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Independent eigenstates of angular momentum in a quantumN-body system
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The global rotational degrees of freedom in the Schro¨dinger equation for anN-body system are completely
separated from the internal ones. After removing the motion of the center of mass, we find a complete set of
(2l 11) independent base functions with angular momentuml . These are homogeneous polynomials in the
components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not
appear explicitly. Any function with given angular momentum and given parity in the system can be expanded
with respect to the base functions, where the coefficients are the functions of the internal variables. With the
right choice of the base functions and the internal variables, we explicitly establish the equations for those
functions. Only (3N26) internal variables are involved both in the functions and in the equations. The
permutation symmetry of the wave functions for identical particles is discussed.
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I. INTRODUCTION

For a quantumN-body system with a pair potential, th
Schrödinger equation is invariant under spatial translatio
rotation, and inversion. It is well known that, due to th
translation symmetry of the system, the wave function can
separated into a product of two parts. One describes the
tion of the center of mass as a free particle, and the o
describes the motion of the system in the center-of-m
frame. It is no loss of generality to suppose the center
mass of the system to be at rest, so that the configuratio
completely specified by (N21) vectorsr c j , 1< j <N21,
which are usually chosen as the Jacobi coordinate vectorRj
for simplicity @1–3# ~see Sec. II!. On the other hand, due t
the symmetries of the global rotation and space inversion
the system, the three rotational degrees of freedom shoul
separated completely from the internal ones so that o
(3N26) internal variables, called the shape coordinates
some papers, are involved both in the functions and in
equations. This is the aim of this paper.

The hydrogen atom is a typical quantum two-body s
tem, where there is only one Jacobi coordinate vector, wh
is proportional to the relative position vectorr5r12r2. The
Schrödinger equation for the hydrogen atom becomes a p
tial differential equation with respect to the three compone
of r . Because of the spherical symmetry, the angular mom
tum is conserved, and the wave function can be expresse
a product of a radial functionf(r ) and a spherical harmoni
function Ym

l (u,w),

Cm
l ~r !5f~r !Ym

l ~u,w!, ~1!

where the radial functionf(r ) satisfies the radial equatio
containing only one radial variable. The generalization
this method to a quantumN-body system is an important an
fundamental problem that has been attacked by many gro
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Wigner studied this problem using group theory@4#. The
global rotation of a system can be described by a space
tation R5R(a,b,g), rotating the center-of-mass frame in
the body-fixed frame, wherea, b, and g are the Euler
angles. Briefly denoting all the internal variables for simpl
ity by j, which is invariant in the global rotation, one ma
express the wave function with a given angular moment
as Cm

l (R,j)5Cm
l (a,b,g,j). Let PS be the transformation

operator for a scalar functionc(x) in the transformationS,
PSc(x)5c(S21x) ~see p. 105 in Ref.@4#!. In a rotationS
PSO(3), thefunction Cm

l (R,j) transforms as

PSCm
l ~R,j!5Cm

l ~S21R,j!5 (
m852l

l

Cm8
l

~R,j!Dm8m
l

~S!.

Cm
l (R,j) was called by Wigner@4# the function belonging to

the mth row of the representationD l
„SO(3)…. Letting R

5R(0,0,0) be the identity element, one obtains

Cm
l ~S21,j!5PSCm

l ~0,0,0,j!5 (
m852l

l

fm8
l

~j!Dm8m
l

~S!,

wherefm8
l (j)5Cm8

l (0,0,0,j) depends only on the interna
variables, called the generalized radial functions in this
per. Due to the spherical symmetry, one only needs to st
the eigenfunctions of angular momentum with the larg
eigenvalue ofLz (m5l ), which in this paper are simply
called the wave functions with angular momentuml for
simplicity. Their partners with the smaller eigenvalues ofLz
can be calculated from them by the lowering operatorL2 .
Letting S215R(a,b,g), one obtains@see Eq.~19.6! in @4##

C l
l ~a,b,g,j!5C l

l ~R,j!5 (
m52l

l

D l m
l ~a,b,g!* fm

l ~j!,

~2!

where the commonly used form of theD function @5# is
adopted. In Eq.~2! D l m

l (a,b,g)* plays the role of the base
function. What Wigner proved is that (2l 11) functions
©2001 The American Physical Society08-1
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D l m
l (a,b,g)* constitute a complete set of independent b

functions with the angular momentuml , and any wave
function with the angular momentuml can be expanded
with respect to those base functions. Due to the singularit
the Euler angles, the generalized radial equations satisfie
the generalized radial functions are quite difficult to der
based on Eq.~2!. Hirschfelder and Wigner@6# studied the
problem of the generalized radial equations. Later, the g
eralized radial equations were improved by several auth
@7–9#. The equations seem quite cumbersome@7#. In the
present paper we are going to rechoose the base functio
the homogeneous polynomials in the components of the
ordinate vectors so that the derivation of the generalized
dial equations becomes very simple.

The generalized radial equations for a quantum thr
body system have been discussed in more detail@10–12#.
Recently, by making use of the body-fixed frame, the expr
sion for the kinetic energy operator was built in terms of t
partial angular momentum operators and radial derivati
containing (3N26) internal variables@13,14#. A coupled an-
gular momentum basis was used to prediagonalize the
netic energy operator, where some off-diagonal elements
main nonvanishing. Those results have been generalize
nonorthogonal vectors@15,16#. In those calculations, a func
tion with a given angular momentum was obtained from
partial angular momentum states using Clebsch-Gordan
efficients. Since the partial angular momenta are gener
not conserved, one has to deal with, in principle, an infin
number of partial angular momentum states. This prob
also occurs in the hyperspherical harmonic function met
and its improved versions@17–22#. It causes unnecessar
degeneracy of the hyperspherical harmonic states becaus
Wigner proved, only (2l 11) base functions with angula
momentuml are involved in the calculation.

Eckart @1# presented another method, called the princi
axis transformation, to distinguish the global rotation a
the internal motion in a classicalN-body system. From
the (N21) Jacobi coordinate vectorRj , he defined an
(N21)3(N21) real symmetric matrixRjk5Rj•Rk , which
is semipositive definite.R can be diagonalized by a rea
orthogonal similarity transformationX, XRX215G:

S (
s51

N21

XjsRsD •S (
t51

N21

XktRtD 5d jkG j j . ~3!

Since there are at most three orthogonal vectors in a th
dimensional space, the vectors can be expressed as

(
k51

N21

XjkRk5H ear a when j 5a<3

0 when 4< j <N21,
~4!

where ea are three orthonormal vectors in the usual thr
dimensional space andr a

25Gaa . Three orthonormal vector
ea contain three Euler angles describing the global rotation
the system@1#. Thus, from Eqs.~3! and~4!, Eckart obtained

Rj5 (
a51

3

ear aXa j , 1< j <N21. ~5!
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Xa j are the first three rows of the matrixX and contain
(3N29) independent parameters. Therefore,r aXa j contain
(3N26) internal variables, and the rotational variables~Eu-
ler angles! can be completely separated in the kinetic ene
expression from the internal variables@1#. This approach has
been further studied and quantized in recent years@2,23–25#.
The internal coordinates and their conjugate momenta w
quantized to derive the kinetic energy expression throu
generalized angular momentum operators. However, the
mal formula~5! does not give the explicit functional relatio
of the internal coordinates with the components of the Jac
coordinate vectors, so that the kinetic energy expression
not be transformed directly from the usual kinetic ener
term in the Schro¨dinger equation by replacement of var
ables. It is very difficult to obtain the wave function on th
position vectorsr k ~or on the Jacobi coordinate vectorsRj )
from a solution on these internal coordinates. The interme
ate calculations for the kinetic energy expression are so c
plicated that, as said in Ref.@25#, the expression for a quan
tum six-body system has not been obtained probably due
few mistakes in calculations.

