinate system allows us to set the zeréerence in the system. Its minimum is zero and its maximum
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\/(n—_l)/n3 is reached _if_a_II_|p1-k| =1/n. We normalize this  andp,, are more nearly equal, théhshould decrease. More
guantity to define the visibility fon-beam interferometers: generally, if we perform any “averaging” operation on the
pj; of the form

( n3 1/2
V= ((A1)?) ) . (1.10
n—1 ¢ ,
Pij :; AjkPkk (114
ThusV can cover the full range
whereX;a;,=2a;x=1, and alla;=0, thenP should de-
OsVs=1l (1.1)  crease(except in the special case where this transformation
amounts to no more than a permutation of thewith P of
Our above definition is based on experimentally accessibleourse remaining the same

features of the interference pattern, just as in @dg). We (5) P (together with the resulting quantities defined in
can use Eq(1.9) to alternatively express the visibility in Sec. I) should fulfill Eq.(2.5).
terms of matrix elements gf, as in Eq.(1.6): Note that criterion(4) implies thatP has only global ex-

trema. Moreover, based on criteriof), we reject the follow-

12 ing measure proposed in Appendix C of ReH]:

n
V= — 22 1.1
a1 2 2 e (112

In the two-beam case, this equation simply reads
=\2(lp1d%+|p212) = 2| p12, Which is identical to Eq(1.6).
Hence in the two-beam case our definition of the visibility at which the authors arrived by generalizing the betting strat-
[Eqg. (1.10] is equivalent to the standard definitijieq.  egy discussed by Greenberger and YaSin.

(1.5]. Again, we propose and pursue only one possible defini-
tion here. And again, we try the moments of our distribution
at hand. We denote the average over the beams by);,

. i.e., (f;)j=(1n)Z;f; wheref; is any set ofn numbers. The
For two-beam interferometers, a useful measure of thenean value of the probabilitigs;; is (p;;);=1/n because of

Ff()r]t!cle properties was introduced by Greenberger and Yasuﬂr{p}=1. The rms sprea <(p“—1/n)2)j is a possible
' measure of which-way information that complies with the

P=|p11—p2d- (1.13 above criteria. In analogy to the visibility, we define the pre-
dictability as the normalized rms spread

They arrived at this definition by considering bets about the

atom’s way. If we should make a prediction, about which pP=
beam an individual atom belongs to, the best strategy would

be to bet on the most populated beam. The probability of

winning this bet is (3 P)/2, and the probability of losing it We have normalize® such that it can cover the full range
is (1—P)/2. Hence the average net gainAsEnglert coined
the name “predictability” forP [3].

In the n-beam casen—1 real numbers are required to
represent the full information about all the probabilitipg,
that the atom takes one of the ways. Again, we are searching
for a “macrovariable” in order to measure the particle char- pP=
acter. Our intuitive concept of a particle character is closely
related to the concept of information about the ways. We ] ) o
therefore require any measure of the particle properties t&ne can easily show that in the two-beam case, our defini-
fulfill most of the criteria we impose on measures of infor- tion of the predictability is equivalent to the standard defini-
mation. This leads us to the following list, in which we label tion [Eq. (1.13]. We will discuss alternative measures in
the measure of the particle properties Ry Secs. IV and VI.

(1) P should be a continuous function of the probabilities

n 1
m( mjaX{ij}— ﬁ), (1.15

B. Generalized predictability

271/2

n 1
3 (o

i

(1.1

Oo=P=<1. (1.17

Note that using Hip} =1, we can rewriteP as

n 1
— | -= 2
n—l( +; p“)

n

1/2

(1.18

p C. Wave-particle duality

i - _
(2) If we know the atom’s way for suré.e., p; =1 for At a given predictability, the visibility of the interference
one beam, implying;; =0 for all other beams P should pattern is limited by

reach its global maximum.

(3) If all ways are equally likely(i.e., all pjj=1/n), P P2+V2<1. (1.19
should reach its global minimum.

