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Pseudoforces in quantum mechanics
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Dynamical evolution is described as a parallel section on an infinite-dimensional Hilbert bundle over the
base manifold of all frames of reference. The parallel section is defined by an operator-valued connection
whose components are the generators of the relativity group acting on the base manifold. In the case of
Galilean transformations we show that the property that the curvature for the fundamental connection must be
zero is just the Heisenberg equations of motion and the canonical commutation relation in geometric language.
We then consider linear and circular accelerating frames and show that pseudoforces must appear naturally in
the Hamiltonian.
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I. INTRODUCTION

Evolution of a state vector in quantum mechanics can
viewed as a kind of parallel transport@1#. There have been
suggestions to use the geometric language of vector bun
and parallel transport in various situations in quantum m
chanics@2–6#. These ideas are natural in the discussion
the geometric or the Berry phase@7#.

Despite these attempts to ‘‘geometrize’’ quantum mech
ics there seems to be no common agreement in these
proaches about the base space, or the structure group
alone the connection or the curvature. Moreover it is
clear whether the extra mathematical machinery is justi
by a new or clearer physical insight.

In this paper we give thephysicalreason why the bundle
viewpoint is natural in quantum mechanics and illustrate
with application to accelerated frames.

If a physical system is observed in various frames of r
erence, the states described by them as vectors in their
vidual Hilbert spaces will form a section in a vector bund
with the Hilbert space as the standard fiber and the set o
frames of reference as the base manifold. There is no can
cal identification of the fibers and we need a ‘‘connection,
notion of covariant derivative or that of parallel transport

We make use of the principle of relativity~all frames of
reference are equally suitable for description! to provide the
notion of parallelism and make the following assumptio
States described by different frames of reference form a
allel section.

As each observer can apply an overall unitary operato
his Hilbert space and still obtain an equivalent descripti
we see that the structure group should be the group o
unitary operatorsU(`) on the Hilbert space@8#. Thus there
is an underlying ‘‘gauge freedom’’ that can be used to tra
form the natural parallel sections into constant sections
do away with the need to use all Hilbert spaces at once. T
is the case in standard quantum mechanics where a s
Hilbert space is used by all observers.

In this paper we develop our geometric picture and
plicitly consider the case where Galilean group is the und
lying relativity group. We find that Heisenberg equations
motion and the canonical commutation relation are contai
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in a single condition: that the fundamental connection is
or that its curvature is zero.

Next we apply the geometric construction to accelera
frames and show that pseudoforce terms appear as expe
In the case of linearly accelerated frames we get a lin
‘‘gravitational’’ potential implying that equivalence principl
must hold in quantum mechanics. In contrast, in the conv
tional formalism equivalence principle is obtained by an
tificial time-dependent phase transformation of the wa
function. In the case of rotating frames we show that b
centrifugal and coriolis forces show up in the Hamiltonian.
is satisfactory to see that the coriolis force does not co
spond to a potential because it does no work, being perp
dicular to velocity, but naturally appears as a connection te
added to the canonical momentum, much like the magn
force. We are thus able to show that fibre bundles are
natural language in which to discuss quantum-mechan
effects of gravity.

II. GEOMETRIC SETTING

A. The bundle

Consider a quantum-mechanical system described by
servers in different frames of reference. We assume that
set of all frames of reference forms a differentiable manifo
This is physically reasonable because frames of reference
related by symmetry transformations that form a group. T
means that the frames can be labeled by coordinatesx on the
group manifold. A state of the system is described by a v
tor f(x) in a Hilbert spaceHx associated with the observe
x. We, thus, have the ingredients of a vector bundle@9#. The
base is a manifoldM with coordinatesx and a Hilbert space
at each point. To every possible state of the system is a
ciated a section or a mappingx→f(x) wheref(x) is the
vector describing the state of the system by observerx. We
assume there exist unitary operatorsU(y,x) that connect the
statesf(y)5U(y,x)f(x). These operators must satisfy co
sistency conditions

U~z,y!U~y,x!5U~z,x!; U~x,x!51.

We must note that there is no canonical way of choos
statesf(x) to describe the system in the Hilbert spaceHx . If
©2001 The American Physical Society07-1
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we were to apply a unitary operator to all vecto
f(x), c(x), etc. inHx , the resulting states are equally we
suited to describe the system provided the observables a
in Hx are similarly changed. In other words, we assume
structureor gauge groupacting on the fiber to be the grou
of all unitary operators.

B. The connection

Let us choose a complete orthonormal setfa in the Hil-
bert space of some fixed observer, say atx50, fa[fa(0).
The setsfa(x)5U(x,0)fa(0) then are complete orthono
mal sets in all the other spacesHx . Any arbitrary section
c(x) can then be written as

c~x!5(
a

ca~x!fa~x!, ~1!

whereca(x) are the complex coefficients of expansion. L
G be the set of all sections. They can be added pointwis

~c11c2!~x!5c1~x!1c2~x! ~2!

and multiplied with smooth functions

~cc!~x!5c~x!c~x!. ~3!

