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State and dynamical parameter estimation for open quantum systems

Jay Gambetta* and H. M. Wiseman†

School of Science, Griffith University, Brisbane 4111, Australia
~Received 7 March 2001; published 13 September 2001!

Following evolution of an open quantum system one requires full knowledge of its dynamics. In this paper
we consider open quantum systems for which the Hamiltonian is ‘‘uncertain.’’ In particular, we treat in detail
a simple system similar to that considered by Mabuchi@Quant. Semiclass. Opt.8, 1103~1996!#: a radiatively
damped atom driven by an unknown Rabi frequencyV ~as would occur for an atom at an unknown point in a
standing light wave!. By measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acqui-
sition ~quantified by the posterior distribution forV, and the conditional purity of the system, respectively! are
quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain
depend strongly on the type of monitoring scheme. We compare five different detection schemes~direct,
adaptive, homodyne of thex quadrature, homodyne of they quadrature, and heterodyne! using four different
measures of the knowledge gain~Shannon information aboutV, variance inV, long-time system purity, and
short-time system purity!.

DOI: 10.1103/PhysRevA.64.042105 PACS number~s!: 03.65.Yz, 42.50.Lc, 03.65.Wj
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I. INTRODUCTION

Quantum parameter estimation is a well-established a
@1,2#, which is usually formulated as follows. A known qua
tum state enters an apparatus that performs an operatio
the state. The operation, which is usually unitary but ne
not be @3,4#, is parametrized by one or more unknown p
rameters. The goal is to estimate these parameters by ma
a measurement on the~unknown! output state. Except in spe
cial cases, it is not possible precisely to find out the unkno
parameters from a measurement on a single system. Ra
the operation and measurement must be performed rep
edly, on a sequence of identically prepared quantum syste

There is a trivial sense in which it is possible to obta
complete information about the unknown parameters from
single system. That is by taking the output state after
measurement, and using it as the next input state, ha
perhaps transformed it first. If the transformation required
as difficult as preparing a new system from scratch, th
there is nothing to be gained by reusing the same sys
However, this scenario of repeated measurements on a s
system is useful pedagogically to make the transition to c
tinuously monitored systems with unknown dynamical p
rameters. This transition is made by considering the li
where the unknown transformation is infinitesimally diffe
ent from the identity, and the repeat time is infinitesimal.

To the best of our knowledge, a theoretical treatment
estimating an unknown dynamical parameter by continu
observation of a system was first done by Mabuchi@5#. His
system was a two-level atom coupled to a classically dri
electromagnetic field mode in a cavity. The unknown para
eter was the position of the atom. This is a dynamical para
eter because it determines the strength of the coupling
tween the atom and field~the Rabi frequency!. The
continuous monitoring considered was counting the phot
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that escape through one of the cavity mirrors. Mabuchi u
Bayesian statistics to determine the posterior probability d
tribution for the Rabi frequency. This represents the kno
edge the experimenter would have about the Rabi freque
given a particular~typical! measurement record. The me
surement is continuous in time~monitoring! because in any
instant of time a photon may or may not be detected.

In this paper we are concerned with the same quest
namely, how would an experimenter gain knowledge of
unknown dynamical parameter from the measurement rec
resulting from monitoring the system. We even choose
similar ~but even simpler! quantum system to that of Re
@5#, namely, an atom driven by a classical field of unknow
Rabi frequency. However, our analysis goes beyond, and
additional aims to that of Ref.@5# ~although we should note
that extensions similar to the first three outlined below w
suggested in a footnote of that work!.

First, we consider the entire ensemble of possible m
surement records and parameter values, rather than jus
~typical! measurement record from one parameter value.

Second, we quantitatively characterize this ensemble
calculating the average information gained~in bits! by the
measurement, as a function of time.

Third, we consider different ensembles resulting from d
ferent measurement schemes on the system. We emph
that the choice of measurement scheme does not affec
evolution of the system on average. That is, for all measu
ment schemes, averaging over the possible results and
possible values of the Rabi frequency yields the same eq
tion of motion for the system state. Physically, this is beca
the average behavior of the system is determined by its
mediate environment, whereas the different measurem
schemes are effected by detecting the light emitted by
system in different ways. However, the different measu
ment schemes give very different typical posterior distrib
tions, and very different rates of information gain.

Fourth, and perhaps most distinctively, we consider
just the estimation of the unknown parameter, but also
estimation of the state of the system conditioned on the m
©2001 The American Physical Society05-1
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JAY GAMBETTA AND H. M. WISEMAN PHYSICAL REVIEW A 64 042105
surement results@6#. We do this using the same Bayesia
method as for the parameter estimation. In this respect,
work could be seen as an extension of quantum trajec
theory @7# to systems with unknown dynamical paramete
Quantum trajectory theory is simply the application of qua
tum measurement theory to continuous monitoring of op
quantum systems, most usually optical systems subjec
photodetection@8#.

If the dynamical parameters for an open quantum sys
are known then conditioning the system on efficient det
tion of its emissions is guaranteed to monotonically incre
its average purity in time, as information is gained about
system. But if dynamical parameters are not known then
average purity may decrease, as the different possible ev
tions are summed incoherently. On the other hand, the m
surement record also contains information about these
rameters, so that these parameters become better de
over time. Hence one might expect that the system will ev
tually become pure anyway.

It is one of the main results of this paper that this exp
tation is not met. For our system there are some monito
schemes for which the parameter never becomes sufficie
well known for the system state to become pure. Howe
there is no simple correlation between the informat
gained about the parameter~the Rabi frequency! and the final
purity of the system~the atom!. One monitoring scheme
yields almost no parameter information, yet produces,
average, a much purer final system state than do o
schemes that yield large amounts of parameter informat
Moreover, the rates at which the system state purifies is,
some monitoring schemes, tied to the rate of parameter
formation gain, while for other monitoring schemes it
much faster than that. These results can be understood
from an appreciation of the conditional dynamics induced
the different detection schemes.

The remainder of this paper is organized as follows.
Sec. II we present the general formalism for state and
namical parameter estimation by monitoring a single syst
We also explain how the parameter information gained
quantified. In Sec. III we introduce the system to which
apply our formalism, a two-level atom, driven by an u
known Rabi frequency, and monitored by having its fluor
cence detected. Section IV contains the results of our
merical simulations of the relevant ensemble averages
five different detection schemes: direct, the adaptive sch
of Wiseman and Toombes@9#, homodyne of thex quadrature,
homodyne of they quadrature, and heterodyne. Section
concludes.

