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Quantitative wave-particle duality in multibeam interferometers
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We propose quantitative measures of wave properties and particle properties for multibeam interferometers.
We show that these quantities are connected by a few fundamental inequalities which express wave-particle
duality. Our analysis includes which-way detection schemes and quantum erasure. The inequalities derived
here are a generalization of similar limits which were studied previously in the special case of two-beam
interferometers. In addition, we propose alternative measures that express the available information more
efficiently, and we show that these measures fulfill similar inequalities.
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A quantitative version of wave-particle duality was fir
investigated in 1979 by Wootters and Zurek@1#. They studied
interferometers in which one obtains incomplete which-w
information, and showed that a surprisingly strong interf
ence pattern can be retained in this case. The easiest w
obtain incomplete which-way information is to use beams
different intensities, e.g., by making one slit larger than
other in a double-slit experiment. The wave properties a
particle properties of such a system can be measured by
visibility V and predictabilityP, respectively. Wave-particle
duality is expressed byP21V2<1. In recent years, this re
lation was generalized to which-way detection schemes@2,3#
and quantum erasure@4#. A brief historical review on the
theoretical and experimental aspects of the subject can
found in Ref.@5#. Surprisingly, all this research dealt excl
sively with two-way interferometers. In the outlook of the
1995 paper, Jaeger, Shimony, and Vaidman@2# asked
whether similar quantities with similar limits exist in mult
beam interferometers, but nobody has given an answer

In this paper, we analyze multibeam interferometers. T
key to a quantitative treatment of wave-particle duality l
in finding useful measures of the wave properties and
particle properties. In Sec. I, we present our definitions
such quantities, and show that they obey the same limit a
the two-beam case. Sections II and III extend our analysi
which-way detection schemes and quantum erasure.
prove that all the wave-particle duality inequalities know
for two-beam interferometers also hold for our definitions
multibeam interferometers. In Secs. IV and V, we comp
the measure of which-way information that proves usefu
the present context with the standard measure of informa
introduced by Shannon@6#, and with a measure for quantum
information recently introduced by Brukner and Zeiling
@7,8#. Based on this discussion, we propose and analyze
ternative measures for the wave and particle propertie
Sec. VI.

I. VISIBILITY AND PREDICTABILITY

A. Generalized visibility

Consider ann-beam interferometer, such as then54 ex-
ample shown in Fig. 1. A beam of quantum objects hits
n-port beam splitter, which splits the incoming beam inton
beams. Next these beams are redirected so that they al
1050-2947/2001/64~4!/042113~9!/$20.00 64 0421
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pinge on a secondn-port beam splitter that redistribute
population between the beams, thus creatingn output beams
that exhibit interference. The interfering quantum obje
could be almost everything, such as photons, electrons,
trons, atoms, molecules, etc. For simplicity, we will refer
them as ‘‘atoms’’ in the rest of the paper. The followin
discussion applies to anyn-port beam splitter independentl
of how the beam splitter works in detail. We simply treat t
beam splitter as a black box that performs a unitary trans
mation on the n beams. Note that for any give
n-dimensional unitary transformation, one can construc
correspondingn-port beam splitter@9#.

The first beam splitter in Fig. 1 may have arbitrary spl
ting ratios, i.e., the intensities of its output beams may dif
even if there is only one input beam. We assume, howe
that the second beam splitter has a 1/n splitting ratio. Hence
the state vector representing an output beam of the sec
beam splitter has the generic form

ub&5
1

An S eiw1

eiw2

A

eiwn

D , ~1.1!

where we chose then beams in front of the second bea
splitter as a basis of states for a matrix representation.
phasesw j can be varied independently by properly modif
ing the second beam splitter. Equivalently, and experim

FIG. 1. Scheme of a four-beam interferometer. The incom
beam~left! is split into four beams by a four-port beam splitter. Th
beams are redirected, e.g., by four individual mirrors, such tha
beams impinge on another four-port beam splitter. This beam s
ter produces four output beams that exhibit interference.
©2001 The American Physical Society13-1
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tally often more easily, this can also be done by insertinn
variable phase shifters—one into each beam in front of
second beam splitter.

The probability that an atom leaves the interferomete
output beamub& is

I 5^burub&5
1

n (
j 51

n

(
k51

n

r jk e2 i (w j 2wk), ~1.2!

wherer is the statistical operator representing the state of
atoms in front of the second beam splitter. The use o
statistical operator~instead of a state vector! allows us to
include possible interactions of the atom with its enviro
ment in the formalism.

Using r†5r and Tr$r%51 ~where Tr denotes the trace!,
we can rewrite Eq.~1.2! as

I 5
1

n S 11(
j

(
kÞ j

ur jkucos~w j2wk2argr jk! D , ~1.3!

where arg denotes the phase of a complex number, i.ez
5uzuei argz. Note thatI depends only on the off-diagonal e
ements ofr. In the case of a two-beam interferometer, w
obtain

I ~w12w2!5 1
2 @112ur12ucos~w12w22argr12!#.