(4) Any change toward equalization of the probabilities This inequality is well known for two-beam interferometers
P11,P22+ - - - Pnn Should decreas®. Thus if p11<p,, and  (see Ref[5] and references therginOne of the central re-
we increasep,;, decreasing,, an equal amount so that;  sults of this paper is that our above defined variabesdP
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obey the same inequality in thebeam case. The existence measurement ofN. The subensemble obtained under the
of such a simple relationship between these “macrovari-condition that the eigenvalue, was found is described by
ables” qualifies them over many other possible candidateshe statistical operator
Equation(1.19 is a quantitative formulation of the concept
of wave-particle duality. No matter what the details of our (w,[plw,)
interferometer are, whenever we have a large predictability ) 2.2
the visibility of the interference pattern is low. In order to P
prove Eq.(1.19, we follow an idea from Ref{11]: we use -
Egs.(1.12 and(1.18 and obtain where p, is the probability of findingw,, and wherep de-
notes the statistical operator of the total syst@tom plus
1 n-1 which-way detector
Tr{p?}= —+ ——(P2+V?), (1.20 For each subensemble, we define the “conditioned which-
n n way knowledge’K, as the predictability of the subensemble

) ) in the sense of Eq.1.16), i.e.,
The simple fact that Tp“}<1 completes the proof of Eq.

(1.19. The equality holds in Eq1.19 if Tr{p?}=1, i.e., if
and only if p represents a pure state. K, =

1/2

n 5 (<W||73jj|Wl> _})2 2.3

n—17 P n

Il. WHICH-WAY DETECTION Note that there is a difference in the time at which the infor-

So far, we have restricted our considerations to the casmation represented by andK, is available.P is only based
where our which-way knowledge is only due to an imbalanceon the splitting ratio of the first beam splitter, and represents
in the intensities of the beams. It is, of course, more interesta priori which-way knowledge. We have this knowledge be-
ing to investigate schemes that involve which-way detectorsfore the atom enters the interferometer, and we can use it to
Such a which-way detector is a second quantum system literally predict the wayK,, however, represengsposteriori
part of the atom’s environmenthat interacts with the atom. knowledge. We have to wait until the atom enters the inter-
We send only one atom at a time through the interferometeferometer and interacts with the which-way detector, and
and always prepare the which-way detector in the same statben we have to read out the which-way detector, before we
before the atom enters the interferometer. While the atom igbtain this type of knowledge. This knowledge can be used
on its way from the first beam splitter to the second beandor retrodiction rather than prediction, which is why we use a
splitter, we let the atom interact with the which-way detector.different name.

The interaction shall be designed such that it changes the For the total ensemble, we define the “which-way knowl-
state of the which-way detector depending on the way takerdge” by averaging over all possible outconves

by the atom. However, the interaction shall not change the

way taken by the atom, thus leaving all thg and therefore

P unchanged. Such an interaction stores which-way informa- Kw= Z piK;. (2.9
tion in the which-way detector.

For example, lety;) denote the state vector if all atoms
move through the interferometer along beprand consider
the case where prior to the interaction the atoms are in a
arbitrary pure statéy;,) =3 ;c;| ;) with =;|c;|?=1. The in-
teraction could be designed such that it changes the state of
the total systenfatom plus which-way detectoto P<Kw. (2.5

Kw represents the amount of which-way information ob-
H;\ined on average, given that the observaMavas mea-
sured. The lower limit oK,y is

We emphasize that E.5) is essential for our interpretation
> cilypelx), (2.)  of P andK, in terms of which-way information, because it
! reflects the fact that our which-way knowledge cannot de-
i . crease by reading out the information that is already stored in
where the final states of the which-way detedig) depend  the which-way detector. Therefore, EG.5) is on our list of
on j. Note that|x;) are normalized but not necessarily or- criteria given above.
thogonal. In general, the output state is an entangled state. we now prove that Eq2.5) holds with our above defini-
This entanglementmore precisely, the creation of correla- tions. We denote the conditioned probability to find an atom

tions between the which-way detector and the atom’s)wy i peamj conditioned that the which-way detector is found
essential for the storage of which-way information. in state|w,) by