II. GENERAL FORMALISM

A. Quantum trajectories

It is well known that quantum trajectories can be used
describe the evolution of a continuously monitored open s
tem @8#. Since here we are continuously monitoring an op
system with an unknown dynamical parameter, we begin
giving a brief outline of the standard quantum
trajectory theory.
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A good place to start is with the measurement formali
for open systems@10,11#. An open system is simply a quan
tum system that interacts with its environment~usually
called a bath!. This interaction, like all quantum interaction
generally entangles the system and the bath. If we initia
have statesuc(t0)& and um(t0)& for the system and bath
respectively, and let these states entangle byU(t01T), a
unitary operator that includes both the bath-system coup
and the system dynamics. An instantaneous rank-one pro
tive measurement on the bath will result in the state after
measurement being

ur &uc r~ t01T!&5
ur &^r uU~ t01T!um~ t0!&uc~ t0!&

AP~r !
,

~2.1!

where P(r ) is the probability of getting the resultr. Equation
2.1 shows that after the measurement the system and the
are disentangled, so it is not necessary to continue to
scribe the bath in our treatment of the measurement. T
allows Eq.~2.1! to be reduced to

uc r~ t01T!&5
Mr~T!uc~ t !&

AP~r !
, ~2.2!

where Mr(T)5^r uU(t01T)um(t0)& is called the measure
ment operator and has the feature of collapsing the obs
er’s knowledge of the system into a state that is consis
with the resultr. Mr(T) is still an operator for the system a
U(t01T) is an operator on the tensor product Hilbert spa
for system and the bath. It is important to note that t
measurement operator is not necessarily a projector in
system Hilbert space.

The probability P(r ) is given by

P~r !5Tr@Fr~T!uc~ t0!&^c~ t0!u#, ~2.3!

whereFr is called the effect and is defined as

Fr~T!5Mr
†~T!Mr~T!. ~2.4!

The complete set of effects must sum to one:

(
r

Fr~ t !51. ~2.5!

The above formalism for measurement only considers p
states, but to take into account initially mixed states Eq.~2.2!
can be rewritten in terms of the state matrix. The state a
the measurement is then

r r~ t01T!5Mr~T!r~ t0!Mr
†~T!/P~r !. ~2.6!

Here Eq.~2.6! describes the state conditioned on the resur
and is referred to as anunravelingof the average postmea
surement stater(t01T). That is, the weighted mean of a
the possible conditioned states for one unraveling is equa
the average state:
5-2
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r~ t01T!5E@r r~ t01T!#5(
r

P~r !r r~ t01T!. ~2.7!

It should be noted that an average state has more then
unraveling. The different unravelings correspond to differ
sets of measurement operators, arising from different se
environment projectorsur &^r u in Eq. ~2.1!.

As mentioned earlier, quantum trajectories arise when
measurement formalism is applied to a continuously mo
tored open system@8#. In continuous monitoring, repeate
measurements of durationdt are performed on the state. Th
results in the state being conditioned on a recordI [0,t) , which
is a string containing the resultsr k of each measuremen
Here the subscriptk refers to a measurement at timetk
5kdt, with t050. Using thisI [0,t) , the conditioned state a
time t can be written as

r I~ t !5 r̃ I~ t !/P~ I [0,t)!, ~2.8!

wherer̃ I(t) is an unnormalized state conditioned onI [0,t) and
is equal to

r̃ I~ t !5Mr k
Mr k21

•••Mr 1
r~0!Mr 1

† . . . Mr k21

† Mr k

† .

~2.9!

The probability of obtaining this record is

P~ I [0,t)!5P~r k!P~r k21!•••P~r 1!5Tr@ r̃ I~ t !#. ~2.10!

To completely achieve continuous monitoring we let the ti
step between measurements,dt, tend towards the infinitesi
mal intervaldt. In doing this, Eq.~2.8! defines a stochasti
master equation~SME!, with its ensemble average reprodu
ing the usual deterministic master equation. That is,

r~ t !5 (
I [0,t)

P~ I [0,t)!r I~ t !

5 (
I [0,t)

r̃ I~ t !

5 lim
dt→0

(
r t/dt•••r 1

Mr t/dt
•••Mr 1

r~0!Mr 1

†
•••Mr t/dt

†

5 lim
dt→0

~11Ldt ! t/dtr~0!

5exp~Lt !r~0!, ~2.11!

where for arbitraryr, L is the Liouvillian superoperator de
fined asLr5 limdt→0(( rM rrMr

†2r)/dt.

B. Quantum trajectories with an unknown parameter

We now consider the situation where there is an unkno
dynamical parameterl in L, and hence in the measureme
operatorsMr . This is done by simply noting that for eachl
there will be a conditioned state. This gives a doubly con
tioned state of the form
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r I ,l~ t !5 r̃ I ,l~ t !/P~ I [0,t)ul!, ~2.12!

where P(I [0,t)ul) is the probability of gettingI [0,t) givenl. It
is obtained by

P~ I [0,t)ul!5Tr@ r̃ I ,l~ t !#. ~2.13!

We wish to determine the posterior probability distributio
P(luI [0,t)) of l, given I [0,t) . This can be achieved using
Bayesian inference formula@12#.

P~luI [0,t)!5
P~ I [0,t)ul!P0~l!

E P~ I [0,t)ul!P0~l!dl

, ~2.14!

where P0(l) is the prior distribution forl. For a ‘‘good
measurement’’ ofl, as time increases, we would expect th
prior distribution to converge to ad distribution.

Theoretically, Eq. ~2.14! is complete for determining
P(luI [0,t)). However, in general P(I [0,t)ul) is very small and
in numerical simulations it will incur large computer roun
off errors. The small magnitude of P(I [0,t)ul) is due to the
many possible trajectories the system could follow.

To overcome this problem, linear quantum trajector
@13# were used. Linear quantum trajectories arise if we
sume an ostensible distribution for the resultr, L (r ) @8#.
TheseL (r ) are independent ofl and the only condition
they must satisfy is that they add to one. With these ost
sible probabilities, the linear stochastic master equat
~LSME! is derived from@8#

r̄ I ,l~ t !5 r̃ I ,l~ t !/L ~ I [0,t)!, ~2.15!

where the ostensible probability for gettingI [0,t) is

L ~ I [0,t)!5L ~r k!L ~r k21!•••L ~r 1!. ~2.16!