~1.4!

Here the visibility is used as a standard measure for the w
properties of the system. The visibility is usually defined

V5
I max2I min

I max1I min
, ~1.5!

where I max and I min denote the maximum and minimum o
the interference patternI (w12w2). This yields

V52ur12u. ~1.6!

Note that the two-beam interference pattern@Eq. ~1.4!# is
fully characterized by a single complex numberr12. The
phase ofr12 is only referenced to our choice of the coord
nate system, and can be set to zero by resetting the zero
of w12w2. So all the remaining information about the tw
beam interference pattern is contained inur12u. Precisely this
information is expressed by the visibility, as is obvious fro
Eq. ~1.6!.

Our aim is to find a quantitative measure of the wa
character forn-beam interferometers. However, definitio
~1.5! is not necessarily the best starting point for a gener
zation, because multibeam interference patterns can h
many local extrema and their relative position in t
(w1 ,w2 , . . . ,wn) parameter space can vary. This variety
due to the large number of off-diagonal matrix elements or
in Eq. ~1.3!. One-half ofr ’s n(n21) off-diagonal elements
is fixed byr†5r, but the other half can vary independent
only limited by the conditionr>0. The interference patter
is therefore fully characterized byn(n21) real numbers: the
modulus and phase of the off-diagonal elements ofr. Our
choice of the coordinate system allows us to set the z
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points of (n21) independent phases,w j . ~The overall phase
of ub& is irrelevant.! Of course, any measure of the wav
character should be independent of our coordinate sys
Hence we are left with (n21)2 independent real number
from which to construct a measure of the wave characte
the system.

The situation for largen is somewhat similar to statistica
mechanics: We are considering a system with many deg
of freedom and we are not really interested in keeping tr
of all the details of the system. Instead, we would like
define a ‘‘macrovariable’’ that characterizes global featu
of the system. This macrovariable should somewhat co
spond to our fuzzy concept of the wave character of
system. We therefore propose the following criteria for
measure of the wave properties which we labelV.

~1! It should be possible to give a definition ofV that is
based only on the interference patternI, without explicitly
referring to the matrix elements ofr.

~2! V should vary continuously as a function of the matr
elements ofr.

~3! If the system shows no interference~i.e., I 51/n inde-
pendent of allw j ), V should reach its global minimum.

~4! If r represents a pure state~i.e., r25r) and all n
beams are equally populated~i.e., all r j j 51/n), V should
reach its global maximum.

~5! V considered as a function in the parameter sp
(r11,r12, . . . ,rnn) should have only global extrema, no lo
cal ones.

~6! V should be independent of our choice of the coor
nate system, i.e., insensitive to resetting the zero points
the phasesw j and insensitive to changing the numbering
the beams.

In the following, we propose and pursue only one defi
tion, although this is clearly not the only possible choic
Instead of focusing on the extrema of the interference p
tern, as in Eq.~1.5!, rather we consider moments of the fun
tion I (w1 ,w2 , . . . ,wn). We denote the average over all th
phases bŷ •••&w , i.e.,

^ f &w5
1

~2p!nE0

2p

dw1E
0

2p

dw2•••E
0

2p

dwnf ~1.7!

for any function f (w1 ,w2 , . . . ,wn). We easily obtain the
first and second moments of the interference pattern@Eq.
~1.3!#,

^I &w5
1

n
, ~1.8!

A^~DI !2&w5
1

nA(
j

(
kÞ j

ur jku2, ~1.9!

whereDI 5I 2^I &w denotes the deviation ofI from its mean
value. If the beams are incoherent, we haveDI 50 indepen-
dent of all phasesw j . The root mean square~rms! spread
A^(DI )2&w therefore is some measure of the amount of int
ference in the system. Its minimum is zero and its maxim
3-2



ib

ity

th
S

th
ch
u
o

o

hi
r

el
W
s
r-
el

es

es

e

ion

in

rat-

ni-
on

he
e-

fini-
ni-
in

e

rs

QUANTITATIVE WAVE-PARTICLE DUALITY IN . . . PHYSICAL REVIEW A 64 042113
A(n21)/n3 is reached if allur jku51/n. We normalize this
quantity to define the visibility forn-beam interferometers:

V5S n3

n21
^~DI !2&wD 1/2

. ~1.10!

ThusV can cover the full range

0<V<1. ~1.11!

Our above definition is based on experimentally access
features of the interference pattern, just as in Eq.~1.5!. We
can use Eq.~1.9! to alternatively express the visibility in
terms of matrix elements ofr, as in Eq.~1.6!:

V5S n

n21 (
j

(
kÞ j

ur jku2D 1/2

. ~1.12!

In the two-beam case, this equation simply readsV
5A2(ur12u21ur21u2)52ur12u, which is identical to Eq.~1.6!.
Hence in the two-beam case our definition of the visibil
@Eq. ~1.10!# is equivalent to the standard definition@Eq.
~1.5!#.