To read out the which-way information, we have to per-
form a measurement of an observakileon the which-way ~
detector. We denote the eigenvaluesWfby w, and the p,“:w_ (2.6)
corresponding eigenstates lwy;). We only consider observ- J Pi
ables with nondegenerate eigenvalues here. We sort the en-
semble into subensembles depending on the outcome of thie easily obtain
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n visibility in carefully chosen subensembles. For reasons dis-
K\%v:m > > PiPm cussed below, this strategy is called “quantum eras{it&].
e In analogy to the conditioned which-way knowledge, we
r 1\21Y 1\2142 define the “conditioned visibility,”V , as the visibility of the
X 2}: (Du— ﬁ) Z[EJ: (pjm_ ﬁ) } (2.7 subensemble in the sense of Ef.10. This yields
Here we use the Cauchy-Schwarz inequalit n wi[pi w2\ M2
y q y V|:<m2 z < I|PJk| I> ) , 3.1)

T k7j P
</ a’\/ 2 b, (2.8
] i

in analogy to Eq(1.12. We also define the “erasure visibil-
ity” as the ensemble average

; ajb;

which holds for all real numbers; andb;. We also apply
x=|x| (which holds for all real numbergo obtainX;a;b;
<|Z;a;b;|. This yields

K\ZNZnE_lZ > PiPm, (le—i)(pi'm_ E)

i n n

VW=Z pV. (3.2

(Note that this quantity was also called “conditioned visibil-
(2.9 ity” [4] or “mean conditioned visibility’[11].) The lower
N 5 ( ~ 12 limit of Vyy is
=— TI’D{p--}——> =P?, (2.10
n-17% Pon V=Vy. 3.3
where Tp{pj}==(w[pj/w;) denotes the trace over the

which-way detector. This completes the proof of E25).
The which-way knowledg&,, depends on our choice of

The idea in quantum erasure is to increase the visibility by
subensemble sorting. Equatit®3) guarantees that quantum

. erasure cannot make things worse on average. The proof of
the readout observabM/. In order to quantify how much Eq. (3.3 is similar to the proof of Eq(2.5): we apply the

which-way inform_ation is actuallgtoredin the which-way Cauchy-Schwarz inequality to real numbers such as
detector, the arbitrariness of the read-out process can ti? ~ .
wi|pjklwi)/py|, and obtain

eliminated by defining the “distinguishability of the ways”

D= K 2.1 2
max K} 21 Vi S 3 (S wilpdwl] . 34
n—1 o k#j | J

as the maximum of the which-way knowled#g, that is

obtained at the best choice of the observable Now we use a triangular inequality?;a;|<=;|a;|, and ob-
Because of wave-particle duality the storage of which-tain

way information cannot come for free. The correlation cre-

ated during the interaction with the which-way detector gen- , n _

erally reduces the visibility of the interference pattern T > > ‘E (W[ pjiclw)

[12,13. Trying to quantify this, we are naturally led to one n bokE

of the most intriguing questions in the context of which-way ;

measurements: How much which-way information can be In the context of two-way interferometers, Bjoand

obtained for a given value of the visibility? The answer isKarlsson[4] made the interesting discovery that the quanti-

given in form of the “duality relation” tiesKy andV,y for the same observabW® are limited by an

inequality much like Eq(1.19:

2
=V?2. (3.5

D2+V2<1. (2.12

2 2
This inequality generalizes the limit of wave-particle duality KwtVws=1. 3.6
set by Eq(1.19 to the cases including which-way detectors:
If we do a very good job on which-way detection, we cannotThis inequality was experimentally tested in Rifl]. Note
hope to see a large visibility at the same time. The dualitythat Bjok and Karlsson originally gave a slightly different
relation is well known in the context of two-beam interfer- version of Eq.(3.6) that involved more sophisticated suben-
ometers[2,3,14—16. We will prove in Sec. Ill that it also semble sorting. However, their version is equivalent to Eq.

