PHYSICAL REVIEW A, VOLUME 64, 042103
Singular potentials and limit cycles
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We show that a central i singular potentialwith n=2) is renormalized by a one-parameter square-well
counterterm; low-energy observables are made independent of the square-well width by adjusting the square-
well strength. We find a closed form expression for the renormalization-group evolution of the square-well

counterterm.
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[. INTRODUCTION short-distance physics are not of importance to low-energy

scattering. Hence one can simulate th&unction in an infi-

The study of singular potentials in quantum mechanics isiite number of ways. The simplest choice of a “smeared
almost as old as quantum mechanics it$&lf Physically, out” & function is a simple square well. With a singular
singular potentials pose problems because the force betwe@otential representing a given long-distance force, and a
two particles, represented by the potential, does not uniquelyquare well representing unknown short-distance physics, an
determine the scattering problei@]. Here we will focus on  interesting question is whether one can obtain an EFT with
singular potentials of 1/ type, withn=2. Classically, par-  wel| defined low-energy scattering observables, which are to
ticles subject to such a force fall to the origin with an infinite 5 gpecified degree of accuracy insensitive to the short-
velocity. In quantum theory, the wave function oscillates in-gistance physics encoded by the square well. It is the purpose
definitely on the way to the origin, allowing no way of speci- ot s paper to explore this issue. Note that we do not at-
fying a linear combination of solutiori€]. Of course, inany o5t 15 renormalize the coupling strength of the singular

physical situation described by a singular potential, the po'Botential itself[5]. In the physical problems of interest, the

tential is intended as a description of long-range behavior, SQ unling strenath is completelv determined by the lona-
there is a sense in which the pathologies that occur near th ping g b y y g

origin are irrelevant to the physical problem. This should(ﬁStance physics so there is no freedom to renormalize this
remind the reader of the infinities encountered in quamunparameter. ) L ,
field theory, which are cured through renormalization. This By way Ofn physical motivation we note that §|ngular po-
analogy with field theory has provided an important motiva-te”t'e_"s of 1f type_ are of great current physical interest. The
tion for the study of singular potential8]. special casen=2 is relevant to the three-body problem in
If a singular potential itself is not sufficient to determine Nuclear physic§6—8]. This case is also relevant to point-
the scattering problem, one might be tempted to classify théipole interactions in molecular physi¢8]. The casen=3
singular potentials as nonrenormalizable and abandon aglorresponds to the tensor force between nucleons and is at
hope. This point of view is now outdated. In the modernthe heart of nuclear physics. The issue of the proper renor-
version of the renormalization paradigm a low-energy sysimalization of this potential is an essential ingredient of the
tem with a clear-cut separation of scales can be described bgtense ongoing effort to develop a perturbative theory of
an effective field theoryEFT) involving explicitly only the  nuclear interaction$10]. The interaction between a charge
long-wavelength degrees of freedom, and organized as amnd an induced dipole is of type=4 [11]. The casen=5 is
expansion in powers of momenfd]. The short-range dy- a perturbative correction to the tensor force in the nuclear
namics can always be treated as a set of local operators. potential[10]. Both n=6 andn=7 correspond to van der
the present context, therl/potential represents the long- Waals forces, of Londofil2] and Casimir-Poldef13] type,
distance part of the potential. Local operators in momentumespectively.
space correspond té-function interactions in coordinate This paper is organized as follows. In Sec. Il we set up the
space. The essential point of EFT is that the details of thguantum mechanical scattering problem of two particles sub-
ject to a 1f" potential with a square well. In Sec. Il we
consider the marginah=2 case in some detail. The pure

*Email address: sheane@phys.washington.edu singular potentialsn=3 are considered at zero energy in
TEmail address: bedaque@phys.washington.edu Sec. IV. In Sec. V we make use of the WKB approximation
*Email address: childres@fas.harvard.edu to generalize our results to nonzero energy and to estimate
SEmail address: abk4@u.washington.edu the errors associated with the renormalization procedure. We
'Email address: james.mcguire@yale.edu discuss the applicability of a perturbative expansion for sin-
TEmail address: vankolck@krl.caltech.edu gular potentials in Sec. VI. Our numerical analysis, for the
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casen=4, is discussed in Sec. VII. We discuss and concludea unique regular solution. Clearly, for=2 and A suffi-

in Sec. VIII. ciently strong, the Hamiltonian is unbounded from below.
Furthermore, whem=3 the Hamiltonian is always un-
Il. THE 1/r" POTENTIAL WITH A SQUARE WELL bounded from below. Hence, an attractive singular potential

