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Singular potentials and limit cycles
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We show that a central 1/r n singular potential~with n>2) is renormalized by a one-parameter square-well
counterterm; low-energy observables are made independent of the square-well width by adjusting the square-
well strength. We find a closed form expression for the renormalization-group evolution of the square-well
counterterm.
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I. INTRODUCTION

The study of singular potentials in quantum mechanic
almost as old as quantum mechanics itself@1#. Physically,
singular potentials pose problems because the force betw
two particles, represented by the potential, does not uniq
determine the scattering problem@2#. Here we will focus on
singular potentials of 1/r n type, with n>2. Classically, par-
ticles subject to such a force fall to the origin with an infin
velocity. In quantum theory, the wave function oscillates
definitely on the way to the origin, allowing no way of spec
fying a linear combination of solutions@2#. Of course, in any
physical situation described by a singular potential, the
tential is intended as a description of long-range behavior
there is a sense in which the pathologies that occur nea
origin are irrelevant to the physical problem. This shou
remind the reader of the infinities encountered in quant
field theory, which are cured through renormalization. T
analogy with field theory has provided an important motiv
tion for the study of singular potentials@3#.

If a singular potential itself is not sufficient to determin
the scattering problem, one might be tempted to classify
singular potentials as nonrenormalizable and abandon
hope. This point of view is now outdated. In the mode
version of the renormalization paradigm a low-energy s
tem with a clear-cut separation of scales can be describe
an effective field theory~EFT! involving explicitly only the
long-wavelength degrees of freedom, and organized as
expansion in powers of momenta@4#. The short-range dy-
namics can always be treated as a set of local operator
the present context, the 1/r n potential represents the long
distance part of the potential. Local operators in moment
space correspond tod-function interactions in coordinat
space. The essential point of EFT is that the details of
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short-distance physics are not of importance to low-ene
scattering. Hence one can simulate thed function in an infi-
nite number of ways. The simplest choice of a ‘‘smear
out’’ d function is a simple square well. With a singula
potential representing a given long-distance force, an
square well representing unknown short-distance physics
interesting question is whether one can obtain an EFT w
well defined low-energy scattering observables, which are
a specified degree of accuracy insensitive to the sh
distance physics encoded by the square well. It is the purp
of this paper to explore this issue. Note that we do not
tempt to renormalize the coupling strength of the singu
potential itself@5#. In the physical problems of interest, th
coupling strength is completely determined by the lon
distance physics so there is no freedom to renormalize
parameter.

By way of physical motivation we note that singular p
tentials of 1/r n type are of great current physical interest. T
special casen52 is relevant to the three-body problem
nuclear physics@6–8#. This case is also relevant to poin
dipole interactions in molecular physics@9#. The casen53
corresponds to the tensor force between nucleons and
the heart of nuclear physics. The issue of the proper re
malization of this potential is an essential ingredient of t
intense ongoing effort to develop a perturbative theory
nuclear interactions@10#. The interaction between a charg
and an induced dipole is of typen54 @11#. The casen55 is
a perturbative correction to the tensor force in the nucl
potential @10#. Both n56 andn57 correspond to van de
Waals forces, of London@12# and Casimir-Polder@13# type,
respectively.

This paper is organized as follows. In Sec. II we set up
quantum mechanical scattering problem of two particles s
ject to a 1/r n potential with a square well. In Sec. III w
consider the marginaln52 case in some detail. The pur
singular potentialsn>3 are considered at zero energy
Sec. IV. In Sec. V we make use of the WKB approximati
to generalize our results to nonzero energy and to estim
the errors associated with the renormalization procedure.
discuss the applicability of a perturbative expansion for s
gular potentials in Sec. VI. Our numerical analysis, for t
©2001 The American Physical Society03-1
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S. R. BEANEet al. PHYSICAL REVIEW A 64 042103
casen54, is discussed in Sec. VII. We discuss and conclu
in Sec. VIII.