B. Generalized predictability

For two-beam interferometers, a useful measure of
particle properties was introduced by Greenberger and Ya
@10#:

P5ur112r22u. ~1.13!

They arrived at this definition by considering bets about
atom’s way. If we should make a prediction, about whi
beam an individual atom belongs to, the best strategy wo
be to bet on the most populated beam. The probability
winning this bet is (11P)/2, and the probability of losing it
is (12P)/2. Hence the average net gain isP. Englert coined
the name ‘‘predictability’’ forP @3#.

In the n-beam case,n21 real numbers are required t
represent the full information about all the probabilities,r j j
that the atom takes one of the ways. Again, we are searc
for a ‘‘macrovariable’’ in order to measure the particle cha
acter. Our intuitive concept of a particle character is clos
related to the concept of information about the ways.
therefore require any measure of the particle propertie
fulfill most of the criteria we impose on measures of info
mation. This leads us to the following list, in which we lab
the measure of the particle properties byP.

~1! P should be a continuous function of the probabiliti
r j j .

~2! If we know the atom’s way for sure~i.e., r j j 51 for
one beam, implyingr j j 50 for all other beams!, P should
reach its global maximum.

~3! If all ways are equally likely~i.e., all r j j 51/n), P
should reach its global minimum.

~4! Any change toward equalization of the probabiliti
r11,r22, . . . ,rnn should decreaseP. Thus if r11,r22 and
we increaser11, decreasingr22 an equal amount so thatr11
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andr22 are more nearly equal, thenP should decrease. More
generally, if we perform any ‘‘averaging’’ operation on th
r j j of the form

r j j8 5(
k

ajkrkk , ~1.14!

where( jajk5(kajk51, and allajk>0, thenP should de-
crease~except in the special case where this transformat
amounts to no more than a permutation of ther j j with P of
course remaining the same!.

~5! P ~together with the resulting quantities defined
Sec. II! should fulfill Eq. ~2.5!.

Note that criterion~4! implies thatP has only global ex-
trema. Moreover, based on criterion~4!, we reject the follow-
ing measure proposed in Appendix C of Ref.@2#:

n

n21 S max
j

$r j j %2
1

nD , ~1.15!

at which the authors arrived by generalizing the betting st
egy discussed by Greenberger and YaSin.

Again, we propose and pursue only one possible defi
tion here. And again, we try the moments of our distributi
at hand. We denote the average over the beams by^•••& j ,
i.e., ^ f j& j5(1/n)( j f j where f j is any set ofn numbers. The
mean value of the probabilitiesr j j is ^r j j & j51/n because of

Tr$r%51. The rms spreadA^(r j j 21/n)2& j is a possible
measure of which-way information that complies with t
above criteria. In analogy to the visibility, we define the pr
dictability as the normalized rms spread

P5F n

n21 (
j

S r j j 2
1

nD 2G1/2

. ~1.16!

We have normalizedP such that it can cover the full range

0<P<1. ~1.17!

Note that using Tr$r%51, we can rewriteP as

P5F n

n21 S 2
1

n
1(

j
r j j

2 D G1/2

. ~1.18!

One can easily show that in the two-beam case, our de
tion of the predictability is equivalent to the standard defi
tion @Eq. ~1.13!#. We will discuss alternative measures
Secs. IV and VI.

C. Wave-particle duality

At a given predictability, the visibility of the interferenc
pattern is limited by

P21V2<1. ~1.19!

This inequality is well known for two-beam interferomete
~see Ref.@5# and references therein!. One of the central re-
sults of this paper is that our above defined variablesV andP
3-3



e
ar
te
pt
u
ili
to

.

a
c

es
or

.
te
ta

am
or
t

ke
th

s

a

te

r-
ta
-

er

-

f t

he

ch-
le

or-

nts
e-
it to

er-
nd
we
ed
a

l-

b-

n
it
de-
d in

m
d

STEPHAN DÜRR PHYSICAL REVIEW A 64 042113
obey the same inequality in then-beam case. The existenc
of such a simple relationship between these ‘‘macrov
ables’’ qualifies them over many other possible candida
Equation~1.19! is a quantitative formulation of the conce
of wave-particle duality. No matter what the details of o
interferometer are, whenever we have a large predictab
the visibility of the interference pattern is low. In order
prove Eq.~1.19!, we follow an idea from Ref.@11#: we use
Eqs.~1.12! and ~1.18! and obtain

Tr$r2%5
1

n
1

n21

n
~P21V2!. ~1.20!

The simple fact that Tr$r2%<1 completes the proof of Eq
~1.19!. The equality holds in Eq.~1.19! if Tr$r2%51, i.e., if
and only if r represents a pure state.