holds for our definitions in the-beam case. (3.6), because one can be derived from the other easily, as
discussed in Ref5]. It is another central result of this paper,
Ill. QUANTUM ERASURE that Eq.(3.6) and its corollaries, the duality relation and the

erasure relation, also hold for our definitions in tieeam
The above discussed loss of visibility due to the storage ofase. To show this, we reproduce the proof given in Ref.
which-way knowledge is not irrecoverable. Subensemblg11]: We first note that the proof of Eq1.19 applies to each
sorting as described above offers a possibility to regain theubensemble, yielding
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K|2+V|2$1- (3.7 is maximally entangled. queveD is not a measure of
entanglement, because a mixed state with statistical operator

Equation (3.6) now directly follows from the Cauchy-
Schwarz inequality and E¢3.7): 2 |Cj|2|¢j><¢j|®|xj><)(j| (3.14
]

2 2
Kw+VW:E, ; P Pm(KiKin+ Vi Vi) B8 aiso yieldsD=1, if all | x;) are mutually orthogonaD only
measures how much which-way information can be ob-
tained. Subtracting the part that is due to imbalance in the
<> > p PmVKZ+VEKE+V2 first beam splitter, we might say thB?— P2 is some mea-
b (3.9 sure of the correlation between the which-way detector and
' the atom’s way. BuD and P are completely insensitive to
coherence between the beams. This coherence is measured
2 2 P Pm= 1. (3.10 by C and V. Whether a measure of entanglement can be
om constructed from the above quantities is an interesting ques-
) ) o tion. This might be difficult, because all these quantities are
Equation(3.7) expresses wave-particle duality in quantumeferenced to a preferred basis of the atom, namely the
erasure: If we choose to measure an observéblat re-  peams inside and behind the interferometer, respectively.
gains a large visibility for a specific subensemble, we cannojny measure of entanglemefstee, e.g., Ref.18] and refer-
obtain a large amount of which-way information in the samegnces therejn however, should be invariant under all unitary
subensemble. Equatiof8.6) makes a similar statement for transformations of each subsystem. For example, it has been
the ensemble average. pointed out thatD?+ C?—P?—V2>0 is indicative of en-

Note that the loss of which-way information in quantum tanglemenf5], but maximizing this sum requires not only a
erasure is irrecoverable because of the collapse of the waygaximally entangled state but al§o=0.

function associated with the measurement of the observable
W. If we choose an observable that yields a large erasure
visibility, then we see from E3.6) that we inevitably erase
most of the which-way knowledge that was stored in the e will now compareP to other measures of information.
which-way detector. This is why this type of subensemblewe start with the standard measure used in information

sorting is called quantum erasure. theory which was introduced by Shann#;:
The duality relatiofEq. (2.12)] is a simple corollary of

Eqg. (3.6), because combining the latter with E@.3) we
obtain H=—kX pilnp;. (4.1

A

IV. SHANNON’'S MEASURE OF INFORMATION

2 2 2 2
K+ VesKy+ Vo<1 31D Herek is a positive constant, angl denotes the probability

This holds for all observable¥/, in particular for the one for outcomel Of a chance ever{corresponding t@i; In our
previous notation. Note thatH measures lack of informa-

which maximizesK,y, which by definition yieldD. : . . .

It is also interesting to consider the maximum 8§, tion, put of cou.rse.—H'ls ameasure of information comply-
which is called “coherence.” In some rare cases, it can haplng with our, criteria given in S_ec. |B. . . .
pen that this maximum does not exj&f, so that it is more Shannon’s measure was dls_cussed excess_lvely in _the lit-
accurate to speak of a supremum here: erature, and it is very use_ful in a great variety of fields,

including statistical mechanics. In two-beam interferometers,
C=suf V). (3.12 H and the predicta_bilit;P are equivalent measures, 'becaus.e
W they are monotonic functions of each other. But in multi-

beam interferometers this is not the case, and we owe the

This quantity is limited by the “erasure relatior5] reader some justification, why we introduce a new meaBure
in this context.(As pointed out in Appendix A of Refl2],
P2+C2<1, (3.13 this problem already arises in two-beam interferometers with

a which-way detector, wher® is not a monotonic function
which follows from Egs.(2.5 and (3.6), analogous to the of the average conditioned.)
proof of the duality relation. The first reason for introducing is that we are actually
The erasure relation completes our list of wave-particlesearching for a measure of particle properties. Despite the
duality inequalities that were previously known in two-beamfact that this measure should have many properties which we
interferometers. With our above definitions, all these in-also require for measures of information, there is no obvious

equalities are also valid in multibeam interferometers. reason why the measure of particle properties must be an
As mentioned earlier, entanglement plays an interestingxact measure of information.