II. THE 1 Õr n POTENTIAL WITH A SQUARE WELL

We consider two particles of reduced massM interacting
in the S wave with a singular potential that varies as 1/r n,
n>2. This potential has a scale that sets its curvaturer 0; this
is the characteristic scale of the long-distance physics.
strength of the long-distance potential is governed by a
rameterlL/2Mr 0

2. To obtain well-defined solutions, we nee
to regulate the potential by introducing a cutoff procedu
Since we are posing the problem in coordinate space, w
this through a cutoff radiusR[Rr 0 , R&1. We expect that
the solutions will depend sensitively onR, that is, on the
short-range physics. We simulate a short-ranged-function
interaction by a square well of this radius and with dep
lS/2Mr 0

2. The problem will be correctly renormalized onc
we are able to varyR ~inasmuch asR&1) and simulta-
neouslylS in such a way as to keep observables~say phase
shifts! invariant. The corresponding constraintlS5lS(R)
represents the renormalization-group flow of the cont
interaction.1 We will see that this short-distance physics
represented by the running coupling

Hn~R![AlS~R!R. ~1!

We thus take as our potential

V~r !5
1

2Mr 0
2 S 2lSu~R2r !2lL

f ~r /r 0!

~r /r 0!n
u~r 2R!D ,

~2!

where f (x) is a regular function ofx near the origin with
f (0)51, f (1)5O(1). Notice thatlS ,lL.0 correspond to
purely attractive potentials. In terms ofx5r /r 0, the Schro¨-
dinger equation for the wave functionu(r )/r at an energy
E5k2/2M5h2/2Mr 0

2 is

u9~x!1~h21lS!u~x!50, x,R

u9~x!1S h21lL

f ~x!

xn D u~x!50, x.R. ~3!

We will consider the simplified casef (x)51 until Sec. V.
There is a very simple argument for classifying singu

potentials, which we will repeat here@12#. In the vicinity of
the origin the uncertainty principle dictates that the kine
energy scales likex22. Therefore, in a system described b
an attractive singular potential alone, the Hamiltonian of
system is given by the sum of the kinetic energy and
potential energy2lLx2n. Note that for a Coulomb potentia
n51, and for a sufficiently weakn52 potential, the Hamil-
tonian is bounded and therefore the Schro¨dinger equation has

1Here we mean that there is a ‘‘group’’ of transformations on
cutoff R that leaves observables invariant.
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a unique regular solution. Clearly, forn52 and lL suffi-
ciently strong, the Hamiltonian is unbounded from belo
Furthermore, whenn>3 the Hamiltonian is always un
bounded from below. Hence, an attractive singular poten
alone is meaningless in the vicinity of the origin; the u
boundedness of the Hamiltonian represents the onse
short-distance physics whose effect must be included in
potential.

III. THE MARGINAL CASE: nÄ2

A. The kÄ0 solution

Consider first the zero-energy solutionu(x;0). The
Schrödinger equation forx.R is

u9~x;0!1
lL

x2 u~x;0!50 ~4!

and the general solution is

u~x;0!5Ax1/21g1Bx1/22g, ~5!

whereg5A1/42lL. ForlL,1/4 the solution is well known
@12# and will not be further considered in this paper. On t
other hand, forlL.1/4 we can defineg[ in, and the genera
solution is

u~x;0!5Ax cos@n ln~x!1f2#, ~6!

where n5AlL21/4, f25(ln A/B)/2i , and we ignore the
overall normalization. Both of the linearly independent so
tions of Eq.~5! vanish asx→0, and oscillate indefinitely on
the way there. There is no obvious way to determine
unique linear combination of solutions, i.e., to fixf2. This is
the fundamental problem with singular potentials in quant
mechanics. Renormalization theory tells us that this sickn
is to be expected and arises from probing arbitrarily sho
distance scales, where the true potential no longer has
form 1/x2. The cure is to cut off the long-distance potential
a radiusR and introduce a simple parametrization of t
unknown short-distance physics, since low-energy obse
ables cannot distinguish between the schematic, par
etrized potential and the true potential at short distances.
choose a square well for simplicity, but we emphasize t
any choice of function is equally valid.

B. Matching to the square well

The solution in the interior regionx,R is straightfor-
ward. It is sufficient to consider an attractive square-w
potential lS.0. Matching logarithmic derivatives at th
boundaryx5R gives

AlS cotAlSR5
1

R H 1

2
2n tan@n ln~R!1f2#J . ~7!