Let us return to the hydrogen atom problem. After remo
ing the motion of the center of mass, the configuration sp
is parametrized in terms of the rectangular coordinater
5(x,y,z) or the spherical coordinates (r ,u,w), where r
specifies the internal~radial! motion and (u,w) specify the
overall rotation. There is another way to separate the ro
tional degrees of freedom and obtain the same radial func
and the radial equation as those derived from Eq.~1!. One
may avoid explicitly introducing the rotational anglesu and
w using the harmonic polynomialY m

l (r )5r l Ym
l (u,w),

which is a homogeneous polynomial of degreel in the rect-
angular coordinates (x,y,z) and satisfies the Laplace equ
tion as well as the eigenequation of the angular moment
Using Y m

l (r ), Eq. ~1! becomes

Cm
l ~r !5$r 2l f~r !%Y m

l ~r !.

Under the action of the Laplace operator, we have

DCm
l ~r !5Y m

l ~r !@Dr 2l f~r !#12“@r 2l f~r !#•“$Y m
l ~r !%

5Y m
l ~r !r 21] r

2r @r 2l f~r !#

12] r@r 2l f~r !#r 21r•“$Y m
l ~r !%

5Y m
l ~r !r 2l $r 21] r

2rf~r !1l ~ l 11!r 22f~r !

12~2l r 21!@] rf~r !1r 21f~r !#%

12$2l r 2l 21f~r !1r 2l ] rf~r !%$l r 21Y m
l ~r !%

5Ym
l ~u,w!$r 21] r

2rf~r !2l ~ l 11!r 22f~r !%,

where and hereafter] rc denotes]c/]r , and so on. The re-
sults are the same. In the traditional approach, the prop
that Ym

l (u,w) is the eigenfunction ofL2 is used, and, in this
approach, the property thatY m

l (r ) is a homogeneous poly
nomial in the rectangular coordinates and is a solution to
Laplace equation is used. It is worth emphasizing that
rotational anglesu and w do not appear explicitly in this
8-2
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approach. Since the differential calculus with respect tou
and w is not complicated, this approach is similar to t
traditional one in a two-body system. However, it may
easier in anN-body system due to the complicated calcu
with respect to the Euler angles. In the present paper we
separate the global rotational variables in the Schro¨dinger
equation for anN-body system from the internal ones by
generalized method following the approach described ab
In our approach, the number of base functions with the gi
angular momentum is finite, but that number in the hyp
spherical harmonic function method and its improved v
sions @13,17–22# is infinite due to the unconserved parti
angular momenta. We also avoid the heavy differential c
culus with respect to the Euler angles which is sometim
necessary for expressing kinetic energy operators.

This paper is organized as follows. In Sec. II we w
briefly review the method of separating the motion of t
center of mass by the Jacobi coordinate vectors. In Sec
we will define (3N26) internal variables from the Jacob
coordinate vectorsRj and find the (2l 11) base functions
with total orbital angular momentuml , which are the homo-
geneous polynomials in the components ofRj and the solu-
tions of the Laplace equation. Then we will prove that t
base functions constitute a complete set, namely, any fu
tion with the angular momentuml and the given parity in
the system can be expanded with respect to the base f
tions, where the coefficients depend only on the internal v
ables. Since the base functions are polynomials, we are
to derive easily the generalized radial equations satisfied
the coefficients explicitly in Sec. IV. The permutation sym
metry for the total wave function when some or all of t
particles in the system are identical particles is discusse
Sec. V. In Sec. VI we will derive the radial equations in
general case where the Jacobi coordinate vectorsRj ~or-
thogonal vectors! are replaced by arbitrary coordinate ve
tors r c j in the center-of-mass frame~nonorthogonal vectors!.
In Sec. VII we will discuss a physical application of ou
approach. Some conclusions are given in Sec. VIII.

II. SEPARATION OF MOTION OF CENTER OF MASS

For a quantumN-body system, we denote the positio
vectors and the masses ofN particles byr k and bymk , k
51,2, . . . ,N, respectively.M5(kmk is the total mass. The
Schrödinger equation for theN-body system is

2
\2

2 (
k51

N

mk
21D rk

C1VC5EC, ~6!

whereD rk
is the Laplace operator with respect to the posit

vector r k , and V is a pair potential, depending upon th
distance of each pair of particles,ur j2r ku.

Now, we replace the position vectorsr k by the Jacobi
coordinate vectorsRj :

R05M 21/2(
k51

N

mkr k ,
04210
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Rj5S mjM j 11

M j
D 1/2S r j2 (

k5 j 11

N
mkr k

M j 11
D ,

1< j <~N21!, M j5(
k5 j

N

mk , M15M , ~7!

whereR0 describes the position of the center of mass,R1
describes the mass-weighted separation from the first par
to the center of mass of the remaining particles,R2 describes
the mass-weighted separation from the second particle to
center of mass of the remainingN22 particles, and so on
The mass-weighted factors in front of the formulas forRj are
determined by the condition

(
k51

N

mkr k
25 (

j 50

N21

Rj
2 ,

where an additional factorAM is included inRj for conve-
nience. One may determine the factors one by one from
following schemes. In the center-of-mass frame, if the fi
j 21 particles are located at the origin and the lastN2 j
particles coincide with each other, the factor in front ofRj is
determined by

r j 115r j 125•••5rN52mj r j /M j 11 , (
k5 j

N

mkr k
25Rj

2 .

~8!

A straightforward calculation by replacement of variabl
shows that the Laplace operator in Eq.~6! and the orbital
angular momentum operatorL are directly expressed inRj :

D5 (
k51

N

mk
21D rk

5 (
j 50

N21

DRj
,

L52 i\(
k51

N

r k3“ rk
52 i\ (

j 50

N21

Rj3“Rj
. ~9!

In the center-of-mass frame,R050. Since the Laplace
operator does not contain mixed derivative terms, the Jac
coordinate vectors are also called orthogonal vectors@14#.
The Laplace operator obviously has the symmetry of
O(3N23) group with respect to (3N23) components of
(N21) Jacobi coordinate vectors. The O(3N23) group
contains a subgroup SO(3)3O(N21), where SO(3) is the
usual rotation group. The space inversion and the differ
definitions for the Jacobi coordinate vectors in the so-ca
Jacobi tree@19# can be obtained by O(N21) transforma-
tions. For a system of identical particles, the permutat
group among particles is also a subgroup of the O(N21)
group. As a matter of fact, after the transposition (k,k11)
between thekth and the (k11)th particles, the new Jacob
coordinate vectors, denoted byRj8 , satisfy

Rj85Rj when j Þk or k11,
8-3
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Rk85F mk11

Mk~mk1Mk12!G
1/2F ~mk1Mk12!r k112mkr k

2 (
j 5k12

N

mj r j G
52Rk cosuk1Rk11 sinuk ,

Rk118 5F mk

~mk1Mk12!Mk12
G1/2FMk12r k2 (

j 5k12

N

mj r j G
5Rk sinuk1Rk11 cosuk ,

cosuk5F mkmk11

Mk11~mk1Mk12!G
1/2

,

sinuk5F MkMk12

Mk11~mk1Mk12!G
1/2

. ~10!

