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State and dynamical parameter estimation for open quantum systems
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Following evolution of an open quantum system one requires full knowledge of its dynamics. In this paper
we consider open quantum systems for which the Hamiltonian is “uncertain.” In particular, we treat in detail
a simple system similar to that considered by Mabuychiant. Semiclass. Op8, 1103(1996 |: a radiatively
damped atom driven by an unknown Rabi frequeficyas would occur for an atom at an unknown point in a
standing light wave By measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acqui-
sition (quantified by the posterior distribution fé, and the conditional purity of the system, respectiyele
quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain
depend strongly on the type of monitoring scheme. We compare five different detection sdidinees
adaptive, homodyne of thequadrature, homodyne of thyequadrature, and heterodynesing four different
measures of the knowledge gd®hannon information abo®?, variance in(}, long-time system purity, and
short-time system purily
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[. INTRODUCTION that escape through one of the cavity mirrors. Mabuchi used
Bayesian statistics to determine the posterior probability dis-
Quantum parameter estimation is a well-established aretibution for the Rabi frequency. This represents the knowl-
[1,2], which is usually formulated as follows. A known quan- edge the experimenter would have about the Rabi frequency
tum state enters an apparatus that performs an operation given a particular(typical) measurement record. The mea-
the state. The operation, which is usually unitary but neecgurement is continuous in timenonitoring because in any
not be[3,4], is parametrized by one or more unknown pa-instant of time a photon may or may not be detected.
rameters. The goal is to estimate these parameters by making In this paper we are concerned with the same question,
a measurement on tiienknown output state. Except in spe- namely, how would an experimenter gain knowledge of an
cial cases, it is not possible precisely to find out the unknowrnunknown dynamical parameter from the measurement record
parameters from a measurement on a single system. Rathegsulting from monitoring the system. We even choose a
the operation and measurement must be performed repeatimilar (but even simplerquantum system to that of Ref.
edly, on a sequence of identically prepared quantum systemfs], namely, an atom driven by a classical field of unknown
There is a trivial sense in which it is possible to obtain Rabi frequency. However, our analysis goes beyond, and has
complete information about the unknown parameters from additional aims to that of Ref5] (although we should note
single system. That is by taking the output state after thehat extensions similar to the first three outlined below were
measurement, and using it as the next input state, havinguggested in a footnote of that work
perhaps transformed it first. If the transformation required is  First, we consider the entire ensemble of possible mea-
as difficult as preparing a new system from scratch, thesurement records and parameter values, rather than just one
there is nothing to be gained by reusing the same systentypical) measurement record from one parameter value.
However, this scenario of repeated measurements on a single Second, we quantitatively characterize this ensemble by
system is useful pedagogically to make the transition to conealculating the average information gainéd bits) by the
tinuously monitored systems with unknown dynamical pa-measurement, as a function of time.
rameters. This transition is made by considering the limit Third, we consider different ensembles resulting from dif-
where the unknown transformation is infinitesimally differ- ferent measurement schemes on the system. We emphasize
ent from the identity, and the repeat time is infinitesimal.  that the choice of measurement scheme does not affect the
To the best of our knowledge, a theoretical treatment okvolution of the system on average. That is, for all measure-
estimating an unknown dynamical parameter by continuousnent schemes, averaging over the possible results and the
observation of a system was first done by Mabyé&fi His  possible values of the Rabi frequency yields the same equa-
system was a two-level atom coupled to a classically drivenion of motion for the system state. Physically, this is because
electromagnetic field mode in a cavity. The unknown paramthe average behavior of the system is determined by its im-
eter was the position of the atom. This is a dynamical parammediate environment, whereas the different measurement
eter because it determines the strength of the coupling bachemes are effected by detecting the light emitted by the
tween the atom and fieldthe Rabi frequengy The system in different ways. However, the different measure-
continuous monitoring considered was counting the photonment schemes give very different typical posterior distribu-
tions, and very different rates of information gain.
Fourth, and perhaps most distinctively, we consider not
*Email address: J.Gambetta@gu.edu.au just the estimation of the unknown parameter, but also the
"Email address: H.Wiseman@gu.edu.au estimation of the state of the system conditioned on the mea-
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surement result§6]. We do this using the same Bayesian A good place to start is with the measurement formalism
method as for the parameter estimation. In this respect, odpr open systemgl0,11. An open system is simply a quan-
work could be seen as an extension of quantum trajectorfum system that interacts with its environmeqisually
theory[7] to systems with unknown dynamical parameters.called a bath This interaction, like all quantum interactions,
Quantum trajectory theory is simply the application of quan-generally entangles the system and the bath. If we initially
tum measurement theory to continuous monitoring of opefave stategy(ty)) and [m(to)) for the system and bath,
quantum systems, most usually optical systems subject t&spectively, and let these states entangleUgy,+T), a
photodetectiorf8]. unitary operator that includes both the bath-system coupling

If the dynamical parameters for an open quantum systerAnd the system dynamics. An instantaneous rank-one projec-
are known then Conditioning the System on efficient detecllve measurement on the bath will result in the state after the

tion of its emissions is guaranteed to monotonically increaséeasurement being
its average purity in time, as information is gained about the

system. But if dynamical parameters are not known then the I (o + T)) = [r){r{U(to+T)[m(to))|(to))
average purity may decrease, as the different possible evolu- o /p(r) '
tions are summed incoherently. On the other hand, the mea- (2.2

surement record also contains information about these pa-

rameters, so that these parameters become better defingtiere P¢) is the probability of getting the result Equation

over time. Hence one might expect that the system will even2.1 shows that after the measurement the system and the bath

tually become pure anyway. are disentangled, so it is not necessary to continue to de-
It is one of the main results of this paper that this expecscribe the bath in our treatment of the measurement. This

tation is not met. For our system there are some monitoringllows Eq.(2.1) to be reduced to

schemes for which the parameter never becomes sufficiently

well known for the system state to become pure. However, M, (T)|g(t))
there is no simple correlation between the information | (to+T))= T , (2.2
r

gained about the parameténe Rabi frequengyand the final

purity of the system(the atom. One monitoring scheme .