Let L ^ G be the tensor product of the spaceL of all
one-forms on the baseM andG. A connection on this bundle
is a mappingD: G→L ^ G such that

D~c11c2!5Dc11Dc2

and

D~cc!5cDc1dcc. ~4!

If fn(x) is a basis inG we can expressD(fn) in terms of
the basisdxm

^ fm in L ^ G as

~Dfn!~x!5fm~x!Gmmndxm. ~5!

where coefficientsGmmn(x) are the Christoffel symbols with
respect to the basisdxm

^ fm . We write this equation as

~Dfn!~x!5fmvmn
f ~x!, ~6!

where the complex matrixvmn can be obtained by taking
inner product withfm in Eq. ~5!.

vmn
f 5~fm ,Dfn!. ~7!

This matrix of one-forms is called theconnection matrix. We
requireD to satisfy the Leibniz rule

D~f,c!5~Df,c!1~f,Dc!5d~f,c!, ~8!

which when applied todmn5(fm ,fn) shows thatvf is an
anti-Hermitian matrix. Under a change of basis

xn~x!5U~x!fn~x!, ~9!

we have
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xn~x!5fm~x!„fm~x!,U~x!fn~x!…5fm~x!Umn~x!.
~10!

Thus, omitting the base pointx for simplicity of notation

~Dxn!~x!5D~fsUsn!5f rv rs
f Usn1fsdUsn5xmvmn

x

5f rUrmvmn
x ~11!

or

vmn
x 5Umr

21v rs
f Usn1Umr

21dUrn . ~12!

Omitting matrix indices, we have

vx5U21vfU1U21dU. ~13!

The curvature two-form for the connection is given by

Vf5dvf1vf`vf, ~14!

which transforms as

Vx5U21VfU. ~15!

One may also note the Bianchi identity

dV5V`v2v`V. ~16!

III. PARALLEL SECTION AND THE FUNDAMENTAL
CONNECTION

We now make the fundamental assumption that a sys
observed by different observers is represented by par
sections. Letfm(x) be a family of parallel sections, that is

~Df!~x!50, for all m. ~17!

This implies

vmn
f ~x!50 ~18!

everywhere.
We shall now see how does the connection matrix lo

like with respect to the basis of constant sections. The
vantage of using constant sections is that one can give up
bundle picture altogether and identify all Hilbert spaces
gether to work in one common space. The constant sec
physically means that the state is represented by the s
constant vector by all observers. This is the most gen
definition of the Heisenberg picture.

To get constant sections we use the fact that parallel
tions are constructed by applying transformationU(x,0) on
f(0) for all x:

fm~x!5U~x,0!fm~0!5U~x!fm~0!. ~19!

We can choosefm(0) as the new basis

xm~x![fm~0!

5Ux
21fm~x!

5f r~x!„f r~x!,U21~x!fm~x!…

5f r~x!Urm
21 . ~20!

Then
7-2
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vx5UdU21, ~21!

which, as expected, is pure gauge.

IV. GALILEAN FRAMES

Let us consider a particle of massm in one space dimen
sion. We use units wherec5\51. We consider the basis o
sharp momentum statesuk& such that

Puk&5kuk& ~22!

and

^k8uk&5d~k2k8!. ~23!

The time and space translations are given by the opera
Ut andUz , respectively,

Utuk&5e2 iH tuk&5e2 ik2/2muk& ~24!

Uzuk&5eiPzuk&5eikzuk&. ~25!

The boosts act as

Uhuk&5uk2mh& ~26!

given by

Uh5e2 iKh, ~27!

whereK is the boost generator. The Lie algebra of the G
ilean group is

@P,H#50, @K,H#5 iP,

@K,P#5 imI. ~28!

The algebra is not closed. This is because unitary re
sentation of the Galilean group inH is projective. The posi-
tion operatorX is related toK @10# as

K5mX ~29!

and it acts on the statesuk& as

^kuX5 i
]

]k
^ku. ~30!

Parallel sections can be constructed usingUt , Uz , andUh
in a variety of ways. We choose the following conventi
that corresponds to the transformations

x85x2ht2z

t85t2t ~31!

v85v2h

between frameS andS8. If we take the standard frame atx
50, t50, v50 then
04210
rs
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f~x8,t8,v8!5f~2z,2t,2h!5UtUzUhf~0,0,0!.
~32!

We rename coordinates

f~x,t,v !5U2tU2xU2vf~0,0,0! ~33!

and get, for the basis of constant sections,

vx5U2tU2xU2vd~U2tU2xU2v!21

5 i @2Hdt1Pdx1X~ t !mdv2mxdv#. ~34!

