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Independent eigenstates of angular momentum in a quantunN-body system
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The global rotational degrees of freedom in the Sdhnger equation for ai-body system are completely
separated from the internal ones. After removing the motion of the center of mass, we find a complete set of
(27+1) independent base functions with angular momentrithese are homogeneous polynomials in the
components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not
appear explicitly. Any function with given angular momentum and given parity in the system can be expanded
with respect to the base functions, where the coefficients are the functions of the internal variables. With the
right choice of the base functions and the internal variables, we explicitly establish the equations for those
functions. Only (N—6) internal variables are involved both in the functions and in the equations. The
permutation symmetry of the wave functions for identical particles is discussed.
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I. INTRODUCTION Wigner studied this problem using group the¢#4}. The
global rotation of a system can be described by a space ro-
For a quantumN-body system with a pair potential, the tation R=R(«,f,v), rotating the center-of-mass frame into
Schralinger equation is invariant under spatial translationthe body-fixed frame, wherer, 8, and y are the Euler
rotation, and inversion. It is well known that, due to the angles. Briefly denoting all the internal variables for simplic-
translation symmetry of the system, the wave function can béy by &, which is invariant in the global rotation, one may
separated into a product of two parts. One describes the mexpress the wave function with a given angular momentum
tion of the center of mass as a free particle, and the otheas \P@(R,g)ﬁpg(a,ﬂ,y,g). Let Pg be the transformation
describes the motion of the system in the center-of-masgperator for a scalar functiog(x) in the transformatiors,
frame. It is no loss of generality to suppose the center oPgy(x) = (S x) (see p. 105 in Refl4]). In a rotationS
mass of the system to be at rest, so that the configuration is SO(3), thefunction ‘I’Q(R,E) transforms as
completely specified byN—1) vectorsrg;, 1sj<N-1,
which are usually chosen as the Jacobi coordinate veRiors , P . , p
for simplicity [1-3] (see Sec. )l On the other hand, due to Ps¥Vm(RE=Tn(STRE= X V¥ (RED/ (5.
the symmetries of the global rotation and space inversion of m'=-/

the system, the three rotational degrees of freedom should %Q(R,f) was called by Wignef4] the function belonging to

separated completely from the internal ones so that OnIYhe mth row of the representatioB” (SO(3). Letting R
(3N—6) internal variables, called the shape coordinates in_ R(0,0,0) be the identity element, one obtains

some papers, are involved both in the functions and in the

equations. This is the aim of this paper. /
The hydrogen atom is a typical quantum two-body sys- ¥/ (S™1 £)=Ps¥/(0,0,08)= >, ¢/m,(§)D;,m(s),
tem, where there is only one Jacobi coordinate vector, which m'=-/

is proportional to the relative position vectoer,—r,. The y y ]
Schralinger equation for the hydrogen atom becomes a pawhere ¢, (£) =¥, (0,0,0¢) depends only on the internal
tial differential equation with respect to the three componentyariables, called the generalized radial functions in this pa-
of r. Because of the spherical symmetry, the angular momerer. Due to the spherical symmetry, one only needs to study
tum is conserved, and the wave function can be expressed H eigenfunctions of angular momentum with the largest

a product of a radial functiogh(r) and a spherical harmonic €igenvalue ofL, (m=/), which in this paper are simply
function Y2,(6,¢), called the wave functions with angular momentuffor

simplicity. Their partners with the smaller eigenvalued of
o y can be calculated from them by the lowering operéator.
V(N =ae(M)Yn(0.¢), (D) LettingS *=R(«,,7), one obtaingsee Eq(19.6 in [4]]
/

where the radial functiorb(r) satisfies the radial equation . Y Y .
containing only one radial variable. The generalization of ‘I’/(a,B,y,g):\If/(R,g):m;/ Dym(a,B,7)* ¢l ),
this method to a quantum-body system is an important and 2)
fundamental problem that has been attacked by many groups.
where the commonly used form of tHe function [5] is
adopted. In Eq(2) D;m(a,ﬁ,*y)* plays the role of the base

*Electronic address: MAZQ@SUN.IHEP.AC.CN function. What Wigner proved is that 2+ 1) functions
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Dfm(a,,B,y)* constitute a complete set of independent baseX,; are the first three rows of the matrix and contain
functions with the angular momenturi, and any wave (3N—09) independent parameters. Therefargs,; contain
function with the angular momentumi can be expanded (3N—6) internal variables, and the rotational variab|Es-
with respect to those base functions. Due to the singularity ofer angleg can be completely separated in the kinetic energy
the Euler angles, the generalized radial equations satisfied @xpression from the internal variablgl§. This approach has
the generalized radial functions are quite difficult to derivebeen further studied and quantized in recent yEa23—-23.
based on Eq(2). Hirschfelder and Wignef6] studied the The internal coordinates and their conjugate momenta were
problem of the generalized radial equations. Later, the gerquantized to derive the kinetic energy expression through
eralized radial equations were improved by several authorgeneralized angular momentum operators. However, the for-
[7-9]. The equations seem quite cumbersofiig¢ In the  mal formula(5) does not give the explicit functional relation
present paper we are going to rechoose the base functions ekthe internal coordinates with the components of the Jacobi
the homogeneous polynomials in the components of the casoordinate vectors, so that the kinetic energy expression can-
ordinate vectors so that the derivation of the generalized ranrot be transformed directly from the usual kinetic energy
dial equations becomes very simple. term in the Schrdinger equation by replacement of vari-
The generalized radial equations for a quantum threeables. It is very difficult to obtain the wave function on the
body system have been discussed in more dét&i-17. position vectors, (or on the Jacobi coordinate vectdrs)
Recently, by making use of the body-fixed frame, the expresfrom a solution on these internal coordinates. The intermedi-
sion for the kinetic energy operator was built in terms of theate calculations for the kinetic energy expression are so com-
partial angular momentum operators and radial derivativeplicated that, as said in Rdf25], the expression for a quan-
containing (N —6) internal variable$13,14]. A coupled an-  tum six-body system has not been obtained probably due to a
gular momentum basis was used to prediagonalize the kiew mistakes in calculations.
netic energy operator, where some off-diagonal elements re- Let us return to the hydrogen atom problem. After remov-
main nonvanishing. Those results have been generalized tog the motion of the center of mass, the configuration space
nonorthogonal vectorfsl5,16. In those calculations, a func- is parametrized in terms of the rectangular coordinates
tion with a given angular momentum was obtained from the=(X,y,z) or the spherical coordinates,@,¢), wherer
partial angular momentum states using Clebsch-Gordan cespecifies the internaradial) motion and @,¢) specify the
efficients. Since the partial angular momenta are generallpverall rotation. There is another way to separate the rota-
not conserved, one has to deal with, in principle, an infinitetional degrees of freedom and obtain the same radial function
number of partial angular momentum states. This problenand the radial equation as those derived from @g. One
also occurs in the hyperspherical harmonic function methodnay avoid explicitly introducing the rotational anglésand
and its improved versiongl7-23. It causes unnecessary ¢ using the harmonic polynomialy/,(r)=r"Y/(6,¢),
degeneracy of the hyperspherical harmonic states because,wsich is a homogeneous polynomial of degréén the rect-
Wigner proved, only (2'+1) base functions with angular angular coordinatesx(y,z) and satisfies the Laplace equa-
momentum/” are involved in the calculation. tion as well as the eigenequation of the angular momentum.
Eckart[1] presented another method, called the principalusing ynﬂ(r), Eq. (1) becomes
axis transformation, to distinguish the global rotation and
the internal motion in a classicall-body system. From ‘I"r/n(r)={r*/¢(r)}yh/1(r).
the (N—1) Jacobi coordinate vectoRr;, he defined an ]
(N—1)X (N—1) real symmetric matriR;=R; Ry, which Under the action of the Laplace operator, we have
is semipositive definiteR can be diagonalized by a real