If we vary R and lS(R) as given here, the zero-energ
phasef2 will not be affected. Equation~7! is transcendenta
and therefore rather cumbersome. However, there are
regimes where an analytical expression can be found.
3-2
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SINGULAR POTENTIALS AND LIMIT CYCLES PHYSICAL REVIEW A64 042103
first is when cotAlSR is large. This is the generic situatio
asR→0 since the right-hand side of this equation blows u
except wheren tan@n ln(R)1f2#50. We can then find an
approximate solution by writingAlSR5mp1e wherem is
an integer ande is a small number. Inserting this into Eq.~7!
and keeping the leading order ine we find

H2~R!5mpH sin@n ln~R!1f22arctan~1/2n!#

sin@n ln~R!1f21arctan~1/2n!#J . ~8!

Notice the periodicity as a function ofR and f2. Close to
the zeros of the right-hand side of this equation we can w
insteadAlSR5(m11/2)p1e and following the same pro
cedure we find, to leading order ine,

H2~R!5~m11/2!p2
1

~m11/2!p

3H 1

2
2n tan@n ln~R!1f2#J . ~9!

A numerical solution of Eq.~7! shows that the approximat
solutions Eqs.~8!,~9! are very good within their ranges o
validity. The expression in Eq.~9! interpolates between two
successive branches of Eq.~8! ~see Fig. 1!.

The three-body problem with short-range interactions
known to be equivalent, in the ultraviolet regime, to the 1r 2

potential@6#. The role of the interparticle distancer is played
in the three-body problem by a collective coordinate t
vanishes when the three particles occupy the same poin
space, and the analog of the three-body force is the sh
distance potential. Since renormalization depends only
the short-distance behavior of the theory, it is not surpris
that the renormalization of the three-body problem requ
the presence of a three-body force@7#. Using momentum-
cutoff regularization the running of the three-body force w
found to follow Eq.~8! very closely, even where this formul
predicts a pole. Evidently, for values ofR where Eq.~9!
takes over in the 1/r 2 problem, the three-body force contin

FIG. 1. The running coupling for then52 singular potential.
The solid lines are given by Eq.~8! and the dashed lines are give
by Eq. ~9!. The bold lines are a numerical solution of Eq.~7!.
Quantities on both axes are dimensionless.
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ues to follow Eq.~8! and seems to reach arbitrarily hig
values. Also, no evidence of multiple branches was found
the three-body problem. These discrepancies between
three-body and the 1/r 2 problem may be due to the fact tha
not all aspects of the renomalization-group flow are univ
sal, in the sense of being independent of the particular re
lator used.

C. The full solution

In the casen52, the Schro¨dinger equation can be solve
exactly for all energies. The solution is

u~x;h!5Ax@exp~ ia!Jin~hx!1exp~2 ia!J2 in~hx!#,
~10!

where theJ6 in are Bessel functions, anda is to be fixed by
a boundary condition. For smallx we find

u~x;h!5Ax cos@n ln~xh/2!1a2Im ln G~11 in!#.
~11!

Matching to Eq.~6! gives

f25a1n ln h/22Im ln G~11 in!. ~12!

Sincef2 is, by construction, energy independent,a is en-
ergy dependent.

We can now look for solutions withh5 ik that fall off
exponentially at largex. It follows from Eq. ~10! that

u~x;k!→ 1

2
expS i

p

4 D cosS a1 i
np

2 Dexp~kx!1C exp~2kx!,

~13!

whereC is an energy-dependent coefficient. The bound-s
solutions then correspond toa(h)5(m11/2)p2 inp/2,
with m an integer. Comparing with Eq.~12! gives the bound-
state spectrum

Em52
2

Mr 0
2 expS 2

f21Im ln G~11 in!2~m11/2!p

n D .

~14!

Once f2 is fixed by a single bound-state energy, all oth
energies are predicted@2#. Adjacent bound-state energies a
related by

km11

km
5expS 2

p

n D . ~15!

Hence we see that the periodicity in the running coupl
H2(R) is associated with the accumulation or dissipation
bound states near the origin.

One can also fixf2 to a scattering observable, like th
scattering length or the phase shift at a given energy. Un
tunately, as for the Coulomb potential, then52,3 singular
potentials suffer infrared problems at low energies, a
therefore scattering lengths can be defined only if an infra
cutoff is imposed@3#.
3-3
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IV. PURE SINGULAR POTENTIALS: nÐ3

A. The kÄ0 solution

The exact zero-energy solution forn>3 is well known
@3#. Definingz5AlLx12n/2/u12n/2u andf(z)5u(x;0)/Ax,
for x.R Eq. ~3! becomes an ordinary Bessel equation:

f9~z!1
1

z
f8~z!1S 12

1

~n22!2z2D f~z!50. ~16!