yields almost no parameter information, yet produces, ofvhere M«(T)=(r[U(to+T)|m(to)) is called the measure-
average, a much purer final system state than do othdpent operator and has the fea.ture of coIIapsmg the ot_)serv—
schemes that yield large amounts of parameter informatiorf’ S knowledge of the system into a state that is consistent
Moreover, the rates at which the system state purifies is, fopith the resultr. M (T) is still an operator for the system as
some monitoring schemes, tied to the rate of parameter ind (to+T) is an operator on the tensor product Hilbert space
formation gain, while for other monitoring schemes it is for system and the bath. It is important to note that this

much faster than that. These results can be understood onfjéasurement operator is not necessarily a projector in the
from an appreciation of the conditional dynamics induced bysysStem Hilbert space.

the different detection schemes. The probability P() is given by
The remainder of this paper is organized as follows. In
Sec. Il we present the general formalism for state and dy- P(r) =TI F(T)[(to) ){(to)[], 2.3

namical parameter estimation by monitoring a single system. . , )

We also explain how the parameter information gained igvhereF, is called the effect and is defined as

qguantified. In Sec. Il we introduce the system to which we t

apply our formalism, a two-level atom, driven by an un- Fr(M=M(T)M(T). 2.4

known Rabi frequency, and monitored by having its fluores-

cence detected. Section IV contains the results of our nulhe complete set of effects must sum to one:

merical simulations of the relevant ensemble averages for

five different detection schemes: direct, the adaptive scheme S F(t)=1 2.5

of Wiseman and Toombg8], homodyne of the quadrature, R ' '

homodyne of they quadrature, and heterodyne. Section V

concludes. The above formalism for measurement only considers pure
states, but to take into account initially mixed states B®)
can be rewritten in terms of the state matrix. The state after

Il. GENERAL FORMALISM the measurement is then

A Quantum trajectories pilto+ T)=M(Tp(t)MI(TI/P(r). (2.6
It is well known that quantum trajectories can be used to
describe the evolution of a continuously monitored open sysHere Eq.(2.6) describes the state conditioned on the result
tem[8]. Since here we are continuously monitoring an operand is referred to as amravelingof the average postmea-
system with an unknown dynamical parameter, we begin bygurement statg(t,+ T). That is, the weighted mean of all
giving a brief outline of the standard quantum- the possible conditioned states for one unraveling is equal to
trajectory theory. the average state:
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pia(D)=p A(D/P(I gy |N), (2.12

where P([O,t)|)\) is the probability of gettind o) given\. It

It should be noted that an average state has more then offeobtained by
unraveling. The different unravelings correspond to different ~
sets of measurement operators, arising from different sets of P(ljo|N) =TrLpi A (1)]. (2.13
environment projectorfy )(r| in Eq. (2.1).

As mentioned earlier, quantum trajectories arise when thi
measurement formalism is applied to a continuously moni
tored open systerfi8]. In continuous monitoring, repeated

P(to+T):E[Pr(to+T)]:Z P(r)p:(te+T). (2.7)

e wish to determine the posterior probability distribution
I ()\|I[0,t)) of \, given Iy . This can be achieved using a
Bayesian inference formuld 2].

measurements of duratigi are performed on the state. This P(1100/ M) Po(N)

results in the state being conditioned on a redgyg , which P(\[ljon) = 00 , (2.14
is a string containing the resultg of each measurement. J' P(1105|A) Po(A)dA

Here the subscripk refers to a measurement at tintg '

=kot, with ty=0. Using thislq;), the conditioned state at

time t can be written as where B(\) is the prior distribution for\. For a “good

measurement” of, as time increases, we would expect this
~ prior distribution to converge to & distribution.
PO =P/ P o), 28 Theoretically, Eq.(2.14) is complete for determining
- . _ - P(\|l[oy). However, in general Rfy;|\) is very small and
wherep,(t) is an unnormalized state conditionedlggyy and i humerical simulations it will incur large computer round-

is equal to off errors. The small magnitude of R{y|\) is due to the
~ N N . many possible trajectories the system could follow.
pi()=M; M ="M, p(O)M; ... M; M, . To overcome this problem, linear quantum trajectories

(2.9 [13] were used. Linear quantum trajectories arise if we as-
sume an ostensible distribution for the resyltA (r) [8].
The probability of obtaining this record is TheseA (r) are independent ok and the only condition
_ they must satisfy is that they add to one. With these osten-
P(ljo) =P(r)P(ry_q)---P(ry)=Tr[p;(t)]. (2.10 sible probabilities, the linear stochastic master equation
(LSME) is derived from[8]
To completely achieve continuous monitoring we let the time .
step between measuremend$, tend towards the infinitesi- pia(D)=p \(D)/A (o) (2.195
mal intervaldt. In doing this, Eq.(2.8) defines a stochastic
master equatio(SME), with its ensemble average reproduc- where the ostensible probability for gettihg ) is
ing the usual deterministic master equation. That is,
A (o) =A (r)A (r-q)---A(ry). (2.16

p(t)=2> P10 p1(1) The actual probability of gettingyo is [8]
on _
o P(lonIN)=A (Iion) T p1 (D] (2.17
= t)
o) & Substituting Pijo)|\) into Eq.(2.14 we obtain
Tl pi A (DIPo(N)

f Tl pi (1) IPo(N)dA

= lim M, M, p(O)MT ... M
&tﬁoft/;'fl Myt r,P(OMy, T/t P\ [ljo) =

(2.18
= lim (1+ £&t)V%p(0)

5t—0
From Eq.(2.18 we see that to calculate B{y)|\), the norm

=exp(Lt)p(0), (2.1)  of the linear conditioned stateEq. (2.15] is needed. The
_ _ o order of magnitude of this norm is dependent on the osten-
where for arbitraryp, £ is the Liouvillian superoperator de- sible probability we chose. By EqR.17), if A (0, is cho-

fined asCp=1lim5_o(=M,pM—p)/ét. sen to be of the same order as the true probability, this norm
will be of order unity. This avoids the problem of large com-
B. Quantum trajectories with an unknown parameter puter roundoff error.

