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Generalized coherent states for systems with degenerate energy spectra

Ronald F. Fox and Mee Hyang Choi
School of Physics, Center for Nonlinear Science, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 29 March 2001; published 12 September 2001!

A construction of Gaussian Klauder coherent states for systems with degenerate energy spectra is presented.
Of special interest are the cases of truly accidental degeneracy that do not arise from a hidden or explicit
symmetry. This is the case for a particle in a two-dimensional square box. In this case, the degeneracy results
from the number of different ways an integer can be expressed as the sum of two squares. It is shown how to
manage this situation and produce generalized coherent states that can mimic classical particle behavior for
many collisions with the box walls.
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I. INTRODUCTION

In two recent papers, Gaussian Klauder coherent st
were constructed for Rydberg atoms@1#, the harmonic oscil-
lator @2#, the planar rotor@2#, and a particle in a one
dimensional box@2#. In each of these cases, it was possi
to select parameters so that the quantum coherent stat
haved like the corresponding classical object for long peri
of time. In the Rydberg-atom case, this meant that the w
packet for the electron executed Keplerian orbits around
atomic nucleus for many periods while remaining a high
localized object@1#. Aspects of this behavior for Rydber
atoms, including revivals and fractional revivals, were e
perimentally observed earlier by Mallalieu and Stroud@3#,
and explained with Gaussian wave packets by Nauenb
@4#. The Gaussian Klauder coherent states provide a spe
class of Gaussian wave packets that support a resolutio
the identity operator~they are actually overcomplete!, and
evolve in a very simple way under the action of the syst
Hamiltonian. When the Klauder construction was initia
applied @1#, delocalization in the azimuthal angle occurr
rapidly. This led to a Gaussian extension of the Klaud
method@1#, and to generalized coherent states that main
their initially compact structures for long times.

A key property needed for the direct application of t
Klauder construction procedure@5# is a bounded finite quan
tum system with a discrete spectrum. The Gaussian gene
zation @1,2# appears to work for any Hamiltonian with th
property. However, a degenerate energy spectrum raises
ficulties in some systems. Crawford@6# recently considered
this, and proposed a solution based on the Perelomov
struction@7#. This approach depends on an underlying sy
metry of the Hamiltonian that is responsible for the deg
eracy. The solution proposed in this paper works for this c
too, but also covers accidental degeneracy for which no
derlying symmetry exists.

Generalized coherent states are of importance bec
they clarify quantum-classical correspondence issues,
they do so by providing a means for the construction
Husimi-Wigner distributions@8–10#. These distributions are
non-negative quantum probability distributions with quan
tative analogs in classical phase space, where their co
spondents are initially Gaussian ensembles. One impor
consequence of this perspective was to show that the in
rate of growth of quantum covariances determines the co
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sponding classical, local Lyapunov exponent when the c
sical dynamics is chaotic@8#, i.e., that the classical, loca
Lyapunov exponent is a quantum signature of class
chaos.

In Sec. II of this paper, a brief review of the Gaussi
Klauder coherent states construction is given. The incor
ration of energy degeneracy is presented. In Sec. III, an
plication to a particle in a two-dimensional~2D! square box
is made. Here the degeneracy results from the numbe
different ways an integer can be expressed as the sum of
squares. A bit of the underlying number theory is review
The initial try at a Gaussian Klauder coherent state does
work. A further modification of the Gaussian approach
needed and developed. Numerical results exhibiting lo
time quantum behavior corresponding with a classical p
ticle bouncing off of the box walls are given.

II. GAUSSIAN KLAUDER COHERENT STATES

Let the HamiltonianH have eigenstates and eigenvalu
satisfying

Hun&5Enun&5\venun&, ~1!

so that theen’s are dimensionless for the energy scale\v,
and whereine0,e1,e2,¯ @5#. So far, it is implicitly as-
sumed that the spectrum is nondegenerate. The Gaus
Klauder coherent state is defined by@1,2#

uG,n0 ,f0&5 (
n50

` expF2
~n2n0!2

4s2 G
AN~n0!

eienf0un&, ~2!

where

N~n0!5 (
n50

`

expF2
~n2n0!2

2s2 G , ~3!

which guarantees normalization:

^G,n0 ,f0uG,n0 ,f0&51. ~4!