This is obviously an O(N21) transformation. For a system
of identical particles, cosuk5(N2k)21.

It is easy to obtain the inverse transformation of Eq.~7!:

r j5F M j 11

mjM j
G1/2

Rj2 (
k51

j 21 F mk

MkMk11
G1/2

Rk1M 21/2R0 ,

~11!

r j2r k5F M j 11

mjM j
G1/2

Rj2 (
i 5k11

j 21 F mi

MiMi 11
G1/2

Ri

2F Mk

mkMk11
G1/2

Rk . ~12!

Thus, the potentialV is a function ofRj•Rk .
The Jacobi coordinate vectorsRj are invariant in transla-

tion and constitute a complete set of coordinate vectors in
center-of-mass frame. If a complete set of arbitrary coo
nate vectorsr c j is chosen to replace the Jacobi coordin
vectors,

r c j5 (
k51

N21

RkDk j , detDÞ0, ~13!

whereDk j are functions of the massesmj , the Laplace op-
erator and the angular momentum operator become

D5 (
j ,k51

N21

Sjk“ rc j
•“ rck

, Sjk5 (
t51

N21

Dt jDtk ,

~14!

L52 i\ (
j 51

N21

r c j3“ rc j
.

A typical example isr c j5r j2M 21/2R0 @see Eq.~11!#. When
the matrixS is not diagonal,r c j are called the nonorthogona
vectors@15,16#. We will not discuss the nonorthogonal ve
tors until Sec. VI.
04210
e
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III. BASE FUNCTIONS WITH THE GIVEN ANGULAR
MOMENTUM

Because of the spherical symmetry, the angular mom
tum is conserved. We are going to discuss the wave funct
with the given angular momentum and parity. From the giv
form ~9!, the eigenfunctions of the angular momentumL2

are homogeneous polynomials in the componentsRjb of the
Jacobi coordinate vectorsRj .

For a quantum two-body system, there is only one Jac
coordinate vectorR5r , and the eigenfunction of the angula
momentum is the spherical harmonic functionYm

l (u,w).
What is the generalization of the spherical harmonic funct
for a quantumN-body system? A naive idea for generaliz
tion is to introduce the Euler angles, as was done by Wig
@4,7–9#. Is it necessary to introduce angular variables in
eigenfunction of the angular momentum?

As is well known, the harmonic polynomialY m
l (r )

5r l Ym
l (u,w) is a homogeneous polynomial of degreel in

the components ofr , which satisfies the Laplace equation
well as the eigenequation of the angular momentum. It d
not contain angular variables explicitly. The number of li
early independent homogeneous polynomials of degreel in
the components ofr is

N~ l !5(
s50

l

~ l 2s11!5~ l 11!~ l 12!/2.

The number of homogeneous polynomials that can be
pressed as a product ofr•r and a homogeneous polynomi
of degree (l 22) is N(l 22). BecauseN(l )2N(l 22)
52l 11, the remaining homogeneous polynomials of d
greel are nothing but the harmonic polynomialsY m

l (r ).
For a quantum three-body system there are two Jac

coordinate vectorsR1 andR2 and three internal variables i
the center-of-mass frame:

j15R1•R1 , j25R1•R2 , h25R2•R2 . ~15!

The internal variables are invariant in the global rotation a
the space inversion of the system. We are going to const
base functions for angular momentum that do not contai
function of the internal variables as a multiplying factor, b
cause the factor should be incorporated into the general
radial functions. The number of linearly independent hom
geneous polynomials of degreel in the components of the
Jacobi coordinate vectors isM (l ):

M ~ l !5
1

5!
~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!.

The number of homogeneous polynomials of degreel that
do not contain a function of the internal variables as a fac
is

K~ l !5M ~ l !23M ~ l 22!13M ~ l 24!2M ~ l 26!

54l 212, l >1.
8-4
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On the other hand, the wave function with angular m
mentuml can be obtained fromY m

q (R1)Y m8
l 2q(R2) by use

of the Clebsch-Gordan coefficients^q,m,l 2q,m2muL,m&
@5#:

Y Lm
l q~R1 ,R2!5(

m
Y m

q ~R1!Y m2m
l 2q ~R2!

3^q,m,l 2q,m2muL,m&. ~16!

Y Lm
l q(R1 ,R2) is a homogeneous polynomial of degreel in

the components of the Jacobi coordinate vectorsRj . Simul-
taneously, it is the common eigenfunction ofL2, Lz , and the
space inversion with eigenvaluesL(L11), m, and (21)l ,
respectively. Whenm5L5l (0<q<l ) and (l 21) (1
<q<l 21), we have

Y l l
l q ~R1 ,R2!5~21! l H @~2q11!! ~2l 22q11!! #1/2

q! ~ l 2q!!2 l 12p
J

3~R1x1 iR1y!q~R2x1 iR2y! l 2q,

Y (l 21)(l 21)
l q ~R1 ,R2!

5~21! l 21H ~2q11!! ~2l 22q11!!

2ql ~ l 2q! J 1/2

3$~q21!! ~ l 2q21!!2 l 11p%21

3~R1x1 iR1y!q21~R2x1 iR2y! l 2q21

3$~R1x1 iR1y!R2z2R1z~R2x1 iR2y!%.

~17!

It is evident that these expressions do not contain a func
of the internal variables as a factor; neither do their partn
with smallerm due to the spherical symmetry. The numb
of these eigenfunctions is

~2l 11!~ l 11!1~2l 21!~ l 21!54l 2125K~ l !,

l >1.

That is, any of the remaining eigenfunctionsY Lm
l q(R1 ,R2)

with L,l 21 can be expressed as a combination, wh
each term is a product of a function of the internal variab
and a homogeneous polynomial of degree less thanl @26#.
For example,

Y 00
21~R1 ,R2!52

A3

4p
j2 ,

Y 00
42~R1 ,R2!5

A5

8p
$3j2

22j1h2%,

Y 22
42~R1 ,R2!55

A21

56p
$h2~R1x1 iR1y!21j1~R2x1 iR2y!2

23j2~R1x1 iR1y!~R2x1 iR2y!%.
04210
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In other words, any eigenfunction with angular momentuml
is a combination of those homogeneous polynomi
Y l l

l q (R1 ,R2) and Y l l
(l 11)q(R1 ,R2), where the combinative

coefficients are functions of the internal variables. Since
normalization factor can be ignored, we rewri
Y l l

(l 1l)q(R1 ,R2) in a simplified form asQq
l l(R1 ,R2) by

removing a constant factor:

Qq
l l~R1 ,R2!5

Xq2lYl 2qZl

~q2l!! ~ l 2q!!
, l<q<l , l50,1,

X[R1x1 iR1y , Y[R2x1 iR2y , Z[XR2z2R1zY.
~18!

Note that

Qq
l 1~R1 ,R2!5Qq21

(l 21)0~R1 ,R2!Z. ~19!

Qq
l l(R1 ,R2), called the generalized harmonic polynomial,

a homogeneous polynomial of degree (l 1l) in the compo-
nents of the Jacobi coordinate vectors. It is the comm
eigenfunction ofL2,Lz ,LR1

2 ,LR2

2 ,DR1
,DR2

,“R1
•“R2

, and the

space inversion with the eigenvaluesl (l 11), l , q(q
11), (l 2q1l)(l 2q1l11), 0, 0, 0, and (21)l 1l, re-
spectively, whereLR1

2 (LR2

2 ) is the square of the partial an

gular momentum, andDR1
(DR2

) is the Laplace operato

with respect to the Jacobi coordinate vectorR1 (R2) @see Eq.
~9!#. Any wave function with the given angular momentu
l and the parity (21)l 1l can be expressed as follows:

C l
l l~R1 ,R2!5 (

q5l

l

cq
l l~j1 ,j2 ,h2!Qq

l l~R1 ,R2!, l50,1.