We now consider the situation where there is an unknown

dynamical parametex in £, and hence in the measurement €. Quantifying the information gained

operatoradM, . This is done by simply noting that for eagh One of the main aims of this paper is to classify the in-
there will be a conditioned state. This gives a doubly condiformation gained about the unknown parameter. The poste-
tioned state of the form rior probability calculated by E(q2.18 contains all the in-
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formation about\ for a particular record. However the
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It should be noted that the average of each of these states will

question remains, how can this information be quantifiedgive the same average statét).

Two measures were investigated. The first is the variance:

2
| P(x||[o,t))>\dx) .
(2.19

The second is the information gaia], defined a§14]

V,= J PN [1[o)N2dN\ —

Al = f P(M[104)10g2 PN o)) dN

—f Po(N)10gy, Po(A)dA. (2.20

This measures the number of bits of information gained by

the observer about the paramekerlt can be thought of as
the negative change in entropy bf The greatest informa-
tion gain corresponds to the transition from a flaiost dis-
ordered distribution to a peakethmost orderefdistribution.

Equation (2.22 describes the best estimate state that
arises when the dynamical parameter is known and the
record is not(i.e., a nonmonitored systenirhis obeys mas-

ter equationp, =L, p, . Of more interest to us is the best
estimate state described by E@®.23, which is the state
conditioned on some observed recdygy, when the true
value of\ is unknown.

In calculatingp, , if we use Eq.(2.23, we again run into

the problem that the magnitude pf , (t+dt) will typically
be very small. Again this is overcome by using linear quan-
tum trajectories, replacing EQ.23 by

fE,XmPo(x)dx

pi(t)= (2.24

f Tt p1 0 () ]Po(A)dN

These parameters give an indication of the quality ofTo quantify the information gained about the state, the purity
knowledge gained by an observer, for a particular run of thép,) can be determined,

experiment. To characterize a particular
V, and Al,, which we denote a¥ and Al. The ensemble
average of a parametéy; is defined as

A=E[A]=2 APy =

o)

AP(I[on|N)Po(N)dN.
(2.21

Numerically, this is done by picking a true, Ay e, ran-
domly from Py(\), and then simulating a quantum trajectory
for this Nye, Yielding Ijqy) . This gives a typical record as
would be obtained experimentally. Thig, is then used to
calculate Trp, ,(t)] for all A’s in the range of R. This al-
lows the calculation of 9(|I[0,t)), with this probability the
parameter of interesd, can be calculated. By storing this
value and repeating the above proceduoeel times, the
ensemble averagk of A, is obtained.

o)

D. Best estimate of conditioned state

measurement
scheme, it is necessary to calculate the ensemble averages of

pi=Tr (1], (2.29

The ensemble average puritg=€E[ p,]) will give us an in-
dication of how well the measurement scheme is at produc-
ing pure states. One might expect that a higlvould corre-
spond to a highhl. However, it will be seen that this is not
true.

Ill. THE SYSTEM

The system we are considering is a classically driven two-
level atom, immersed in the vacuum. With no monitoring of
the vacuum field, the average state evolution when all the
dynamical parameters are known is given by the master
equation. The Lindblad formil5] of the master equation for
the two-level atom, in the interaction pictuteith respect to
the free evolution of the atoms [16]

. iQ
p(1)= = [op(D]+ ¥DloTp(D) = Lap(t). (31

Another aim of this paper was to determine the best esti-

mate of the state given the knowledge we have obtaine

from a measurement. In E@2.12 we defined the doubly

conditioned state that arose when the state was conditione

on bothl;y and N. From Eq.(2.12 there are two best
estimate states that can be calculated. Theypamndp, and
can be interpreted as the best estimate state, Whenl
is known, respectively. They are defined as follows:

Px(t)ZIE pia(D), (2.22

[0

f};l,)\(t)PO()\)d)\

pi(t)= (2.23

f P(l[0.9|N)Po(X)dX

ﬁereﬂ is the rabi frequencyy is the spontaneous emission
rgte,a is the lowering operatoir, is the usual Pauli matrix
and D is the superoperator that represents damping of the
system into the environment. It is defined[43]
Dlalp=apa’— i{a'ap+pa'a}. (3.2

The solution of this equation can be described by the Bloch
vectors &,y,z), with p written as

p= %(1+X0'X+y0'y+ Zo,). 3.3
The purityp is equal to
p=3(1+x3+y?+7?), (3.9
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results for each intervalt, a detectior{labeled by a Lor no
detection(labeled by a @ Thusl o will be a string of 0’s

Photodetector and 1's. The measurement operators for each of these results
@Y are[8]
M (dt)=dty o, 4.7
Q) 4
Mo(dt)=1—| i oy+ Ea*a dt. 4.2)

FIG. 1. A schematic for direct detection. The atom is placed at
the focus of a parabolic mirror so that all the fluorescence emittedt can be shown that these measurement operators satisfy the
by the atom is detected by the photodetector. completeness condition, ER.5). Using these measurement

operators and Ed2.8), a SME for direct detection can writ-

Using this Bloch representation the solution of E8jl) isa  ten as
state that rotates about tRewxis at frequency?, with damp-
ing in all variables towards the steady-state value of Q Y
IEO'X‘F—O' TP 0,

2
4.3

dp;o=dN()G[ vdty o]p o—dtH
2Qy —9?
Xss= 0, yss:m, Zss:m- (3.5 | |
whereG andH are the nonlinear superoperators defined for
The most obvious choice for the unknown dynamical paramarbitrarya andp by

eter is(), as indicated by the subscript ifi, in Eq. (3.2).