Both n0 andf0 arec-number parameters of the state, ands
determines the width of the Gaussian. Clearly, asn0→`,
N(n0)→A2ps2; however, for finiten0 , and because the
summation is discrete,N(n0) is not expressible in a close
©2001 The American Physical Society04-1
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form. If the evolution operator for timet built from H is
applied to the generalized coherent state in Eq.~2!, then the
effect is thatf0 is shifted linearly in time tof02vt when
Eq. ~1! is applied. This is one of the attractive features
Klauder coherent states called ‘‘temporal stability’’@5#. By
makings sufficiently small, i.e., less than 1, the state defin
in Eq. ~2! is essentially a pure energy eigenstate. As such
structure in the corresponding classical phase space of
eralized coordinates and conjugate momenta is not locali
As s increases so that the superposition of states invo
more and more energy eigenstates, the structure of the
in phase space becomes more and more localized, up
point. Thus the choice ofs is dictated by the desire to sta
the state as localized as possible in phase space, subje
the constraints of the Heisenberg uncertainty principle@8#.

Using the limit identity@5#

lim
F→`

1

2F E
2F

F

df0 ei ~en2en8!f05dnn8 , ~5!

and giving n0 a domain of minus infinity to plus infinity
rather than just the positive values, leads to a resolution
the identity operator@1,2,5#,

E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0 K~n0!uG,n0 ,f0&^G,n0 ,f0u51,

~6!

providedK(n0), the Klauder kernel, is given by

K~n0!5
N~n0!

A2ps2
. ~7!

Completeness follows from Eq.~5!. For any fixed value of
n0 , it follows that

un&5AN~n0! expF ~n2n0!2

4s2 G lim
F→`

1

2F

3E
2F

F

df0 e2 ienf0uG,n0 ,f0&. ~8!

This is overcompleteness ifn0 is varied. It is a characteristic
of harmonic oscillator coherent states, su~2! generalized co-
herent states@8# and Klauder coherent states@5#.

Degeneracy in the energy spectrum impacts the app
bility of Eq. ~5!, which is applicable only for a nondegene
ate spectrum. Suppose that the energy eigenvalueen is de-
generate with a degeneracydn . Pick an orthonormal basi
for this degeneracy set, and denote these states byun,p&
where p ranges from 0 todn21. If dn51, then un,0& is
simply the stateun& used above. For eachn, introduce the
phasehn that ranges over@0, 2p#. The nondegenerate sta
un& is extended to the degenerate state superpositionun,dn&
by the definition

un,dn&5
1

Adn
(
p50

dn21

eiphnun,p&. ~9!
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For the nondegenerate case, this state reduces toun&. Thus,
even though anhn is introduced for everyen , even the non-
degenerateen’s, it has no influence in the nondegenera
cases. Denote the countably infinite set ofhn’s by the vector
h. The generalized Gaussian Klauder coherent states for
generate spectra are defined by

uG,n0 ,f0 ,h&5 (
n50

` expF2
~n2n0!2

4s2 G
AN~n0!

eienf0un,dn&.

~10!

With the normalization picked in Eq.~9!, N(n0) in Eq. ~10!
is still defined as in Eq.~3!. The resolution of the identity
operator generalizes to

E
2`

`

dn0 lim
F→`

1

2F

3E
2F

F

df0 K~n0!)
j 50

`
1

2p

3E
0

2p

dh j uG,n0 ,f0 ,h&^G,n0 ,f0 ,hu

51. ~11!

Once again, if the eigenstate is nondegenerate, the co
spondingh j integration has no effect other than to produce
multiplicative factor of 1. The analog of the completene
relation in Eq.~8! is

un,m&5AN~n0! expF ~n2n0!2

4s2 G lim
F→`

1

2F

3E
2F

F

df0 eienf0
Adn

2p

3E
0

2p

dhn e2 imhnuG,n0 ,f0 ,h&. ~12!

As will be seen in Sec III, further modification of the Gaus
ian construction is needed in order to obtain an initially co
pact state in phase space for a particle in a 2D square b

III. A PARTICLE IN A 2D SQUARE BOX

The Hamiltonian for a particle of massM in a 2D square
box with infinite potential walls is

H5
p2

2M
, ~13!

wherep is the momentum operator andM is the mass. Place
one corner of the box at the origin of coordinates, and let
rest of the box be in the positive quadrant. Let the length
a box side bea. The energy eigenvalues are given by
4-2
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En,m5
\2p2

2Ma2 ~n21m2!. ~14!

There is an obvious degeneracy that has its origin in
square symmetry of the problem, i.e., the degeneracy cre
by interchangingn and m. However, there is an erratic de
generacy associated with the number of ways an integer
be expressed by the sum of two squares that is genui
accidental~unlike the ‘‘accidental’’ degeneracy of the hydro
gen atom that stems from an extra conserved quantity,
corresponding symmetry, given by the Runge-Lenz vect!.
In Eq. ~10! the index n corresponds to the dimensionle
energy eigenvalueen , and must not be confused with then
and m above inEn,m . These doubly indexed energy eige
values must first be converted to a singly indexeden before
Eq. ~10! can be implemented. This is easily achieved
ordering theEn,m’s by size.