II. WHICH-WAY DETECTION

So far, we have restricted our considerations to the c
where our which-way knowledge is only due to an imbalan
in the intensities of the beams. It is, of course, more inter
ing to investigate schemes that involve which-way detect
Such a which-way detector is a second quantum system~a
part of the atom’s environment! that interacts with the atom
We send only one atom at a time through the interferome
and always prepare the which-way detector in the same s
before the atom enters the interferometer. While the atom
on its way from the first beam splitter to the second be
splitter, we let the atom interact with the which-way detect
The interaction shall be designed such that it changes
state of the which-way detector depending on the way ta
by the atom. However, the interaction shall not change
way taken by the atom, thus leaving all ther j j and therefore
P unchanged. Such an interaction stores which-way inform
tion in the which-way detector.

For example, letuc j& denote the state vector if all atom
move through the interferometer along beamj, and consider
the case where prior to the interaction the atoms are in
arbitrary pure stateuc in&5( j cj uc j& with ( j ucj u251. The in-
teraction could be designed such that it changes the sta
the total system~atom plus which-way detector! to

(
j

cj uc j& ^ ux j&, ~2.1!

where the final states of the which-way detectorux j& depend
on j. Note thatux j& are normalized but not necessarily o
thogonal. In general, the output state is an entangled s
This entanglement~more precisely, the creation of correla
tions between the which-way detector and the atom’s way! is
essential for the storage of which-way information.

To read out the which-way information, we have to p
form a measurement of an observableW on the which-way
detector. We denote the eigenvalues ofW by wl and the
corresponding eigenstates byuwl&. We only consider observ
ables with nondegenerate eigenvalues here. We sort the
semble into subensembles depending on the outcome o
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measurement ofW. The subensemble obtained under t
condition that the eigenvaluewl was found is described by
the statistical operator

r ( l )5
^wl ur̃uwl&

pl
, ~2.2!

wherepl is the probability of findingwl , and wherer̃ de-
notes the statistical operator of the total system~atom plus
which-way detector!.

For each subensemble, we define the ‘‘conditioned whi
way knowledge’’Kl as the predictability of the subensemb
in the sense of Eq.~1.16!, i.e.,

Kl5F n

n21 (
j

S ^wl ur̃ j j uwl&
pl

2
1

nD 2G1/2

. ~2.3!

Note that there is a difference in the time at which the inf
mation represented byP andKl is available.P is only based
on the splitting ratio of the first beam splitter, and represe
a priori which-way knowledge. We have this knowledge b
fore the atom enters the interferometer, and we can use
literally predict the way.Kl , however, representsa posteriori
knowledge. We have to wait until the atom enters the int
ferometer and interacts with the which-way detector, a
then we have to read out the which-way detector, before
obtain this type of knowledge. This knowledge can be us
for retrodiction rather than prediction, which is why we use
different name.

For the total ensemble, we define the ‘‘which-way know
edge’’ by averaging over all possible outcomeswl :

KW5(
l

plKl . ~2.4!

KW represents the amount of which-way information o
tained on average, given that the observableW was mea-
sured. The lower limit ofKW is

P<KW . ~2.5!

We emphasize that Eq.~2.5! is essential for our interpretatio
of P andKW in terms of which-way information, because
reflects the fact that our which-way knowledge cannot
crease by reading out the information that is already store
the which-way detector. Therefore, Eq.~2.5! is on our list of
criteria given above.

We now prove that Eq.~2.5! holds with our above defini-
tions. We denote the conditioned probability to find an ato
in beamj conditioned that the which-way detector is foun
in stateuwl& by

pj u l5
^wl ur̃ j j uwl&

pl
. ~2.6!

We easily obtain
3-4
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KW
2 5

n

n21 (
l

(
m

plpm

3F(
j

S pj u l2
1

nD 2G1/2F(
j

S pj um2
1

nD 2G1/2

. ~2.7!

Here we use the Cauchy-Schwarz inequality

U(
j

ajbjU<A(
j

aj
2A(

j
bj

2, ~2.8!

which holds for all real numbersaj and bj . We also apply
x<uxu ~which holds for all real numbers! to obtain( jajbj
<u( jajbj u. This yields

KW
2 >

n

n21 (
l

(
m

plpm(
j

S pj u l2
1

nD S pj um2
1

nD
~2.9!

5
n

n21 (
j

S TrD$r̃ j j %2
1

nD 2

5P2, ~2.10!

where TrD$r̃ jk%5( l^wl ur̃ jkuwl& denotes the trace over th
which-way detector. This completes the proof of Eq.~2.5!.

The which-way knowledgeKW depends on our choice o
the readout observableW. In order to quantify how much
which-way information is actuallystored in the which-way
detector, the arbitrariness of the read-out process can
eliminated by defining the ‘‘distinguishability of the ways’

D5max
W

$KW% ~2.11!

as the maximum of the which-way knowledgeKW that is
obtained at the best choice of the observableW.

Because of wave-particle duality the storage of whic
way information cannot come for free. The correlation c
ated during the interaction with the which-way detector g
erally reduces the visibility of the interference patte
@12,13#. Trying to quantify this, we are naturally led to on
of the most intriguing questions in the context of which-w
measurements: How much which-way information can
obtained for a given value of the visibility? The answer
given in form of the ‘‘duality relation’’

D21V2<1. ~2.12!