~20!

That is, for a three-body system the generalized harmo
polynomialsQq

l l(R1 ,R2) constitute a complete set of bas
functions with angular momentuml and parity (21)l 1l.
Only l 112l partial angular momentum states are involv
in constructing a function with angular momentuml and
parity (21)l 1l, and the contributions from the infinite num
ber of remaining partial angular momentum states are inc
porated into those of the radial functions. Substituting E
~20! into the Schro¨dinger equations~6! and~9!, one is able to
easily derive the generalized radial equations for the ge
alized radial functionscq

l l(j1 ,j2 ,h2) @3,27#:

Dcq
l l14q]j1

cq
l l14~ l 2q1l!]h2

cq
l l12~q2l!]j2

cq21
l l

12~ l 2q!]j2
cq11

l l 52
2

\2
~E2V!cq

l l ,

Dcq
l l~j1 ,j2 ,h2!5$4j1]j1

2 14h2]h2

2 16~]j1
1]h2

!

1~j11h2!]j2

2 14j2~]j1
1]h2

!]j2
%

3cq
l l~j1 ,j2 ,h2!,

l<q<l , l50,1. ~21!

For a quantumN-body system, there are (N21) Jacobi
coordinate vectors. We arbitrarily choose two Jacobi coo
8-5
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nate vectors, say,R1 and R2. We fix the body-fixed frame
such thatR1 is parallel with itsZ axis, andR2 is located in
its XZ plane with a non-negativeX component. Define (3N
26) internal variables, which are invariant in the global r
tation of the system:

j j5Rj•R1 , h j5Rj•R2 , z j5Rj•~R13R2!,

1< j <~N21!, h15j2 , z15z250. ~22!

It is worth mentioning thatj j andh j have even parity, butz j
has odd parity. From them we have

V j5~R13Rj !•~R13R2!5j1h j2j2j j ,

v j5~R23Rj !•~R13R2!5j2h j2h2j j ,

V15v250, V252v15~R13R2!2. ~23!

Due to our choice of the body-fixed frame, the comp
nents of R1 and R2 are in the frame (0,0,j1

1/2) and
@(V2 /j1)1/2,0,j2j1

21/2#, respectively. From Eq.~22! we are
able to express all the componentsRjb8 of the Jacobi coordi-
nate vectorsRj in the body-fixed frame by the internal var
ables:

Rjx8 5V j~j1V2!21/2, Rjy8 5z jV2
21/2, Rjz8 5j jj1

21/2.
~24!

The formulas~24! also hold for j 51 and 2. The volume
element of the configuration space can be calculated from
Jacobi determinant by replacement of variables:

)
j 51

N21

dRjxdRjydRjz5
1

4
V2

32N sinbdadbdgdj1dj2dh2

3 )
j 53

N21

dj jdh jdz j . ~25!

The range of definition of the Euler angle is well known; t
ranges of definition ofj1 andh2 are (0,̀ ) and the ranges o
definition of the remaining variables are (2`,`).

Furthermore,

Rj•Rk5V2
21~V jhk2v jjk1z jzk!. ~26!

It is easy to see from Eqs.~12! and~26! that the potentialV
is a function of only the internal variables. SinceR1 andR2
determine the body-fixed frame completely, it also can
seen from Eq.~24! that each of the components of the Jaco
coordinate vectorsRj can be expressed as a linear combin
tion of R1b and R2b with the coefficients depending on th
internal variables. In fact, denote the rotation transform
the center-of-mass frame to the body-fixed frame
R(a,b,g) with three Euler angles@5#

R~a,b,g!5S cacbcg2sasg 2cacbsg2sacg casb

sacbcg1casg 2sacbsg1cacg sasb

2sbcg sbsg cb
D ,

~27!
04210
-

-

he

e
i
-

g
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whereca5cosa, sa5sina, and so on. It is straightforward
to obtain from Eqs.~18!, ~24!, and~27! that

X5R1x1 iR1y5j1
1/2eiasb ,

Y5R2x1 iR2y5~V2 /j1!1/2eia~cbcg1 isg!1j2j1
21/2eiasb ,

R1z5j1
1/2cb , R2z52~V2 /j1!1/2sbcg1j2j1

21/2cb ,

Z5~R1x1 iR1y!R2z2R1z~R2x1 iR2y!

52V2
1/2eia~cg1 icbsg!, ~28!

Rjx1 iRjy5V2
21$2v jX1V jY2 i z jZ%,

~Rjx1 iRjy!Rkz2Rjz~Rkx1 iRky!

5V2
21$ i ~h jzk2hkz j !X2 i ~j jzk2jkz j !Y

1~j jhk2jkh j !Z%. ~29!

Therefore, each harmonic polynomialY l
l (Rj ) can be ex-

pressed as a combination ofQq
l l(R1 ,R2) with the coeffi-

cients depending on the internal variables. This means
the generalized harmonic polynomialsQq

l l(R1 ,R2) given in
Eq. ~18! do constitute a complete set of independent b
functions with the given angular momentuml for a quantum
N-body system, just as they do for a quantum three-bo
system.

Because this conclusion plays a key role in separating
global rotational degrees of freedom from the internal on
in the quantumN-body system, we are going to prove it b
another method. From Eq.~28! we have

eiasb5j1
21/2X, eia~cg1 icbsg!52V2

21/2Z,

eia~cbcg1 isg!52j2~j1V2!21/2X1~j1 /V2!1/2Y,
~30!

Z25h2X222j2XY1j1Y2. ~31!

That is, a homogeneous polynomial of degreel in three
variableseiasb , eia(cbcg1 isg), andeia(cg1 icbsg) can be
expanded with respect toQq

l t(R1 ,R2) where the coefficients
only depend on the internal variablesj j , h j , andz j . On the
other hand, the WignerD function is @5#

D l (6m)
l ~a,b,g!* 5~21! l 2m22l F ~2l !!

~ l 1m!! ~ l 2m!! G
1/2

3ei (l a6mg)sb
l 2m~16cb!m

5~21! l 2m22l F ~2l !!

~ l 1m!! ~ l 2m!! G
1/2

3~eiasb! l 2m@eia~cg1 icbsg!

6eia~cbcg1 isg!#m, ~32!

where m>0. Therefore,D l m
l (a,b,g)* can be expanded

with respect toQq
l t(R1 ,R2), where the coefficients depen

only on the internal variables.D l m
l (a,b,g)* constitute a
8-6
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complete set of independent base functions with the ang
momentuml , and so doQq

l t(R1 ,R2). Now, we come to the
theorem.

Theorem. Any functionC l
l l(R1 , . . . ,RN21) with the an-

gular momentuml and the parity (21)l 1l in a quantum
N-body system can be expanded with respect to the gen
ized harmonic polynomialsQq

l t(R1 ,R2) with the coeffi-
cientscqt

l l(j,h,z) depending on (3N26) internal variables:

C l
l l~R1 , . . . ,RN21!5 (

t50

1

(
q5t

l

cqt
l l~j,h,z!Qq

l t~R1 ,R2!,

~33!
cqt

l l~j,h,z!