The problem of expressing an integer as the sum of
squares is an old problem in number theory@11#. There are
precursors in theArithmeticof Diophantus around 250 A.D.
the correct answer to the question was first given by Alb
Girard in 1625, but the first known proofs are those of Eu
in 1749 @11#. A crucial ingredient is Fibonacci’s identity o
1202 that the product of two sums of two squares is itself
sum of two squares:

~a21b2!~c21d2!5~ac1bd!21~ad2bc!2. ~15!

This enables one to build up results from multiplicative fa
tors that are the sums of two squares. It is elementary
show that any number that is of the form 4k13 cannot be
the sum of two squares@11#. All others can. If a number
contains a prime factor of the form 4k13, then it must con-
tain it to an even power if it is to be expressible as the sum
two squares~an even power has the form 4k811 for some
k8, and is all right!. Thus a numberN is expressible as the
sum of two squares if and only if any prime factor ofN of the
form 4k13 dividesN an even number of times.

How many waysN can be expressed as a sum of tw
squares was worked out by Legendre in the early 1800s@11#.
Let D1 denote the number of divisors ofN of the form 4k
11, and letD3 denote the number of divisors ofN of the
form 4k13. The number of representations ofN as the sum
of two squares is 4(D12D3). Note, for example, that ifN
has a prime factor of the form 4k11, all powers of this
factor are also of the form 4k811, but with different values
of k8. The product of 4k11 and 4k811 is also of the same
form. Moreover, the product of 4k13 and 4k813 has the
form of 4k911 while the product of 4k13 and 4k811 has
the form of 4k913. Thus the determination ofD1 andD3 is
nontrivial for largeN. The factor of 4 in the Legendre rul
allows for positive and negative integers in the sum
squares. The negative possibilities are excluded in the ei
value formula of Eq.~14!.

In numerically constructing the generalized Gauss
Klauder coherent states for the particle in a 2D square
according to Eq.~10!, it is necessary to determine the dege
eracies of the energy eigenvalues used. For those states
are degenerate~actually, each state is at least doubly dege
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erate because of the square symmetry!, the phase angleh is
chosen from@0,2p# at random.

When a straightforward attempt to implement Eq.~10! for
this case is made, the result is not a highly localized ini
state as it was in the earlier constructions@1,2#. This is be-
cause the degeneracy caused by equal sums of two sq
can involven’s andm’s in En,m that are very different from
n0 , even thought then in en is kept close ton0 by the
Gaussian form factor in Eq.~10!. This means that the corre
sponding eigenfunctions contribute components in thex and
y variables that have wavelengths varying over a large ra
of scale. The result is that the wave packet is not localiz
This is exhibited in Fig. 1 for the parametersn0510 000 and
s55, with the length of the side of the box given bya
5p.

To get around this problem, a Gaussian form factor
each indexn andm in En,m can be introduced. This can b
done so that all of the properties of Gaussian Klauder coh
ent states are retained, as they are by Eq.~10!. Begin by
introducing a dimensionless energy scale given byEm,n
5\ven,m . Suppose thaten,m is degenerate, with a degen
eracydn,m . Let the set of degenerate states be made or
normal and denote them byun,m,p& for p50 to dn,m21. Also
introduce the phaseshn,m that range over@0,2p#. The de-
generate state superpositionun,m,dn,m& is defined by

un,m,dn,m&5
1

Adn,m
(
p50

dn,m21

eiphn,mun,m,p&. ~16!

Now replace Eq.~10! with

uG,m0 ,n0 ,f0 ,h&

5 (
n50

`

(
m50

` expF2
~n2n0!2

4s2 2
~m2m0!2

4s2 G
AN~m0 ,n0!

3eien,mf0un,m,dn,m&, ~17!

where the doubly countable infinity ofhn,m’s is represented
by the vectorh. The normalization of this state implies

FIG. 1. Gaussian Klauder coherent state with a single Gaus
form factor. The parameter values area5p, n0510 000, ands
55. No localization is discernable.
4-3
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N~m0 ,n0!5 (
n50

`

(
m50

`

expF2
~n2n0!2

2s2 2
~m2m0!2

2s2 G ,
~18!

which generalizes Eq.~3!. Temporal stability remains guar
anteed because the action of the evolution operator for timt,
constructed with the Hamiltonian of Eq.~13! on the state in
Eq. ~17!, causesf to becomef2vt whenEm,n5\ven,m is
used. The resolution of the identity becomes

E
2`

`

dn0E
2`

`

dm0 lim
F→`

1

2F

3E
2F

F

df0 K~n0 ,m0!uG,n0 ,m0 ,f0 ,h&

3^G,n0 ,m0 ,f0 ,hu

51, ~19!

whereK(n0 ,m0) is given by

FIG. 2. Gaussian Klauder coherent state with a double Gaus
form factor. The parameter values area5p, n056500, m0

56500, ands523. A highly localized initial state can be seen.