The actual probability of gettingI [0,t) is @8#

P~ I [0,t)ul!5L ~ I [0,t)!Tr@ r̄ I ,l~ t !#. ~2.17!

Substituting P(I [0,t)ul) into Eq. ~2.14! we obtain

P~luI [0,t)!5
Tr@ r̄ I ,l~ t !#P0~l!

E Tr@ r̄ I ,l~ t !#P0~l!dl

. ~2.18!

From Eq.~2.18! we see that to calculate P(I [0,t)ul), the norm
of the linear conditioned state@Eq. ~2.15!# is needed. The
order of magnitude of this norm is dependent on the ost
sible probability we chose. By Eq.~2.17!, if L (I [0,t)) is cho-
sen to be of the same order as the true probability, this n
will be of order unity. This avoids the problem of large com
puter roundoff error.

C. Quantifying the information gained

One of the main aims of this paper is to classify the
formation gained about the unknown parameter. The po
rior probability calculated by Eq.~2.18! contains all the in-
5-3
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JAY GAMBETTA AND H. M. WISEMAN PHYSICAL REVIEW A 64 042105
formation aboutl for a particular record. However th
question remains, how can this information be quantifie
Two measures were investigated. The first is the varianc

VI5E P~luI [0,t)!l
2dl2S E P~luI [0,t)!ldl D 2

.

~2.19!

The second is the information gain,DI I defined as@14#

DI I5E P~luI [0,t)!log2 P~luI [0,t)!dl

2E P0~l!log2 P0~l!dl. ~2.20!

This measures the number of bits of information gained
the observer about the parameterl. It can be thought of as
the negative change in entropy ofl. The greatest informa
tion gain corresponds to the transition from a flat~most dis-
ordered! distribution to a peaked~most ordered! distribution.

These parameters give an indication of the quality
knowledge gained by an observer, for a particular run of
experiment. To characterize a particular measurem
scheme, it is necessary to calculate the ensemble averag
VI and DI I , which we denote asV and DI . The ensemble
average of a parameterAI is defined as

A5E@AI#5 (
I [0,t)

AIP~ I [0,t)!5 (
I [0,t)

E AIP~ I [0,t)ul!P0~l!dl.

~2.21!

Numerically, this is done by picking a truel, l true , ran-
domly from P0(l), and then simulating a quantum trajecto
for this l true, yielding I [0,t) . This gives a typical record a
would be obtained experimentally. ThisI [0,t) is then used to
calculate Tr@ r̄ I ,l(t)# for all l ’s in the range of P0. This al-
lows the calculation of P(luI [0,t)), with this probability the
parameter of interestAI can be calculated. By storing thi
value and repeating the above proceduren@1 times, the
ensemble averageA of AI is obtained.

D. Best estimate of conditioned state

Another aim of this paper was to determine the best e
mate of the state given the knowledge we have obtai
from a measurement. In Eq.~2.12! we defined the doubly
conditioned state that arose when the state was conditio
on both I [0,t) and l. From Eq. ~2.12! there are two bes
estimate states that can be calculated. They arerl andr I and
can be interpreted as the best estimate state, whenl or I [0,t)
is known, respectively. They are defined as follows:

rl~ t !5 (
I [0,t)

r̃ I ,l~ t !, ~2.22!

r I~ t !5

E r̃ I ,l~ t !P0~l!dl

E P~ I [0,t)ul!P0~l!dl

. ~2.23!
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It should be noted that the average of each of these states
give the same average stater(t).

Equation ~2.22! describes the best estimate state t
arises when the dynamical parameter is known and
record is not~i.e., a nonmonitored system!. This obeys mas-
ter equationṙl5Llrl . Of more interest to us is the bes
estimate state described by Eq.~2.23!, which is the state
conditioned on some observed recordI [0,t) , when the true
value ofl is unknown.

In calculatingr I , if we use Eq.~2.23!, we again run into
the problem that the magnitude ofr̃ I ,l(t1dt) will typically
be very small. Again this is overcome by using linear qua
tum trajectories, replacing Eq.~2.23! by

r I~ t !5

E r̄ I ,l~ t !P0~l!dl

E Tr@ r̄ I ,l~ t !#P0~l!dl

. ~2.24!

To quantify the information gained about the state, the pu
(pI) can be determined,

pI5Tr@r I~ t !2#. ~2.25!

The ensemble average purity (p5E@pI#) will give us an in-
dication of how well the measurement scheme is at prod
ing pure states. One might expect that a highp would corre-
spond to a highDI . However, it will be seen that this is no
true.

III. THE SYSTEM

The system we are considering is a classically driven tw
level atom, immersed in the vacuum. With no monitoring
the vacuum field, the average state evolution when all
dynamical parameters are known is given by the ma
equation. The Lindblad form@15# of the master equation fo
the two-level atom, in the interaction picture~with respect to
the free evolution of the atom! is @16#

ṙ~ t !52
iV

2
@sx ,r~ t !#1gD@s#r~ t !5LVr~ t !. ~3.1!

HereV is the rabi frequency,g is the spontaneous emissio
rate,s is the lowering operator,sx is the usual Pauli matrix
and D is the superoperator that represents damping of
system into the environment. It is defined as@17#

D@a#r5ara†2 1
2 $a†ar1ra†a%. ~3.2!

The solution of this equation can be described by the Blo
vectors (x,y,z), with r written as

r5 1
2 ~11xsx1ysy1zsz!. ~3.3!

The purityp is equal to

p5 1
2 ~11x21y21z2!, ~3.4!
5-4
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Using this Bloch representation the solution of Eq.~3.1! is a
state that rotates about thex axis at frequencyV, with damp-
ing in all variables towards the steady-state value of

xss50, yss5
2Vg

2V21g2
, zss5

2g2

2V21g2
. ~3.5!

The most obvious choice for the unknown dynamical para
eter isV, as indicated by the subscript inLV in Eq. ~3.1!.
This can be physically motivated as follows: if we placed
laser-cooled atom~with no center-of-mass motion! in a clas-
sical standing field, then theV it would experience is

V5Vmaxsin~kx!, ~3.6!

wherek is the wave vector for the classical field andx is the
position of center of mass of the atom. We assume that
placement of the atom in the field is not biased in any w
That is, in one wavelengthl of the field the atom position
distribution is given by P0(x)51/l. Using Eq.~3.6!, P0(x)
can be transformed into a probability distribution inV space,

P0~V!5
1

pAVmax
2 2V2

. ~3.7!

