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Generalized coherent states for systems with degenerate energy spectra

Ronald F. Fox and Mee Hyang Choi
School of Physics, Center for Nonlinear Science, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 29 March 2001; published 12 September 001

A construction of Gaussian Klauder coherent states for systems with degenerate energy spectra is presented.
Of special interest are the cases of truly accidental degeneracy that do not arise from a hidden or explicit
symmetry. This is the case for a particle in a two-dimensional square box. In this case, the degeneracy results
from the number of different ways an integer can be expressed as the sum of two squares. It is shown how to
manage this situation and produce generalized coherent states that can mimic classical particle behavior for
many collisions with the box walls.
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[. INTRODUCTION sponding classical, local Lyapunov exponent when the clas-
sical dynamics is chaoti€8], i.e., that the classical, local

In two recent papers, Gaussian Klauder coherent statdsyapunov exponent is a quantum signature of classical
were constructed for Rydberg atoffld, the harmonic oscil-  chaos.
lator [2], the planar rotor[2], and a particle in a one- In Sec. Il of this paper, a brief_ revjew_ of the unssian
dimensional box2]. In each of these cases, it was possibleKlauder coherent states construction is given. The incorpo-
to select parameters so that the quantum coherent state J&tion of energy degeneracy is presented. In Sec. Ill, an ap-
haved like the corresponding classical object for long period®lication to a particle in a two-dimensione2D) square box
of time. In the Rydberg-atom case, this meant that the wavé made. Here the degeneracy results from the number of
packet for the electron executed Keplerian orbits around thélifferent ways an integer can be expressed as the sum of two
atomic nucleus for many periods while remaining a highlySauares. A bit of the und.erlylng number theory is reviewed.
localized object{1]. Aspects of this behavior for Rydberg The initial try at a Gaussian Klauder coherent state does not
atoms, including revivals and fractional revivals, were ex-WOrk. A further modification of the Gaussian approach is
perimentally observed earlier by Mallalieu and Strdidd, needed and develop_ed. Numerlcal_ resu!ts exhlbltlng long-
and explained with Gaussian wave packets by NauenbergfM€ quantum behavior corresponding with a classical par-
[4]. The Gaussian Klauder coherent states provide a specififle bouncing off of the box walls are given.
class of Gaussian wave packets that support a resolution of
the identity operatofthey are actually overcompleteand Il. GAUSSIAN KLAUDER COHERENT STATES
evolve in a very simple way under the action of the system
Hamiltonian. When the Klauder construction was initially
applied[1], delocalization in the azimuthal angle occurred

Let the HamiltonianH have eigenstates and eigenvalues
satisfying

rapidly. This led to a Gaussian extension of the Klauder H|n)=E,|n)=Awe,|n), )
method[1], and to generalized coherent states that maintain
their initially compact structures for long times. so that thee,’s are dimensionless for the energy scéle,

A key property needed for the direct application of theand whereine,<e;<e,<--- [5]. So far, it is implicitly as-
Klauder construction procedufB] is a bounded finite quan- sumed that the spectrum is nondegenerate. The Gaussian
tum system with a discrete spectrum. The Gaussian generalilauder coherent state is defined ;2]
zation[1,2] appears to work for any Hamiltonian with this

property. However, a degenerate energy spectrum raises dif- ex;{ _ (n—ng)?

ficulties in some systems. Crawfof@] recently considered ” 407 .

this, and proposed a solution based on the Perelomov con- |G,ng, o) = 20 N e'nfoln), (2
struction[7]. This approach depends on an underlying sym- " (No)

metry of the Hamiltonian that is responsible for the degenyynere

eracy. The solution proposed in this paper works for this case

too, but also covers accidental degeneracy for which no un- * (n—ng)?

derlying symmetry exists. N(ng)= 20 EXF{ =t 3

Generalized coherent states are of importance because
they clarify quantum-plassical correspondence issugs, anghich guarantees normalization:
they do so by providing a means for the construction of
Husimi-Wigner distributiong8—10]. These distributions are (G,ng, ¢0|G.No, oy =1. 4
non-negative quantum probability distributions with quanti-
tative analogs in classical phase space, where their corr@®oth ny and ¢, arec-number parameters of the state, and
spondents are initially Gaussian ensembles. One importaietermines the width of the Gaussian. Clearly,ngs-,
consequence of this perspective was to show that the initid(ng) — V27 o?; however, for finiten,, and because the
rate of growth of quantum covariances determines the corresummation is discreteN(ng) is not expressible in a closed
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form. If the evolution operator for time built from H is  For the nondegenerate case, this state reducés.tdhus,
applied to the generalized coherent state in @y.then the  even though am, is introduced for everg, , even the non-
effect is thate, is shifted linearly in time topy,— wt when  degeneratee,’s, it has no influence in the nondegenerate
Eg. (1) is applied. This is one of the attractive features ofcases. Denote the countably infinite setgfs by the vector
Klauder coherent states called “temporal stabilifys]. By 7. The generalized Gaussian Klauder coherent states for de-
makingo sufficiently small, i.e., less than 1, the state definedgenerate spectra are defined by

in Eq. (2) is essentially a pure energy eigenstate. As such, its

structure in the corresponding classical phase space of gen- (n—ng)?