The solution is

u~x;0!5AxFAnJ1/(n22)S AlL

12n/2
x12n/2D

1BnJ21/(n22)S AlL

12n/2
x12n/2D G , ~17!

which is a linear combination of Bessel functions. For sm
x we can write2

u~x;0!5xn/4 cosS AlL

n/221
x12n/21fnD @11O~xn/221!#,

~18!
o

rg

er

04210
ll

where we have set the constant prefactor to unity and

fn52
np

4

1

~n22!
1 i lnF11

Bn

An
expS 2

ip

~n22! D G .
~19!

This solution exhibits precisely the same pathologies as
~6!.

B. Matching to the square well

We proceed as in the casen52. Again we have a squar
well in the interior region. Matching logarithmic derivative
at the boundaryx5R gives

AlS cotAlSR5
n

4R 2S lL

R nD 1/2

tanS AlL

n/221
R 12n/21fnD ,

~20!

where we have neglectedO(R n/221) corrections to the wave
function atx.R. The phasefn is physical and can be trade
for the scattering length~for n.3), as will be seen below. If
we varyR andlS(R) as given here, the phasefn will not
be affected. We proceed as we did before in then52 case
and find, in the regions where the right-hand side of Eq.~20!
is large,
Hn~R!5mpH 12
1

12n/41AlLR 12n/2 tan$@2AlL/~n22!#R 12n/21fn%
J . ~21!
ne

all

y
hro
ri-

ss.
In the other regime, where the right-hand side is close t
zero, we have

Hn~R!5S m1
1

2Dp2
1

S m1
1

2Dp

Fn/42AlLR 12n/2

3tanS 2AlL

n22
R 12n/21fnD G . ~22!

A numerical solution of Eq.~20! in the casen54 shows that
the approximate solutions Eqs.~21!,~22! are very good
within their ranges of validity. The expression in Eq.~22!
interpolates between two successive branches of Eq.~21!
~see Fig. 2!.

The scattering length can be found from the zero-ene
wave function forn>4 @14,15#. For instance, we find the
n54 scattering length

a45r 0AlL tanf4 . ~23!

It is evident thata4 determines the phasef4.

2In the casen54, the Bessel functions are of half-integral ord
and Eq.~18! is exact for allx.
a

y

V. THE WKB APPROXIMATION

There is an important shortcoming in what we have do
so far. Defining zero-energy scattering isnot sufficient to
guarantee correct renormalization. We want physics at

FIG. 2. The running coupling for then54 singular potential.
The solid line is given by Eq.~21! and the dashed line is given b
Eq. ~22!. The triangles and stars are extracted by solving the Sc¨-
dinger equation numerically and coincide exactly with the nume
cal solution of Eq.~20!. Quantities on both axes are dimensionle
3-4
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SINGULAR POTENTIALS AND LIMIT CYCLES PHYSICAL REVIEW A64 042103
energiesh&1 to be cutoff independent. It is clear that th
above procedure could in principle be repeated at each
ergy by allowing energy dependence inlS . Fixing fn at one
energy and then predicting other energies will only resul
the scale of this energy dependence is much slower
1/2Mr 0

2, so that, to some accuracy,lS can be taken to be
energyindependent. Otherwise, an infinite number of param
eters~the strength of arbitrarily-many-derivative contact i
teractions! would have to be known in order to have pred
tive power. This shortcoming can be removed using
WKB approximation. We can also consider the more gene
casef (x)Þ1.

A. The WKB criteria

We now keepf (x) arbitrary and consider the regionx
.R in the limit x→0. A particularly well-suited approxima
tion in this limit is the WKB approximation, which is valid
when the wavelengthl is small compared to the characte
istic distance over which the potential varies apprecia
That is,

1

2p Udl

dr U5U d

dr
$2M @E2V~r !#%21/2U!1, ~24!

which translates into the constraint

2

n
AlL f ~x!@xn/221 ~25!

in the small-x region.3 Clearly this condition is satisfied fo
all n.2 asx→0. In the marginal casen52 this condition is
satisfied only for a sufficiently strong potential. Therefore t
WKB criterion parallels the general argument given abo
based on the boundedness of the Hamiltonian. The gen
WKB solution @12# is

u~x;h!5S h21
lL f ~x!

xn D 21/4

3cosF E
x0

x

dx8S h21
lL f ~x8!

x8n D 1/2G , ~26!

wherex0 is a constant of integration. ForV@E this reduces
to

u~x;0!5xn/4f 21/4~x!cosSAlLE
x0

x

dx8 x82n/2f 1/2~x8! D .