role in which-way experiments. In our above examjig]. The secondmore subtlg¢ reason is that there is a funda-

(2.1)], full which-way information is stored, i.eD =1, if all mental problem in trying to single out one definition of

|x;) are mutually orthogonal. In this case, the state 2dl) ~ which-way information. In order to understand this, we have
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to recall why Shannon preferrdd over all other possible 1)\2
measures of information. He derivétl from the following I(ﬁ)zz pi— —) (5.0
postulates. =1 n

(1) H should be continuous in thg, . ) . ]
(2) If all p;=1/n, thenH should be a monotonic increas- &S @ measure of the information obtained from the measure-

ing function ofn. ment. This is obviously identical tp(n—1)/n]P? in our

(3) If a choice is broken down into two successive notation. - _
choices, the originaH should be the weighted sum of the Brukner and Zeilinger went one step further and consid-
individual values ofH. See Ref[6] for an example. ered “complete” sets of mutually “unbiased” observables.

The first two postulates leave room for a large variety of WO observables are called unbiased complementaryif
definitions. It is the third postulate that is very strong. ThePreparing the system in any eigenstate of the one observable,
problem with this third postulate is that it is applicable only makes all possible outcomes of a measurement of the other
if quantum coherence between the alternatives is absent §Pservable equally likely. In e-dimensional Hilbert space, a
irrelevant. This problem arises from the inseparability ofS€t of mutually unbiased observables consists of at most
quantum phenomena. For example, any attempt to “break 1 observables. If such a set of maximum length exists
down” an interferometer into two successive interferometerd 19,20, it is called complete. The measurement of a com-
(with fewer beams eaghwill modify the interference pattern. Plete set of mutually unbiased observables, of course, re-

There is one way to work around the problem of quantunfuires a large number of identically prepared systems, and
coherence between the alternatives. The freedom of choic@ly one observable is measured on each system. As a mea-
of the basis allows us to choose a basis in whicis diag-  Sure of the total mformguon obtained in all these measure-
onal. If we calculateH (with p;=p;;) in such a basis, we Ments, Brukner and Zeilinger proposed
arrive at the entropy well known from statistical mechanics.
However, applying this strategy in order to quantify which- . 1
way information is pointless, because the beams in the inter- | totar= le H(p)=-7 +Tr{p%}, (5.2
ferometer already define the preferred basis, relative to
which we want to quantify which-way information. For ex-
ample, if we first diagonalize, every pure state has zero

entropy—completely independent of the probabilities that arbointed out thatl .y is invariant under unitary transforma-
atom takes one way or another.

Shannon’s second postulate is also irrelevant in the corions and still its constituent(p;) have an operational sig-

text of which-way information. Since we cannot “break nificance for the measurement of single observables.
down” the interferometer into two smaller ones, the scaling OPViously, wave-particle duality is closely related to this
with n is not important. measure of quantum information. Wave-particle duality also

In addition to his postulates, Shannon listed six interesting!€@!s With unbiased observables, namely, the atom’s way in-
properties ofH. For the complete list we refer the reader to side and behind 'Fhe mterferomgtgr. Our assumption that the
Ref. [6]. Here we only mention that Shannon’s properties Lsecond beam splitter has a1_Jsth|tt|ng ratio guarantees that'
2, 4, and 6 are equivalent to the list of criteria we gave inthese observables are _unblased. Furthermore, a comparison
Sec. I. Shannon’s properties 3 and 5 do not have an obviodd Eas:(1.20 and(5.2) yields
counterpart in the context of which-way information. This is
because usually the which-way detector itself is not an inter- | =E(P2+V2) (5.3
ferometer. Hence there is no such thing as a probability to o™ ' '
find the which-way detector in one of its “ways.”