ey — ~/ —/ /
orthogonal similarity transformatiok, XRX *=T: AV =YVr(O[Ar 7 ¢(r)]+2V[r 7 ¢(r)]- V{Vin(r)}
N-1 N-1 =V ot é(r)]
(521 stRs)-(tZl thRt):(sjkrjj. 3 +2c9r[r’/¢>(r)]r’1r-V{ynﬂ(r)}
v\~ gy —172 -
Since there are at most three orthogonal vectors in a three- =Vn(Dr Ao (0 +/ (7 + Dr2e(n)
dimensional space, the vectors can be expressed as +2(= /1 Y8 () +1r Le(n)]}
< ef, when j=a<3 +2{=/r 7 p() +r 7, (DM TV}
k21 KRS0 when a=j=N-1 @ Y 1. R
- =R =Yn(6,@){r T (1) = /(7 +Dr 2$(n)},

where e, are three orthonormal vectors in the usual threeyyhere and hereaftet. ¢ denotesdy/ar, and so on. The re-
dimensional space ang=T,. Three orthonormal vectors gyits are the same. In the traditional approach, the property
e, contain three Euler angles describing the global rotation ofhat v/ (9, ¢) is the eigenfunction of2 is used, and, in this
the systenj1]. Thus, from Eqgs(3) and(4), Eckart obtained approach, the property that/(r) is a homogeneous poly-

3 nomial in the rectangular coordinates and is a solution to the
R = 2 erX., 1<j=N-1, (5 Laplace equation is used. It is worth emphasizing that the
& aral rotational anglesd and ¢ do not appear explicitly in this
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approach. Since the differential calculus with respec®to
and ¢ is not complicated, this approach is similar to the
traditional one in a two-body system. However, it may be
easier in arN-body system due to the complicated calculus
with respect to the Euler angles. In the present paper we wil
separate the global rotational variables in the Sdimger
equation for arN-body system from the internal ones by a
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mM. .\ N mer
Rj:(—J l+1> (rj_ E K y
M; k=741 M
I N
1sj=(N-1), Mj:kZ:j me, M;=M, 7)

generalized method following the approac_h desc_ribed ab_onNhere R, describes the position of the center of maRs,
In our approach, the number of base functions with the giveRyescripes the mass-weighted separation from the first particle
angular momentum is finite, but that number in the hypery, the center of mass of the remaining particles describes

spherical harmonic function method and its improved ver
sions[13,17-22 is infinite due to the unconserved partial
angular momenta. We also avoid the heavy differential cal

necessary for expressing kinetic energy operators.
This paper is organized as follows. In Sec. Il we will
briefly review the method of separating the motion of the

center of mass by the Jacobi coordinate vectors. In Sec. llI

we will define (N—6) internal variables from the Jacobi
coordinate vector®; and find the (2'+1) base functions
with total orbital angular momentum, which are the homo-
geneous polynomials in the componentsRpfand the solu-
tions of the Laplace equation. Then we will prove that the

the mass-weighted separation from the second particle to the

center of mass of the remaining— 2 particles, and so on.

. J . ~“"The mass-weighted factors in front of the formulasRprare
culus with respect to the Euler angles which is sometimesgy

etermined by the condition
N N—1
> mkrﬁzE Rjz,
k=1 ]=0

where an additional factofM is included inR; for conve-
nience. One may determine the factors one by one from the
following schemes. In the center-of-mass frame, if the first
j—1 particles are located at the origin and the IBist |

base functions constitute a complete set, namely, any fungarticles coincide with each other, the factor in fronRgfis

tion with the angular momentuni and the given parity in
the system can be expanded with respect to the base fun
tions, where the coefficients depend only on the internal vari
ables. Since the base functions are polynomials, we are ab
to derive easily the generalized radial equations satisfied b
the coefficients explicitly in Sec. IV. The permutation sym-
metry for the total wave function when some or all of the
particles in the system are identical particles is discussed i
Sec. V. In Sec. VI we will derive the radial equations in a
general case where the Jacobi coordinate ved&rgor-
thogonal vectorsare replaced by arbitrary coordinate vec-
torsr; in the center-of-mass fram@onorthogonal vectoys

In Sec. VII we will discuss a physical application of our
approach. Some conclusions are given in Sec. VIII.

Il. SEPARATION OF MOTION OF CENTER OF MASS

For a quantumN-body system, we denote the position
vectors and the masses Nfparticles byr, and bym,, k
=1,2,... N, respectivelyM =3,m, is the total mass. The
Schralinger equation for th&\-body system is

72 N
-5 > M A VI =EV,
k=1

(6)

whereArk is the Laplace operator with respect to the position

vectorr,, andV is a pair potential, depending upon the
distance of each pair of particlds; —r|.

Now, we replace the position vectorg by the Jacobi
coordinate vectorg; :

N
Ro=M 2% myry,
=]

determined by

C-

lefj+1=Fj42= " =Iy=—MI/Mj,q,
y

N
2_p2
gj myre=R?.
(8)

A straightforward calculation by replacement of variables
Bhows that the Laplace operator in E§) and the orbital
angular momentum operatbrare directly expressed i; :

N—-1

N
A= m A = Ag,
k=1 =0 J

N N—-1
—ih X, XV, =—ih > RXVg.
k=1 i=0 ]

L 9

In the center-of-mass framé&,=0. Since the Laplace
operator does not contain mixed derivative terms, the Jacobi
coordinate vectors are also called orthogonal vecf.