This is the prior distribution forV, that will be used in the
rest of this paper, withVmax510g. Along with this prior
distribution the initial condition that we will use for ou
simulations, unless otherwise stated, isr I ,V(0) satisfying

LVr I ,V~0!50. ~3.8!

That is, we will assume the initial state is the steady state
the general master equation Eq.~3.1!.

IV. RESULTS

The results of this paper are broken down into five s
sections, each corresponding to one of the five measurem
schemes investigated.

A. Direct detection

The first measurement scheme investigated was direc
tection. This involves the detection of all the fluorescen
emitted by the atom as shown in Fig. 1. Continuous mo
toring with this detection scheme will yield either one of tw

FIG. 1. A schematic for direct detection. The atom is placed
the focus of a parabolic mirror so that all the fluorescence emi
by the atom is detected by the photodetector.
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results for each intervaldt, a detection~labeled by a 1! or no
detection~labeled by a 0!. Thus I [0,t) will be a string of 0’s
and 1’s. The measurement operators for each of these re
are @8#

M1~dt!5Adtg s, ~4.1!

M0~dt!512S i
V

2
sx1

g

2
s†s Ddt. ~4.2!

It can be shown that these measurement operators satisf
completeness condition, Eq.~2.5!. Using these measuremen
operators and Eq.~2.8!, a SME for direct detection can writ
ten as

dr I ,V5dN~ t !G@Adtg s#r I ,V2dtHF i
V

2
sx1

g

2
s†sGr I ,V ,

~4.3!

whereG andH are the nonlinear superoperators defined
arbitrarya andr by

G@a#r5
ara†

Tr@ara†#
2r, ~4.4!

H@a#r5ar1ra†2Tr@ar1ra†#r. ~4.5!

In Eq. ~4.3!, the variabledN is a stochastic increment tha
equals one if there is a detection in the intervaldt and equals
zero otherwise. Formally,dN is defined by

dN~ t !25dN~ t !, ~4.6!

E@dN~ t !#5P~1!5dtg^s†s&. ~4.7!

By averaging Eq.~4.3! and using Eq.~4.7!, it is easily seen
that the SME is an unraveling of the general master equat
Eq. ~3.1!. A typical trajectory of this SME is shown in Fig. 2
~solid line!, for V55g. It is observed that thex component
is zero, and they andz oscillate in quadrature. This can b
understood physically as the state is dominated by theVsx/2
Hamiltonian, with detections occurring stochastically a
cording to Eq.~4.7!. After each detection the state collaps
to the ground state (x50, y50, andz521).

To consider the case whenV is unknown, a LSME had to
be developed. Using the direct detection measurement op
tors and Eq.~2.15!, with L(r ) defined as

L~1!5edt512L~0!, ~4.8!

wheree is an arbitrary parameter, the LSME is

dr̄ I ,V5dN~ t !Ḡ@Adtg s#r̄ I ,V

2dtH̄F i
V

2
sx1

g

2
s†s2

e

2G r̄ I ,V . ~4.9!

The Ḡ andH̄ linear superoperators are defined as

t
d

5-5
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Ḡ@a#r̄5
ar̄a†

edt
2 r̄, ~4.10!

H̄@a#r̄5ar̄1 r̄a†. ~4.11!

To obtain the general master equation from Eq.~4.9!,
E@dN#5L(1) has to be used. However, to determine
parameters of interest to us, namelyr I(t) and P(VuI [0,t)),
Eq. ~4.9! is numerically simulated for all possibleV in
P0(V) with dN specified byI [0,t) . This record would ideally
be obtained experimentally but for the purpose of this pa
it is calculated by numerically evaluating Eq.~4.3! for a
known V, which we will refer to asV true. This I [0,t) is then
used in Eq.~4.9! to generate Tr@ r̄ I ,V# for all theV ’s between
2Vmax andVmax. Then with Eq.~2.24! and Eq.~2.18! one
can obtain bothr I(t) and P(VuI [0,t)).

For aI [0,t) based onV true55g the best estimate state an
the posterior distribution where calculated and are show
Fig. 2 and 3, respectively. It is observed that, in contras
the knownV case, the best estimate ofy is identically zero.
This is because positive and negativeV are initially equally
likely, so thatyss in Eq. ~3.5! averages to zero. Moreover, th
sign of V is not determinable by this measurement sche
because the rate of detections depends only onz, which is
independent of the sign ofV.

Another difference apparent with the unknownV case is
that z oscillates with a different frequency to the knownV
case, in this case a faster frequency@since P0(V) is peaked at
the end pointsuVu5Vmax510g#. However as time increase
its frequency tends to that of the known case. This is du
the fact that for direct detection the rate of detections is
pendent on the magnitude ofV, so as time goes on on
would expect to gain more information about the magnitu
of V.

FIG. 2. The best estimate states whenV is known ~solid line!
and unknown~dotted line! for V true55g when direct detection is
used. Time is measured in units ofg21, x, y, andz are the bloch
vector components and the purityp5

1
2 (11x21y21z2). The initial

states are the steady state for the known case and the average
state for the unknown case.
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These interpretations of the conditioned dynamics
confirmed in Fig. 3. With increasing time, the posterior d
tribution localizes at6V true. The mean is always zero an
thus is not an unbiased estimator ofV. The reason that the
magnitude is determinable and the sign is not, can be for
lated as follows. In the Bloch representation of Eq.~4.9!,
with the transformationy→2y, V→2V the equations stay
invariant. Since this transformation changes the direction
rotation around thex axis, we will call it the rotation trans-
formation.

With an indeterminable direction of rotation and this me
surement scheme, it can be seen that the best estimate
will never become more pure than a state that is a mixture
two states that rotate is opposite directions around thex50
great circle of the Bloch sphere. Thus the best estimate s
oscillates up and down thez axis of the Bloch sphere.