~27!

In the limit R,x!1, we can setf (x)51 ~keep the leading
term in a power series inx). We then recover, forn.2,

3The WKB approximation is also valid at largex and finite h
provided thath3@nlLx2n21/2.
04210
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u~x;0!5xn/4 cosS AlL

n/221
x12n/21fnD ~28!

wherefn52AlLx0
2n/211/(12n/2). The casen52 is also

recovered if one takeslL→lL21/4. Therefore, we expec
our conclusions about the renormalization of the singu
potentials to be valid for the more general casef (x)Þ1.

B. The leading energy dependence

We now show that the zero-energy solution is in fact s
ficient to remove cutoff dependence at all other low energ
The crucial point is that, in the intermediate regionR,x
!1, for the energies of interest, the potential energy is m
larger than the total energy, and we recover the zero-en
case. This can be made more precise by using the W
appromimation again@2#. We write the wave function for any
x>R as

u~x;h!5A~x;h!u~x;0!. ~29!

ThenA(x;h) obeys

d2A~x!

dx2
12

d ln u~x;0!

dx

dA~x!

dx
1h2A~x!50, ~30!

which depends only on the zero-energy wave function. N
since forR,x!1,

Ud ln u~x;0!

dx U@1, ~31!

A(x) can be written

A~x!5A(0)~x!1A(1)~x!1•••, ~32!

where

dA(0)

dx
50,

dA(1)

dx
52

1

2

u~x;0!

u8~x;0!
h2A(0) , •••. ~33!

We then find the leading energy corrections

A~x;h!5A(0)H 12
h2

2 E
0

x

dx8
u~x8;0!

u8~x8;0!
1•••J . ~34!

We see that, in the intermediate region, the energy dep
dence of the wave function~29! is determined by the zero
energy wave functionu(x;0). If the phase ofu(x;0) has
been fixed, the phase ofu(x;h) is fixed, and scattering ob
servables can be predicted at low energies.

C. Error estimates

The fact remains that our arguments are all at short
tances where the WKB approximation is valid. This is,
course, the opposite of the EFT limit that interests us. O
may wonder whether cutoff effects can be amplified wh
3-5
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S. R. BEANEet al. PHYSICAL REVIEW A 64 042103
propagating the wave function from short to long distanc
We will see now that this cannot occur and in turn find
estimate of the cutoff error associated with the scatter
phase shift. Usually, in perturbative EFT, the error is a pow
law in R. Here we will find a more complicated functiona
dependence.

By adjustingHn(R) as in Eqs.~21!,~22! we guarantee
that two zero-energy solutionsuR(x;0),uR8 (x;0) corre-
sponding to two different cutoffsR,R8!1;1/h are identi-
cal. At finite values ofh, solutions obtained with differen
cutoffs will no longer be equal, but their difference can
easily estimated. TakingR8,R, the Schro¨dinger equations
satisfied byuR(x;h) and uR8 (x;h) are the same in thex
.R region so their Wronskian

W@uR ,uR8#~x;h!5uR~x;h!uR8
8 ~x;h!2uR8 ~x;h!uR8~x;h!

~35!

is independent ofx. At large distances@r @(lL /k2)(1/n)#,
where the solutions are plane waves,W@uR ,uR8# is related
to the phase shiftsdR anddR8 obtained with the cutoffsR
andR8 by

W@uR ,uR8#@r @~lL /k2!(1/n);h#5ARAR8h sin~dR2dR8!,
~36!

whereAR ,AR8 are the amplitudes at large distances. Th
prefactors are easily estimated from the general WKB so
tion Eq. ~26!, in the regionr @(lL /k2)(1/n), where the WKB
solution maps to the asymptotic plane-wave solution.
find AR ,AR8;h21/2.