The Laplace operator obviously has the symmetry of the
O(3N—3) group with respect to (8—3) components of
(N—1) Jacobi coordinate vectors. The O3 3) group
contains a subgroup SO(ZO(N—1), where SO(3) is the
usual rotation group. The space inversion and the different
definitions for the Jacobi coordinate vectors in the so-called
Jacobi treg[19] can be obtained by ®(—1) transforma-
tions. For a system of identical particles, the permutation
group among patrticles is also a subgroup of theN©()
group. As a matter of fact, after the transpositidnk 1)
between theékth and the k+1)th particles, the new Jacobi
coordinate vectors, denoted By , satisfy

RJ-’:RJ- when j#k or k+1,
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Ill. BASE FUNCTIONS WITH THE GIVEN ANGULAR
(Mt My o)l 1— Mgl MOMENTUM

1/2|
My11

R =l
K [Mk(mk+Mk+2)
N

- > mjrj

Because of the spherical symmetry, the angular momen-
tum is conserved. We are going to discuss the wave functions
with the given angular momentum and parity. From the given

j=k+2
: form (9), the eigenfunctions of the angular momentiurh
=—R, cosb+ Ry, 1Sinby, are homogeneous polynomials in the componéygsof the
Jacobi coordinate vectofs; .
My 172 N For a quantum two-body system, there is only one Jacobi
Ri1= (M M M My afk— > m;r; coordinate vectoR=r, and the eigenfunction of the angular
kT My 2) My o j=k+2 ) . ) X
momentum is the spherical harmonic funct|dfﬁ](0,go).
=R, SN+ Ry, 1 cOSh,, What is the generalization of the spherical harmonic function
for a quantumN-body system? A naive idea for generaliza-
mmy, 12 tion is to introduce the Euler angles, as was done by Wigner
cosby= M M [4,7-9. Is it necessary to introduce angular variables in the
k+1(M+ My 2) oi :
igenfunction of the angular momentum?
M.M 12 As is well known, the harmonic polynomia;h)g(r)
. k'Vk+2 I . . ;.
sing,,= (10 =r"Y,(6,¢) is a homogeneous polynomial of degréen
Myt 1(My+My2)

the components af, which satisfies the Laplace equation as
well as the eigenequation of the angular momentum. It does
not contain angular variables explicitly. The number of lin-
early independent homogeneous polynomials of degrée

the components af is

This is obviously an O —1) transformation. For a system
of identical particles, cog,=(N—k) .
It is easy to obtain the inverse transformation of Eg):

12 -1 1/2

rj: M = L Rk+M_1/2R0, / / ’ ’ /
m;M; E1 (MM N( )= (/—s+1)=(/+1)(/+2)/2.
(1) s=0

M1 12 -1 m Y2 The number of homogeneous polynomials that can be ex-

ri—rg= mM. Rj_,72 MM . R pressed as a product ofr and a homogeneous polynomial

1 A of degree ¢—2) is N(/—2). BecauseN(/)—N(/—2)

M, Y2 =2/+1, the remaining homogeneous polynomials of de-
My Ry (12 gree/ are nothing but the harmonic polynomialg(r). .
For a quantum three-body system there are two Jacobi

Thus, the potentiaV is a function ofR; - R. coordinate vector®; andR; and three internal variables in

The Jacobi coordinate vectoR§ are invariant in transla- the center-of-mass frame:
tion and constitute a complete set of coordinate vectors in the

center-of-mass frame. If a complete set of arbitrary coordi- §=Ri'Ry, &=RiRy, 7,=Ry'Ry. (19
nate vectors; is chosen to replace the Jacobi coordinate
vectors, The internal variables are invariant in the global rotation and

the space inversion of the system. We are going to construct
base functions for angular momentum that do not contain a
Mej= kzl R¢Dyj, detD#0, (13)  function of the internal variables as a multiplying factor, be-
cause the factor should be incorporated into the generalized
radial functions. The number of linearly independent homo-
geneous polynomials of degreein the components of the
Jacobi coordinate vectors M (/):

N—-1

whereD,; are functions of the masses;, the Laplace op-
erator and the angular momentum operator become

N—1 N—1
A i,kz=1 SkVrg Ve Sik 21 DyDuc M(/)z%(/Jrl)(/ﬂr2)(/+3)(/+4)(/+5).
(14) '
N—1
L=—i% > XV, . The number of homogeneous polynomials of degfethat
i=1 °l do not contain a function of the internal variables as a factor

A typical example ig;;=r;— M~ Y?R, [see Eq(11)]. When

the matrixSis not diagonalr; are called the nonorthogonal K(/)=M(/)—3M(/—2)+3M(/—4)—M(/ —6)
vectors[15,16. We will not discuss the nonorthogonal vec-

tors until Sec. VI. =4/%+2, /=1.
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On the other hand, the wave functlon with angular mo-

mentum/ can be obtained frory? (Rl)y %R,) by use
of the Clebsch-Gordan coefficientg,m,/ —q,u—m|L, )

[5]:

y(ﬂ(Rl,Ra:; VARV, “H(R,)

X<q7mv/'_q1/~‘L_m|L7/"L>' (16)
ny(Rl,RZ) is @ homogeneous polynomial of degréein
the components of the Jacobi coordinate vecRyrs Simul-
taneously, it is the common eigenfunctionldf, L,, and the
space inversion with eigenvaluégL +1), u, and (—1)7,
respectively. Whenu=L=/ (0=g</) and (—1) (1
sg=/-1), we have

[(2q+1)!(2/—2q+1)!]¥?
ql(/—q)12” "2

><(Rlx—}_iRly)q(RZx—'—iRZy)/_qy

y??(Rl,RzF(—l)/[

y(//q—l)(/—l)( R1,R»)

(2q+1)1(2/ —2q+1)!
20/(7—q)

X{(q—1)!1(/—q—1)12" " 1q} 1

X (Rlx+ iRly)q_l(R2x+ iRZy)/_q_l

1/2

1)/71

:(_

X {( R1x+ [ R1y) RZz_ R12( R2x+ [ R2y)}-
17
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In other words, any eigenfunction with angular momentim

is a combination of those homogeneous polynomials
V29Ry,R,) and YY" YYR,,R,), where the combinative
coefficients are functions of the internal variables. Since the
normalization factor can be ignored, we rewrite
YV, VURy,R,) in a simplified form asQg*(Ry,R,) by
removing a constant factor:

N Xq—)\Y/—qZ)\ )
Qq (RI'RZ):W' A <g=/, A=0,1,
X=Ry+iRyy, Y=Ryp+iRy, Z=XRy,—RyY.
(18)
Note that
Q;M(R1,Rp)=Q{ V(R ,Ry)Z. (19)

Qq“(Rl,Rz), called the generalized harmonic polynomial, is
a homogeneous polynomial of degreé4\) in the compo-
nents of the Jacobi coordinate vectors. It is the common
eigenfunction oLZ,LZ,Lél,LZRZ,ARl,ARz,VRl-VRZ, and the
space inversion with the eigenvalueq/+1), 7, q(q
+1), (/—q+N\)(/—q+r+1),0,0,0,and £1) ™, re-
spectively, whereLzRl (Lﬁz) is the square of the partial an-
gular momentum, and&Rl (ARz) is the Laplace operator

with respect to the Jacobi coordinate ved®r(R,) [see Eq.
(9)]. Any wave function with the given angular momentum
/ and the parity ¢ 1)” ** can be expressed as follows:

A=0,1.
(20)

That is, for a three—body system the generalized harmonic

/
\P§“<R1,Rz>=q§ WNE1,E, 1) QN (RyRy),

It is evident that these expressions do not contain a functlopo|ynom|a|sQ (Ry,R,) constitute a complete set of base
of the internal variables as a factor; neither do their partnersynctions W|th angular momenturi and parity (-1)"**.

with smalleru due to the spherical symmetry. The numberonly /+1—\ partial angular momentum states are involved

of these eigenfunctions is
2/+1)(/+1)+(2/-1)(/—1)=4/%+2=K(/),
/=1.