eralized coordinates and conjugate momenta is not localized. o ex;{ T T 402

As ¢ increases so that the superposition of states involves |G,ng, o, 7)= >, e'enoln,d,).
more and more energy eigenstates, the structure of the state n=0 VN(no)

in phase space becomes more and more localized, up to a (10

point. Thus the choice of is dictated by the desire to start L , ) i
the state as localized as possible in phase space, subject ¥§th the normalization picked in Ed9), N(no) in Eq. (10)

the constraints of the Heisenberg uncertainty princigle is still defined as in Eq(3). The resolution of the identity
Using the limit identity[5] operator generalizes to
N i(en—en) ” dn lim
ql,'Tm >® _q)d¢oe ntnUP0= (5 wdnoqllinw 2P
and givingng a domain of minus infinity to plus infinity @ 1
rather than just the positive values, leads to a resolution of x 7(Dd¢0 K(no)jﬂo o

the identity operatof1,2,5],
2
® ) 1 (o X d7j|G.ng, b0, M{(G.Ng, b0, 7l
dng lim Ef_q)dd’oK(no)|G,n0x¢o><Gyn01¢o|=1: o

— o d—o0

(6) =1 (12
providedK(ng), the Klauder kernel, is given by Once again, if the eigenstate is nondegenerate, the corre-
spondingz; integration has no effect other than to produce a
K _ N(ng) . multiplicative factor of 1. The analog of the completeness
(No)= ol () relation in Eq.(8) is
Completeness follows from Ed@5). For any fixed value of Ning) (n —no) 4
Ny, it follows that [n.m)=VN(no) ex q!'inm 29
(n _no) 1 ® Jd,
[ny=+/N(n )ex;{ lim — J iendo_ YN
0 o L2 X 7q)d¢o e -n%o PP
P . 2w .
xf {qusoe 'en 0| G, Ny, o). (8 X | dy,e "™n|G,ng, do, ). (12
- 0

This is overcompletenessiif, is varied. It is a characteristic - aq il be seen in Sec I, further modification of the Gauss-
of harmonic oscillator coherent states(Zugeneralized co- jan construction is needed in order to obtain an initially com-

herent statef8] and Klauder coherent statgs]. pact state in phase space for a particle in a 2D square box.
Degeneracy in the energy spectrum impacts the applica-

bility of Eq. (5), which is applicable only for a nondegener-
ate spectrum. Suppose that the energy eigenva]|us de- IIil. A PARTICLE IN A 2D SQUARE BOX

generate with a degenerady. Pick an orthonormal basis  The Hamiltonian for a particle of masd in a 2D square
for this degeneracy set, and denote these statefpy  pox with infinite potential walls is

where p ranges from 0 tod,—1. If d,=1, then|n,0) is

simply the statén) used above. For eaah introduce the p?

phasez, that ranges ovel0, 27]. The nondegenerate state H=—— (13
[ny is extended to the degenerate state superpositiat,)

by the definition ) .
wherep is the momentum operator aidlis the mass. Place

1 d71 one corner of the box at the origin of coordinates, and let the
In,d,)=-— > €P™n|n,p). (9)  rest of the box be in the positive quadrant. Let the length of
n . . .
Vdy p=0 a box side be. The energy eigenvalues are given by
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k22
En'm=m(n2+ m?). (14)

There is an obvious degeneracy that has its origin in the
square symmetry of the problem, i.e., the degeneracy created
by interchangingh and m. However, there is an erratic de-
generacy associated with the number of ways an integer can
be expressed by the sum of two squares that is genuinely
accidentalunlike the “accidental” degeneracy of the hydro-
gen atom that stems from an extra conserved quantity, and
corresponding symmetry, given by the Runge-Lenz vector
In Eq. (10) the indexn corresponds to the dimensionless
energy eigenvalue,,, and must not be confused with the . , ) )
andm above inE, ,,. These doubly indexed energy eigen- FIG. 1. Gaussian Klauder coherent state with a single Gaussian
values must first be converted to a singly indeegcbefore oM factor. The parameter values ae-m, no=10000, ando

Eqg. (10) can be implemented. This is easily achieved by=5' No localization is discernable.

ordering thek, 's by size.