This can be physically motivated as follows: if we placed a apa'
laser-cooled atonwith no center-of-mass motigmn a clas- dlalp= m‘ﬂ, (4.4
sical standing field, then th@ it would experience is P

=0, sinkx), (3.6) H[alp=ap+pa’'~Trlap+pa'lp. (4.5

wherek is the wave vector for the classical field anés the  In Eq. (4.9), the variabledN is a stochastic increment that
position of center of mass of the atom. We assume that thequals one if there is a detection in the interwabind equals
placement of the atom in the field is not biased in any wayzero otherwise. FormallygN is defined by

That is, in one wavelength of the field the atom position

distribution is given by R(x)=1/\. Using Eq.(3.6), Py(x) dN(t)2=dN(t), (4.6)
can be transformed into a probability distribution{inspace,

E[dN(t)]=P(1)=dty(c o). 4.7
1
Po(2)= \/?2 (8.7 By averaging Eq(4.3) and using Eq(4.7), it is easily seen
TN a—

that the SME is an unraveling of the general master equation,

Eqg. (3.1). A typical trajectory of this SME is shown in Fig. 2

(solid line), for 2 =51. It is observed that th& component

is zero, and the and z oscillate in quadrature. This can be

understood physically as the state is dominated byXhg/2

Hamiltonian, with detections occurring stochastically ac-

Lopi.a(0)=0. (3.9 cording to Eq.(4.7). After each detection the state collapses

to the ground statex=0, y=0, andz=—1).

That is, we will assume the initial state is the steady state of To consider the case whéh is unknown, a LSME had to

the general master equation E§.1). be developed. Using the direct detection measurement opera-
tors and Eq(2.15, with A(r) defined as

This is the prior distribution fof), that will be used in the
rest of this paper, with),,,=10y. Along with this prior
distribution the initial condition that we will use for our
simulations, unless otherwise statedpjg,(0) satisfying

IV. RESULTS
_ ) ) A(1)=edt=1-A(0), 4.9
The results of this paper are broken down into five sub-

sections, each corresponding to one of the five measuremegferec is an arbitrary parameter, the LSME is
schemes investigated.

dp, o=dN(t)G[ Vdty olp,
A. Direct detection Lo L volea
. . . . Q €|—
The first measurement scheme investigated was direct de- —dtH iEGXJr%UTa_ SlPo (4.9
tection. This involves the detection of all the fluorescence
emitted by the atom as shown in Fig. 1. Continuous moni- .
toring with this detection scheme will yield either one of two The G andH linear superoperators are defined as
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1 :
» 0
1.5
_io 5 1:0 1:5 20 4
'10 5 10 ‘ 15 20
_10
& 0.5 S SRR ] -10 0 ° t
0 10 15 20 .
t FIG. 3. A plot of a typical PQ|ljo;) when Q=5 for the

direct detection schemé) is measured in units of and time is

FIG. 2. The best estimate states wHenis known (solid line) measured in units of .

and unknown(dotted ling for Q,=5y when direct detection is

used. Time is measured in units @lfl, X, ¥, andz are the bloch These interpretations of the conditioned dynamics are
vector components and the purity=3(1+x?+y?+2?). The initial  confirmed in Fig. 3. With increasing time, the posterior dis-
states are the steady state for the known case and the average stegélyution localizes att (.. The mean is always zero and

state for the unknown case. thus is not an unbiased estimator @f The reason that the
magnitude is determinable and the sign is not, can be formu-
_ a;aT _ lated as follows. In the Bloch representation of E4.9),
glalp= TR (4.10  with the transformatioy— —y, Q— — () the equations stay

invariant. Since this transformation changes the direction of
- rotation around thex axis, we will call it the rotation trans-
H[a]lp=ap+pa’. (4.1)  formation.
With an indeterminable direction of rotation and this mea-
To obtain the general master equation from H4.9), surement scheme, it can be seen that the best estimate state
E[dN]=A(1) has to be used. However, to determine thewill never become more pure than a state that is a mixture of
parameters of interest to us, namely(t) and p@||[0’t)), two states that rotate is opposite directions aroundxth@®
Eq. (4.9 is numerically simulated for all possibl& in great circle of the Bloch sphere. Thus the best estimate state
Po(Q) with dN specified bylq,y . This record would ideally ~oscillates up and down theaxis of the Bloch sphere.
be obtained experimentally but for the purpose of this paper We turn now to quantifying the measurement scheme’s
it is calculated by numerically evaluating E¢.3 for a  ability to gain knowledge, by numerically determining the
known ), which we will refer to ast)e. Thislgy is then ensemble average pur!ty,an_dAl . These ens_emb_le averages
used in Eq(4.9) to generate '[ﬁ,g] for all theQ’s between  Were calculated fof),s weighted on the prior distribution,

_ : Eq. (3.7). These numerical simulations are depicted in Fig. 4
Q nax and Q 2« Then with Eq.(2.24) and Eq.(2.18 one S . L
can rgegtain boTa(t) and PQ|l o). for two initial states; one is the steady stéselid line) and

the other is the ground statdotted ling. It is observed that

For aljqy based orf),.=57y the best estimate state and . both h itv of the stat ttai
the posterior distribution where calculated and are shown if? POIh cases the average purity ot Ihe stale never attains one,
ith the purity in the second case initially decreasing from

Fig. 2 and 3, respectively. It is observed that, in contrast td" . ; . :
the known() case, the best estimate yfs identically zero. one. The long time purity<0.75) is due the best estimate

This is because positive and negatiteare initially equally being a mixture of two states as explained above. This figure

likely, so thatyssin Eq. (3.5 averages to zero. Moreover, the can be thained ar_1a|y_tica||y, if we ma!"? the .following two

sign of ) is not determinable by this measurement scheme?ssumﬂt.'or?; Th? f'(;St IS thﬂtf“?ky'd-rgfés valid a; .B)(Q)

because the rate of detections depends only,amhich is rom whICh 31yre IS drawn IS peake max, @nd in our

independent of the sign d. calculations(Q .., v. The second assumption is that in the
Another difference apparent with the unkno@ncase is long time limit the posterior distribution localizes on

that z oscillates with a different frequency to the known = Oy, .Wh'Ch IS Wh?t IS seen n Fig. 3. W't.h these two

case, in this case a faster frequepsince B(() is peaked at assum.pt|on.the long-time best estimate state in Bloch repre-

the end point$Q| = Q.= 10y]. However as time increases sentation will be

its frequency tends to that of the known case. This is due to x=0, y=0, z=-c0sQudt—tas), (412

the fact that for direct detection the rate of detections is de-

pendent on the magnitude &1, so as time goes on one wheret,, is the time of the last jump, which is typically

would expect to gain more information about the magnitudemore than one rabi cycle befotewith this state the average

of Q). purity (for the long time limi} can be estimated as
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05 i ) ) ) . Photodetector
0 10 20 30 40 50 Y