5cqt
l l~j1 , . . . ,jN21 ,h2 , . . . ,hN21 ,z3 , . . . ,zN21!,

cqt
l l~j,h,2z!5~21!l2tcqt

l l~j,h,z!,

where the last equality means that the parity ofcqt
l l(j,h,z)

is (21)l2t.

IV. THE GENERALIZED RADIAL EQUATIONS

From the theorem above, the set ofQq
l t(R1 ,R2), just like

the set ofD l m
l (a,b,g)* , is a complete set of base function
ly
e
th

04210
lar

al-

with angular momentuml in the quantumN-body system.
Each function with angular momentuml in the system can
be expanded like Eq.~33! or Eq. ~2!. However, Eq.~33! has
two important characteristics, which make it easier to der
the generalized radial equations. One is that the general
harmonic polynomialQq

l t(R1 ,R2) is a homogeneous poly
nomial in the components of two Jacobi coordinate vect
R1 andR2, where the Euler angles do not appear explicit
The other is the well-chosen internal variables~22!, where
the internal variablesz j have odd parity. It is due to the
existence ofz j that Qq

l 0(R1 ,R2) and Qq
l 1(R1 ,R2) appear

together in the expansion of the wave function. By compa
son, all internal variables in a quantum three-body syst
have even parity (z j50) so that in the expansion~20! of a
wave function with a given parity only the base functio
with the same parity appear@3,4,27,28#.

Because of these two characteristics, it is easy to de
the generalized radial equations by substituting Eq.~33! into
the Schro¨dinger equation~6! with the Laplace operator~9!.
The main calculation in the derivation is to apply the Lapla
operator~9! to the functionC l

l l(R1 , . . . ,RN21) in Eq. ~33!.
The calculation consists of three parts. The first is to ap
the Laplace operator to the generalized radial functio
cqt

l l(j,h,z):
Dcqt
l l~j,h,z!5H 4j1]j1

2 14h2]h2

2 1~j11h2!]j2

2 14j2~]j1
1]h2

!]j2
16~]j1

1]h2
!

1 (
j 53

N21

@j1]j j

2 1h2]h j

2 1V2]z j

2 12j2]j j
]h j

14~j j]j j
1z j]z j

!]j1
14~h j]h j

1z j]z j
!]h2

12~h j]j j
1j j]h j

!]j2
#

1V2
21 (

j ,k53

N21

@~V jhk2v jjk1z jzk!~]j j
]jk

1]h j
]hk

!22~v jzk2vkz j !]j j
]zk

12~V jzk2Vkz j !]h j
]zk

1~V jVk1v jvk1j1z jzk1h2z jzk!]z j
]zk

#J cqt
l l~j,h,z!. ~34!
The second is to apply it to the generalized harmonic po
nomials Qq

l t(R1 ,R2). This part is vanishing becaus
Qq

l t(R1 ,R2) satisfies the Laplace equation. The last is
mixed application

2H ~]j1
cqt

l l!2R11~]j2
cqt

l l!R2

1 (
j 53

N21

@~]j j
cqt

l l!Rj1~]z j
cqt

l l!~R23Rj !#J •“R1
Qq

l t

12H ~]j2
cqt

l l!R11~]h2
cqt

l l!2R2

1 (
j 53

N21

@~]h j
cqt

l l!Rj1~]z j
cqt

l l!~Rj3R1!#J •“R2
Qq

l t .
-

e

In terms of Eqs.~18! and ~29! we obtain

R1•“R1
Qq

l t5qQq
l t , R2•“R2

Qq
l t5~ l 2q1t!Qq

l t ,

R2•“R1
Qq

l t5~ l 2q11!Qq21
l t ,

R1•“R2
Qq

l t5~q2t11!Qq11
l t ,

Rj•“R1
Qq

l 0

5V2
21$2v jqQq

l 01V j~ l 2q11!Qq21
l 0 2 i z jQq

l 1%,

Rj•“R2
Qq

l 0

5V2
21$2v j~q11!Qq11

l 0 1V j~ l 2q!Qq
l 02 i z jQq11

l 1 %,
8-7
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Rj•“R1
Qq

l 15V2
21$2 ih2z jq

2Qq
l 01 i j2z j~2q21!

3~ l 2q11!Qq21
l 0 2 i j1z j~ l 2q12!

3~ l 2q11!Qq22
l 0 2v jqQq

l 1

1V j~ l 2q11!Qq21
l 1 %,

Rj•“R2
Qq

l 15V2
21$2 ih2z j~q11!qQq11

l 0 1 i j2z jq

3~2l 22q11!Qq
l 02 i j1z j~ l 2q11!2Qq21

l 0

2v jqQq11
l 1 1V j~ l 2q11!Qq

l 1%,

~R23Rj !•“R1
Qq

l 05V2
21$h2z jqQq

l 02j2z j~ l 2q11!

3Qq21
l 0 2 iv jQq

l 1%,
es
n

tio
th
nc
e
-

04210
~Rj3R1!•“R2
Qq

l 05V2
21$2j2z j~q11!Qq11

l 0

1j1z j~ l 2q!Qq
l 01 iV jQq11

l 1 %,

~R23Rj !•“R1
Qq

l 15V2
21$2 ih2v jq

2Qq
l 01 i j2v j~2q21!

3~ l 2q11!Qq21
l 0 2 i j1v j~ l 2q12!

3~ l 2q11!Qq22
l 0 1h2z jqQq

l 1

2j2z j~ l 2q11!Qq21
l 1 %,

~Rj3R1!•“R2
Qq

l 15V2
21$ ih2V j~q11!qQq11

l 0

2 i j2V jq~2l 22q11!Qq
l 0

1 i j1V j~ l 2q11!2Qq21
l 0

2j2z jqQq11
l 1 1j1z j~ l 2q11!Qq

l 1%.

~35!

Now the generalized radial equations are
Dcq0
l l14$q]j1

1~ l 2q!]h2
%cq0

l l12q]j2
c (q21)0

l l 12~ l 2q!]j2
c (q11)0

l l 1 (
j 53

N21

2V2
21$@2v jq]j j

1V j~ l 2q!]h j
1h2z jq]z j

1j1z j~ l 2q!]z j
#cq0

l l2q@v j]h j
1j2z j]z j

#c (q21)0
l l 1~ l 2q!@V j]j j

2j2z j]z j
#c (q11)0

l l 2 ih2q~q21!@z j]h j
2V j]z j

#

3c (q21)1
l l 2 iq@h2z jq]j j

2j2z j~2l 22q11!]h j
1h2v jq]z j

1j2V j~2l 22q11!]z j
#cq1

l l1 i ~ l 2q!@j2z j~2q11!

3]j j
2j1z j~ l 2q!]h j

1j2v j~2q11!]z j
1j1V j~ l 2q!]z j

#c (q11)1
l l 2 i j1~ l 2q!~ l 2q21!@z j]j j

1v j]z j
#c (q12)1

l l %

52~2/\2!@E2V#cq0
l l , ~36a!

Dcq1
l l14$q]j1

1~ l 2q11!]h2
%cq1

l l12~q21!]j2
c (q21)1

l l 12~ l 2q!]j2
c (q11)1

l l 1 (
j 53

N21

2V2
21$@2v jq]j j

1V j~ l 2q11!]h j

1h2z jq]z j
1j1z j~ l 2q11!]z j

#cq1
l l2~q21!@v j]h j

1j2z j]z j
#c (q21)1

l l 1~ l 2q!@V j]j j
2j2z j]z j

#c (q11)1
l l

2 i @z j]h j
2V j]z j

#c (q21)0
l l 2 i @z j]j j

1v j]z j
#cq0

l l%52~2/\2!@E2V#cq1
l l , ~36b!
he

n

e

and
he
whereDcqt
l l was given in Eq.~34!. When N53, Eq. ~36!

reduces to Eq.~21!, where, because all internal variabl
have even parity, the generalized radial functio
cqt

l l(j,h,z) with lÞt have to be vanishing.