On the other hand, at the cutoff distancex5R,
W@uR ,uR8# is estimated using our WKB formula Eq.~34!.
We find

W@uR ,uR8#~R;h!5W@uR ,uR8#~R;0!2
h2

2
E~R;0!1•••,

~37!

where

W@uR ,uR8#~R;0!5uR~R;0!uR8~R;0!

3F uR8
8 ~R;0!

uR8~R;0!
2

uR8 ~R;0!

uR~R;0!

1OS R n/221
uR8 ~R!

uR~R!
D G ~38!

and
04210
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E~R;0![uR~R;0!uR8~R;0!FuR8~R;0!

uR8
8 ~R;0!

2
uR~R;0!

uR8 ~R;0!

1OS R n/221
uR~R!

uR8 ~R!
D G1W@uR ,uR8#

3~R;0!E
0

R
dx8FuR8~x8;0!

uR8
8 ~x8;0!

1
uR~x8;0!

uR8 ~x8;0!

1OS x8n/221
uR~x8!

uR8 ~x8!
D G . ~39!

We have included the error due to keeping only the lead
zero-energy wave function in Eq.~18!. Recall that we choose
our fitting procedure to be energy independent, for exam
by comparing the zero-energy wave function to the scatte
length. It then follows thatW@uR ,uR8#(R;0)50, by con-
struction, for the full wave function, and from Eq.~38! we
have

uR8
8 ~R;0!

uR8~R;0!
2

uR8 ~R;0!

uR~R;0!
5OS R n/221

uR8 ~R!

uR~R!
D . ~40!

Using these constraints it is straightforward to find

E~R;0!5OS R n/221
@uR~R!#3

uR8 ~R!
D . ~41!

If we assume that all oscillating functions ofR are of order
unity for values ofR at which we fit observables, the
E(R;0)5O(R 3n/221), which is small for alln>2. Match-
ing the Wronskians at large@r @(lL /k2)(1/n)# and small (x
5R) distances then yields an estimate for the error in
phase shift:

dR2dR8;h2E~R;0!, ~42!

whereE(R;0) is a function ofR whose complicated para
metric cutoff dependence is given by Eq.~41!. This shows
that the renormalization procedure described here produ
cutoff-independent phase shifts, accurate up to or
h2E(R;0).

VI. THE WEAK COUPLING LIMIT

It might seem odd that the explicit dependence on
coupling constant is nonanalytic in the formula for then
54 scattering length, Eq.~23!. Naively it would appear that
nonperturbative effects are important at arbitrarily weak c
pling.

However, we know that this cannot be the case, since
weak coupling the scattering length should go smoothly to
square-well value. We would expect a perturbative desc
tion in the singular potential to be valid when the potent
energy2lLx2n is much smaller than the kinetic energyx22.
This leads to the condition
3-6
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r @r 0lL
1/(n22) or k!r 0

21lL
21/(n22) . ~43!

In effect, takingf4 from Eq. ~20! we find, for lL /R 2

!1,

a4

R
5S 12

tan~AlSR!

AlSR D 2
1

3 F11
tan~AlSR!

AlSR

1S tan~AlSR!

AlSR D 2G lL

R 2 1OS lL
2

R 4D . ~44!

Leading order reproduces the square-well scattering len
and the corrections are analytic inlL . Hence, there is, in
fact, no nonanalyticity near zero coupling in the presence
the square well.

Of course, if the cutoffR is taken at values where th
oscillatory behavior of the wave function has set in,R
&lL

1/(n22) , then there is no sense in which perturbati
theory inlL can capture the true behavior of the wave fun
tion. This is made clear in Fig. 3 where several orders i
perturbative expansion of then54 singular-potential wave
function are plotted against the exact singular-potential w
function in the short-distance region.

FIG. 4. Phase shifts~in radians! d vs energy in the case of
natural scattering length forn54. Various cutoffs are given with
the square well tuned to give the same scattering length. The cu
are R50.01 ~dots!, R50.02 ~triangles!, R50.04 ~squares!, R
50.08 ~stars!, andR50.16 ~diamonds!.

FIG. 3. The exact zero-energy wave function~solid line! at
small r compared with the wave function obtained in perturbat
theory to leading order~small dashes!, next-to-leading order~me-
dium dashes!, and next-to-next-to-leading order~large dashes!.
Quantities on both axes are dimensionless.
04210
th

f

-
a

e

VII. NUMERICS

In this section we analyze the 1/r 4 potential numerically.
For simplicity, we take 2M5r 051; therefore,x5r and h
5k5A2E. The long-distance potential is then complete
determined bylL which we take to be unity. We consider th
‘‘natural case,’’ which is characterized bya4;(lL)1/2, and
the ‘‘unnatural case,’’ which is characterized bya4@(lL)1/2.