We turn now to quantifying the measurement schem
ability to gain knowledge, by numerically determining th
ensemble average purity,V andDI . These ensemble average
were calculated forV true’s weighted on the prior distribution
Eq. ~3.7!. These numerical simulations are depicted in Fig
for two initial states; one is the steady state~solid line! and
the other is the ground state~dotted line!. It is observed that
in both cases the average purity of the state never attains
with the purity in the second case initially decreasing fro
one. The long time purity (.0.75) is due the best estimat
being a mixture of two states as explained above. This fig
can be obtained analytically, if we make the following tw
assumptions. The first is thatV true@g. This is valid as P0(V)
from which V true is drawn is peaked at6Vmax, and in our
calculationsVmax@g. The second assumption is that in th
long time limit the posterior distribution localizes o
6V true, which is what is seen in Fig. 3. With these tw
assumption the long-time best estimate state in Bloch re
sentation will be

x50, y50, z.2cosV true~ t2t last!, ~4.12!

where t last is the time of the last jump, which is typically
more than one rabi cycle beforet. With this state the averag
purity ~for the long time limit! can be estimated as

ady

FIG. 3. A plot of a typical P(VuI [0,t)) when V true55 for the
direct detection scheme.V is measured in units ofg and time is
measured in units ofg21.
5-6



en
ll
o

e,

itia
ro
rs
n
-

t
st
ta
e
t-
e

at

t

e
c

n
tec-

are

m

te

he

nce
w
the

STATE AND DYNAMICAL PARAMETER ESTIMATION . . . PHYSICAL REVIEW A 64 042105
p5
V

2pE0

2p/V11z~s!2

2
ds5

3

4
. ~4.13!

From Fig. 4, it is also observed that the simulated
semble average varianceV is approximately constant for a
time. In fact, given that the no information about the sign
V is determinable, and that the initial distributionP0(V) is
symmetric, it is easy to prove thatV is exactly constant.

For the third parameterDI , it is observed that, on averag
direct detection yields information aboutV as time in-
creases, for both initial states. It is observed that the in
slope ofDI is zero for the ground state, while it is nonze
for the initial steady state case. The initial flatness in the fi
case is due to the fact that if the system starts in the grou
the rate of detections~proportional to the excited state com
ponent! scales as (V truet)

2, and with out any detections i
would not be possible to gain any information. By contra
for the steady state case there will be some excited s
fraction ~depending onV) and thus a finite detection rat
even att50. Figure 4 also show that, after the initial fla
ness, theDI in the first case rapidly overtakes that in th
second case. This jump inDI occurs at roughlyt51/Vmax,
which is when one would expect a significant excited st
fraction to have developed~recall that P0(V) is sharply
peaked atV56Vmax).

B. Adaptive detection

The second measurement scheme investigated was
adaptive scheme of Wiseman and Toombes@9#. For a known
V, this measurement scheme is designed to keep the a
jumping between two fixed states. ForV large, these fixed
states turn out to be close tosx eigenstates. This two-stat
jumping is achieved by coherently mixing the fluorescen
emitted from the atom with a weak local oscillator~LO! via
a low-reflectance beam splitter~see Fig. 5!. The reflected

FIG. 4. The ensemble average (n51000) of the purity, variance
and DI when direct detection is used, for two initial states, t
steady state~solid! and ground state~dotted!. Time is measured in
units of g21.
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amplitude m of the local oscillator is switched betwee
6 1

2 Ag each time a detection is registered by the photode
tor.

For this detection scheme the measurement operators
@9#

M1~dt!5Adtg ~s1m!, ~4.14!

M0~dt!512S i
V

2
sx1

g

2
s†s1mgs1

gm2

2 Ddt.

~4.15!

These measurement operators result in a SME of the for

dr I ,V5dN~ t !G@Adtg ~s1m!#r I ,V2dtH@z#r I ,V ,
~4.16!

where

z5 i
V

2
sx1

g

2
s†s1mgs1

gm2

2
. ~4.17!

Using the same ostensible distributionL (r ) as in direct de-
tection, the LSME is

dr̄ I ,V5dN~ t !Ḡ@Adtg ~s1m!#r̄ I ,V2dtH̄@ z̄ #r̄ I ,V ,
~4.18!

where

z̄5 i
V

2
sx1

g

2
s†s1mgs1

gm2

2
2

e

2
. ~4.19!

Figure 6 shows the best estimate state for a known~solid!
and unknownV ~dotted!, with V true55g. It is observed that
with the knownV case after the initial transients, the sta
jumps between the two fixed states@9#

x5
72V2

2V21g2
, y5

2Vg

2V21g2
, z5

2g2

2V21g2
.

~4.20!

FIG. 5. A schematic for adaptive detection. The fluoresce
emitted by the atom is coherently mixed with a weak LO via a lo
reflectivity beam splitter. The electro-optic modulator reverses
amplitude of the LO every time the photodetector fires.
5-7
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For the unknownV case they component averages to zer
and thex andz components both appear to be slightly diffe
ent to the knownV case.

Similarly to the direct detection case, a better understa
ing of this state can be obtained by considering P(VuI [0,t)).
This is shown in Fig. 7 and it can be seen that as ti
increases under this adaptive measurement, the typical
terior probability distribution P(VuI [0,t)) scarcely changes
from P0(V). This is not unexpected, as for this detecti
scheme it can be shown that at steady state the jumps
Poissonian, with rateg/4. That is, the jumps are independe
of V @9# and hence yield no information about it. Sinc
P(VuI [0,t))'P0(V), we can use this approximation to obta
analytically an indication of the best estimate state by so
ing Eq. ~2.23!. For this detection scheme this is simply th
mean of Eq.~4.20! under the distribution P0(V). This gives

x57S 12
g2

A2Vmax
2 1g2D , y50, z5

2g

A2Vmax
2 1g2

.

~4.21!

FIG. 6. The best estimate states when adaptive detection is u
Details are as in Fig. 2.

FIG. 7. A plot of P(VuI [0,t)) for the adaptive scheme. Details a
as in Fig. 3.
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Comparing this with the numerical simulation it is observ
that they agree very well.

To quantify this detection scheme, the ensemble aver
of the variance, purity andDI were numerically calculated
and are shown in Fig. 8. The purity rapidly becomes, a
remains, relatively high. This is because the best estim
state of Eq.~4.21! is the same no matter whatV true is chosen.
For Vmax510g the numerical value of the stationary puri
is 0.934 and by using Eq.~4.21! an analytical value of the
purity can be obtained,

p511
g2

g212Vmax
2

2
g

Ag212Vmax
2

. ~4.22!

For Vmax510g this gives a value of 0.934, which is equal
the numerical value.