That is, any of the remaining eigenfunctionﬂ{q(Rl,Rz)
with L</—1 can be expressed as a comblnatlon where

in constructing a function with angular momentufmand
parity (—1)” **, and the contributions from the infinite num-
ber of remaining partial angular momentum states are incor-
porated into those of the radial functions. Substituting Eq.
(20) into the Schrdinger equationg6) and(9), one is able to
easily derive the generahzed radial equations for the gener-
alized radial funcﬂonsb MéErEx,m0) [3,27):

each term is a product of a function of the internal varlablesAz,/; +4q5§11pq +4(/—q+)\)a,lzz//g"+2(q—)\)0§2¢g§1

and a homogeneous polynomial of degree less thda6.
For example,

J3

ycz)é(Rlsz):—Efzy

i
Ve§(R1,Ry) = oy ——{3&—&1ma},

V21 | _
Y33 R1.Ry) =555 —{ 72 Ryt iRay) *+ £1(Roy+1Ryy)?

- 3§Z(R1x+ i Rly)(R2x+ iRZy)}-

2
P2 =g peh =~ (E-Vugh,

AP M1 &2 m) ={4E107 +4np05 +6(0g +3,)
+(&1+ 7]2)17§2+4§2(5§1+ 9,) ¢}

X YeMEr.é2.m2),
Asqgs/, A=0,1.(2)

For a quantumN-body system, there areN(-1) Jacobi
coordinate vectors. We arbitrarily choose two Jacobi coordi-
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nate vectors, sa)R; and R,. We fix the body-fixed frame Wherec,=cosq, s,=sina, and so on. It is straightforward
such thatR; is parallel with itsZ axis, andR, is located in ~ to obtain from Eqs(18), (24), and(27) that

its XZ plane with a non-negativ¥ component. Define (8
—6) internal variables, which are invariant in the global ro-
tation of the system:

§i=Ri*Ry,  7j=Rj-Ry,  {j=Rj-(R1XRy),

X=Ry+iRy,= &% s,
_ H _ 1240 H —1/2 i«
Y =Ry, +iRy=(Q,/&1) 7€' (chC, +is,) + &6 "€ sy,

Ry,= i/zcﬁ, Ry, = — (Qzlfl)llzsﬁcﬁ' 52511/20/3,
1$]$(N_1)’ 771:§21 §1:§2:O- (22)
Z:(R1x+iR1y) Ra2z— Ryl R2><+iR2y)
It is worth mentioning thag; and 7; have even parity, buf

has odd parity. From them we have = —03%(c,+icgs,), (28)
Q;=(RyXR))- (RyXRy) =& mj— £, Rix iRy = Q7 - 0, X+Q;Y—i{;Z},
;= (ReXR)) - (R1XRy) = £277 = 728 (Rix T iR}y)Riz— Riz(Ris+iRyy)
D=w;=0, Qp=-w=(RiXRp)* (23 =0 Hi(m8c— M) X =i (&0 &)Y
Due to our choice of the body-fixed frame, the compo- + (& éxmy) 2} (29

nents of R; and R, are in the frame (0,6;) and ) .
[(92/51)1/2'0,§2§1—1/2]' respectively. From Eq(22) we are Therefore, each harmo.nlc poI};\/nomlaA/(R!) can be ex-
able to express all the componef, of the Jacobi coordi- Pressed as a combination b (R1,R;) with the coeffi-
nate vectors; in the body-fixed frame by the internal vari- cients depending on the internal variables. This means that
ables: the generalized harmonic polynomialtéx(Rl,Rz) given in
. —1y2 S 1 y e Eq. (18) do constitute a complete set of independent base
Rix=Qj(£&102) 7% Ry=§0, 77, Rjp=¢é . functions with the given angular momentufifor a quantum
(24 N-body system, just as they do for a quantum three-body
system.

Because this conclusion plays a key role in separating the
obal rotational degrees of freedom from the internal ones
in the quantunN-body system, we are going to prove it by
another method. From E@28) we have

The formulas(24) also hold forj=1 and 2. The volume
element of the configuration space can be calculated from th ]
Jacobi determinant by replacement of variables:

N—1 1

I1 dedejydezzzﬂg’Nsinﬂdadﬁdydgldgzd 7 _ _

=1 eosy=£ X, el(c,ticgs,)=—0;"Z,
N—1

x [] dgdndg;. (25) €(CpCytis,) = — E(£10,) X+ (£110,) MY,
=3 (30
The range of definition of the Euler angle is well known; the 7%= X2 = 2£,XY+ £ Y2 (31
ranges of definition of; and#, are (03) and the ranges of . . .
definition of the remaining variables are-¢o,). That is, a homogeneous polynomial of degréein three
Furthermore variablese'“s;, €'“(c4c,+is,), ande'“(c,+icgs,) can be
1 expanded with respect f@g "(R1,R5,) where the coefficients
Rj-Ri=Q, [(Qjm— o0&t §4i)- (26) only depend on the internal variablgs, 7;, andZ;. On the

other hand, the Wigneb function is[5
It is easy to see from Eq$12) and(26) that the potentiaV g (5]

is a function of only the internal variables. SinRg andR, p ey (2/)! vz
determine the body-fixed frame completely, it also can be D) (=m(a,B,7)*=(=1)"""2" (/= m)l}
seen from Eq(24) that each of the components of the Jacobi ) o '
coordinate vector®; can be expressed as a linear combina- ><ei</aimv>sg*m(1ic,3)m

tion of Ry, and Ry, with the coefficients depending on the o 12
internal variables. In fact, denote the rotation transforming :(_1)/—m2—/ (27! }
the center-of-mass frame to the body-fixed frame by (Z+m)!(/—m)!

R(«a,B,y) with three Euler angle - i .

