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Pseudoforces in quantum mechanics
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Dynamical evolution is described as a parallel section on an infinite-dimensional Hilbert bundle over the
base manifold of all frames of reference. The parallel section is defined by an operator-valued connection
whose components are the generators of the relativity group acting on the base manifold. In the case of
Galilean transformations we show that the property that the curvature for the fundamental connection must be
zero is just the Heisenberg equations of motion and the canonical commutation relation in geometric language.
We then consider linear and circular accelerating frames and show that pseudoforces must appear naturally in
the Hamiltonian.
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[. INTRODUCTION in a single condition: that the fundamental connection is flat
or that its curvature is zero.

Evolution of a state vector in quantum mechanics can be Next we apply the geometric construction to accelerated
viewed as a kind of parallel transpdit]. There have been frames and show that pseudoforce terms appear as expected.
suggestions to use the geometric language of vector bundléd the case of linearly accelerated frames we get a linear
and parallel transport in various situations in quantum me-gravitational” potential implying that equivalence principle
chanics[2-6]. These ideas are natural in the discussion offiust hold in quantum mechanics. In contrast, in the conven-
the geometric or the Berry phafgl. t!qn.al fo_rmallsm equivalence principle is optamed by an ar-

Despite these attempts to “geometrize” quantum mechani'f'c'a_l time-dependent phasc_a transformation of the wave
ics there seems to be no common agreement in these al Inction. In the case of rotating frames we show that both

proaches about the base space, or the structure group ntrifugal and coriolis forces show up in the Hamiltonian. It
alone the connection or the curvature. Moreover it is not> satisfactory o see that the_conolls force does_ not corre-
clear whether the extra mathematical machinery is justifie pond toa potgnnal because it does no work, belng_ perpen-
b | hvsical insight icular to velocity, but naturally appears as a connection term

yla nr(]e_w or clearer p yS|hcah|n§|g| ) hv the bund added to the canonical momentum, much like the magnetic
_Inthis paper we give thphysicalreason why the bundle ¢, o \e are thus able to show that fibre bundles are the
viewpoint is natural in quantum mechanics and illustrate it ¢ ra language in which to discuss quantum-mechanical
with application to accelerated frames.

. : ) ) effects of gravity.
If a physical system is observed in various frames of ref-

erence, the states described by them as vectors in their indi-
vidual Hilbert spaces will form a section in a vector bundle

with the Hilbert space as the standard fiber and the set of all A. The bundle
frames of reference as the base manifold. There is no canoni-
cal identification of the fibers and we need a “connection,” a

I. GEOMETRIC SETTING

Consider a quantum-mechanical system described by ob-

) ) e servers in different frames of reference. We assume that the

notion of covariant derivative or that of parallel transport.  get of all frames of reference forms a differentiable manifold.
We make use of the principle of relativitgll frames of  Thjs is physically reasonable because frames of reference are

reference are equally suitable for descriplitm provide the  related by symmetry transformations that form a group. This

notion of parallelism and make the following assumption:means that the frames can be labeled by coordinatesthe

States described by different frames of reference form a pagroup manifold. A state of the system is described by a vec-

allel section. tor ¢(x) in a Hilbert space, associated with the observer
As each observer can apply an overall unitary operator og. We, thus, have the ingredients of a vector buri@le The

his Hilbert space and still obtain an equivalent descriptionpase is a manifold/ with coordinates< and a Hilbert space

we see that the structure group should be the group of alit each point. To every possible state of the system is asso-

unitary operators) (=) on the Hilbert spacg8]. Thus there ciated a section or a mapping— ¢(x) where ¢(x) is the

is an underlying “gauge freedom” that can be used to transvector describing the state of the system by obsexvaife

form the natural parallel sections into constant sections angssume there exist unitary operatbrgy,x) that connect the

do away with the need to use all Hilbert spaces at once. Thistatesp(y)=U(y,x) ¢(x). These operators must satisfy con-
is the case in standard quantum mechanics where a singdgstency conditions