This inequality generalizes the limit of wave-particle dual
set by Eq.~1.19! to the cases including which-way detecto
If we do a very good job on which-way detection, we cann
hope to see a large visibility at the same time. The dua
relation is well known in the context of two-beam interfe
ometers@2,3,14–16#. We will prove in Sec. III that it also
holds for our definitions in then-beam case.

III. QUANTUM ERASURE

The above discussed loss of visibility due to the storage
which-way knowledge is not irrecoverable. Subensem
sorting as described above offers a possibility to regain
04211
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visibility in carefully chosen subensembles. For reasons
cussed below, this strategy is called ‘‘quantum erasure’’@17#.

In analogy to the conditioned which-way knowledge, w
define the ‘‘conditioned visibility,’’Vl , as the visibility of the
subensemble in the sense of Eq.~1.10!. This yields

Vl5S n

n21 (
j

(
kÞ j

U^wl ur̃ jkuwl&
pl

U2D 1/2

, ~3.1!

in analogy to Eq.~1.12!. We also define the ‘‘erasure visibil
ity’’ as the ensemble average

VW5(
l

plVl . ~3.2!

~Note that this quantity was also called ‘‘conditioned visib
ity’’ @4# or ‘‘mean conditioned visibility’’ @11#.! The lower
limit of VW is

V<VW . ~3.3!

The idea in quantum erasure is to increase the visibility
subensemble sorting. Equation~3.3! guarantees that quantum
erasure cannot make things worse on average. The proo
Eq. ~3.3! is similar to the proof of Eq.~2.5!: we apply the
Cauchy-Schwarz inequality to real numbers such
z^wl ur̃ jkuwl&/pl z, and obtain

VW
2 >

n

n21 (
j

(
kÞ j

S (
l

z^wl ur̃ jkuwl& zD 2

. ~3.4!

Now we use a triangular inequality,u( jaj u<( j uaj u, and ob-
tain

VW
2 >

n

n21 (
j

(
kÞ j

U(
l

^wl ur̃ jkuwl&U2

5V2. ~3.5!

In the context of two-way interferometers, Bjo¨rk and
Karlsson@4# made the interesting discovery that the quan
tiesKW andVW for the same observableW are limited by an
inequality much like Eq.~1.19!:

KW
2 1VW

2 <1. ~3.6!

This inequality was experimentally tested in Ref.@11#. Note
that Björk and Karlsson originally gave a slightly differen
version of Eq.~3.6! that involved more sophisticated sube
semble sorting. However, their version is equivalent to E
~3.6!, because one can be derived from the other easily
discussed in Ref.@5#. It is another central result of this pape
that Eq.~3.6! and its corollaries, the duality relation and th
erasure relation, also hold for our definitions in then-beam
case. To show this, we reproduce the proof given in R
@11#: We first note that the proof of Eq.~1.19! applies to each
subensemble, yielding
3-5
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Kl
21Vl

2<1. ~3.7!

Equation ~3.6! now directly follows from the Cauchy
Schwarz inequality and Eq.~3.7!:

KW
2 1VW

2 5(
l

(
m

pl pm~KlKm1VlVm! ~3.8!

<(
l

(
m

pl pmAKl
21Vl

2AKm
2 1Vm

2

~3.9!

<(
l

(
m

pl pm51. ~3.10!

Equation ~3.7! expresses wave-particle duality in quantu
erasure: If we choose to measure an observableW that re-
gains a large visibility for a specific subensemble, we can
obtain a large amount of which-way information in the sa
subensemble. Equation~3.6! makes a similar statement fo
the ensemble average.

Note that the loss of which-way information in quantu
erasure is irrecoverable because of the collapse of the w
function associated with the measurement of the observ
W. If we choose an observable that yields a large eras
visibility, then we see from Eq.~3.6! that we inevitably erase
most of the which-way knowledge that was stored in
which-way detector. This is why this type of subensem
sorting is called quantum erasure.

The duality relation@Eq. ~2.12!# is a simple corollary of
Eq. ~3.6!, because combining the latter with Eq.~3.3! we
obtain

KW
2 1V2<KW

2 1VW
2 <1. ~3.11!

This holds for all observablesW, in particular for the one
which maximizesKW , which by definition yieldsD.

It is also interesting to consider the maximum ofVW ,
which is called ‘‘coherence.’’ In some rare cases, it can h
pen that this maximum does not exist@5#, so that it is more
accurate to speak of a supremum here:

C5sup
W

$VW%. ~3.12!

This quantity is limited by the ‘‘erasure relation’’@5#

P21C2<1, ~3.13!

which follows from Eqs.~2.5! and ~3.6!, analogous to the
proof of the duality relation.