Since this state has a high purity one might expect that
unknown parameter must also be well defined. However
is not true as already discussed. This lack of knowled
aboutV is seen in Fig. 8. Like direct detection, the sign ofV
cannot be determined so the average variance remains
cisely constant. However unlike direct detection, the inf
mation gain is bounded, with a maximumDI of less than
0.06 bits.

An interesting point to note is this scheme would be w
suited to estimatingg ~if there were some uncertainty in tha
parameter! even ifV was also uncertain. That is because t
detection rate is proportional tog, almost independent ofV.
Of course this would require the local oscillator amplitude
be adjusted from an initial guess according to the best e
mate ofg.

C. Homodynex detection

To perform a homodyne detection experiment, an arran
ment similar to the adaptive scheme is used. That is,
output flux from the atom is mixed with a resonantly tun
LO by a beam splitter~see Fig. 9!. However in this scheme
there is no feedback and the amplitudeb of the LO is as-

ed.
FIG. 8. The ensemble average (n51000) of the purity, variance

and DI when the adaptive detection technique was used. Note
DI the scale has been change when compared to Fig. 4.
5-8
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sumed to be infinite (b→`). Because of this, there will be
many detections in the intervaldt. Each detection cause
only an infinitesimal change in the system state, so the e
lution of the system can be described by a diffusive SME
eachdt there will be a continuous currentI registered inI [0,t)
rather than a detection or no detection. SinceI is a continu-
ous variable we can define a measurement operatorMI a
continuous function ofI, to represent this measureme
scheme,

MI5AY IF12S i
V

2
sx1

g

2
s†s2Ag se2 iFI DdtG .

~4.23!

HereF is the phase of the local oscillator and

Y IdI5
1

A2p/dt
e2(1/2)I 2dtdI ~4.24!

is a Gaussian probability measure. It is easily shown that
continuous measurement operator satisfies the complete
condition, Eq.~2.5!, where the sum is replaced by an integ
over I between6`.

With this continuous measurement operator the SME
the Itô form is @18#

dr I ,V5LVr I ,Vdt1Ag H@se2 iF#r I~ Idt2Tr@se2 iFr I ,V

1r I ,Vs†eiF#dt!, ~4.25!

whereI is the current element for the intervaldt and is equal
to the difference between the number of detections at the
photodiodes divided by the intensity of the field. By usi
Eq. ~4.23! and Eq.~2.3! the probability of gettingI for the
intervaldt can be calculated. This gives a Gaussian distri

FIG. 9. A schematic for the three detection schemes, homod
of thex quadrature, homodyne of they quadrature, and heterodyn
For the homodyne schemes the LO is resonantly tuned to the at
frequency, with a phase of zero andp/2 for the x and y schemes,
respectively, whereas for the heterodyne it is detuned by
amountD.
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tion with a mean equal toAg ^se2 iF1s†eiF& and a vari-
ance ofdt21. Thus, I will be a Gaussian random variabl
~GRV! of the form

I 5Ag Tr@se2 iFr I1r Is
†eiF#1j~ t !, ~4.26!

wherej(t)5dW(t)/dt represents Gaussian white noise, a
is formally defined as@21#

E@j~ t !#50, E@j~ t !j~ t8!#5d~ t2t8!. ~4.27!

For the LSME we take the ostensible probability for t
current to be equal to that which would arise from the L
alone. This results inL (I )5Y I so thatI is ostensibly a GRV
with mean zero and variancedt21, like j(t). The LSME in
Itô form is @18#

dr̄ I ,V5LVr̄ I ,Vdt1Ag H̄@se2 iF#r̄ I ,VIdt. ~4.28!

It can be seen that both the LSME and the SME reduce
Eq. ~3.1! when the ensemble average is taken. Similar to
previous schemes, to determine an unknownV, I [0,t) is gen-
erated by the SME for a presetV, V true, which may then be
‘‘forgotten.’’ The LSME is then used to generate bothr I(t)
and P(VuI [0,t)) for the predetermined recordI [0,t) .

For homodynex quadrature measurement, theF of the
LO is set to zero~as x5^s1s†&). With this phase, and
V true55g, the best estimate states for a known and unkno
V are shown in Fig. 10. It is observed that for the knownV
case, the state seems to localize itself relatively fast into p
states that have a largex contribution, and small oscillations
in the y andz directions. By contrast, whenV is unknown,
the best estimate state still contains a largex contribution,
but they is strictly zero and the amplitude of thez oscilla-
tions is reduced. As in the previous cases, this zeroy com-
ponent can be understood by consideringP(VuI [0,t)), shown
in Fig. 11. It is seen that, like direct detection, this measu
ment scheme has an even posterior distribution that local
at 6V true. This is again due to the stochastic Bloch equ
tions being invariant under the previously considered ro

e

ic

n

FIG. 10. The best estimate states for the homodynex scheme.
Details are as in Fig. 2.
5-9
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tional transformation. However, the rate at which this loc
ization occurs is much slower than under direct detection

The slower rate of information gain is confirmed with th
calculation of the ensemble average ofDI , shown in Fig. 12.
It is seen that within 50g21 units of time,DI for homodyne
x is about half that of direct detection. Physically this com
about because, for the system we are investigating, the
derlying dynamics cause the states to rotate around thex axis
with frequencyV true. The measurement scheme tends
produce states oriented mainly in the6x directions. This can
be understood from the measurement effectFI , which, using
Eq. ~2.4!, can be shown to be

FIdI5
1

A2p/dt
exp@2 1

2 ~ I 2sx!
2dt#dI. ~4.29!

This effect is a Gaussian with a mean equal to thesx quadra-
ture operator and variancedt21. Thus, it is not a sharp mea
surement ofsx . Thus, for a measurement scheme that ma
the conditioned state mainly oriented in the6x directions,

FIG. 11. A plot of P(VuI [0,t)) for the homodynex scheme. De-
tails are as in Fig. 3.