Hilbert space is used by all observers.
In this paper we develop our geometric picture and ex- U(z,y)U(y,x)=U(z,x); U(x,x)=1.
plicitly consider the case where Galilean group is the under-
lying relativity group. We find that Heisenberg equations of We must note that there is no canonical way of choosing
motion and the canonical commutation relation are containedtates$(x) to describe the system in the Hilbert spacge. If
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we were to apply a unitary operator to all Vectors  y (x)= ¢ (X)(bm(X),U(X) dn(X)=bm(X)Umr(X).
d(X), Y(x), etc. inH,, the resulting states are equally well (1
suited to describe the system provided the observables acti
in H, are similarly changed. In other words, we assume th
structureor gauge groupacting on the fiber to be the group (D) (X)=D(pUsp) = dy0tUsnt pdUgn= xmw’i,
of all unitary operators.

glgnus, omitting the base poimtfor simplicity of notation

= ¢ Uimonn (11)
B. The connection or
Let us choose a complete orthonormal ggtin the Hil- X -1 & 1
bert space of some fixed observer, sayxal, ¢,= ¢,(0). ®mn=UmrofsUsnt UprdUp, . (12)

The setsg,(x) =U(x,0)¢,(0) then are complete orthonor- Omitting matrix indices, we have
mal sets in all the other spacés, . Any arbitrary section

Y(x) can then be written as o¥=U"1p?U+U 1dU. (13
E The curvature two-form for the connection is given by

(X)= 2 Co(X) PalX), ()

v p ¢ Q?=dw?+ w?\w?, (14

wherec,(x) are the complex coefficients of expansion. Letwhich transforms as
I' be the set of all sections. They can be added pointwise.

Qx¥=U"10%U. (15)
(1 + 92) (%) = g1 (X) F 2 (X) @) One may also note the Bianchi identity
and multiplied with smooth functions dO=0Nw— o Q. (16)
(Ch)(X)=c(X)h(X). ®) Ill. PARALLEL SECTION AND THE FUNDAMENTAL
CONNECTION

Let A®I" be the tensor product of the spade of all
one-forms on the badd andI'. A connection on this bundle We now make the fundamental assumption that a system

is a mappingD: I'—A®I such that observed by different observers is represented by parallel
D(¢1+ ¢)=Di1+ Dy, sections. Letp,,(x) be a family of parallel sections, that is
(D¢)(x)=0, forallm. (17
and
This implies
D(cy)=cDy+dcy. (4)
w? (x)=0 (18)
If ¢,(x) is a basis inl" we can expres®(¢,) in terms of
the basisix*® ¢y, in A@T everywhere. . .
@ basisix"® ¢ in as We shall now see how does the connection matrix look
(Dpn)(X)= ()T XX, (5) like with respect to the basis of constant sections. The ad-

vantage of using constant sections is that one can give up the
where coefficientd’ ,,,(x) are the Christoffel symbols with bundle picture altogether and identify all Hilbert spaces to-

respect to the basgx*® ¢,,. We write this equation as gether to work in one common space. The constant section
. physically means that the state is represented by the same
(D ¢n)(X) = pmwmn(X), (6)  constant vector by all observers. This is the most general

. i i definition of the Heisenberg picture.
where the complex matrixn,, can be obtained by taking o get constant sections we use the fact that parallel sec-

inner product withg, in Eq. (5). tions are constructed by applying transformatid(x,0) on
0) for all x:
wr(‘zr)‘ln:((ﬁm ,Don). (7) #(0)
. : . . . m(X)=U(X,0) p(0) =U(X) pm(0). (19
This matrix of one-forms is called trennection matrixWe _
requireD to satisfy the Leibniz rule We can choose,(0) as the new basis
D(¢,)=(D$, )+ ($,Dp)=d(b,), (8 Xm(X) = bn(0)
_11-1

which when applied t0%,,,= (¢, ¢,) shows thatw? is an =U, “dm(X)
anti-Hermitian matrix. Under a change of basis = b, () (b, (x),U"1(x) (X))

Xn(X) =U(X) ¢n(x), 9 = ¢ (XUt (20)

we have Then

042107-2



PSEUDOFORCES IN QUANTUM MECHANICS PHYSICAL REVIEW &4 042107

w¥=UdU™ 1 (21) d(X' v )=¢(—{,—7,—n)=U,UU,¢(0,0,0.
(32
which, as expected, is pure gauge.
We rename coordinates
IV. GALILEAN FRAMES
d(x,t,v)=U_U_,U_,¢4(0,0,0 (33

Let us consider a particle of massin one space dimen-
sion. We use units where=7%=1. We consider the basis of and get, for the basis of constant sections,

sharp momentum staték) such that
w¥=U_U_U_,dU_U_U_,)?