The erasure relation completes our list of wave-parti
duality inequalities that were previously known in two-bea
interferometers. With our above definitions, all these
equalities are also valid in multibeam interferometers.

As mentioned earlier, entanglement plays an interes
role in which-way experiments. In our above example@Eq.
~2.1!#, full which-way information is stored, i.e.,D51, if all
ux j& are mutually orthogonal. In this case, the state Eq.~2.1!
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is maximally entangled. However,D is not a measure o
entanglement, because a mixed state with statistical ope

(
j

ucj u2uc j&^c j u ^ ux j&^x j u ~3.14!

also yieldsD51, if all ux j& are mutually orthogonal.D only
measures how much which-way information can be o
tained. Subtracting the part that is due to imbalance in
first beam splitter, we might say thatD22P2 is some mea-
sure of the correlation between the which-way detector
the atom’s way. ButD and P are completely insensitive to
coherence between the beams. This coherence is mea
by C and V. Whether a measure of entanglement can
constructed from the above quantities is an interesting qu
tion. This might be difficult, because all these quantities
referenced to a preferred basis of the atom, namely
beams inside and behind the interferometer, respectiv
Any measure of entanglement~see, e.g., Ref.@18# and refer-
ences therein!, however, should be invariant under all unita
transformations of each subsystem. For example, it has b
pointed out thatD21C22P22V2.0 is indicative of en-
tanglement@5#, but maximizing this sum requires not only
maximally entangled state but alsoP50.

IV. SHANNON’S MEASURE OF INFORMATION

We will now compareP to other measures of information
We start with the standard measure used in informat
theory which was introduced by Shannon@6#:

H52k(
i

pi ln pi . ~4.1!

Herek is a positive constant, andpi denotes the probability
for outcomei of a chance event~corresponding tor i i in our
previous notation.! Note thatH measures lack of informa
tion, but of course2H is a measure of information comply
ing with our criteria given in Sec. I B.

Shannon’s measure was discussed excessively in the
erature, and it is very useful in a great variety of field
including statistical mechanics. In two-beam interferomete
H and the predictabilityP are equivalent measures, becau
they are monotonic functions of each other. But in mu
beam interferometers this is not the case, and we owe
reader some justification, why we introduce a new measuP
in this context.~As pointed out in Appendix A of Ref.@2#,
this problem already arises in two-beam interferometers w
a which-way detector, whereD is not a monotonic function
of the average conditionedH.!

The first reason for introducingP is that we are actually
searching for a measure of particle properties. Despite
fact that this measure should have many properties which
also require for measures of information, there is no obvio
reason why the measure of particle properties must be
exact measure of information.

The second~more subtle! reason is that there is a funda
mental problem in trying to single out one definition
which-way information. In order to understand this, we ha
3-6
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to recall why Shannon preferredH over all other possible
measures of information. He derivedH from the following
postulates.

~1! H should be continuous in thepi .
~2! If all pi51/n, thenH should be a monotonic increas

ing function ofn.
~3! If a choice is broken down into two successi

choices, the originalH should be the weighted sum of th
individual values ofH. See Ref.@6# for an example.

The first two postulates leave room for a large variety
definitions. It is the third postulate that is very strong. T
problem with this third postulate is that it is applicable on
if quantum coherence between the alternatives is absen
irrelevant. This problem arises from the inseparability
quantum phenomena. For example, any attempt to ‘‘br
down’’ an interferometer into two successive interferomet
~with fewer beams each! will modify the interference pattern

There is one way to work around the problem of quant
coherence between the alternatives. The freedom of ch
of the basis allows us to choose a basis in whichr is diag-
onal. If we calculateH ~with pi5r i i ) in such a basis, we
arrive at the entropy well known from statistical mechani
However, applying this strategy in order to quantify whic
way information is pointless, because the beams in the in
ferometer already define the preferred basis, relative
which we want to quantify which-way information. For ex
ample, if we first diagonalizer, every pure state has zer
entropy—completely independent of the probabilities that
atom takes one way or another.

Shannon’s second postulate is also irrelevant in the c
text of which-way information. Since we cannot ‘‘brea
down’’ the interferometer into two smaller ones, the scali
with n is not important.

In addition to his postulates, Shannon listed six interest
properties ofH. For the complete list we refer the reader
Ref. @6#. Here we only mention that Shannon’s properties
2, 4, and 6 are equivalent to the list of criteria we gave
Sec. I. Shannon’s properties 3 and 5 do not have an obv
counterpart in the context of which-way information. This
because usually the which-way detector itself is not an in
ferometer. Hence there is no such thing as a probability
find the which-way detector in one of its ‘‘ways.’’

We conclude that Shannon’s measure of informat
~without diagonalizingr) is a possible candidate for quant
fying which-way information, but Shannon’s second a
third postulates are irrelevant in the present context and
not qualify H over any other candidate. Furthermore,H and
P have remarkably similar properties, and only the existe
of simple useful expressions, such asP21V2<1, motivates
us to preferP over H in the present context.