(a,8,7) gletb] X (e'“sg)” ~Me'*(c,+icgs,)
CaCpCy=3SaS, ~CaCpSy—S.Cy CaSp iei“(cﬁchrisy)]m, (32

R(a,B,y)= SaCpCyTCoS, —S,CpS,+C.C, S,Sp

cc o5 where m=0. Therefore,Djm(a,/s’,y)* can be expanded
B B

Y Cs with respect toQ;"(Ry,Ry), where the coefficients depend
(27 only on the internal variablesD?m(a,B,y)* constitute a

Y
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complete set of mdependent base functions with the angulagith angular momentunr” in the quanturN-body system.
momentum/’, and so daQ; "(Ry,Ry). Now, we come to the  Each function with angular momenturfiin the system can
theorem. be expanded like Eq33) or Eq.(2). However, Eq(33) has
TheoremAny functionW/*(Ry, ... Ry_1) with the an-  two important characteristics, which make it easier to derive
gular momentumy” and the parity ¢ 1)"** in a quantum  the generalized radial equations. One is that the generalized
N-body system can be expanded with respect to the genergizrmonic ponnom|aQ (R;,R,) is a homogeneous poly-
ized harmonic polynomlals;)q (R1,Ry) with the coeffi-  nomial in the components of two Jacobi coordinate vectors
cientsy, (£, 7,{) depending on (B—6) internal variables: R, andR,, where the Euler angles do not appear explicitly.
I The other is the well-chosen internal variabl@®), where
/N _ /N /T the internal variableg; have odd parity. It is due to the
VAR Ry-a) Z’o QZT Var (67 0Qq (Ry.Re), existence of¢; that Q;°(R;,R,) and Q;'(Ry,Ry,) appear
/A (33 together in the expansion of the wave function. By compatri-
Ya-(§,1,0) son, all internal variables in a quantum three-body system

_ /) have even parity {i=0) so that in the expansio{20) of a
Yar(€1s o b 20 -1 ba - -y wave function with a given parity only the base functions
l;bq/q)-\(ér771_5):(_1))\771//(1/7)-\(517715)! with the same parity appe§8,4,27,28§.

Because of these two characteristics, it is easy to derive
where the last equality means that the parityt(¢,7,¢)  the generalized radial equations by substituting B8) into
is (— 1) . the Sch_rdmger equat_|or(6) W|th th_e Leplace operatd).
The main calculation in the derivation is to apply the Laplace
operaton9) to the function\I’Q(Rl, ...,Ry_1) In EQ.(33).
The calculation consists of three parts. The first is to apply
From the theorem above, the setQ(f (R1,R5), just like the Laplace operator to the generalized radial functions
the set oiD/m(a B,7)*, is a complete set of base functions z,// (g, 7,0):

IV. THE GENERALIZED RADIAL EQUATIONS

AYNE,0) =1 46107 +Anpds + (€1t 1) 0% +4Ea(0g +0,),) g, +6(3g +,,)

N—1
+ JZS [51(9;"‘ 772037]+QZ(9§J+2§2&‘f]077]+4(510751+gjagj)(?§1+ 4( 77](97]]+ glé’gj)anz"' 2(7]Ja51+§Jﬁ7]J)(9gz]

N-1
+Q§1jés [(Qj77k_wj§k+§j§k)(a§ja§k+an 9p)—2(wjl— wkgj)agﬂgk+2( jfk‘Qij)ﬁnjﬁgk

+(Q it 0ot E185 8t 124180 95,051 Ygr (£.m.0). (34)

The second is to apply it to the generalized harmonic polyin terms of Eqs(18) and(29) we obtain
nomials Q/f(Rl,RZ) This part is vanishing because . ,
Q5 (Ry, Rz) satisfies the Laplace equation. The last is the Rj- VRlQ qu/T. Ry Vg Qg =(/—q+7)Qg",
mixed application
RV, Qq=(/—a+1)Q7;,
2‘<a§1wg¢>2R1+<a§2wg¢>R2 Ch o

- R;-Vg,Qq =(a-r+1)Q1y,

t 2 [(agng,*)Rﬁ(a,;,.wgi)(szR,-)]} Ve, Qy” RV, Q°

=0, Y- 0;0Q°+Q;(/—a+1)Q°%; —i Q4

20 (g,WaD )R+ (d,, g M) 2R,
N-1 RJ"VRzQ/O
+ 2 [0 0GR+ (0 w9><RXR1>1]~VR2Q§T- =0, 1= 0y(a+ DQEY+Qy(/ ~ Q-1 Q4t ),
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R Vi, Qq'=05 M~ in2j0?Qy° +ié2¢j(29— 1) (R{XRy)- Vg,Qq =05~ &4(q+1)Qgdy
X(/=q+1)Q°,—ié14(/ —q+2) +&4(/ - Qg +iQQal ),
X(/=9+1)Qg%,— wjqQy* (RoXRy)- Vi, Qg =, H{— i 700;0°Q¢ +ié50;(29 - 1)
FO,(/ -+ DQLL), X(/=a+D)Q2 —i&wi(/ ~a+2)

X(/ =9+ 1)Qe%+ magiaQy!
_ A/ — /1
R Vi, Q4 =05 {—im24i(a+1)aQs2, +i&:¢q £24)(7 =+ 1)Qq=at,

(RjXRy)- Vg, Qq'=05 i 7.Q)(q+1)qQqY,
_ifzﬂjQ(Z/—ZQ+1)Qq
+i&0(/—q+1)2Q°,

—£0Qu 1+ &14(/—a+ QM.
(35)

X(2/=29+1)Qy =i &4(/—q+1)2Qg%,
—00Qgk+ (7 —a+ Qg

(RXRy)- Vi Qq%= 05 {2£10Q4°~ &4(/ —q+1)

/0 . /1 . . .
XQu-1~10;Q47}, Now the generalized radial equations are

N-1
A'lf +4{q5§1+(/ q)ﬂn2}¢§3+2qﬁg2t//<q not2(/— Q)agzlﬂ(q+1)o+ ]2::3 2951{[—w,-q&gﬁﬂ,-(/—qw?nﬁ 172499,
+§1§,-(/—q)r?gj]¢§3—Q[w- +§2§10"§]'//(q 1)0"‘(/—Q)[Q'O"g-_fzgjﬁgj]‘//(/q}\+1)o_i772Q(q_1)[§j077;j_91f9gj]
X Wq 1~ 10L 728100 — £241(2/ =20+ 1)d,, + o000, +E,Q1(2/ =29+ 1)d; Ty +i(/ — D[ £24,(29+1)
7 _flgj(/_q)é’r;j+fzwj(2q+l)é)gj"_lej(/_Q)ﬁgj]lp(qul)l_|gl(/_Q)(/_q_1)[§ja§j+wjﬁ§j]’//(q)\+2)l}
= —(2Ih*)[E- V], (36
N-1