V. PERMUTATION PROPERTY OF WAVE FUNCTIONS

When some or all particles in a quantumN-body system
are identical particles, one has to consider the permuta
property of the spatial wave function, which depends on
total spin of identical particles. Since the spatial wave fu
tion C l

l l(R1 , . . . ,RN21) is expanded with respect to th
base functionsQq

l t(R1 ,R2), we need to study only the prop
s

n
e
-

erty of Qq
l t(R1 ,R2) in the transposition (k,k11) between

two neighboring particles. The transformation property of t
Jacobi coordinate vectorsRj in the transposition (k,k11)
was given in Eq. ~10!. Therefore, the base functio
Qq

l t(R1 ,R2) remains invariant in the transposition (k,k
11) with k>3. In the following we are going to study th
transformation property ofQq

l t(R1 ,R2) in the transpositions
(1,2) and (2,3). Denote byP1 and P2 the transformation
operators for the base function in the transpositions (1,2)
(2,3), respectively. In the following formulas we neglect t
argumentR1 ,R2 in Qq

l t(R1 ,R2) and briefly denote sinu1,
sinu2, cosu1, and cosu2 by s1 , s2 , c1, andc2 for simplicity.
8-8
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A. Transposition „1,2…

P1Qq
l 05

1

q! ~ l 2q!!
@2Xc11Ys1#q@Xs11Yc1# l 2q

5 (
p50

l

Qp
l 0Dpq

l (1)~u1!, ~37!

where

Dpq
l (1)~u1!5(

n

~21!q2np! ~ l 2p!!c1
l 2p1q22ns1

2n1p2q

~q2n!! ~ l 2p2n!!n! ~n1p2q!!
.

~38!

Because of Eq.~19! andP1Z52Z, we obtain
en
ly

04210
P1Qq
l 152 (

p51

l

Qp
l 1D (p21)(q21)

(l 21)(1) ~u1!. ~39!

B. Transposition „2,3…

P2Qq
l 05

Xq@2s2v3X1~s2V32c2V2!Y2 is2z3Z# l 2q

q! ~ l 2q!!V2
l 2q

5 (
p5q

l

Qp
l 0Dpq

l (2)~u2!1 i (
p5q11

l

Qp
l 1Dpq

l (3)~u2!,

~40!

where
D (q1n)q
l (2) 5

~q1n!! ~ l 2q2n!!s2
l 2q

q! ~ l 2q!!V2
l 2q (

m
S l 2q

2m D ~21!n1mz3
2m (

rt
S l 2q22m

n2r D S m

t D S m2t

r 22t D j1
m2r 1th2

t ~2j2!r 22tv3
n2r

3~V32V2c2 /s2! l 2q2n22m1r ,

D (q1n)q
l (3) 5

~q1n21!! ~ l 2q2n!!s2
l 2q

q! ~ l 2q!!V2
l 2q (

m
S l 2q

2m11D ~21!n1mz3
2m11 (

rt
S l 2q22m21

n2r 21 D S m

t D S m2t

r 22t D
3j1

m2r 1th2
t ~2j2!r 22tv3

n2r 21~V32V2c2 /s2! l 2q2n22m1r , ~41!

where the combinatorics (b
a)5a!/b!(a2b)!, and the ranges of the summation indicesm, r, and t are determined by the

conditions that those combinatorics are not vanishing:

P2Qq
l 15V2

21$ is2j2z3X2 is2j1z3Y1~s2V32c2V2!Z%@P2Qq21
(l 21)0#

5 is2z3V2
21(

p5q

l

$Qp
l 0pj22Qp21

l 0 ~ l 2p11!j1%D (p21)(q21)
(l 21)(2) ~u2!1 i ~s2V32c2V2!V2

21

3 (
p5q11

l

$Qp
l 0p~p21!h222Qp21

l 0 ~p21!~ l 2p11!j21Qp22
l 0 ~ l 2p12!~ l 2p11!j1%D (p21)(q21)

(l 21)(3) ~u2!

1V2
21~s2V32c2V2! (

p5q

l

Qp
l 1D (p21)(q21)

(l 21)(2) ~u2!2s2z3V2
21

3 (
p5q11

l

$Qp
l 1~p21!j22Qp21

l 1 ~ l 2p11!j1%D (p21)(q21)
(l 21)(3) ~u2!. ~42!
In real calculations the cases with small angular mom
tum may be more interesting. In the following we explicit
list the above formulas forl 51 and 2~the formulas for the
case withl 50 are trivial!:

P1Q1
1052c1Q1

101s1Q0
10, P1Q0

105s1Q1
101c1Q0

10,

P1Q1
1152Q1

11,

P1Q2
205c1

2Q2
202c1s1Q1

201s1
2Q0

20,
- P1Q1
20522c1s1Q2

202~c1
22s1

2!Q1
2012c1s1Q0

20,

P1Q0
205s1

2Q2
201c1s1Q1

201c1
2Q0

20,

P1Q2
215c1Q2

212s1Q1
21, P1Q1

2152s1Q2
212c1Q1

21.

P2Q1
105Q1

10,

P2Q0
105s2V2

21@2v3Q1
101~V32V2c2 /s2!Q0

102 i z3Q1
11#,
8-9
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P2Q1
115s2V2

21@ i j2z3Q1
102 i j1z3Q0

10

1~V32V2c2 /s2!Q1
11#,

P2Q2
205Q2

20,

P2Q1
205s2V2

21@22v3Q2
201~V32V2c2 /s2!Q1

202 i z3Q2
21#,

P2Q0
205s2

2V2
22$~v3

22h2z3
2!Q2

201@2v3~V32V2c2 /s2!

1j2z3
2#Q1

201@~V32V2c2 /s2!22j1z3
2#Q0

20

1 iv3z3Q2
212 i z3~V32V2c2 /s2!Q1

21%,

P2Q2
215s2V2

21$ i2j2z3Q2
202 i j1z3Q1

20

1~V32V2c2 /s2!Q2
21%,

P2Q1
215s2

2V2
22$22i z3@j2v31h2~V32V2c2 /s2!#Q2

20

1 i z3@j1v313j2~V32V2c2 /s2!#Q1
2024i j1z3

3~V32V2c2 /s2!Q0
20

1@j2z3
22v3~V32V2c2 /s2!#Q2

21

1@~V32V2c2 /s2!22j1z3
2#Q1

21%.

VI. NONORTHOGONAL VECTORS

Now, we turn to the general case where arbitrary coo
nate vectorsr c j in the center-of-mass frame@see Eq.~13!#
are used to replace the Jacobi coordinate vectorsRj . In this
04210
i-

case the Laplace operator contains mixed derivative te
@see Eq.~14!#. All the conclusions in Sec. III hold for the
present case except that the Jacobi coordinate vectors sh
be replaced with the coordinate vectorsr c j and the volume
element of the configuration space~25! changes due to the
linear transformation~13!. In particular, the generalized ha
monic polynomialQq

l l(R1 ,R2) now becomesQq
l l(r c1 ,r c2),

wherer c1 andr c2 are two arbitrarily chosen coordinate ve
tors.