We conclude that Shannon’s measure of informationClearly, [(n—1)/n]P? represents the information obtained
(without diagonalizingp) is a possible candidate for quanti- from a measurement of the atom’s way inside the interfer-
fying which-way information, but Shannon's second andometer. Equatior{5.3) therefore implies thaf(n—1)/n]V?
third postulates are irrelevant in the present context and cars equal to the sum of information obtained from measure-
not qualify H over any other candidate. Furthermoeand  ments of all the remaining members of the complete set of
P have remarkably similar properties, and only the existencenutually unbiased observables. Our definitionWfin Eq.
of simple useful expressions, suchR&+ V<1, motivates (1.10 is based on an integral instead of a sum, but appar-
us to preferP overH in the present context. ently this produces the same result. The following two-beam
example will illustrate this.

A two-beam interferometer is described by & 2 density
matrix and therefore equivalent to a sginsystem. We

Brukner and Zeilingef7,8] recently proposed a measure choose the coordinate system of the spisuch that a mea-
of quantum information. They also questioned the uniquesurement of the component of the spinr,, corresponds to
ness of Shannon’s measure in situations where quantum ce-measurement of the atom’s way inside the interferometer.
herence is essential. For a quantum measurement in whicFhis yields[16]
the possible outcomes occur with probabilitiep
=(p1,P2, - - - ,Pn), they proposed P2=(0,)%. (5.4

n+1

wherep; represents the probabilities of the outcomes of the
measurements of thgh observable. Brukner and Zeilinger

V. A MEASURE OF QUANTUM INFORMATION
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Furthermore, we can choose tkexis of the coordinate Evidently, | is equivalent tdP, because they are monotonic
system such tha¥?= ()2 [16]. Note that with this choice functions of each other. The same goes for the other three
of the coordinate systefry)=0. We can alternatively ro- quantities. Thus we did not really add anything to the theory
tate the coordinate system around thaxis by an arbitrary as yet. This changes, however, if we average over the suben-
angle, yielding the more general result sembles. We obtain

2_ 2 2 -1
Vi= (g™ {ay)” (9 ||<w:2I p||K|=nTEI pK?, ©.95

In the two-beam casépy, 0y ,0,} is a complete set of mu-
tually unbiased observables. Equatidbsd) and (5.5) illus- n—1
trate thatV? corresponds to the information obtained from lww=2> Pllyi=—— > p V2. (6.6)
the measurement of all except one of the observables from ! n-1
the complete set.

Alternatively, we can rotate the observabl@sstead of
the coordinate systenaround thez axis. We thus obtain

Note that the measurég,y andly, are not equivalent t&yy
andVy,, even in the two-beam case. We thus lose the advan-
tage of using definitions compatible with all the earlier work
V2=(a(a))2+{o(a+m2))?, (5.6) in the literature concerning two-beam interferometers_. How-
ever, the measurdgy andl,y express the available infor-

mation more efficiently, as we will show below.

We first show that our quantities are somewhat related to
the old ones:

whereo(«) denotes the spin along an axis that lies inxlye
plane and subtends an angelaofvith the x axis. Let us now
average Eq(5.6) overa. The left side is unchanged, because
V2 is independent ofr. On the right side, the two terms yield n—1

the same result because of periodicity. Thus we obtain —K\2N$|KW, 6.7)
n

1 (2=
v2=2—f o(a))?da. 5. n—1
27, (o(a)) (5.7 Tvﬁvslvw- 68

This iIIustratgs that, instead of choosing a specific set ofp order to prove Eq(6.7), we use the Cauchy-Schwarz in-
mutually unbiased observables and summing over all excepl ity which vields

one of these observables, as in E§5), we can alternatively q Y y

[as in Eq.(5.7)] average over all observables that are unbi- 2

ased with respect ter,. Both approaches vyield the same (2 p|K,) s(E \/EZ)E (Kivpp2 (6.9
result. The integral expression fof in Eq. (1.10 is con- ! ! !