In Fig. 4 we show phase shiftsd(k) in a natural case
@d(0.1)50.1 andf452101.298# for various cutoffs. We
see that, as anticipated, the low-energy phases are to a
approximation cutoff independent; cutoff dependence
comes more pronounced as the cutoff radius and the en
are increased. In Fig. 5 we plot the error analysis: the~natu-
ral logarithm of the! errorsuDd(k)u5dR2dR8 as a function
of ~the natural logarithm of the! energy for various pairs o
cutoffs. We find that the errors scale ask2, as expected on the
basis of Eq.~42!. In Figs. 6 and 7 we show the correspondi
results in an ‘‘unnatural’’ case@d(0.1)5p/3 and f45
298.954#. Again we find that the errors scale ask2.

VIII. CONCLUSION

We have reconsidered singular potentials of the form 1r n

with n>2 from the viewpoint of modern renormalizatio

ffs

FIG. 5. Natural logarithm of the errorsuDd(k)u5dR2dR8 as a
function of the natural logarithm of the energy forn54. The pairs
of cutoffs (R,R8) are (0.16,0.08)~diamonds!, (0.08,0.04)~stars!,
(0.04,0.02)~squares!, and (0.02,0.01)~triangles!.

FIG. 6. Same as Fig. 4 for an unnatural scattering length
3-7
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theory. We have shown that the well-known pathologies n
the origin are cured by a square-well counterterm that re
sents the effect of unknown short-distance physics. T
renormalization-group evolution of this counterterm has
riodic behavior. The counterterm is not determined uniqu
at any given cutoff due to the infinite number of branches
the renormalization-group flow, and one is allowed to fre
jump from branch to branch at will without causing an
change in the low-energy phase shifts@up to O(k2) correc-
tions#.

The dependence of the number of bound states on
choice of branch is complex. Arguments similar to the o
leading to Eq.~14! are valid for a generic singular potenti
as long as~i! the binding energy is much smaller tha
lS /(2Mr 0

2) @in order that the binding energy can be disr
garded in the left-hand side of Eq.~20!# and~ii ! the binding
energy is much larger thanlL /(2Mr 0

2) @so the fact that
f (r /r 0)Þ1 is inconsequential#. The resulting spectrum
shows a power-law distribution that is given by the WK
estimate@14#. We see now that asR→0 andlS(R)→` the
region of validity of the calculation sketched above gro
and more and more bound states are created. If, in additio
keeping the phase shifts cutoff independent, one also
mands that the number of bound states be fixed, the valu
the countertermlS jumps down a branch at every cycle. W
are then left with a periodic, limit-cycle behavior for th

FIG. 7. Same as Fig. 5 for an unnatural scattering length
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renormalization-group flow. This is a unique situation in fie
theory/critical phenomena, where the standard behavior
responds to counterterms approaching either z
~asymptotic freedom! or infinity as the momentum cutof
goes to infinity@8#.

Naively, it appears that the singular potentials have
nonanalytical dependence on the coupling parameter eve
weak coupling. This would negate a perturbative descript
at weak coupling, a conclusion that must be incorrect. O
might imagine some as yet experimentally invisible light p
ticle that interacts at long distances via a singular poten
~e.g., an axion!. If the behavior of the wave function wer
such that there is a branch point at the origin of the coupli
constant plane, then nonperturbative effects would per
even for couplings of gravitational strength. We have se
that this nonanalyticity is an artifact that is removed
short-distance physics encoded by the square well.

Renormalization renders low-energy phase shifts cu
independent up toO(k2) corrections. The cutoff dependenc
of these errors is not generally a power law as one expec
Wilsonian EFT. The renormalization-group flow introduc
complicated oscillatory behavior in the corrections, whi
nonetheless is small for judiciously chosen cutoffs. Our t
oretical expectations of the error have been confirmed
merically. We expect that the methods developed in this
per will prove useful to those interested in the cornucopia
physical systems whose long-distance behavior is gover
by singular potentials.
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