The curvature is zero, as it should be for a pure gauge c
nection. But it is worth seeing explicitly.

Vx5dv1v`v50. ~35!

This implies the following equations:

i Ṗ5@P,H#, ~36!

iẊ5@X,H#, ~37!

@X,P#5 i . ~38!

Equations~34! and~35! are just the Heisenberg equations
motion for operatorsP andX while Eq.~38! is the canonical
commutation relation forX andP.

One may argue that these equations are just reproduc
of the algebra. Indeed the algebra is used in the calculatio
the curvature. What is new is that in this differential geom
ric language all the information is contained in a single ze
curvature equation.

V. ACCELERATED FRAMES AND PSEUDOFORCES

Acceleration implies changing from one Galilean frame
another after every infinitesimal amount of time. This can
seen as a curve on the base manifold parametrized by t
We assume that an observer in the accelerating frame
the same Hilbert space to describe a physical system as
observer at the base manifold point with which it coincid
at each instantt. Moreover they assign the same state to
system@11#.

A. Linearly accelerated frame and equivalence principle

The question of whether the principle of equivalence
classical mechanics also holds in quantum mechanics
discussed by Eliezer and Leach@12#. They studied the trans
formation of the Schro¨dinger equation under a change fro
an inertial frame of referenceS to a uniformly accelerating
oneS8. Their argument goes as follows. Let

x85x1
1

2
gt2, t85t ~39!

be the change of coordinates to an accelerated frame. T
the equivalence principle holds provided the phase of
7-3
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wave function of the system is redefined by a time-depend
expression. This means that the Schro¨dinger equation in the
frameS

i
dc

dt
52

1

2m
“

2c ~40!

transforms to the equation for a particle moving in a unifo
field

i
dc8

dt8
52

1

2m
“82c82mgx8c8 ~41!

with the redefinition of the phase ofc given by

c8~x8!5expS img

\
x8t82

1

6
gt83Dc~x!. ~42!

The phase factor has been chosen precisely to obtain eq
lence principle. There is no explanation put forward for th
factor.

In our formalism we find that the equivalence princip
must hold in quantum mechanics in a straightforward m
ner. There is no need for any other condition such as
redefinition of the wave function by a time-dependent ph
factor, like the one seen above.

Consider an observer in a linearly accelerated frame
reference. The linear acceleration corresponds to a curv
the base manifold parametrized byt and given by

x5
1

2
gt2, ~43!

v5gt. ~44!

The parallel section is again specified by

ut,x,v;k&[UvUxUtuk&. ~45!

The rate of change of the vector along the curve should g
the Hamiltonian for the accelerated observer. We get

i
d

dt
ut,x,v;k&5 i

d

dt
~UtUxUvuk&)

5F ~k2mv !2

2m
1~k2mv !t

dv
dt

2~k2mv !

3
dx

dt
2mx

dv
dt

2mgx2 i
dv
dt

]

]vG ut,x,v;k&

5FP~v !2

2m
2X~x!mgG ut,x,v;k&, ~46!

where P(v)5k2mv and X(x)5X1x. Thus, the system
‘‘sees’’ an extra potentialX(x)mg that is the expected linea
‘‘gravitational’’ potential term. This is a manifestation of th
equivalence principle in quantum mechanics.

The validity of the equivalence principle in the quantu
regime has been experimentally tested in some beautiful
periments done with neutron interference@13#.
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B. Rotating frame, coriolis, and centrifugal forces

Consider a frame of referenceS8 that is rotating with
constant angular velocityv and radiusr about the origin of
coordinates on thexy plane of a frameS ~see Fig. 1!. The
two frames are related as follows: we wait for timet, trans-
late byr direction, rotate by angleu5vt, and finally give a
boost in they8 direction by velocityv.

The parallel section is given by

U5UvUuU rUt5e2 iX2mveiJueiPre2 i ~P2/2m!t ~47!

whereJ5X1P22X2P1 is the angular momentum operato
The curve on the base manifold parametrized byt is

r5~r cosu,r sinu!,

v5~2rv sinu,rv cosu!. ~48!

The HamiltonianH, as seen by an observer in the rotati
frame, is given by the rate of change of the vectors speci
along the curve on the base manifold.

H5 i
dU

dt
U21

5
1

2m
@P1

21~P21mvr !2#2vr ~P21mvr !2v~J1mvr !

~49!

or

H5
1

2m
@~P11mvX2!21~P22mvX1!2#

2
1

2
mv2@~X11r !21X2

2#. ~50!

Thus the expected centrifugal and coriolis forces app
in the Hamiltonian. Since coriolis force does no work it ca
not appear as an explicit potential term. Rather it appear
a connection in the canonical momentum.