_ _ . _ alone is meaningless in the vicinity of the origin; the un-
We consider two particles of reduced madsnteracting  poundedness of the Hamiltonian represents the onset of

in the S wave with a singular potential that varies as"l/  short-distance physics whose effect must be included in the
n=2. This potential has a scale that sets its curvatyréhis  potential.

is the characteristic scale of the long-distance physics. The

strength of the long-distance potential is governed by a pa- IIl. THE MARGINAL CASE: n=2
rameter\  /2Mr3. To obtain well-defined solutions, we need .
to regulate the potential by introducing a cutoff procedure. A. The k=0 solution

Since we are posing the problem in coordinate space, we do Consider first the zero-energy solution(x;0). The
this through a cutoff radiuR="TRr,, R=1. We expect that schralinger equation fox>7R is

the solutions will depend sensitively dR, that is, on the
short-range physics. We simulate a short-radginction
interaction by a square well of this radius and with depth
Ag/2Mr3. The problem will be correctly renormalized once
we are able to varyR (inasmuch ask=<1) and simulta- and the general solution is

neously\g in such a way as to keep observab(say phase

shifts) ?/nvsariant. The coyrresponding constraiiﬁg:);\g(R) u(x;0)=AxY#7+Bx277, ®)
represents the renormalization-group flow of the contact

interaction* We will see that this short-distance physics is WNerey=v1/4—A . Fori <1/4 the solution is well known
represented by the running coupling [12] and will not be further considered in this paper. On the

other hand, foh | >1/4 we can defing=iv, and the general

A
u”(x;0)+?u(x;0)=0 (4)

Hy(R)=V\g(R)R. (1)  solution is
We thus take as our potential u(x;0)=x cog v In(x)+ ¢,], (6)
1 f(riro) where v= 1\ —1/4, ¢,=(In AIB)/2i, and we ignore the
V(r)= 5| —AsO(R=r1)—NL S0(r—=R) |, overall normalization. Both of the linearly independent solu-
2Mrg (r/ro) tions of Eq.(5) vanish ax—0, and oscillate indefinitely on

(2)  the way there. There is no obvious way to determine a
unigue linear combination of solutions, i.e., to &x. This is

the fundamental problem with singular potentials in quantum
mechanics. Renormalization theory tells us that this sickness
is to be expected and arises from probing arbitrarily short-
distance scales, where the true potential no longer has the
form 1k2. The cure is to cut off the long-distance potential at
a radiusR and introduce a simple parametrization of the
unknown short-distance physics, since low-energy observ-
ables cannot distinguish between the schematic, param-
etrized potential and the true potential at short distances. We
choose a square well for simplicity, but we emphasize that
any choice of function is equally valid.

where f(x) is a regular function ok near the origin with
f(0)=1, f(1)=0(1). Notice that\g,\; >0 correspond to
purely attractive potentials. In terms ®f=r/r, the Schre

dinger equation for the wave functian(r)/r at an energy
E=k?2M = 7?/2Mr} is

u’(X)+ (72 +Agu(x)=0, x<R

u”(x)+

772+)\L@) u(x)=0, x>R. ©)
X

We will consider the simplified casgx)=1 until Sec. V.

There is a very simple argument for classifying singular B. Matching to the square well
potentials, which we will repeat hefé2]. In the vicinity of
the origin the uncertainty principle dictates that the kinetic
energy scales lika~ 2. Therefore, in a system described by
an attractive singular potential alone, the Hamiltonian of th
system is given by the sum of the kinetic energy and the
potential energy- A X ". Note that for a Coulomb potential 11
n=1, and for a sufficiently weak=2 potential, the Hamil- Vs cotyAgR= =z ~vlvin(R)+¢alr.  (7)
tonian is bounded and therefore the Sclinger equation has

If we vary R and Ag(R) as given here, the zero-energy
phaseg, will not be affected. Equatiofy) is transcendental
'Here we mean that there is a “group” of transformations on theand therefore rather cumbersome. However, there are two
cutoff R that leaves observables invariant. regimes where an analytical expression can be found. The

The solution in the interior regiom<<R is straightfor-
ward. It is sufficient to consider an attractive square-well
otential A\s>0. Matching logarithmic derivatives at the
oundaryx="R gives
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ues to follow Eq.(8) and seems to reach arbitrarily high
values. Also, no evidence of multiple branches was found in
the three-body problem. These discrepancies between the
three-body and the 7 problem may be due to the fact that
not all aspects of the renomalization-group flow are univer-
sal, in the sense of being independent of the particular regu-
lator used.