At +4{qde + (£ —q+1)d, gt +2(0=1)dg g1+ 2(/ —q )a§2¢@+1)1+j§3 29;1{[—qua§j+ﬂj(/—q+1)ﬁ,,j

+ﬂzgjq34j+515](/—(31"‘1)341.]1#@—((31—1)[601 +§2§J¢95]¢(q H1t (7= D[Qj0, — §2§j‘9§j]¢(/q)\+1)1
=[5 = Q05 1 1y0— 11§06+ w10 Waoh=— (2 E=V]ygs (36b)

where Ay, was given in Eq(34). WhenN=3, Eq.(36)  erty of Q;7(Ry,Ry) in the transpositionK,k+1) between
reduces 1o Eq(21), where, because all internal variables two ne|ghbor|ng particles. The transformation property of the
hz;ve even parity, the generalized radial functionsjacobi coordinate vectorR; in the transposition K,k+ 1)
Yo (£,m,0) with \# 7 have to be vanishing. was given in Eq. (10). Therefore the base function
QgT(Rl,RZ) remains invariant in the transpositiork,k
+1) with k=3. In the following we are going to study the
When some or all particles in a quantudibody system  transformation property dﬂgT(Rl,Rz) in the transpositions
are identical particles, one has to consider the permutatiofil,2) and (2,3). Denote bf?; and P, the transformation
property of the spatial wave function, which depends on the@perators for the base function in the transpositions (1,2) and
total spin of identical particles. Since the spatial wave func<{2,3), respectively. In the following formulas we neglect the
tion \If/*(Rl, ...,Ry_1) is expanded with respect to the argumentR,R, in Qq "(R1,R,) and briefly denote sif,,
base funcuoan T(Rl,Rz) we need to study only the prop- siné,, cosé,, and co%, by s;, s,, ¢4, andc, for simplicity.

V. PERMUTATION PROPERTY OF WAVE FUNCTIONS

042108-8
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A. Transposition (1,2

. 2 Qp D Gl (6. (39
/0_ /-
P1Qq —!(/—_q)![—XCﬁYSﬂq[XSﬁYCﬂ d
B. Transposition (2,3
— /07 (1)
2 Qp Dhq " (61), 87 P 10("= X — SpwsX+ (8505 Q)Y — iSyLsZ]
2 , —
where al(/—q)! Qs
/ 2n.2 d d
n 2 p+q—2n n+p—q .
ST TUAE St A S =3 QP +i 3 Qe
pa ATV (-m!I(/—p— n)!n!(n+p q)! B prart
(39 (40
Because of Eq(19) andP,;Z= —Z, we obtain where

/

- /—q—2m m—t
;( )( 1)“*'"42'“2( )( )(r_ )Tf“nazgz)”tw%r

D72 (q‘l'n)!(/—q_n)!sé/—q
o 2t

@ g/ —q)10f

X (Q3—QyC,lsy) a7 N-2mer,

)

PG A LG L qz
(a+ma™— ql(/—q)Qy

X EN T ph(26) P wl T Q= Q,C, sy) AT TR (41)

(—1)n*m 2m+12(/ q—2m-— 1)( )(m—t)

2m+l n—-r—1 r—2t

where the combinatoricsY=al!/b!(a—b)!, and the ranges of the summation indigesr, andt are determined by the
conditions that those combinatorics are not vanishing:

PZQ QZ 1{|52§2§3X_ |52§1§3Y+ (8293 CZQZ)Z}[PZQ(/ 1)0]
:iszg302_1p2q {QgOpgz_Qggl(/_m—1)51}D2g & 1)(02) +i(5:05— €005

/
xpgﬂ{QgOp(p—l)nz—ZQ {(P=D)(/=p+1)E+ Q% (/—p+2)(/ —p+1)&ID 1 1)(6,)

/
"’Qz_l(szﬂs_czﬂz)pzq leDEg—_J]..))((qZZl)(02)_52§392_1

.
< 2 QP& Qi — P DEID 1 1y(02). (42
|
In real calculations the cases with small angular momen-  p, Q%= — 2¢,5,02°— (c2— s2) Q%+ 2¢,5,Q%,

tum may be more interesting. In the following we explicitly
list the above formulas for'=1 and 2(the formulas for the
case with/’=0 are trivia):

20__ .2~20 20 2~20
P1Q5 =5s1Q5 +¢15:Q7 +¢1Qg

21_ 21 21 21 21 21
P1Q1%= —¢;Q1%+5,Q7°,  P1Q3*=5,Q1%¢,Qp’, P1Q2=¢1Q —5,Q1", P1Q1=-5Q7—¢,Q7".
11_ 11 10_
20_ 220 20, o220 10_ -1 10 10_; 11
P;Q3 =¢1Q3 —¢18,Q1 +51Q0 s P,Qp =820 [ —w3Q1 + (23— 0,C,/5,)Qy —143Q17],
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P,Q1"'= 5,05 [ €,43Q1%-1£1£5Q¢°
+(Q3—Q,C,/s,)Q11,
Pngoz %O'
P2Q1%= 5,05 [ —203Q5™+ (03— Q,¢,/5,) Q2°~1¢3Q5,
P,Q5%=s305 *{(w5— 172¢5) Q3™+ [ — w3(Q3— Q,Cy/s,)
+E51Q8+ [(Qa— QaCy/55)° — £131Q7°
+i0303Q5 1{3(Q3— Q502 /5,) Q1Y
P2Q5'= 50 Hi2£,£3Q5°~1£1¢5Q7°
+(Q3—Q4C,/5,)Q5Y,
P,Q'=550, (= 2i {3[ £03+ 72(Q3— Q5C5/5,)1Q3°
+ila[ £ wat+3E,(Q3—QyCy15,)1Q%-4i €143
X (Q3—Q5C,15,)QY°
+[ €205~ @3(Q3—Q,¢,/5,)]Q5"

+[(Q3— s, /5,)%— £,£31Q7H.

VI. NONORTHOGONAL VECTORS

Now, we turn to the general case where arbitrary coordifunction \Pf"(rcl, c
nate vectors; in the center-of-mass framsee Eq.(13)]
are used to replace the Jacobi coordinate vedgrsin this

PHYSICAL REVIEW A 64 042108

case the Laplace operator contains mixed derivative terms
[see Eq.(14)]. All the conclusions in Sec. Il hold for the
present case except that the Jacobi coordinate vectors should
be replaced with the coordinate vectots and the volume
element of the configuration spa¢25) changes due to the
linear transformatiori13). In particular, the generalized har-
monic polynomialQy*(Ry,R,) now becomeQ; (¢, feo),
wherer, andr, are two arbitrarily chosen coordinate vec-
tors.