Any function C l
l l(r c1 , . . . ,r c(N21)) with angular mo-

mentuml and parity (21)l 1l in a quantumN-body system
can be expanded with respect toQq

l l(r c1 ,r c2) with the co-
efficientscqt

l l(j,h,z) depending on (3N26) invariant vari-
ables,

C l
l l~r c1 , . . . ,r c(N21)!5 (

t50

1

(
q5t

l

cqt
l l~j,h,z!Qq

l t~r c1 ,r c2!,

~43!

where, instead of Eq.~22!, the internal variablesj j , h j , and
z j are redefined as

j j5r c j•r c1 , h j5r c j•r c2 , z j5r c j•~r c13r c2!,

1< j <~N21!, h15j2 , z15z250. ~44!

As in the case with the orthogonal vectors, the main c
culation in deriving the generalized radial equations in
present case is to apply the Laplace operator~14! to the
function C l

l l(r c1 , . . . ,r c(N21)) in Eq. ~43!. Similarly, the
calculation consists of three parts, and the second pa
vanishing. But the first part@see Eq.~34!# becomes
Dcqt
l l~j,h,z!5$~4S11j1]j1

2 14S22h2]h2

2 !1~S11h21S22j112S12j2!]j2

2 14~S11j21S12j1!]j1
]j2

14~S22j21S12h2!]j2
]h2

18S12j2]j1
]h2

16~S11]j1
1S22]h2

1S12]j2
!%cqt

l l~j,h,z!1 (
j 53

N21

$4~S11j j1S1 jj1!]j1
]j j

14~S22h j1S2 jh2!]h2
]h j

14~S12j j1S1 jj2!]j1
]h j

14~S12h j1S2 jj2!]h2
]j j

12~S11h j1S12j j1S1 jj21S2 jj1!]j2
]j j

12~S22j j1S12h j1S1 jh21S2 jj2!]j2
]h j

14z j~S11]j1
1S22]h2

1S12]j2
!]z j

16~S1 j]j j
1S2 j]h j

!%cqt
l l~j,h,z!

1 (
j ,k53

N21

$~2S1 jjk1Sjkj1!]j j
]jk

1~2S2 jhk1Sjkh2!]h j
]hk

12~S1kh j1S2 jjk1Sjkj2!]j j
]hk

12~S1 jzk1S1kz j !]j j
]zk

12~S2 jzk1S2kz j !]h j
]zk

1~2S1 jvk22S2 jVk1SjkV2!]z j
]zk

%cqt
l l~j,h,z!

1 (
j ,k53

N21

V2
21$~V jhk2v jjk1z jzk!~S11]j j

]jk
1S22]h j

]hk
12S12]j j

]hk
!

12@2S11~v jzk2vkz j !1S12~V jzk2Vkz j !#]j j
]zk

12@S22~V jzk2Vkz j !2S12~v jzk2vkz j !#]h j
]zk

1@S11~v jvk1h2z jzk!1S22~V jVk1j1z jzk!22S12~v jVk1j2z jzk!#]z j
]zk

%cqt
l l~j,h,z!. ~45!

The last part contains the mixed application
8-10
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2 (
j 51

N21

(
k51

N21

Sjk“ rc j
cqt

l l
•“ rck

Qq
l t

52H r c1F2S11]j1
1S12]j2

1 (
j 53

N21

S1 j]j jG1r c2FS11]j2
12S12]h2

1 (
j 53

N21

S1 j]h jG1 (
j 53

N21

@r c j~S11]j j
1S12]h j

!

1~r c23r c j!S11]z j
1~r c j3r c1!S12]z j

1~r c13r c2!S1 j]z j
#J cqt

l l
•“ rc1

Qq
l t12H r c1F2S12]j1

1S22]j2
1 (

j 53

N21

S2 j]j jG
1r c2FS12]j2

12S22]h2
1 (

j 53

N21

S2 j]h jG1 (
j 53

N21

@r c j~S12]j j
1S22]h j

!1~r c23r c j!S12]z j

1~r c j3r c1!S22]z j
1~r c13r c2!S2 j]z j

#J cqt
l l
•“ rc2

Qq
l t . ~46!

In addition to the formulas~35!, whereRj should be replaced withr c j , we also need the following formulas:

~r c23r c j!•“ rc2
Qq

l 05V2
21$h2z j~q11!Qq11

l 0 2j2z j~ l 2q!Qq
l 02 iv jQq11

l 1 %,

~r c j3r c1!•“ rc1
Qq

l 05V2
21$2j2z jqQq

l 01j1z j~ l 2q11!Qq21
l 0 1 iV jQq

l 1%,

~r c23r c j!•“ rc2
Qq

l 15V2
21$2 i j1v j~ l 2q11!2Qq21

l 0 1 i j2v jq~2l 22q11!Qq
l 02 ih2v j~q11!qQq11

l 0

2j2z j~ l 2q11!Qq
l 11h2z jqQq11

l 1 %,

~r c j3r c1!•“ rc1
Qq

l 15V2
21$ i j1V j~ l 2q11!~ l 2q12!Qq22

l 0 2 i j2V j~ l 2q11!~2q21!Qq21
l 0 1 ih2V jq

2Qq
l 0

1j1z j~ l 2q11!Qq21
l 1 2j2z jqQq

l 1%,

~r c13r c2!•“ rc1
Qq

l 052 iQq
l 1 ,

~r c13r c2!•“ rc2
Qq

l 052 iQq11
l 1 ,

~r c13r c2!•“ rc1
Qq

l 152 ih2q2Qq
l 01 i j2~ l 2q11!~2q21!Qq21

l 0 2 i j1~ l 2q12!~ l 2q11!Qq22
l 0 ,

~r c13r c2!•“ rc2
Qq

l 15 i j2q~2l 22q11!Qq
l 02 i j1~ l 2q11!2Qq21

l 0 2 ih2q~q11!Qq11
l 0 . ~47!

Finally, we obtain the generalized radial equations as follows:

Dcq0
l l12@2S11q]j1

1l S12]j2
12~ l 2q!S22]h2

#cq0
l l12q~2S12]j1

1S22]j2
!c (q21)0

l l 12~ l 2q!~S11]j2
12S12]h2

!c (q11)0
l l

1 (
j 53

N21

2V2
21$@~ l 2q!~V jS12]j j

1V jS22]h j
1V2Sj 2]h j

1j1z jS22]z j
!1q~V2Sj 12v jS11!]j j

2v jqS12]h j

1z j~h2qS112j2l S12!]z j
#cq0

l l1q@~V2Sj 22v jS12!]j j
2v jS22]h j

1z j~h2S122j2S22!]z j
#c (q21)0

l l 1~ l 2q!

3@S11V j]j j
1~Sj 1V21S12V j !]h j

1z j~j1S122j2S11!]z j
#c (q11)0

l l 2 ih2q~q21!