C. The full solution

In the casen=2, the Schrdinger equation can be solved
exactly for all energies. The solution is

u(x; 7) = Vx[exp(ia)J;,(7x)+exp(—ia@)I_;,(7x)],
(10

FIG. 1. The running coupling for the=2 singular potential.
The solid lines are given by E@8) and the dashed lines are given
by Eq. (9). The bold lines are a numerical solution of EJ).
Quantities on both axes are dimensionless.

where thel.;, are Bessel functions, and is to be fixed by
a boundary condition. For smallwe find

u(x; 7)= X cog vIn(x5/2) + a—Im InT(1+iv)].

first is when cot/\gR is large. This is the generic situation (D
asR—0 since the right-hand side of this equation blows up.\atching to Eq.(6) gives
except wherev tar{ v In(R) + ¢,]=0. We can then find an
approximate solution by writing\ R =ma + € wherem is dr=a+vinp2—ImInT(1+iv). (12)
an integer and is a small number. Inserting this into Eq)
and keeping the leading order éinwe find Since ¢, is, by construction, energy independeat,s en-
ergy dependent.
_|sinvIn(R)+ ¢,—arctan1/2v) ] We can now look for solutions wity=i« that fall off
Ha(R)=ma sifvIn(R)+ ¢,+arctari1/2v) ]| ®) exponentially at large. It follows from Eq.(10) that

Notice the periodicity as a function g2 and ¢,. Close to i } T v _
the zeros of the right-hand side of this equation we can writd!(X: €)= 5 €XR 1 7]€0§ a+i—-exp(xx)+ C exp(— kX),
instead\AsR=(m+ 1/2)7+ € and following the same pro- (13

cedure we find, to leading order &
whereC is an energy-dependent coefficient. The bound-state

1 solutions then correspond te(7n)=(m+1/2)7m—ivw/2,
Ho(R)=(m+1/2)m— M+ 127 with m an integer. Comparing with E¢12) gives the bound-
state spectrum

1
X1y —vtalvin(R)+ ¢o] . 9 2 p( ¢2+ImInF(l+iv)—(m+1/2)7r)
En=——>exp 2 .
Mrg v
A numerical solution of Eq(7) shows that the approximate (14)
solutions Eqs(8),(9) are very good within their ranges of
validity. The expression in Eq9) interpolates between two Once ¢, is fixed by a single bound-state energy, all other
successive branches of E®) (see Fig. 1 energies are predictd@]. Adjacent bound-state energies are
The three-body problem with short-range interactions igelated by
known to be equivalent, in the ultraviolet regime, to the?1/
potential[6]. The role of the interparticle distances played Km+1 exy{ 77) (15
in the three-body problem by a collective coordinate that Km '
vanishes when the three particles occupy the same point in
space, and the analog of the three-body force is the shorHence we see that the periodicity in the running coupling
distance potential. Since renormalization depends only oil,(R) is associated with the accumulation or dissipation of
the short-distance behavior of the theory, it is not surprisingound states near the origin.
that the renormalization of the three-body problem requires One can also fixp, to a scattering observable, like the
the presence of a three-body forfg. Using momentum- scattering length or the phase shift at a given energy. Unfor-
cutoff regularization the running of the three-body force wastunately, as for the Coulomb potential, the=2,3 singular
found to follow Eq.(8) very closely, even where this formula potentials suffer infrared problems at low energies, and
predicts a pole. Evidently, for values ®& where Eq.(9) therefore scattering lengths can be defined only if an infrared
takes over in the tf problem, the three-body force contin- cutoff is imposed3].
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IV. PURE SINGULAR POTENTIALS: n=3 where we have set the constant prefactor to unity and
A. The k=0 solution nr 1 B, i )
. . =—— ——+ilnf1+—exp — ——=||.
The exact zero-energy solution foe=3 is well known ¢n 4 (n—2) A, (n—2)
(19

[3]. Definingz= VA x*~™"%|1—n/2| and ¢(z) =u(x;0)/Vx,

for x>7R Eq. (3) becomes an ordinary Bessel equation:  Thjs solution exhibits precisely the same pathologies as Eq.

(6).