Variance
(%)
S
-
e}
o]
7]

Weak Local

% 10 20 30 40 50 Oscillator Signal
6p.02 — ' ' ' Processor
poif

0 . . . FIG. 5. A schematic for adaptive detection. The fluorescence
0 10 20 30 40 50 emitted by the atom is coherently mixed with a weak LO via a low
t .. . .
reflectivity beam splitter. The electro-optic modulator reverses the
FIG. 4. The ensemble average= 1000) of the purity, variance amplitude of the LO every time the photodetector fires.
and Al when direct detection is used, for two initial states, the
steady statésolid) and ground statédotted. Time is measured in amplitude . of the local oscillator is switched between

Al

units of y~1. +1./y each time a detection is registered by the photodetec-
tor.
) Q f2ﬂ/01+z(s)2d 3 " [g]For this detection scheme the measurement operators are
P=2x), —2 93z 4.13

From Fig. 4, it is also observed that the simulated en- Mi(dt)=ydty (o+pu), (4.14
semble average variandéis approximately constant for all )
tim.e. In fact,. given that the no info_rrnatign f’;\boyt the si.gn of Mo(dt)=1— i90X+ZUTU+MU+ YH dt.
Q is determinable, and that the initial distributi®(Q) is 2 2 2
symmetric, it is easy to prove th&tis exactly constant. (4.19

For the third parameteX|, it is observed that, on average,
direct detection yields information aboud? as time in-
creases, for both initial states. It is observed that the initial dp, o=dN(1)G[ Vdty (o+ u)]p) o —dtH[L]p) o
slope ofAl is zero for the ground state, while it is nonzero (4.16)
for the initial steady state case. The initial flatness in the first
case is due to the fact that if the system starts in the groundyhere
the rate of detection@roportional to the excited state com- Q )
ponen} scales as (_(ltmet)z, and with out any detections it [=i —UX+ZUTU+,M7¢T+ R 4.17)
would not be possible to gain any information. By contrast, 2 2 2
for the steady state case there will be some excited state . , o o
fraction (depending on()) and thus a finite detection rate Usmg the same os.ten3|ble distributian(r) as in direct de-
even att=0. Figure 4 also show that, after the initial flat- tection, the LSME is
ness, theAl in the first case rapidly overtakes that in the
second case. This jump il occurs at roughly=1/Q .,

These measurement operators result in a SME of the form

dpi o =dN(OGVdty (a+w)1p1.o—dtH[ {p g,

S L : 4.1
which is when one would expect a significant excited state (4.18
fraction to have developedrecall that B({) is sharply where
peaked afl=* O .). )

— .0 y YR €
= — ot AN
5 a'x+2(7 o+ pyo+ 5 T3 (4.19

B. Adaptive detection

|l]:égure 6 shows the best estimate state for a knésohid)
and unknown() (dotted, with Q,=57. It is observed that
oWith the known() case after the initial transients, the state
Jumps between the two fixed state

The second measurement scheme investigated was t
adaptive scheme of Wiseman and ToomfgsFor a known
), this measurement scheme is designed to keep the at
jumping between two fixed states. FOr large, these fixed
states turn out to be close tg, eigenstates. This two-state

. o . s 7202 2Q0y — 9?2
jumping is achieved by coherently mixing the fluorescence x= y= 7=
emitted from the atom with a weak local oscillat®O) via 202+ 4% 202+ 42 2024 52

a low-reflectance beam splittésee Fig. 5. The reflected (4.20
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FIG. 6. The best estimate states when adaptive detection is used. FIG. 8. The ensemb!e average_ezé 1000) (.)f the purity, variance
A . and Al when the adaptive detection technique was used. Note for
Details are as in Fig. 2.

Al the scale has been change when compared to Fig. 4.

For the unknowr{) case they component averages to Z€ro, comparing this with the numerical simulation it is observed
and thex andz components both appear to be slightly differ- ¢4+ they agree very well.

ent to the knowrl) case. _ To quantify this detection scheme, the ensemble average
~ Similarly to the direct detection case, a better understandsf the variance, purity and| were numerically calculated
ing of this state can be obtained by considerin®R{o,)).  and are shown in Fig. 8. The purity rapidly becomes, and
This is shown in Fig. 7 and it can be seen that as timgemains, relatively high. This is because the best estimate
increases under this adaptive measurement, the typical poggte of Eq(4.21) is the same no matter whé¥, . is chosen.
terior probability distribution PQ|ljo) scarcely changes pqor() =10y the numerical value of the stationary purity

from Py(L2). This is not unexpected, as for this detectionjs 9.934 and by using Eq4.21) an analytical value of the
scheme it can be shown that at steady state the jumps afRirity can be obtained,

Poissonian, with rate/4. That is, the jumps are independent

of Q [9] and hence yield no information about it. Since y2 y
P(Q]l[01)=Po(Q), we can use this approximation to obtain p=1+ - . (4.22
analytically an indication of the best estimate state by solv- Y+ 20mad Y+ 2Qma

ing Eqg. (2.23. For this detection scheme this is simply the

mean of Eq(4.20 under the distribution Q). This gives O {ma= 10y this gives a value of 0.934, which is equal to
the numerical value.

Since this state has a high purity one might expect that the

_ ( 1 y? 0 -y unknown parameter must also be well defined. However this
=\ 1" e o2 YTV T oo oo is not true as already discussed. This lack of knowledge
2(1r2nax+ Y Zﬂﬁmx_i_ 72 y 9

(4.21) about() is seen in Fig. 8. Like direct detection, the sign(bf
cannot be determined so the average variance remains pre-
cisely constant. However unlike direct detection, the infor-
mation gain is bounded, with a maximul of less than

. 0.06 bits.
0.4 An interesting point to note is this scheme would be well
suited to estimating (if there were some uncertainty in that
parametereven if () was also uncertain. That is because the
detection rate is proportional tg, almost independent &d.
Of course this would require the local oscillator amplitude to
be adjusted from an initial guess according to the best esti-
mate ofy.