Any function \Ifﬁ"(rcl, ... fgn—1y) With angular mo-
mentum/ and parity 1) " in a quanturN-body system
can be expanded with respect(Di”(rcl,rcz) with the co-
efficients:/;q/ﬁ(g,n,g“) depending on (B —6) invariant vari-
ables,

/
TMreq, - ,rc(N71)>=go qZ Yo (EmOQE(rea T o),
(43)

where, instead of Eq22), the internal variable§;, »;, and
{; are redefined as

§i=T¢j Tea,

1<j<(N-1),

gj:rcj' (reaXrea),

m=§&, (1=0=0. (44)

As in the case with the orthogonal vectors, the main cal-
culation in deriving the generalized radial equations in the
present case is to apply the Laplace operdfah to the
Ten—-1)) in EQ. (43). Similarly, the
calculation consists of three parts, and the second part is
vanishing. But the first paftsee Eq.(34)] becomes

7 =Tcj lc2s

Ay NEn D= {(4311513§1+ 43227720"3,2) +(S1172+ Spo61+28:2¢2) 0§2+ A(S1162+ S1261) 9 9g, + A(Spaba+ S1212) 9,0,

N—1

8812620, 0,, T 6(S110¢, + Spo0,, + 512552)}'//@(5, 7o+ 2, {4(S1:¢,+ Sy fl)azgl&gj

j=3

+A(So2my+ S5 72) 9,0y, + AH(S12+ 1y €2) 9 0y + A(Spamj+ S51€2) 0y, 0,
+2(Sumyt S12€j+ Spjéat $p561) g, 0+ 2(Soa + Siamy+ Sy M2t S2562) 9,0,

T4L(S1dg, + Spad ), + 8125§2)5§j +6(Sy; g, + 321'0"7;])}‘/’@\(5, 7,{)

N-1

+j és 1(28&+ Sik€1) 9,0, T (255 Mt Sj2) 9,9+ 2(Spicmj + St Seéa) 9, 91y,

+2(Syjkt Sudj) 95 9, + 2(Spilkt Saudj) 9y 9y, + (2Syj 0= 255+ Sjkﬂz)ﬁgjagk}‘ffq/;\(fy 7,{)

N—-1

+j;3 Q2_1{(91' N~ o€t (j(k)(5113§j5§k+ S220 9, Iy F ZSlzagja,]k)

+2[_Sll(wj§k_wkgj)+512(Qj§k_9k§j)]‘9§j‘9§k+ 2[ S Q8= Qdj) — SiA j {— wkgj)]anjagk

+[S1( @0t 128 81) + So Q Qe+ €14 8k) — 281 0 Dy + §2§j§k)]f9gj(9§k}¢q/¢(§, 7,0). (45)

The last part contains the mixed application
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N—1 N-1

22 2 SV Vi Q4
=1 k=1

N—-1
Sude, + 28150, + 123 Sijdy,

N—-1

=2 +eo +J_23 [Fej(Sude, + S1ad )

N—-1
rc1[2811¢9§1+ S120,+ 123 Sy,

N-1
/ v
+(repX rcj)511f941.+(rcj>< I'c1)512f9gj+(|'c1>< rcz)sljﬂgj]] '/’q;\'Vrleq T+ 2[ rcl{zslﬂ?fl—" Spode, T ;3 Szjagj

N—-1
S120¢,+2S550,, + ;3 Sy,

N—-1

tre +J_§=:3 [rcj(slzé’gj“‘szzanj)"’("czxrcj)slzagj

(1o)X Tet) Spady + (FeaXTea) Sy 11 Wgr - Vi, Q4 (46)

In addition to the formulag35), whereR; should be replaced with;;, we also need the following formulas:
(reoXre) Ve _Qa%= 05 Mol i(a+1)Qe 21— £4(/ — ) Qg —iw;Qqt 1},
(rejxXre)- Ve Qq0=05 M~ £49Q0 %+ &14,(/ —a+1)Qg2, +iQ;Qq ',
(reaXre)-V, Qg =0, {~i&oj(/ —a+1)?Qq% +i&wa(2/ ~2q+1)Q; i nwj(q+1)aQqd,
= &4(/=a+1)Qg + 724;aQqt 1},
(rejXre)- Ve Qa'=0, Mi&1Q(/ —q+1)(/—q+2)Qe%,—i1£,0;(/ —q+1) (29— 1)Qe%, +i7,2;6?Q;°
+64(/ =9+ 1Qt — £4,9Q4"
(raXre2)- Ve Qq°=—iQgy"
(reaXrea) Ve ,Qa°=—iQgis,
(rclxrc2)'VrC1Qq/l:_i772qu +i&(/—q+1)(29— 1)Q —i&(/—q+2)(/ - q+1)Qq 2
(rclxrcz>~VrC2le=i§2q<2/—2q+1>Qg°—i§1(/—q+1)2Qg 1 im20(a+1)Qg? s (47)
Finally, we obtain the generalized radial equations as follows:
A¢ +2[2511q5§ + /8190, +2(/ — Q)Szzﬁnz]lﬂggﬂLZQ(ZSlzagﬁ Sz20¢,) lﬂ(q 10t 2(7/ =) (S11d¢, + 25123n2)¢(q+1)0
N—1

+ 23 2951{[(/_Q)(stlzﬁgj+stzzf97;j+ﬂzsjzf9nj+flfjszzf?gj)+Q(stj1_szn)f?gj_quslzﬁnj
+ (72051~ §2/812)a§]¢ +a[(Q325,— wslz)ﬂg 0S50, +§1(772512 52522)(9g]¢(q not (7 —q)
X[Sllﬂjﬁ§j+( S1Q,+S5(2)) f777j+fj(glslz_52511)f9gj]'r/f(q+1)0_'WZQ(Q_]-)
><[(j(slzﬁgj+322'97;]-)+(wj512—91522+923j2)f9gj]lﬂ(’/q)ll)l_iQ[WQ(QSn(?gj+§j312(97,j+a’1511f9§j—91512f9§j
+Q,819;) — £(2/ =20+ 1)({;S10d, + §S020, + Q2S00 — Q) Sp20, + @, S129, ) 11
+i(/=q[(29+ 1)§z(§jsllf9§j+fjslzf?nj“‘ﬂzsjlé'gj“‘szllf?gj_ﬂjslzﬁgj)_51(/_(1)(5]312(95]-"‘§1322f97;j+szlzﬁgj
_stzz(?g-+925'2¢9§.)]¢(/q)\+1)1_i51(/_CI)(/—Q_1)[5](511%]-+51237,].)+(wj511_9j512+92511)t95j]lﬁ(/qﬁz)l}
= —(2A)[E- V], (483
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At +2{2qS10g + (£ +1)Spadg,+ 2(/ = At 1)Spd }thigd +2(0— 1) (2120, + S0, (g 191+ 2(/ — )
N-1
X (Sude +2Siady) g ont 2 205 {4 (Siady + Soady ) + (0282~ @St 04129 10 o
_i[?j(suﬁgj+51237,1.)+(w1511—9j512+925j1)5g1]¢33+[Q(925j1_szn)t?gj_quslzay,j
+ (720811~ &(7/ + 1)512)5gj+(/'_q+ 1)(91'312(95]-+925j2<777j+9j32237,j+fléjszzagj)]lﬂ@
+(q_1)[(925j2_wj512)€7§j_w1522<9771.+§j(772512_ §zszz)3gj]l/f@—1)1+(/—Q)[stnﬁgj+(92511+91512)f977j