The problem of expressing an integer as the sum of tw
squares is an old problem in number thepty]. There are
precursors in thérithmeticof Diophantus around 250 A.D.; . . . , ; L
the correct answer to the question was first given by AlberfliS case is made, the result is not a highly localized initial
Girard in 1625, but the first known proofs are those of EulerState as it was in the earlier constructigds2]. This is be-
in 1749[11]. A crucial ingredient is Fibonacci's identity of C2use the degeneracy caused by equal sums of two squares

1202 that the product of two sums of two squares is itself th&@n involven's andms in E, r, that are very different from
sum of two squares: ng, even thought then in e, is kept close ton, by the

Gaussian form factor in Eq10). This means that the corre-
(a2+Db?)(c?+d?)=(ac+bd)2+(ad—bc)2. (15  sponding eigenfunctions contribute components inxiaad
y variables that have wavelengths varying over a large range
This enables one to build up results from multiplicative fac-of scale. The result is that the wave packet is not localized.
tors that are the sums of two squares. It is elementary tdhis is exhibited in Fig. 1 for the parametarg=10 000 and
show that any number that is of the fornk43 cannot be o=5, with the length of the side of the box given lay
the sum of two squaregll]. All others can. If a number =.
contains a prime factor of the formk4- 3, then it must con- To get around this problem, a Gaussian form factor for
tain it to an even power if it is to be expressible as the sum ofach indexn andm in E,, ,, can be introduced. This can be
two squaregan even power has the formk4+1 for some done so that all of the properties of Gaussian Klauder coher-
k', and is all right. Thus a numbeN is expressible as the ent states are retained, as they are by @g). Begin by
sum of two squares if and only if any prime factordbf the  introducing a dimensionless energy scale given By,
form 4k+ 3 dividesN an even number of times. =hwe, . Suppose thag, , is degenerate, with a degen-
How many waysN can be expressed as a sum of twoeracyd, . Let the set of degenerate states be made ortho-
squares was worked out by Legendre in the early 1800  normal and denote them try,m,p for p=0 tod, ,,— 1. Also
Let D, denote the number of divisors of of the form 4«  introduce the phases, ., that range ove[0,27]. The de-
+1, and letD; denote the number of divisors of of the  generate state superpositionm,d, ,,) is defined by
form 4k+ 3. The number of representationsifas the sum

&rate because of the square symmgetilye phase angle is
chosen from 0,277] at random.
When a straightforward attempt to implement EL) for

of two squares is 49,—D3). Note, for example, that iN 1 Gm-1
has a prime factor of the formk4-1, all powers of this |n,m,dn,m>:\/? >, €Pmmnmp).  (16)
factor are also of the formld + 1, but with different values nm P=0

of k’. The product of 4+ 1 and 4«’ +1 is also of the same )
form. Moreover, the product of k3 and &’ +3 has the NOw replace Eq(10) with
form of 4k” +1 while the product of 4+ 3 and &’ +1 has
the form of &”+ 3. Thus the determination &, andDj is |G,mo, N, bo, 1)
nontrivial for largeN. The factor of 4 in the Legendre rule
allows for positive and negative integers in the sum of o exp{ 5 5
squares. The negative possibilities are excluded in the eigen- _ 2 2 4o 4o
value formula of Eq(14). n=0 M=0 YN(mg,no)

In numerically constructing the generalized Gaussian ,
Klauder coherent states for the particle in a 2D square box Xe'en,m‘f’0|n,m,dn’m>, 17
according to Eq(10), it is necessary to determine the degen-
eracies of the energy eigenvalues used. For those states thetere the doubly countable infinity o, ,'s is represented
are degenerat@ctually, each state is at least doubly degen-by the vectory. The normalization of this state implies

B (n—no)2 (m—mo)2
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FIG. 2. Gaussian Klauder coherent state with a double Gaussian FIG. 4. This has the same initial wave packet as in Fig. 2. The
form factor. The parameter values ase=m, ny=6500, m,

wave packet has made three complete round trips of the box in a
=6500, ando=23. A highly localized initial state can be seen.

counterclockwise direction.

o —ng)2 —mp)2 N(ng,mg)
N(mo,ng)= 2, 2, ex;{—(nz:ﬁ) —(mz(f;") , K(No,mo) = —5 7. (20

(18 Overcompleteness may be expressed by

which generalizes Eq3). Temporal stability remains guar-

2 2
anteed because the action of the evolution operator fortime — Ny (n—no) n (m—mg)
constructed with the Hamiltonian of E¢L3) on the state in [n.m.p) (Mo, Mo) EXH— 72 479?