C. Homodyne x detection

To perform a homodyne detection experiment, an arrange-
ment similar to the adaptive scheme is used. That is, the
output flux from the atom is mixed with a resonantly tuned

FIG. 7. Aplot of PQ|l(oy) for the adaptive scheme. Details are LO by a beam splittefsee Fig. 9. However in this scheme
as in Fig. 3. there is no feedback and the amplitudeof the LO is as-

-10 0
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t

FIG. 9. A schematic for the three detection schemes, homodyne FIG. 10. The best estimate states for the homodyiseheme.
of thex quadrature, homodyne of tlyequadrature, and heterodyne. Details are as in Fig. 2.
For the homodyne schemes the LO is resonantly tuned to the atomic
frequency, with a phase of zero and2 for thex andy schemes,  tion with a mean equal ta/;,<ge*i‘1>+o-1‘ei‘1’> and a vari-
respectively, whereas for the heterodyne it is detuned by amnce ofdt—?. Thus, | will be a Gaussian random variable
amountA. (GRV) of the form

sumed to be infinite §— ). Because of this, there will be =y T{oe ®p,+p,aTe®]+ &), (4.26
many detections in the intervalt. Each detection causes

only an infinitesimal change in the system state, so the evowhereé(t) =dW(t)/dt represents Gaussian white noise, and
lution of the system can be described by a diffusive SME. Inis formally defined a$21]

eachdt there will be a continuous currehtegistered ifl o

rather than a detection or no detection. Sihig a continu- E[£(1)]=0, HEUE)]=ao(t-t"). (4.27)
ous variable we can define a measurement opefdtora

continuous function ofl, to represent this measurement For the LSME we take the ostensible probability for the
scheme, current to be equal to that which would arise from the LO

alone. This results ik (1)=7Y, so thatl is ostensibly a GRV
_ Q Y 4 _ip with mean zero and varianakt ™2, like £(t). The LSME in
M,—\/Y—| 1- IEa'X-i-EO' o—+yoe "7l |dt|. 1t6 form is [18]
(4.23 _ _ — R
dpia=Lap odt+\yH[oe *]p gldt.  (4.28

It can be seen that both the LSME and the SME reduce to
Eqg. (3.1 when the ensemble average is taken. Similar to the
e~ (12)1%dty) (4.24)  previous schemes, to determine an unkndni (o) is gen-
27/dt erated by the SME for a pres@&t, (e, which may then be
“forgotten.” The LSME is then used to generate bgif(t)
is a Gaussian probability measure. It is easily shown that thiand PQII[O,O) for the predetermined recoilg .
continuous measurement operator satisfies the completenessFor homodynex quadrature measurement, tie of the
condition, Eq.(2.5), where the sum is replaced by an integral LO is set to zero(as x=(o+a')). With this phase, and

Here ® is the phase of the local oscillator and

Y|d|:

over | betweenz oo, Qwe=57, the best estimate states for a known and unknown
With this continuous measurement operator the SME i) are shown in Fig. 10. It is observed that for the knof¥n
the 1to form is[18] case, the state seems to localize itself relatively fast into pure
states that have a largecontribution, and small oscillations
dp; o=Lap; odt+yH[oe ®]p,(Idt— T oe ' ®p, in they andz directions. By contrast, whef} is unknown,
' o ' the best estimate state still contains a lakgeontribution,
+pioo'e®]dt), (4.29  put they is strictly zero and the amplitude of theoscilla-

tions is reduced. As in the previous cases, this zecom-
wherel is the current element for the intervéd and is equal  ponent can be understood by consider(d@2|loy)), shown
to the difference between the number of detections at the twim Fig. 11. It is seen that, like direct detection, this measure-
photodiodes divided by the intensity of the field. By using ment scheme has an even posterior distribution that localizes
Eq. (4.23 and Eq.(2.3 the probability of getting for the  at =Qy,.. This is again due to the stochastic Bloch equa-
intervaldt can be calculated. This gives a Gaussian distributions being invariant under the previously considered rota-
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FIG. 11. A plot of PQ|I[OV[)) for the homodynex scheme. De- t

tails are as in Fig. 3. FIG. 13. The best estimate states for homodymeeasurement.

Details are as in Fig. 2.
tional transformation. However, the rate at which this local-

ization occurs is much slower than under direct detection. one would expect that this state would be less affected by an
The slower rate of information gain is confirmed with the unknown() than a state on the=0 plane as produced by
calculation of the ensemble averagedf, shown in Fig. 12.  direct detection. Thus less information abéutomes out of
It is seen that within 59~ * units of time,Al for homodyne  the measurement record. In Fig. 11 it is observed that the
x is about half that of direct detection. Physically this comesensemble average of the purity of this state increases quickly
about because, for the system we are investigating, the umie about 0.75, then increases only slowly afterwards. This
derlying dynamics cause the states to rotate around &xés  quick increase is also a result of the state becoming predomi-
with frequency Q.. The measurement scheme tends tonantly +x oriented. (similar to the adaptive detection
produce states oriented mainly in thex directions. This can  schemgand the slow increase is due to the slow increase in
be understood from the measurement effgctwhich, using  the knowledge ofQ) (similar to direct detection As with
Eq. (2.4), can be shown to be direct detection, the system state will never become fully
pure. This is due to the double peaks infFl,), which

1 ensures thg component of the state always averages to zero.
Fidl= exgd —3(1—oy)?dt]dl.  (4.29
\2m/dt )
D. Homodyney detection
This effect is a Gaussian with a mean equal todheuadra- Setting thed® of the local oscillator torr/2 allows mea-

ture operator and variancd ™. Thus, it is not a sharp mea- surement of the/ quadraturdasy={—io+ic")). The best

surement otr, . Thus, for a measurement scheme that makegstimate states for the known and unkno@rare shown in

the conditioned state mainly oriented in thex directions,  Fig. 13, for Q,,=57v. It is seen that when) is known
(solid) this measurement scheme makes the state coarsely