FIG. 12. The ensemble average (n5500) of the purity, variance
and DI when homodynex was used. Time is measured in uni
of g21.
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one would expect that this state would be less affected by
unknownV than a state on thex50 plane as produced b
direct detection. Thus less information aboutV comes out of
the measurement record. In Fig. 11 it is observed that
ensemble average of the purity of this state increases qui
to about 0.75, then increases only slowly afterwards. T
quick increase is also a result of the state becoming predo
nantly 6x oriented. ~similar to the adaptive detectio
scheme! and the slow increase is due to the slow increase
the knowledge ofV ~similar to direct detection!. As with
direct detection, the system state will never become fu
pure. This is due to the double peaks in P(VuI [0,t)), which
ensures they component of the state always averages to ze

D. Homodyney detection

Setting theF of the local oscillator top/2 allows mea-
surement of they quadrature~asy5^2 is1 is†&). The best
estimate states for the known and unknownV are shown in
Fig. 13, for V true55g. It is seen that whenV is known
~solid! this measurement scheme makes the state coa
rotate around the Bloch sphere with a purity of one. WhenV
is unknown~dotted line!, Fig. 13 shows that, unlike the pre
vious schemes, they component does not average to zero.
time increases the oscillations in they andz components for
the unknownV case gradually converge to those for t
knownV case. This suggests that this scheme can determ
V true. This is confirmed by the calculation of P(VuI [0,t))
shown in Fig. 14. The ability of this scheme to distingui
the sign ofV can be physically understood by consideri
the Bloch representation of Eq.~4.28!. These stochastic
equations arenot invariant under the rotation transformatio

To understand how this scheme reduces the uncertain
V, consider the effect for this measurement scheme

FIdI5
1

A2p/dt
exp@2 1

2 ~ I 2sy!2dt#dI. ~4.30!

That is, FI is an unsharp measurement ofy. Now y is a
variable that is directly affected byV true, and indeed the sign

FIG. 13. The best estimate states for homodyney measurement.
Details are as in Fig. 2.
5-10
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of y reverses if the sign ofV reverses. Even though in eac
intervaldt, y is measured unsharply, over time this detect
scheme will result in a narrowing of our knowledge ofV,
until infinite time where it would be fully known. This is
further confirmed by the calculation of the ensemble av
ages of the three parameters, purity,V andDI ~Fig. 15!. It is
observed that the purity of this state increases up to one
V in V reduces substantially in the 50g21 units of time and
DI increases to a value larger than that for all other schem

E. Heterodyne detection

The last detection scheme considered uses the hetero
technique. This detection scheme uses the same arrange
as the homodyne~see Fig. 9!, with the only difference being
that the LO is now detuned from the atom by an amountD.
This effectively results in the LO having a time varyin
phase ofDt with respect to the driving field. Since the fie
amplitude is still assumed to be infinite as in the homody
case,I [0,t) will comprises of a string of real numbersI. How-
ever, by coarse-graining to obtain the Fourier component
v56D, a complex photocurrent is obtained@17#. The con-

FIG. 14. A plot of P(VuI [0,t)) for homodyney measurement.
Details are as in Fig. 3.

FIG. 15. The ensemble average (n5500) of the purity, variance
andDI when homodyne detection of they quadrature was used.
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tinuous set of measurement operators after the coarse g
ing approximation (Ddt@1 but gdt!1) are

MI5AY IF12S i
V

2
sx1

g

2
s†s2Ag sI * DdtG ,

~4.31!

where

Y Id
2I 5

dt

p
e2uI u2dtd2I . ~4.32!

It is easily shown that these measurements operators sa
the completeness condition, Eq.~2.5!. To do this, one must
integrate over the plane of the complex currentsI.

As with homodyne, the sample path forI can be obtained
from calculating the probability of gettingI in the interval
dt. Doing this, one obtains

I 5Ag @^s&1z~ t !#, ~4.33!

wherez(t) is a complex Gaussian white noise term, which
formally defined as@21#

E@z~ t !z~ t8!#5E@z~ t !#50, ~4.34!

E@z* ~ t !z~ t8!#5d~ t2t8!. ~4.35!

Using the above measurement operators and Eq.~4.33!, the
heterodyne SME in Itoˆ form is @18#

dr I ,V5Ag ~sr I ,V2^s&r I ,V!~ I * dt2Ag ^s†&dt!

1Ag ~r I ,Vs†2^s†&r I ,V!~ Idt2Ag ^s&dt!

1LVr I ,Vdt. ~4.36!

For the LSME we again assume that the ostensible proba
ity is that due just to the LO, which results in a heterody
currentI with the same statistics asz(t). With this complex
current the ostensible probabilityL(I ) is equal toY I . This
gives a LSME in Itoˆ form of @18#

dr̄ I ,V5LVr̄ I ,Vdt1Ag sr̄ I ,VI * dt1Ag r̄ I ,Vs†Idt.
~4.37!

Using V true55g, the best estimate state for known and u
known V are shown in Fig. 16. It is observed that for
knownV, the state contains attributes of both the homody
x andy measurement schemes. By this we mean that the s
tends to have a distinctx components, while keeping th
coarse rotations of the homodyney scheme. This is not un
expected as heterodyne is equivalent to simultaneous ho
dynex andy measurements, each of 50% efficiency@22#. In
the unknownV case it is observed that they component does
not average to zero, suggesting that P(VuI [0,t)) localizes to
V true, which is confirmed by Fig. 17. However, the rate
which P(VuI [0,t)) converges tod(V2V true) is much slower
than that of the homodyney measurement. This is also illus
trated in Fig. 18 as the ensemble averageDI is not as high.
Fig. 18 also shows the ensemble average of the purity
from this figure it is seen that it contains similar properties
5-11
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JAY GAMBETTA AND H. M. WISEMAN PHYSICAL REVIEW A 64 042105
both the homodynex andy schemes. In particular, it has a
initial sharp increase, which is due the state obtaining a la
x component~similar to the homodynex scheme! and as time
goes on the purity increases to one due to the localizatio
P(VuI [0,t)) ~similar to homodyney).

V. DISCUSSION

The results of this paper demonstrate that quantum par
eter and state estimation for a continuously monitored o
system is greatly affected by the measuring scheme. It
observed that as the measurement time increased, som
tection schemes had the ability of both reducing our unc
tainty in the unknown dynamical parameter, and producin
conditioned state of high purity, whereas other schem
could only do one of these, or none~depending on how the
uncertainty in the unknown parameter is quantified!. We re-
emphasize that all of the measurement schemes arise
the same coupling of the system to the environment; all
is different is how the environment is measured.

The system we considered was a two-level atom w
HamiltonianVsx/2, with spontaneous decay rateg. The un-

FIG. 16. The best estimate states, when heterodyne is u
Details are as in Fig. 2.