B. Matching to the square well

1
")+ =d'(2)+| 1-——= | $(2)=0. (16
¢"(2)+-4'(2) ( (n_2)222)¢<> (16)
We proceed as in the case=2. Again we have a square

The solution is well in the interior region. Matching logarithmic derivatives

e at the boundarx="R gives
L _
u(x;0)=vx Andin-2y| 75X M2 12
1-n/2 n N AN e
— VAs CONASR =22 ~| =™ nz—1© %),
+B.J g Mo (17) (20)
nvY—1/(n—-2) 1—-n/2 )

where we have neglect&(R "2~ ) corrections to the wave
which is a linear combination of Bessel functions. For smallfunction atx>7R. The phasep, is physical and can be traded

X we can writé for the scattering lengtftfor n>3), as will be seen below. If
- we varyR and\g(R) as given here, the phagfg, will not
S L 1-np2 ni2—1 be affected. We proceed as we did before in the2 case
ux;0)=x COS( n/2— 1X ¢n |[1+0(x gt and find, in the regions where the right-hand side of 6)
(18 is large,
|
H,(R) 1 ! (21
=mm{ 1— .
A 1-n/4+ IR ™ tan[2 N /(n—2) R "2+ ¢}
|
In the other regime, where the right-hand side is close to a V. THE WKB APPROXIMATION
zero, we have
1 1 There is an important shortcoming in what we have done
H.(R)=| m+ _) S n/4— \/}\—LRl_n/z so far. Defining zero-energy sgattermg nst sufﬁmem to
2 1 guarantee correct renormalization. We want physics at all
m+ |
2
2N
xtar( SRty dnl . (22)
n—2
A numerical solution of Eq(20) in the casen=4 shows that 10

the approximate solutions Eq$21),(22) are very good
within their ranges of validity. The expression in EQ2) H4
interpolates between two successive branches of (Eh.
(see Fig. 2.

The scattering length can be found from the zero-energy
wave function forn=4 [14,15. For instance, we find the
n=4 scattering length

a,=To\AL tand,. (23

It is evident thata, determines the phasg,.

FIG. 2. The running coupling for tha=4 singular potential.
The solid line is given by Eq.21) and the dashed line is given by
Eg.(22). The triangles and stars are extracted by solving the 'Schro

2In the casen=4, the Bessel functions are of half-integral order dinger equation numerically and coincide exactly with the numeri-
and Eq.(18) is exact for allx. cal solution of Eq(20). Quantities on both axes are dimensionless.
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energiesp=<1 to be cutoff independent. It is clear that the AL
above procedure could in principle be repeated at each en- u(x;0)=x" coa(—
: : b n/2—1
ergy by allowing energy dependencehig. Fixing ¢, at one
energy and then predicting other energies will only result |f
the scale of this energy dependence is much slower than
1/2Mr0, so that, to some accuracyg can be taken to be
energyindependentOtherwise, an infinite number of param-
eters(the strength of arbitrarily-many-derivative contact in-
teraction$ would have to be known in order to have predic-
tive power. This shortcoming can be removed using the
WKB approximation. We can also consider the more general We now show that the zero-energy solution is in fact suf-
casef(x)#1. ficient to remove cutoff dependence at all other low energies.
The crucial point is that, in the intermediate regi®@xx
A. The WKRB criteria <1, for the energies of interest, the potential energy is much
larger than the total energy, and we recover the zero-energy
We now keepf(x) arbitrary and consider the region  case. This can be made more precise by using the WKB

>R in the limit x—0. A particularly well-suited approxima- - appromimation agaif2]. We write the wave function for any
tion in this limit is the WKB approximation, which is valid x=7R as

when the wavelength is small compared to the character-

X124 g, (28)

where ¢,=— VA Xo "2"1/(1—n/2). The case1=2 is also
fecovered if one takes, —\_—1/4. Therefore, we expect
our conclusions about the renormalization of the singular
potentials to be valid for the more general céée) # 1.

B. The leading energy dependence

istic distance over which the potential varies appreciably. u(x; 7)=A(x; 7)u(x;0). (29
That is,
ThenA(x; ) obeys
N _ {2M[E V(] Y<1 (24)
2m|dr| ’ d?A(x) 2dln u(x;0) dA(x)

PAX)=0, (30

dx? * dx dx
which translates into the constraint
which depends only on the zero-energy wave function. Now,
since forR<x<1,

z\/fo( x)s>x"2"1 (25)

dInu(x;0)
dx >1, (3D
in the smallx region® Clearly this condition is satisfied for
all n>2 asx—0. In the marginal case=2 this condition is
A
satisfied only for a sufficiently strong potential. Therefore the (x) can be written
WKB criterion parallels the general argument given above AX)=A)(X) +Ay(X) +- -+, (32)
based on the boundedness of the Hamiltonian. The general
WKB solution[12] is where
AFOO| dA dA 1 u(x;0)
)=\ n? Oy W .
MG =L T ix O Tdx  Zwo e @
X A F(X)\ Y2
xaos{f dx'( 7+ %) } (26)  We then find the leading energy corrections
X0
_ u(x O)
wherex, is a constant of integration. FM>E this reduces AX;7)=A@)) 1- f (x' 0) e (34