1 - ' - ' rotate around the Bloch sphere with a purity of one. When
e is unknown(dotted ling, Fig. 13 shows that, unlike the pre-
E 075} 1 -
£ vious schemes, thecomponent does not average to zero. As
//‘/\,‘MA/VJ—/V“N time increases the oscillations in tii@ndz components for
05, 10 20 20 10 50 the unknown{) case gradually converge to those for the
o W - - - - known () case. This suggests that this scheme can determine
g Qe This is confirmed by the calculation of B(I[O,t))
5 30 T shown in Fig. 14. The ability of this scheme to distinguish
> . . . ‘ the sign of{) can be physically understood by considering
Go 10 20 30 40 50 the Bloch representation of Eq4.28. These stochastic
- - - - equations araot invariant under the rotation transformation.
To understand how this scheme reduces the uncertainty in
23 ] ), consider the effect for this measurement scheme
0 . . . ,
0 10 20 30 40 50

t F,dl= exd —3(I—oy)?dt]ldl.  (4.30

1
\2m/dt
FIG. 12. The ensemble average<500) of the purity, variance,

and Al when homodynex was used. Time is measured in units That is, F| is an unsharp measurement yf Now y is a
of y~1. variable that is directly affected e, and indeed the sign
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tinuous set of measurement operators after the coarse grain-
ing approximation Adt>1 but ydt<1) are

MI:\/Y_I

Q
1—(i§Ux+%O’TU— yal*)dt},

(4.31

where

dt
Y,d2l = ;e’“'zd‘dzl. (4.32

It is easily shown that these measurements operators satisfy
p the completeness condition, E@.5). To do this, one must
-10 0 t integrate over the plane of the complex currents
As with homodyne, the sample path focan be obtained
FIG. 14. A plot of PQ|lo,) for homodyney measurement.  rom calculating the probability of gettingin the interval
Details are as in Fig. 3. dt. Doing this, one obtains

of y reverses if the sign df) reverses. Even though in each I=\y[(o)+2(1)], (4.33
intervaldt, y is measured unsharply, over time this detection

scheme will result in a narrowing of our knowledge @f  where/(t) is a complex Gaussian white noise term, which is
until infinite time where it would be fully known. This is formally defined ag21]

further confirmed by the calculation of the ensemble aver-

ages of the three parameters, purityandAl (Fig. 15. Itis E[Z(D)Z(t)]=E[L(1)]=0, (4.34
observed that the purity of this state increases up to one, the . , ,
Vin Q reduces substantially in the $0* units of time and E[&* (D))= o(t—t"). (4.39

Al increases to a value larger than that for all other SChemesting the above measurement operators and(£83, the

heterodyne SME in ftdorm is [18]
E. Heterodyne detection

_ . _ t
The last detection scheme considered uses the heterodyne 9P1.0= VY (apra—(0)p o) (I*dt—y (cT)d1)

technique. This detection scheme uses the same arrangement + Tyt ldt— dt
as the homodynésee Fig. 9, with the only difference being \/;(p"ﬂa (o0 \/;<U> )
that the LO is now detuned from the atom by an amahint + Lgp) odt. (4.36

This effectively results in the LO having a time varying ] ] ]
phase ofAt with respect to the driving field. Since the field For the LSME we again assume that the ostensible probabil-

amplitude is still assumed to be infinite as in the homodyndy IS that due just to the LO, which results in a heterodyne
case/ o) Will comprises of a string of real numbersHow- currentl with the same statistics agt). With this complex

ever, by coarse-graining to obtain the Fourier components &urrent the ostensible probability(l) is equal toY, . This
w=+A, a complex photocurrent is obtainfti7]. The con-  gives a LSME in Itoform of [18]

1 ; ; ; ; dpi.a=Lap adt+\yop ol *dt+\y p, oo ldt.
> (4.37)
£ 075 Using Q4= 57, the best estimate state for known and un-
05 . . . . known Q1 are shown in Fig. 16. It is observed that for a
600 10 20 30 40 50 known (), the state contains attributes of both the homodyne
o ' ' ' ' x andy measurement schemes. By this we mean that the state
§ 300 | tends to have a distinct components, while keeping the
§ coarse rotations of the homodygescheme. This is not un-
0 , , , expected as heterodyne is equivalent to simultaneous homo-
0 10 20 30 40 50 dynex andy measurements, each of 50% efficief2g]. In
6 ' ' ' : the unknown() case it is observed that tiyecomponent does
- not average to zero, suggesting thafXf(o)) localizes to
a Qe Which is confirmed by Fig. 17. However, the rate at
which P@]ly)) converges ta5() — Qe is much slower

0 10 20 . 30 40 50 than that of the homodyngmeasurement. This is also illus-
trated in Fig. 18 as the ensemble averddeis not as high.
FIG. 15. The ensemble average=500) of the purity, variance Fig. 18 also shows the ensemble average of the purity and
andAl when homodyne detection of tlyequadrature was used.  from this figure it is seen that it contains similar properties of
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FIG. 16. The best estimate states, when heterodyne is used. FIG. 18. The ensemble average={250) of the purity, variance
Details are as in Fig. 2. andAl for heterodyne detection. Time is measured in unity of.

both the homodyne andy schemes. In particular, it has an known dynamical parameter &, the Rabi frequency. We
initial sharp increase, which is due the state obtaining a larg@®gan with the atom in its stationary mixed stadepending
x componentsimilar to the homodyne schemgand as time 0N {2) and the prior distribution of) was that appropriate to

goes on the purity increases to one due to the localization Gi" &tom at a random point in a standing wave with a maxi-
P(Q||[0t)) (similar to homodyney). mum Rabi frequency,..= 10y. We analyzed five different