Eq. (17), causesp to becomep — wt whenEp, ,=fwe, , is -
used. The resolution of the identity becomes . 1 (o “ie. & J n,m
X lim == dgg e 'nmPo
Do 20 —d a
" dng | dmy lim am i
—o 0 — rno<b4>w 29 X 0 dnn’meflp”n,m|G,n0,m0,¢0,1’>_ (21)
@ . .
% f_(bdd’o K(Ng,Mo)|G.No, Mo, o 1) In Eq.(18) both variances are equal, but this is not necessary.

It is now clear that those degenerate states withandm’s
further than a fewo’s from ny and my, respectively, will

X(G,Nng, Mg, do, 1| contribute very little to the wave packet. Consequently, an
initially well localized state is possible.
=1 (19) Figure 2 shows the initial wave packet probability for a
particle in a 2D square box coherent state that initially has
whereK(ng,mp) is given by the vast majority of the coordinate probability located at the

8

6
N—

2

2

0

FIG. 3. This has the same initial wave packet as in Fig. 2. The FIG. 5. This has the same initial wave packet as in Fig. 2. The

wave packet has made one complete round-trip of the box, in avave packet has made five complete round-trips of the box in a
counterclockwise direction. counterclockwise direction.
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FIG. 6. This has the same initial wave packet as in Fig. 2. The . . . .
wave packet has made seven complete round-trips of the box in a FIG. 7. A classical trajectory corresponding to the motion of the

counterclockwise direction. Partial delocalization can be seen, an@Ve Packet with parameters=m, no=6500, mo=5000, o,
the peak height has decreased substantially. =23, ando,,=20 is shown. The impacts with the edges occur at

corresponding positions. A plot of the corresponding positional ex-

middle of an edge of the box. The length of the side of ther)ectation value for the quantum wave packet is indistinguishable.

box, a, has been taken to be Bothny andmg are 6500, and IV. CONCLUDING REMARKS

the o for each is 23. The probability profile changes very . . .
little as successive contacts with the edges of the box are A method for dealing with degeneracy in the energy spec-

made as the packet moves in a counterclockwise directiorﬂum while constructing Gaussian Klauder coherent states

Fiqures 3—6 show the condition of the wave packet after one ias been presented. In the case of a two-dimensional box, the
9 . €p . egeneracy is accidental and a naive approach does not pro-
three, five, and seven completed round-trips, respectively. |

is clear that localization i Hally lost by th h q uce an initially localized wave packet. This problem is
IS clear that localization IS partially 10st Dy the€ seventn rountyyercome by modifying the construction. Since the Hamil-

trip in thl_s case. Neverthele_:ss, if the expected value for the,nian for a particle in a two-dimensional box is separable,
position is computed for this wave packet even after sevegne could simply attempt to use the direct product of Gauss-
round trips, the value is still in very close agreement with thejan Klauder coherent states for each Cartesian axis as a can-
classical position. By increasing, andmg, as well aso, the  didate for the solution to the two-dimensional problem. Un-
initial state may be made sharper and it will remain sharpefortunately, the energy factors in such a construction do not
for longer. However, computational demands will increase asvork properly except in the very special case of trajectories
well. For fixedng andmg, an increase inr will make the  that make 45° impacts with the sides. In all other cases, the
initial state more localized but the delocalization rate will energy of the particle along the two Cartesian axes is differ-
also increase. To compensate for this boandmy must be  ent, and exchanges between the axes with each collision.
increased. This messes up such a construction. Instead, in(Eg. a

By changing parameter values to,=6500 but mq construction that works_ well quantitatively is gi\_/en. This
=5000 ando,,= 23 while o,,= 20, a wave packet is created technique can be applied to many other multidimensional
that is initially in a corner, and directed so that it misses the?roblems. _
corner diagonally across the square. The wave packet makes Gaussian Klauder coherent states provide a means to con-
successive contacts with the sides of the square and maiﬂErUCt Husimi-Wigner states that have a direct correspon-
tains its localization even after reflections from the sidesdenCe to classical ensembles in classical phase space. Such

Figure 7 shows the corresponding classical trajectory,States enhance our abillity to study qugntum—classical corre-
wherein the initial velocity components in theandy direc- SPondence and especially quantum signatures of classical

tions are determined from the initial quantum-mechanicthaos[S]'
group velocities in these directions. The positional corre-
spondence between the classical trajectory and the wave
packet's positional expectation values are quantitatively very This work was supported by National Science Foundation
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