V. A MEASURE OF QUANTUM INFORMATION

Brukner and Zeilinger@7,8# recently proposed a measu
of quantum information. They also questioned the uniq
ness of Shannon’s measure in situations where quantum
herence is essential. For a quantum measurement in w
the possible outcomes occur with probabilitiespW
5(p1 ,p2 , . . . ,pn), they proposed
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I ~pW !5(
i 51

n S pi2
1

nD 2

~5.1!

as a measure of the information obtained from the meas
ment. This is obviously identical to@(n21)/n#P2 in our
notation.

Brukner and Zeilinger went one step further and cons
ered ‘‘complete’’ sets of mutually ‘‘unbiased’’ observable
Two observables are called unbiased~or complementary! if
preparing the system in any eigenstate of the one observa
makes all possible outcomes of a measurement of the o
observable equally likely. In an-dimensional Hilbert space, a
set of mutually unbiased observables consists of at mon
11 observables. If such a set of maximum length exi
@19,20#, it is called complete. The measurement of a co
plete set of mutually unbiased observables, of course,
quires a large number of identically prepared systems,
only one observable is measured on each system. As a m
sure of the total information obtained in all these measu
ments, Brukner and Zeilinger proposed

I total5 (
j 51

n11

I ~pW j !52
1

n
1Tr$r2%, ~5.2!

wherepW j represents the probabilities of the outcomes of
measurements of thej th observable. Brukner and Zeilinge
pointed out thatI total is invariant under unitary transforma
tions and still its constituentsI (pW j ) have an operational sig
nificance for the measurement of single observables.

Obviously, wave-particle duality is closely related to th
measure of quantum information. Wave-particle duality a
deals with unbiased observables, namely, the atom’s way
side and behind the interferometer. Our assumption that
second beam splitter has a 1/n splitting ratio guarantees tha
these observables are unbiased. Furthermore, a compa
of Eqs.~1.20! and ~5.2! yields

I total5
n21

n
~P21V2!. ~5.3!

Clearly, @(n21)/n#P2 represents the information obtaine
from a measurement of the atom’s way inside the interf
ometer. Equation~5.3! therefore implies that@(n21)/n#V2

is equal to the sum of information obtained from measu
ments of all the remainingn members of the complete set o
mutually unbiased observables. Our definition ofV2 in Eq.
~1.10! is based on an integral instead of a sum, but app
ently this produces the same result. The following two-be
example will illustrate this.

A two-beam interferometer is described by a 232 density
matrix and therefore equivalent to a spin-1

2 system. We
choose the coordinate system of the spin1

2 such that a mea-
surement of thez component of the spin,sz , corresponds to
a measurement of the atom’s way inside the interferome
This yields@16#

P25^sz&
2. ~5.4!
3-7
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Furthermore, we can choose thex axis of the coordinate
system such thatV25^sx&

2 @16#. Note that with this choice
of the coordinate system̂sy&50. We can alternatively ro-
tate the coordinate system around thez axis by an arbitrary
angle, yielding the more general result

V25^sx&
21^sy&

2. ~5.5!

In the two-beam case,$sx ,sy ,sz% is a complete set of mu
tually unbiased observables. Equations~5.4! and ~5.5! illus-
trate thatV2 corresponds to the information obtained fro
the measurement of all except one of the observables f
the complete set.

Alternatively, we can rotate the observables~instead of
the coordinate system! around thez axis. We thus obtain

V25^s~a!&21^s~a1p/2!&2, ~5.6!

wheres(a) denotes the spin along an axis that lies in thexy
plane and subtends an angel ofa with thex axis. Let us now
average Eq.~5.6! overa. The left side is unchanged, becau
V2 is independent ofa. On the right side, the two terms yiel
the same result because of periodicity. Thus we obtain

V252
1

2pE0

2p

^s~a!&2da. ~5.7!

This illustrates that, instead of choosing a specific set
mutually unbiased observables and summing over all ex
one of these observables, as in Eq.~5.5!, we can alternatively
@as in Eq.~5.7!# average over all observables that are un
ased with respect tosz . Both approaches yield the sam
result. The integral expression forV2 in Eq. ~1.10! is con-
ceptually interesting, because it shows that all possible c
binations of the phase shiftersw j are equally weighted.

VI. ALTERNATIVE MEASURES FOR
WAVE-PARTICLE DUALITY

In the light of the above measure of quantum informatio
we can rewrite our measures of wave and particle proper
The natural choices are obviously

I P5
n21

n
P252

1

n
1(

j
r j j

2 , ~6.1!

I V5
n21

n
V25(

j
(
kÞ j

ur jku2. ~6.2!

For which-way detection schemes and subensemble sor
these yield

I Kl5
n21

n
Kl

252
1

n
1(

j
S ^wl ur̃ j j uwl&

pl
D 2

, ~6.3!