measurement schemes, direct detection, a particular adaptive
schemd 9], homodyne detection of thequadrature, homo-
dyne of they, and heterodyne. We can summarize the results
The results of this paper demonstrate that quantum paranef the paper using four different measures of the effective-
eter and state estimation for a continuously monitored openess of the measurement. The first two relate to the knowl-
system is greatly affected by the measuring scheme. It wagdge obtained abouf). One is Al;, the long-time {
observed that as the measurement time increased, some dey 1) increase in the average information about the param-
tection schemes had the ability of both reducing our uncereter(). The other isV,, the long-time average variance(h
tainty in the unknown dynamical parameter, and producing &he next two relate to the knowledge obtained about the
conditioned state of high purity, whereas other schemesystem. One ip,, the long-time purity. This measures how
could only do one of these, or notéepending on how the much is known about the system, given the long-time knowl-
uncertainty in the unknown parameter is quantifialfe re-  edge about the unknown parameter The other ispg, the
emphasize that all of the measurement schemes arise froshort-time (= a few y~*) purity. This time is long enough
the same coupling of the system to the environment; all thathat, if 0 were known, the system would have been more-
is different is how the environment is measured. or-less completely purified, but short enough that the actual
The system we considered was a two-level atom withamount of information obtained aboQt is small. That is, it
HamiltonianQ o, /2, with spontaneous decay rayjeThe un-  measures how well the measurement can purify the state de-
spite the large initial uncertainty in the dynamics.
The results of our work is summarized in Table I, using
the four measures of effectiveness for the five different de-
0.8 tection schemes. Rather than quote figures for these four
” measures, we use a rating systesrt@ x x x x), the details of
which are explained in the caption. This allows the results to
be taken in at a glance.
From the table it is observed that homodynec. IV D
was the best detection scheme by all measures except for the
short-time purification, for which it was the worst. Both of
these aspects are explained by the fact that this scheme mea-
suresay, the dynamics of which depend strongly éh
Hence the measurement record contains a lot of information
about(, including its sign(because rotations over the top of
the Bloch sphere are different from rotations under the bot-
tom). This also enables the purity to approach unity as time
FIG. 17. A plot of PQ|Ijoy)) for heterodyne detection. Details increases. However, for short times, when little information
are the same as Fig. 3. aboutQ) has been obtained,yameasurement is actually very

V. DISCUSSION
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TABLE |. Ratings for the five different detection schemes, for () _ =10y. This is because the conditioned states are, for
four different measures. Fows is Fhe_ best rating an_d one th_e large (), asymptotically independent ¢1, as they approach
worst. ForAl;, any rating abovex indicates that the information o, eigenstates. This explains why the adaptive scheme gives
about() continues to increase with time, with the lower cutoffs for the best results for short-time purification: the conditioned
xxx and xxxx being Al=25 and 5 bits, respectively, at o109 are almost unaffected by the uncertaint§2in
=50y~ . ForV,, any rating above indicates a variance if) that Homodynex detection(Sec. IV O is in many ways simi-
decreases, with the upper cutoffs ferxx and xxx* being V, | he adapti h ' d this i dil q dabl
=2 and 10/2, respectively, at=50y L. For p;, a rating above ar to t. e adaptive scheme, and this is readily un erstandable
*x indicates a purity that continues to increase with time. ForS'nC(_3 it would be e_xpected to p_roduce C(_)ndltlon(_ed States
schemes where the purity saturates, the lower cutofisforis p,  tending towardso, eigenstates. Like adaptivend direct
—0.9. For schemes where the purity continues to increase, thdetection, the sign of) is indeterminable so the variance is
lower cutoff forx»x* is p;=0.95 att=50y . Finally, forps, the ~ COnstant. Hence thg final purity does not approach unity. AI—
lower cutoffs for x, **%, and =+ are, respectivelyp, though its asymptotic value is not as high as that for adaptive

=0.65,0.75,0.85 at=3y 1. In all cases),,,= 10y. detection, it is higher than that for direct detection. This is as
expected, since the conditioned states, being imperfectly lo-
Detection schemes calized towards thg eigenstates, are still affected by This

Measure Direct Adapt Homm Homoy Hetero also explains why the initial purification is not quite as good
as for adaptive detection, and why information continues to

Al rox * *x ool okl be gainedalbeit slowly as time increases.

Vi * * * jalalole ool The final scheme, heterodyne detecti@ec. IV B, is

P * *x * jolololol ool most easily understood by viewing it as an equal mixture of
Ps * xRk k ok k * *x homodynex and homodyney detection, which is in fact a

completely rigorous viewpoint. All of the ratings for hetero-

o ) dyne detection are intermediate between those for the two
poor for purifying the state. That is because the measuremeRpmodyne schemes.

tends to produce states with well-defined valuesy,ofind In conclusion, we have shown that gaining knowledge
these are states that are very sensitive to the rotation arougghout an unknown dynamical parameter by monitoring the
the x axis at rate(). For a poorly known(}, this tends to  system is a quite different phenomenon from gaining knowl-
make the system state more mixed, so that the purity growgdge about the system itself. We have also distinguished dif-
only as the information abou? increases. ferent sorts of knowledge acquisition with distinct character-
After homodyney detection, the method that provided jstics: for the unknown parameter, information géim bits)
most information abouf) was direct detectiofSec. IVA).  versus reducing the variance; and for the system, short-time
Under direct detection, the count rate is proportionabto  purity gain versus long-time purity gain. The ability to ac-
+1, and(like o), the dynamics otr, depend strongly upon quire knowledge in these various ways is extremely sensitive
(), due to the Rabi rotations around thexis. However, in  to the choice of monitoring schenfevhich does not affect
terms ofo,, rotations around the-x axis from the ground the average evolution of the systerfor the system we in-
state are indistinguishable from rotations around the  vestigated, explaining the particulars of this sensitivity de-
axis. Hence the measurement cannot distinguish the sign @lends upon a detailed understanding of the conditional dy-
() and there is no change in the ensemble averaged variangamics of the system. Our discoveries may have important
as time increases. As a consequence, the purity saturates apgplications for the suitability of different quantum
low value. The short time purification is poor also, for afeedback-control techniqu§®3,24 in experimental systems
similar reason to that for homodyrnyedetection. with unknown dynamical parameters. Another direction for
The adaptive detection is almost complementary in itsfuture work could be to investigate the effect of realistic
qualities to homodyney detection. As explained in Sec. imperfections in the detection schemes on state and param-
IV B, it yields almost no information abou, because the eter estimation in open quantum systems.
rate of detections in steady state is independenflofin
particular, it yields no information about the sign Qf, so
the variance is constant. As a consequence, the purity does
not approach unity. Nevertheless, it does approach a quite H.M.W. would like to acknowledge formative conversa-
high value, of over % v/(y2 Qma), Which is 0.93 for tions with Andrew Doherty.
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