FIG. 17. A plot of P(VuI [0,t)) for heterodyne detection. Detail
are the same as Fig. 3.
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known dynamical parameter isV, the Rabi frequency. We
began with the atom in its stationary mixed state~depending
on V) and the prior distribution ofV was that appropriate to
an atom at a random point in a standing wave with a ma
mum Rabi frequencyVmax510g. We analyzed five different
measurement schemes, direct detection, a particular ada
scheme@9#, homodyne detection of thex quadrature, homo-
dyne of they, and heterodyne. We can summarize the res
of the paper using four different measures of the effecti
ness of the measurement. The first two relate to the kno
edge obtained aboutV. One is DI l , the long-time (t
@g21) increase in the average information about the para
eterV. The other isVl , the long-time average variance inV.
The next two relate to the knowledge obtained about
system. One ispl , the long-time purity. This measures ho
much is known about the system, given the long-time kno
edge about the unknown parameterV. The other isps , the
short-time (t5 a few g21! purity. This time is long enough
that, if V were known, the system would have been mo
or-less completely purified, but short enough that the ac
amount of information obtained aboutV is small. That is, it
measures how well the measurement can purify the state
spite the large initial uncertainty in the dynamics.

The results of our work is summarized in Table I, usi
the four measures of effectiveness for the five different
tection schemes. Rather than quote figures for these
measures, we use a rating system (! to !!!!), the details of
which are explained in the caption. This allows the results
be taken in at a glance.

From the table it is observed that homodyney ~Sec. IV D!
was the best detection scheme by all measures except fo
short-time purification, for which it was the worst. Both o
these aspects are explained by the fact that this scheme
suressy , the dynamics of which depend strongly onV.
Hence the measurement record contains a lot of informa
aboutV, including its sign~because rotations over the top
the Bloch sphere are different from rotations under the b
tom!. This also enables the purity to approach unity as ti
increases. However, for short times, when little informati
aboutV has been obtained, ay measurement is actually ver

FIG. 18. The ensemble average (n5250) of the purity, variance
andDI for heterodyne detection. Time is measured in units ofg21.
d.
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poor for purifying the state. That is because the measurem
tends to produce states with well-defined values ofy, and
these are states that are very sensitive to the rotation ar
the x axis at rateV. For a poorly knownV, this tends to
make the system state more mixed, so that the purity gr
only as the information aboutV increases.

After homodyney detection, the method that provide
most information aboutV was direct detection~Sec. IV A!.
Under direct detection, the count rate is proportional tosz
11, and~like sy), the dynamics ofsz depend strongly upon
V, due to the Rabi rotations around thex axis. However, in
terms ofsz , rotations around the1x axis from the ground
state are indistinguishable from rotations around the2x
axis. Hence the measurement cannot distinguish the sig
V and there is no change in the ensemble averaged vari
as time increases. As a consequence, the purity saturate
low value. The short time purification is poor also, for
similar reason to that for homodyney detection.

The adaptive detection is almost complementary in
qualities to homodyney detection. As explained in Sec
IV B, it yields almost no information aboutV, because the
rate of detections in steady state is independent ofV. In
particular, it yields no information about the sign ofV, so
the variance is constant. As a consequence, the purity
not approach unity. Nevertheless, it does approach a q
high value, of over 12g/(A2 Vmax), which is 0.93 for

TABLE I. Ratings for the five different detection schemes, f
four different measures. Four!s is the best rating and one! the
worst. ForDI l , any rating above! indicates that the information
aboutV continues to increase with time, with the lower cutoffs f
!!! and !!!! being DI l52.5 and 5 bits, respectively, att
550g21. For Vl , any rating above! indicates a variance inV that
decreases, with the upper cutoffs for!!! and !!!! being Vl

5g2 and 10g2, respectively, att550g21. For pl , a rating above
!! indicates a purity that continues to increase with time. F
schemes where the purity saturates, the lower cutoff for!! is pl

50.9. For schemes where the purity continues to increase,
lower cutoff for!!!! is pl50.95 att550g21. Finally, for ps , the
lower cutoffs for !!, !!!, and !!!! are, respectively,ps

50.65,0.75,0.85 att53g21. In all casesVmax510g.

Detection schemes
Measure Direct Adapt Homox Homo y Hetero

DI l !!! ! !! !!!! !!!

Vl ! ! ! !!!! !!!

pl ! !! ! !!!! !!!

ps ! !!!! !!! ! !!
ry

m

04210
nt

nd

s

of
ce

at a

s

es
ite

Vmax510g. This is because the conditioned states are,
largeV, asymptotically independent ofV, as they approach
sx eigenstates. This explains why the adaptive scheme g
the best results for short-time purification: the condition
states are almost unaffected by the uncertainty inV.

Homodynex detection~Sec. IV C! is in many ways simi-
lar to the adaptive scheme, and this is readily understand
since it would be expected to produce conditioned sta
tending towardssx eigenstates. Like adaptive~and direct!
detection, the sign ofV is indeterminable so the variance
constant. Hence the final purity does not approach unity.
though its asymptotic value is not as high as that for adap
detection, it is higher than that for direct detection. This is
expected, since the conditioned states, being imperfectly
calized towards thex eigenstates, are still affected byV. This
also explains why the initial purification is not quite as go
as for adaptive detection, and why information continues
be gained~albeit slowly! as time increases.

The final scheme, heterodyne detection~Sec. IV E!, is
most easily understood by viewing it as an equal mixture
homodynex and homodyney detection, which is in fact a
completely rigorous viewpoint. All of the ratings for hetero
dyne detection are intermediate between those for the
homodyne schemes.

In conclusion, we have shown that gaining knowled
about an unknown dynamical parameter by monitoring
system is a quite different phenomenon from gaining kno
edge about the system itself. We have also distinguished
ferent sorts of knowledge acquisition with distinct charact
istics: for the unknown parameter, information gain~in bits!
versus reducing the variance; and for the system, short-t
purity gain versus long-time purity gain. The ability to a
quire knowledge in these various ways is extremely sensi
to the choice of monitoring scheme~which does not affect
the average evolution of the system!. For the system we in-
vestigated, explaining the particulars of this sensitivity d
pends upon a detailed understanding of the conditional
namics of the system. Our discoveries may have impor
implications for the suitability of different quantum
feedback-control techniques@23,24# in experimental systems
with unknown dynamical parameters. Another direction
future work could be to investigate the effect of realis
imperfections in the detection schemes on state and pa
eter estimation in open quantum systems.
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