+ (= ESut E151) 9 Jd(gh 1yt = — (AAE- VI (480)

VII. PHYSICAL APPLICATION We are able to obtain the energy levels of a helium atom in
In a auantumN-body svstem. any function with anqular e different spectrgSt L&) with high accuracy by choos-
q Y Sy , any 9 ing n= 10 (for the SandP state$ or n=9 (for the D state$

APV ;
momentum/” and parity 1.) can be gxpanded W't.h due to the fast convergence of the series, witgsethe total
respect to the ~ generalized —harmonic ponnomlaIsS in of two electronsg(o) describes the parity, and=S, P
QgT(Rl,RZ), where the coefficients, called the generalized b parity, P

Lial funcii d 4 onl 6) int | variabl andD for the angular momentum states. In order to compare
radia UDS lons, depen En y onRB-6) in elrna vz.ar:a. esr.] our calculation results with those obtained by the variational
Since Qg "(Ry,Ry) is @ homogeneous polynomial in the eihogs where the nucleus mass is usually assumed to be

components of the Jacobi coordinate vectors and a solutiofinite, we also calculate the energy level with a large mass
of the Laplace equation, we have derived the generalizeghiq \ of the nucleus to the electrom(=10%%. Both cal-

radial equations easily. That the rotational varialitee Eu- ~ ¢jated results are listed in Table | for comparison. Fewer
ler angles are not involved in either the generalized radial {gyms in the truncated series are taken in our calculation than

functions or the equations will greatly decrease the amounf,qse in the hyperspherical harmonic function metfi22]
of calculation in solving the Schdinger equation numeri- and in the variational method86].

cally for the N-body system. As a first step, we applied this
approach to the calculation of the energy levels of a helium
atom and a positronium iof29-31. In the following we VIIl. CONCLUSIONS

sketch the method and give some more calculation results. For a quanturiN-bodv svstem we have found a complete
Once the generalized radial equations have been derived, d y sy P

one may choose any other complete set of internal variablet Of independent base functio@§ "(Ry,R,) for the given

to simplify the calculation. The generalized radial equationg"gular momentum and parity. Any function with angular

H ( 1\ +N\;
for the new variables can easily be obtained by replacemeAfomentum” and parity (~1)”* in the system can be ex-

of variables. In a Coulombic three-body system, such as 82nded with r/efpect to the {2+ 1) generalized harmonic

helium atom, we choose the hyperradiusind two dimen- ~ Pelynomials Q;’(Ry,R;), where the combinative coeffi-
sionless quantitiey and{ as the internal variables, so as to ¢ients are functions of the {8-6) internal variables. We
make the potential a meromorphic function: have established the generalized radial equations explicitly;

they are simultaneous partial differential equations in the in-
[2e=rN Ir—ro| [ry—rsl ternal_varigbles. The number of bot_h the functions and the
p=(R2+R5)Y2, 9= , (= + , equations is (2 +1) whenN=4, and it becomesA(+1) or
P p /" whenN= 3, depending on the parity. Only a finite number
(49 of partial angular momentum states are involved in con-
structing the generalized harmonic  polynomials
Qq/T(Rl,RZ). That is, the contributions from the remaining
artial angular momentum states have been incorporated into
ose from the generalized radial functions. We have gener-
alized the formulas to the case with nonorthogonal vectors.
When establishing the body-fixed frame we fix it with two
arbitrarily chosen Jacobi coordinate vectd®s and R,.
Those two vectors may be replaced by any other two coor-
dinate vectors according to the characteristics of the physical
problem under study.
The choice of the complete set of base functions is not
dR(p) —F(p)R(p) (50) unigue. However, the right choices of both the base functions
P—g PITPI- and the internal variables play a key role in establishing the

wherer,; denotes the position vector of the helium nucleus
andr, andr; the position vectors of two electrons. After
expanding the wave function as a Taylor series with respe
to » and ¢ up to the ordem, we obtain an ordinary differ-
ential matrix equation for the coefficien®(p). In the real
calculation, we calculate the propagating maKiyp) and its
inverse matrixG(p) by the Taylor series method instead of
the functionR(p) in order to avoid the logarithmic singulari-
ties atp=0 in the forms ofp?(In p)° [32—34:
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TABLE I. Numerical calculation for the energy levels of a helium atom in atomic units.

Spectral term Our results Variational calculati@®b]
25+1 e(0) M =7296.28 M = 10%° M ~ oo

lge 2.9033046 2.903724377034116 2.9037243770341195
8ge 2.1749303 2.1752293777 2.1752293782
lpe 0.5801748 0.5802464725 0.5802465

Spe 0.7105002 0.7103965 0.710499

ipo 2.1235456 2.1238430778 2.1238430865
8po 2.1328807 2.133164187 2.133164191
pe 0.5637256 0.5638004

spo 0.5592482 0.5593283

spe 2.0553230 2.055871 2.0556363

pe 2.0553055 2.0555693 2.0556207

&The calculation in Ref[36].

generalized radial equations. Those two choices are the maittonium negative ion31] by a series expansion. Because

progress of the present paper in comparison with the previthree rotational variables are removed, fewer terms have to
ous work of Wigneif4] and Eckar{1]. Once the generalized be taken to achieve the same precision of energy as in other
radial equations have been derived, one may choose amyethods to truncate the series of partial angular momentum
other complete set of internal variables to simplify the cal-states. As the number of particles in the system increases, we
culation. The generalized radial equations for the new varipelieve that removing three independent variables related to

ables can easily be obtained by replacement of variables, jugie global rotation will greatly decrease the amount of cal-
as we did in Sec. VIl for the three-body system. culation.

The two features in this method, that the numbers of both
functionswgﬁ(g, 7,{) and equations are finite, and they de-
pend on only (8!—6) internal variables, are important for
calculating the energy levels and wave functions in a quan-
tum N-body system. In fact, in numerical experiments for a The authors would like to thank Professor Hua-Tung Nieh
guantum three-body system we calculated the lowest energgnd Professor Wu-Yi Hsiang for drawing their attention to
levels of a helium atom i stateg29] and inD stated30]  quantum few-body problems. This work was supported by
with total spin 1 and zero, and some energy levels of a posthe National Natural Science Foundation of China.
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