Plk)=k[k) (22) .
=i[ —Hdt+Pdx+ X(t)mdv —mxdv]. (34
and
The curvature is zero, as it should be for a pure gauge con-
(k'|ky=68(k—k"). (23)  nection. But it is worth seeing explicitly.
The time and space translations are given by the operators OX=dw+ wN\w=0. (35

U, andU,, respectively,
This implies the following equations:

U lk)y=e"7[k)=e K2m) (24 |
_ _ iP=[P,H], (36)
U k) =eP{k)y=e™{k). (25

The boosts act as IX=[X,H], (37)

U, k)=k—mz») (26) [X,P]=i. (38)
given by Equations(34) and(35) are just the Heisenberg equations of

motion for operator® andX while Eq.(38) is the canonical
u,=e k7, (27)  commutation relation foX andP.

One may argue that these equations are just reproductions
whereK is the boost generator. The Lie algebra of the Gal-of the algebra. Indeed the algebra is used in the calculation of

ilean group is the curvature. What is new is that in this differential geomet-
' ric language all the information is contained in a single zero-
[P,H]=0, [K,H]=iP, curvature equation.
[K,P]=iml. (289

V. ACCELERATED FRAMES AND PSEUDOFORCES

The_ algebra is not closed. This_ is be_caqse unitary repre- Acceleration implies changing from one Galilean frame to
sentation of the Galilean group i is projective. The posi- another after every infinitesimal amount of time. This can be

tion operatorX is related toK [10] as seen as a curve on the base manifold parametrized by time.
We assume that an observer in the accelerating frame uses
K=mX (29 the same Hilbert space to describe a physical system as the
i observer at the base manifold point with which it coincides
and it acts on the stat¢k) as at each instant Moreover they assign the same state to the
P system[11].
(k|X=i£(k|. (30
A. Linearly accelerated frame and equivalence principle
Parallel sections can be constructed usihg U,, andU,, The question of whether the principle of equivalence in
in a variety of ways. We choose the following convention classical mechanics also holds in quantum mechanics was
that corresponds to the transformations discussed by Eliezer and Lealt?]. They studied the trans-
formation of the Schidinger equation under a change from
X'=x—nt—¢ an inertial frame of referencg to a uniformly accelerating
oneS'. Their argument goes as follows. Let
t'=t—r (31 L
, X' =x+=gt?, t'=t (39
v'=v—n 2

between frame&s andS'. If we take the standard frame mt  be the change of coordinates to an accelerated frame. Then
=0,t=0,v=0 then the equivalence principle holds provided the phase of the
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wave function of the system is redefined by a time-dependent y , S’
expression. This means that the Salinger equation in the { v, X’
frame S

dy 1,
i =" om VY (40) .

transforms to the equation for a particle moving in a uniform o
field X

LU 1V’2’ X' 41
g = " omY ¥ moxy (41)

with the redefinition of the phase af given by

’ Y — Img Iy 1 13
y(x )_e)# 7 r U got )"/j(x)' (42) FIG. 1. ' is a frame that is rotating with angular velocity

about origin of frameS with radiusr.
The phase factor has been chosen precisely to obtain equiva-

lence principle. There is no explanation put forward for this B. Rotating frame, coriolis, and centrifugal forces
factor.

In our formalism we find that the equivalence principle
must hold in quantum mechanics in a straightforward man
ner. There is no need for any other condition such as th
redefinition of the wave function by a time-dependent phas
factor, like the one seen above.

Consider an observer in a linearly accelerated frame o
reference. The linear acceleration corresponds to a curve on
the base manifold parametrized bgnd given by

Consider a frame of referenc® that is rotating with
constant angular velocity and radiug about the origin of
coordinates on they plane of a frameS (see Fig. 1L The

o frames are related as follows: we wait for tirpdrans-
fate byr direction, rotate by anglé= wt, and finally give a
Poost in they’ direction by velocityv.