3@z j~S12]j j
1S22]h j

!1~v jS122V jS221V2Sj 2!]z j
#c (q21)1

l l 2 iq@h2q~z jS11]j j
1z jS12]h j

1v jS11]z j
2V jS12]z j

1V2Sj 1]z j
!2j2~2l 22q11!~z jS12]j j

1z jS22]h j
1V2Sj 2]z j

2V jS22]z j
1v jS12]z j

!#cq1
l l

1 i ~ l 2q!@~2q11!j2~z jS11]j j
1z jS12]h j

1V2Sj 1]z j
1v jS11]z j

2V jS12]z j
!2j1~ l 2q!~z jS12]j j

1z jS22]h j
1v jS12]z j

2V jS22]z j
1V2Sj 2]z j

!#c (q11)1
l l 2 i j1~ l 2q!~ l 2q21!@z j~S11]j j

1S12]h j
!1~v jS112V jS121V2Sj 1!]z j

#c (q12)1
l l %

52~2/\2!@E2V#cq0
l l , ~48a!
042108-11
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Dcq1
l l12$2qS11]j1

1~ l 11!S12]j2
12~ l 2q11!S22]h2

%cq1
l l12~q21!~2S12]j1

1S22]j2
!c (q21)1

l l 12~ l 2q!

3~S11]j2
12S12]h2

!c (q11)1
l l 1 (

j 53

N21

2V2
21$2 i @z j~S12]j j

1S22]h j
!1~V2Sj 22V jS221v jS12!]z j

#c (q21)0
l l

2 i @z j~S11]j j
1S12]h j

!1~v jS112V jS121V2Sj 1!]z j
#cq0

l l1@q~V2Sj 12v jS11!]j j
2v jqS12]h j

1z j~h2qS112j2~ l 11!S12!]z j
1~ l 2q11!~V jS12]j j

1V2Sj 2]h j
1V jS22]h j

1j1z jS22]z j
!#cq1

l l

1~q21!@~V2Sj 22v jS12!]j j
2v jS22]h j

1z j~h2S122j2S22!]z j
#c (q21)1

l l 1~ l 2q!@V jS11]j j
1~V2Sj 11V jS12!]h j

1z j~2j2S111j1S12!]z j
#c (q11)1

l l %52~2/\2!@E2V#cq1
l l . ~48b!
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VII. PHYSICAL APPLICATION

In a quantumN-body system, any function with angula
momentuml and parity (21)l 1l can be expanded with
respect to the generalized harmonic polynomi
Qq

l t(R1 ,R2), where the coefficients, called the generaliz
radial functions, depend only on (3N26) internal variables.
Since Qq

l t(R1 ,R2) is a homogeneous polynomial in th
components of the Jacobi coordinate vectors and a solu
of the Laplace equation, we have derived the generali
radial equations easily. That the rotational variables~the Eu-
ler angles! are not involved in either the generalized rad
functions or the equations will greatly decrease the amo
of calculation in solving the Schro¨dinger equation numeri
cally for theN-body system. As a first step, we applied th
approach to the calculation of the energy levels of a heli
atom and a positronium ion@29–31#. In the following we
sketch the method and give some more calculation resu

Once the generalized radial equations have been deri
one may choose any other complete set of internal varia
to simplify the calculation. The generalized radial equatio
for the new variables can easily be obtained by replacem
of variables. In a Coulombic three-body system, such a
helium atom, we choose the hyperradiusr and two dimen-
sionless quantitiesh andz as the internal variables, so as
make the potential a meromorphic function:

r5~R1
21R2

2!1/2, h5
ur22r3u

r
, z5

ur12r2u
r

1
ur12r3u

r
,

~49!

wherer1 denotes the position vector of the helium nucle
and r2 and r3 the position vectors of two electrons. Afte
expanding the wave function as a Taylor series with resp
to h and z up to the ordern, we obtain an ordinary differ-
ential matrix equation for the coefficientsR(r). In the real
calculation, we calculate the propagating matrixF(r) and its
inverse matrixG(r) by the Taylor series method instead
the functionR(r) in order to avoid the logarithmic singular
ties atr50 in the forms ofra(ln r)b @32–34#:

r
dR~r!

dr
5F~r!R~r!. ~50!
04210
s

on
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l
nt

.
d,

es
s
nt
a

s

ct

We are able to obtain the energy levels of a helium atom
the different spectra2S11Le(o) with high accuracy by choos
ing n510 ~for the S andP states! or n59 ~for the D states!
due to the fast convergence of the series, whereS is the total
spin of two electrons,e(o) describes the parity, andL5S, P,
andD for the angular momentum states. In order to comp
our calculation results with those obtained by the variatio
methods where the nucleus mass is usually assumed t
infinite, we also calculate the energy level with a large m
ratio M of the nucleus to the electron (M51020). Both cal-
culated results are listed in Table I for comparison. Few
terms in the truncated series are taken in our calculation t
those in the hyperspherical harmonic function method@22#
and in the variational methods@36#.

VIII. CONCLUSIONS

For a quantumN-body system we have found a comple
set of independent base functionsQq

l t(R1 ,R2) for the given
angular momentum and parity. Any function with angul
momentuml and parity (21)l 1l in the system can be ex
panded with respect to the (2l 11) generalized harmonic
polynomials Qq

l t(R1 ,R2), where the combinative coeffi
cients are functions of the (3N26) internal variables. We
have established the generalized radial equations explic
they are simultaneous partial differential equations in the
ternal variables. The number of both the functions and
equations is (2l 11) whenN>4, and it becomes (l 11) or
l whenN53, depending on the parity. Only a finite numb
of partial angular momentum states are involved in co
structing the generalized harmonic polynomia
Qq

l t(R1 ,R2). That is, the contributions from the remainin
partial angular momentum states have been incorporated
those from the generalized radial functions. We have ge
alized the formulas to the case with nonorthogonal vecto

When establishing the body-fixed frame we fix it with tw
arbitrarily chosen Jacobi coordinate vectorsR1 and R2.
Those two vectors may be replaced by any other two co
dinate vectors according to the characteristics of the phys
problem under study.

The choice of the complete set of base functions is
unique. However, the right choices of both the base functi
and the internal variables play a key role in establishing
8-12
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TABLE I. Numerical calculation for the energy levels of a helium atom in atomic units.

Spectral term Our results Variational calculation@35#
2S11Le(o) M57296.28 M51020 M;`

1Se 2.9033046 2.903724377034116 2.9037243770341195
3Se 2.1749303 2.1752293777 2.1752293782
1Pe 0.5801748 0.5802464725 0.5802465a

3Pe 0.7105002 0.7103965 0.710499a

1Po 2.1235456 2.1238430778 2.1238430865
3Po 2.1328807 2.133164187 2.133164191
1Do 0.5637256 0.5638004
3Do 0.5592482 0.5593283
3De 2.0553230 2.055871 2.0556363
1De 2.0553055 2.0555693 2.0556207

aThe calculation in Ref.@36#.
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generalized radial equations. Those two choices are the m
progress of the present paper in comparison with the pr
ous work of Wigner@4# and Eckart@1#. Once the generalized
radial equations have been derived, one may choose
other complete set of internal variables to simplify the c
culation. The generalized radial equations for the new v
ables can easily be obtained by replacement of variables,
as we did in Sec. VII for the three-body system.

The two features in this method, that the numbers of b
functionscqt

l l(j,h,z) and equations are finite, and they d
pend on only (3N26) internal variables, are important fo
calculating the energy levels and wave functions in a qu
tum N-body system. In fact, in numerical experiments for
quantum three-body system we calculated the lowest en
levels of a helium atom inP states@29# and inD states@30#
with total spin 1 and zero, and some energy levels of a p
m
,

ci

y

04210
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itronium negative ion@31# by a series expansion. Becau
three rotational variables are removed, fewer terms hav
be taken to achieve the same precision of energy as in o
methods to truncate the series of partial angular momen
states. As the number of particles in the system increases
believe that removing three independent variables relate
the global rotation will greatly decrease the amount of c
culation.
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