FIG. 1. S8 is a frame that is rotating with angular velocityv
about origin of frameS with radiusr.
7-4
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VI. DISCUSSION

The bundle viewpoint is hinted in Dirac’s work as early
1932. In a most influential paper@14# Dirac puts forth the
following argument: Letq(t) be a complete set of commu
ing observables in the Heisenberg picture. The set of eig
valuesq8 at eacht forms a manifoldM giving rise to ‘‘space-
time’’ B[M3T whereT represents the time axis.

Evolution is determined by the moving basis^q8,tu at
each (q8,t). This can be interpreted as a section from t
baseB into a Hilbert space. Letc:t→„q8(t),t(t)… be a
curve inB. Then the change of basis vectors^q8,tu is given
by

2 i
]

]q8
^q8,tu5^q8,tuP~ t !,

i
]

]t
^q8,tu5^q8,tuH,

whereP(t)5eiHt P(0)e2 iHt .
Thus the change of a basis vector along the curve is

d^q8,tu5 i ^q8,tudS,

dS5P~ t !dq82Hdt.

Thus in the bundle formalism Dirac’s Lagrangian can
seen as an operator-valued one-form on the Hilbert ve
bundle whose base manifold is spanned by the eigenva
q8 of a complete set of commuting operatorsq(t) specified
at all times and the standard fiber is Hilbert space. The c
ponents of this one-form are just the Hamiltonian and m
mentum operators. If the section (q8,t)→^q8,tu is assumed
to be parallel then evolution can be seen as parallel trans
This is the theme on which our present work is based.
.

h.
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Asorey et al. @1# consider a Hilbert bundle with positive
time axis R 1 as the base manifold. Another viewpoint
that of Prugovecki@2# and Drechsler and Tuckey@3# whose
bundle is the associated vector bundle for the princi
bundle with Poincare group as structure group over spa
time base manifold. The Hilbert space considered by them
the space of square integrable functions over phase spa
space coordinates and the mass hyperboloid (p25m2,
p0.0). This approach allows them to consider paral
transport over curved spaces with possible applications
quantum gravity.

Graudenz@4# also has a Hilbert bundle with space-tim
base. Our approach agrees with that of Graudenz in that
scription of a physical system is always description by o
observer. Yet another construction is given by Sardanash
@5# who considers aC* algebra at each point of the time ax
R.

Our geometric construction is different from others in t
literature. For us the base manifold consists of all frames
reference. This means actually having a group of symme
transformations as the base manifold with a frame of re
ence associated with each point on it. We have conside
the case of Galilean group that makes the application spe
to quantum mechanics.

Our objective here is to present a different geome
viewpoint which implies the validity of the equivalence prin
ciple in quantum mechanics. We have demonstrated this
both linearly accelerating and rotating frames.

ACKNOWLEDGMENTS

One of us ~P.C.! acknowledges financial support from
Council for Scientific and Industrial Research, India, und
Grant No. 9/466~29!/96-EMR-I. We thank Tabish Quresh
for useful discussions.
ev.

v.
@1# M. Asorey, J. F. Carinena, and M. Paramio, J. Math. Phys.23,
8 ~1982!.

@2# E. Prugovecki, Class. Quantum Grav.13, 1007~1996!.
@3# W. Drechsler and P. A. Tuckey, Class. Quantum Grav.13, 611

~1996!.
@4# D. Graudenz, CERN Report No. CERN-TH.7516/84~unpub-

lished!; e-print hep-th/9604180.
@5# G. Sardanashvily, e-print quant-ph/0004050.
@6# Bozhidar Iliev, J. Phys. A31, 1297~1998!.
@7# Geometric Phases in Physics, edited by A. Shapere and F

Wilczek ~World Scientific, Singapore, 1989!.
@8# A. Bohm, B. Kendrick, M. E. Loewe, and L. J. Boya, J. Mat
Phys.33, 3 ~1992!, also discuss the structure groupU(`).
@9# S. S. Chern, W. H. Chen, and K. S. Lam,Lectures on Differ-

ential Geometry~World Scientific, Singapore, 1999!.
@10# S. T. Ali, J. P. Antoine, and J. P. Gazeau, Ann. Phys.~Paris!

222, 1 ~1993!.
@11# J. S. Bell and J. M. Leinaas, Nucl. Phys. B284, 488 ~1987!.
@12# C. J. Eliezer and P. G. Leach, Am. J. Phys.45, 1218~1977!.
@13# R. Cotella, A. W. Overhauser, and S. A. Werner, Phys. R

Lett. 34, 1472~1975!; U. Bonse and T. Wroblewski,ibid. 51,
1401 ~1983!; C. M. Greenberger and A. W. Overhauser, Re
Mod. Phys.51, 43 ~1979!.

@14# P. A. M. Dirac, Phys. Z. Sowjetunion3, 1 ~1933!.
7-5