FIG. 3. This has the same initial wave packet as in Fig. 2. T
wave packet has made one complete round-trip of the box,
counterclockwise direction.
04210
K~n0 ,m0!5
N~n0 ,m0!

2ps2 . ~20!

Overcompleteness may be expressed by

un,m,p&5AN~n0 ,m0! expF ~n2n0!2

4s2 1
~m2m0!2

4h2 G
3 lim

F→`

1

2F E
2F

F

df0 e2 ien,mf0
Adn,m

2p

3E
0

2p

dhn,me2 iphn,muG,n0 ,m0 ,f0 ,h&. ~21!

In Eq. ~18! both variances are equal, but this is not necess
It is now clear that those degenerate states withn’s andm’s
further than a fews’s from n0 and m0 , respectively, will
contribute very little to the wave packet. Consequently,
initially well localized state is possible.

Figure 2 shows the initial wave packet probability for
particle in a 2D square box coherent state that initially h
the vast majority of the coordinate probability located at t

an

e
a

FIG. 4. This has the same initial wave packet as in Fig. 2. T
wave packet has made three complete round trips of the box
counterclockwise direction.

FIG. 5. This has the same initial wave packet as in Fig. 2. T
wave packet has made five complete round-trips of the box i
counterclockwise direction.
4-4
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GENERALIZED COHERENT STATES FOR SYSTEMS . . . PHYSICAL REVIEW A 64 042104
middle of an edge of the box. The length of the side of
box,a, has been taken to bep. Bothn0 andm0 are 6500, and
the s for each is 23. The probability profile changes ve
little as successive contacts with the edges of the box
made as the packet moves in a counterclockwise direct
Figures 3–6 show the condition of the wave packet after o
three, five, and seven completed round-trips, respectivel
is clear that localization is partially lost by the seventh rou
trip in this case. Nevertheless, if the expected value for
position is computed for this wave packet even after se
round trips, the value is still in very close agreement with
classical position. By increasingn0 andm0 , as well ass, the
initial state may be made sharper and it will remain shar
for longer. However, computational demands will increase
well. For fixedn0 and m0 , an increase ins will make the
initial state more localized but the delocalization rate w
also increase. To compensate for this bothn0 andm0 must be
increased.

By changing parameter values ton056500 but m0
55000 andsn523 while sm520, a wave packet is create
that is initially in a corner, and directed so that it misses
corner diagonally across the square. The wave packet m
successive contacts with the sides of the square and m
tains its localization even after reflections from the sid
Figure 7 shows the corresponding classical trajecto
wherein the initial velocity components in thex andy direc-
tions are determined from the initial quantum-mechani
group velocities in these directions. The positional cor
spondence between the classical trajectory and the w
packet’s positional expectation values are quantitatively v
accurate and cannot be distinguished in this figure.

FIG. 6. This has the same initial wave packet as in Fig. 2. T
wave packet has made seven complete round-trips of the box
counterclockwise direction. Partial delocalization can be seen,
the peak height has decreased substantially.
,
r,

04210
e

re
n.
e,
It

d
e
n

e

r
s

l

e
es
in-
.

y,

l
-
ve
y

IV. CONCLUDING REMARKS

A method for dealing with degeneracy in the energy sp
trum while constructing Gaussian Klauder coherent sta
has been presented. In the case of a two-dimensional box
degeneracy is accidental and a naive approach does not
duce an initially localized wave packet. This problem
overcome by modifying the construction. Since the Ham
tonian for a particle in a two-dimensional box is separab
one could simply attempt to use the direct product of Gau
ian Klauder coherent states for each Cartesian axis as a
didate for the solution to the two-dimensional problem. U
fortunately, the energy factors in such a construction do
work properly except in the very special case of trajector
that make 45° impacts with the sides. In all other cases,
energy of the particle along the two Cartesian axes is dif
ent, and exchanges between the axes with each collis
This messes up such a construction. Instead, in Eq.~17! a
construction that works well quantitatively is given. Th
technique can be applied to many other multidimensio
problems.

Gaussian Klauder coherent states provide a means to
struct Husimi-Wigner states that have a direct corresp
dence to classical ensembles in classical phase space.
states enhance our ability to study quantum-classical co
spondence and especially quantum signatures of clas
chaos@8#.
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wave packet with parametersa5p, n056500, m055000, sn

523, andsm520 is shown. The impacts with the edges occur
corresponding positions. A plot of the corresponding positional
pectation value for the quantum wave packet is indistinguishab
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