ceptually interesting, because it shows that all possible co

binations of the phase shiftegs are equally weighted. ”‘Jsing&p, =1, we obtain Eq(6.7). In the same way, we can

prove Eq.(6.8).
In analogy toP=<K,, andV=<V,y, our quantities fulfill

lp=<lxw, (6.10

VI. ALTERNATIVE MEASURES FOR
WAVE-PARTICLE DUALITY

In the light of the above measure of quantum information,
we can rewrite our measures of wave and particle properties.
The natural choices are obviously

lv<lyw- (6.12)

Equation(6.10 shows the compliance df, with criterion
n—1 1 (5) from Sec. |1 B. To prove Eq(6.10, we again use the
- p2— _ ﬁ+2 ijj , (6.1)  Cauchy-Schwarz inequality, from which we obtain
J

-
n: S oen] =[S 53 B, €12

V=2 > pul 6.2
I k#]

| =
V7 n

with p;; as defined in Eq(2.6). Summing ovej yields Eq.
For which-way detection schemes and subensemble sortin{f-10. Along the same lines, we can prove K6.11. _
these yield Wave-particle duality is again expressed by a few in-
equalities; the easiest two of them are

~ 2
n—-1 1 (Wl pjjlwi)
PR

— , 6.3 1 n—1
n n 45 o] ) 6.3 Ip+IV=—ﬁ+Tr{p2}$ o (6.13

~ 2
n—-1 (Wil pjiclwp) 1 n—-1
—— "\/2= AN LShts S 2 E—
lu=—"=V, ;ki o : (6.4 la+ == =+ Tr{p{)} = ——, (6.14
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with p(, as defined in Eq(2.2). These inequalities are, of equality in addition to the inequality. The advantage of this is

course, equivalent t8?+V?<1 andK?+V?<1. However,

we can easily obtain a new limit by averaging E§.14
overl:

1 ) n—1
lewt lyw= =5+ El: P Tr{p(yt=< -t (6.19

We emphasize that this is not equivalentdf,+Va<1. In

easily seen if we consider the special case wperpresents
a pure state. In this case obviously al{ij‘ﬁ)}= 1, and thus

for all pure states.  (6.20

TkwT lyw=——

It is important to note that the analogous equality for the

fact, Eq. (6.19 is more stringent, because we can derivetraditional measureskg,+Vg,=1, does not hold for arbi-

KW+ VW 1 from Egs.(6.7), (6.8), and(6.15. Furthermore,
we define the maximéor suprema if necessary

Ip=max!kw}, (6.16
W
lc=max!lyw}, (6.17)
W
and Eqgs.(6.10, (6.11), and(6.15 imply
|D+|V\—%—, (6.18
|P+|c\—%—, (6.19

which are expressions analogous BF+V?<1 and P?
+C%<1.

trary pure states(See Refs.[4,11] for examples ofKW
+VW¢ 1 for some pure statgdn other words, the quantities
Ixw andlyy express the available quantum information as
efficiently as possible, where#&s,, andV,, do not.
Equation(6.20 shows that for pure states, the entangle-
ment with the which-way detector does not prevent us from
obtaining the maximum possible total information about the
atom, no matter which observabl®' is measured on the
which-way detector. Which-way experiments are a special
class of quantum nondemolitiof@QND) measurements. It
might be interesting to analyze other QND schemes in terms
of the Brukner-Zeilinger measure of quantum information.
To summarize, we have shown in this paper that the quan-
tities used to characterize wave and particle properties in
two-beam interferometers can be generalized to multibeam
interferometers. These generalized measures fulfill the same
inequalities as in the two-beam case. Furthermore, we pro-
posed alternative measures of the wave and particle proper-

Thus, with the measures proposed in this section, we atties that fulfill similar inequalities and express the available
rive at inequalities that are similar to the ones we obtained ifluantum information more efficiently.
the earlier sections. So, what did we gain? First, the choice

of definitions in this section is conceptually more natural in
light of the measure of quantum information proposed by
Brukner and Zeilinger. Second, in E@.15 we obtained an
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