The parallel section is given by

U:UUUHUrUt:e—inmveiJﬁeiPre—i(PZ/Zm)t (47)

x= Egtz, (43) whereJ=X;P,—X,P; is the angular momentum operator.
2 The curve on the base manifold parametrized kg

v=gt. (44 r=(r cosé,r sing),

The parallel section is again specified by V=(—Twsiné,ro cosf). (48)

[tx,05K)=U,UxUik). (45 The HamiltoniarH, as seen by an observer in the rotating
game, is given by the rate of change of the vectors specified

The rate of change of the vector along the curve should glvalong the curve on the base manifold,

the Hamiltonian for the accelerated observer. We get

d ._.d H=i—U"?
|a|t,x,v,k)—|a(UtUXUU|k>) dt
1
(k—mo)? dv = [P+ (Py+ mor)2]— wr (Py+ mor) — o(J+mor)
= " (k= (k- 1T (P2 2
[ o +(k—mo)t T (k—mv) 2m
4
dx dv dv 9 ) K 49
xm—mxa—mgx—la%| X, 0;K) or
P(v)? 1 2 2
= m —X(x)mg||t,x,v;K), (46) H=ﬁ[(P1+mwX2) +(Py—mwX;)4]
where P(v)=k—mv and X(x)=X+x. Thus, the system 1, 21 U2
“sees” an extra potentiaK(x)mg that is the expected linear —pMe [(X1+ )"+ X3]. (50

“gravitational” potential term. This is a manifestation of the

equivalence principle in quantum mechanics. Thus the expected centrifugal and coriolis forces appear
The validity of the equivalence principle in the quantum in the Hamiltonian. Since coriolis force does no work it can-

regime has been experimentally tested in some beautiful exxot appear as an explicit potential term. Rather it appears as

periments done with neutron interfererids]. a connection in the canonical momentum.
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VI. DISCUSSION Asorey et al. [1] consider a Hilbert bundle with positive
time axisR * as the base manifold. Another viewpoint is
that of Prugoveck[2] and Drechsler and Tuckdg] whose
bundle is the associated vector bundle for the principle
bundle with Poincare group as structure group over space-
Yime base manifold. The Hilbert space considered by them is
the space of square integrable functions over phase space of

S ) . , space coordinates and the mass hyperbolgid=m?,
eacEr:/zl’mt())n'Il'iigi[:;mtl)zeiitg?[pfgtz dm:g”ggsg?t?cl)qn ,ftr|ora‘:1t thep°>0)' This approach allows them to consider parallel

. ransport over curv with ibl lication
baseB into a Hilbert space. Let:7—(q’(7),t(7)) be a transport over curved spaces with possible applications to

. . S guantum gravity.
curve inB. Then the change of basis vectdrs ,t| is given GraudenZz4] also has a Hilbert bundle with space-time

by base. Our approach agrees with that of Graudenz in that de-
P scription of a physical system is always description by one

—i—=—(q',t|=(q’ t|P(t), observer. Yet another construction is given by Sardanashvily

9q [5] who considers £* algebra at each point of the time axis
R.

=(q’,t|H, Our geometric construction is different from others in the
literature. For us the base manifold consists of all frames of
reference. This means actually having a group of symmetry
transformations as the base manifold with a frame of refer-
ence associated with each point on it. We have considered

The bundle viewpoint is hinted in Dirac’s work as early as
1932. In a most influential papéfi4] Dirac puts forth the
following argument: Leig(t) be a complete set of commut-
ing observables in the Heisenberg picture. The set of eige
valuesq’ at eacht forms a manifoldV giving rise to “space-
time” B=M X T whereT represents the time axis.

_d -
G

whereP(t)=e'M'P(0)e "M,
Thus the change of a basis vector along the curve is

d(q’,t|=i(q’ ,t|dS, the case of Galilean group that makes the application specific
to quantum mechanics.
dS=P(t)dq’ —Hdt. Our objective here is to present a different geometric

viewpoint which implies the validity of the equivalence prin-

Thus in the bundle formalism Dirac’s Lagrangian can beciple in quantum mechanics. We have demonstrated this for
seen as an operator-valued one-form on the Hilbert vectdooth linearly accelerating and rotating frames.
bundle whose base manifold is spanned by the eigenvalues
g’ of a complete set of commuting operatqy&) specified
at all times and the standard fiber is Hilbert space. The com-
ponents of this one-form are just the Hamiltonian and mo- One of us(P.C) acknowledges financial support from
mentum operators. If the section’(t)—(q’,t| is assumed Council for Scientific and Industrial Research, India, under
to be parallel then evolution can be seen as parallel transpoiGrant No. 9/46629)/96-EMR-I. We thank Tabish Qureshi
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