I Vl5
n21

n
Vl

25(
j

(
kÞ j

U^wl ur̃ jkuwl&
pl

U2

. ~6.4!
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Evidently, I P is equivalent toP, because they are monoton
functions of each other. The same goes for the other th
quantities. Thus we did not really add anything to the the
as yet. This changes, however, if we average over the su
sembles. We obtain

I KW5(
l

pl I Kl5
n21

n (
l

plKl
2 , ~6.5!

I VW5(
l

pl I Vl5
n21

n (
l

plVl
2 . ~6.6!

Note that the measuresI KW andI VW are not equivalent toKW
andVW , even in the two-beam case. We thus lose the adv
tage of using definitions compatible with all the earlier wo
in the literature concerning two-beam interferometers. Ho
ever, the measuresI KW and I VW express the available infor
mation more efficiently, as we will show below.

We first show that our quantities are somewhat related
the old ones:

n21

n
KW

2 <I KW , ~6.7!

n21

n
VW

2 <I VW . ~6.8!

In order to prove Eq.~6.7!, we use the Cauchy-Schwarz in
equality, which yields

S (
l

plKl D 2

<S (
l

Apl
2D(

l
~KlApl !

2. ~6.9!

Using( l pl51, we obtain Eq.~6.7!. In the same way, we can
prove Eq.~6.8!.

In analogy toP<KW andV<VW , our quantities fulfill

I P<I KW , ~6.10!

I V<I VW . ~6.11!

Equation~6.10! shows the compliance ofI P with criterion
~5! from Sec. I B. To prove Eq.~6.10!, we again use the
Cauchy-Schwarz inequality, from which we obtain

S (
l

pl pj u l D 2

<S (
l

Apl
2D(

l
~pj u l Apl !

2, ~6.12!

with pj u l as defined in Eq.~2.6!. Summing overj yields Eq.
~6.10!. Along the same lines, we can prove Eq.~6.11!.

Wave-particle duality is again expressed by a few
equalities; the easiest two of them are

I P1I V52
1

n
1Tr$r2%<

n21

n
, ~6.13!

I Kl1I Vl52
1

n
1Tr$r ( l )

2 %<
n21

n
, ~6.14!
3-8
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with r ( l ) as defined in Eq.~2.2!. These inequalities are, o
course, equivalent toP21V2<1 andKl

21Vl
2<1. However,

we can easily obtain a new limit by averaging Eq.~6.14!
over l:

I KW1I VW52
1

n
1(

l
pl Tr$r ( l )

2 %<
n21

n
. ~6.15!

We emphasize that this is not equivalent toKW
2 1VW

2 <1. In
fact, Eq. ~6.15! is more stringent, because we can der
KW

2 1VW
2 <1 from Eqs.~6.7!, ~6.8!, and~6.15!. Furthermore,

we define the maxima~or suprema if necessary!

I D5max
W

$I KW%, ~6.16!

I C5max
W

$I VW%, ~6.17!

and Eqs.~6.10!, ~6.11!, and~6.15! imply

I D1I V<
n21

n
, ~6.18!

I P1I C<
n21

n
, ~6.19!

which are expressions analogous toD21V2<1 and P2

1C2<1.
Thus, with the measures proposed in this section, we

rive at inequalities that are similar to the ones we obtaine
the earlier sections. So, what did we gain? First, the cho
of definitions in this section is conceptually more natural
light of the measure of quantum information proposed
Brukner and Zeilinger. Second, in Eq.~6.15! we obtained an
ys

04211
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y

equality in addition to the inequality. The advantage of this
easily seen if we consider the special case wherer̃ represents
a pure state. In this case obviously all Tr$r ( l )

2 %51, and thus

I KW1I VW5
n21

n
for all pure states. ~6.20!

It is important to note that the analogous equality for t
traditional measures,KW

2 1VW
2 51, does not hold for arbi-

trary pure states.~See Refs.@4,11# for examples ofKW
2

1VW
2 Þ1 for some pure states.! In other words, the quantities

I KW and I VW express the available quantum information
efficiently as possible, whereasKW andVW do not.

Equation~6.20! shows that for pure states, the entang
ment with the which-way detector does not prevent us fr
obtaining the maximum possible total information about t
atom, no matter which observableW is measured on the
which-way detector. Which-way experiments are a spe
class of quantum nondemolition~QND! measurements. I
might be interesting to analyze other QND schemes in te
of the Brukner-Zeilinger measure of quantum information

To summarize, we have shown in this paper that the qu
tities used to characterize wave and particle properties
two-beam interferometers can be generalized to multibe
interferometers. These generalized measures fulfill the s
inequalities as in the two-beam case. Furthermore, we
posed alternative measures of the wave and particle pro
ties that fulfill similar inequalities and express the availab
quantum information more efficiently.
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@14# S. Dürr, T. Nonn, and G. Rempe, Phys. Rev. Lett.81, 5705
~1998!.

@15# P.D.D. Schwindt, P.G. Kwiat, and B.-G. Englert, Phys. Rev
60, 4285~1999!.
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