to

We see that, in the intermediate region, the energy depen-
x . . ;
L (1) — N/Af — 1/4 L —ni2e1/2 o1 dence of the wave functio(R9) is determined by the zero-
u(x;0)=x"1 (X)COS( \/)\_LJ’X dx’ x X ))' energy wave functioru(x;0). If the phase ofu(x;0) has
27 been fixed, the phase of(x; ) is fixed, and scattering ob-
servables can be predicted at low energies.

In the limit R<x<1, we can sef(x)=1 (keep the leading
term in a power series ir). We then recover, fon>2, C. Error estimates

The fact remains that our arguments are all at short dis-

tances where the WKB approximation is valid. This is, of
3The WKB approximation is also valid at largeand finite 7  course, the opposite of the EFT limit that interests us. One
provided thatz®s>nx x™ "~ Y/2. may wonder whether cutoff effects can be amplified when
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propagating the wave function from short to long distances.
We will see now that this cannot occur and in turn find an  &R;0)=ux(R;0)ur/(R;0)
estimate of the cutoff error associated with the scattering
phase shift. Usually, in perturbative EFT, the error is a power
law in R. Here we will find a more complicated functional +0
dependence.

By adjustingH,(R) as in Egs.(21),(22) we guarantee

Uz/(R;0) 3 uUz(R;0)
Up (R;0)  UR(R;0)

RN2-1 ur(R) )
ur(R)

+W[ug,uz]

that two zero-energy solutionsiz(x;0),us(x;0) corre- (R: O)J' ug:(x";0) N Up(x";0)
sponding to two different cutoff®, R’ <1~ 1/% are identi- R’(X ;0)  uR(x’;0)

cal. At finite values ofz, solutions obtained with different

cutoffs will no longer be equal, but their difference can be a1 UR(X")

easily estimated. Takin®' <R, the Schrdinger equations +0| x m : (39

satisfied byux(x;7) and uz(x;7) are the same in the

>R region so their Wronskian We have included the error due to keeping only the leading
, , zero-energy wave function in E¢L8). Recall that we choose
WLuz U J(X; 7) = Ur(X; ) Uz, (X, 1) —URr(X; MUR/(X;7) oy fitting procedure to be energy independent, for example,
(35 by comparing the zero-energy wave function to the scattering
length. It then follows thatVMuy ,uz.](R;0)=0, by con-

o ) struction, for the full wave function, and from E(B8) we
is independent ok. At large distancegr>(\_/k)™],  pave

where the solutions are plane wav®§,uy ,uz| is related

g)n;h;pgl;se shiftd; and 6%, obtained with the cutoffdk u, (R;0) B Up(R;0) _ o L UR(R) w0
Uz (R;0) Ur(R;0) ur(R)/)"
WUz, Ug JIFS (N KD EM: 1= ApAr. 7 8iN( S — Sr/), Using these constraints it is straightforward to find
(36) ,
5(73;0):0(73"’21%). (41)
ug(R)

whereAx Az, are the amplitudes at large distances. These

prefactors are easily estimated frozmlshe general WKB soluif e assume that all oscillating functions & are of order
tion Eq.(26), in the regionr>(\ /k?)*™, where the WKB  ynity for values of R at which we fit observables, then
solution maps to the asymptotic plane-wave solution. Weg(-0)=0(R 3"2-1), which is small for alln=2. Match-

find Ag Ag~ 7~ . ing the Wronskians at larglr > (N /k?)(Y] and small &
On the other hand, at the cutoff distance=R,  —7R) distances then yields an estimate for the error in the
Wug U] is estimated using our WKB formula E4).  phase shift:
We find
Sr— 6r1~ n2E(R;0), (42)

7 where&(R;0) is a function ofR whose complicated para-
WLt ,Ur: J(R; 7) = WlUr U J(R;0) = E(R;0) + -+, metric cutoff dependence is given by E@l). This shows
(370  that the renormalization procedure described here produces
cutoff-independent phase shifts, accurate up to order
7%E(R;0).
where
VI. THE WEAK COUPLING LIMIT

WUz ,Ur/ (R;0)=ugr(R;0)ur (R;0) It might seem odd that the explicit dependence on the
coupling constant is nonanalytic in the formula for the
Un (R;0)  UL(R;0) =4 scattering length, Eq23). Naively it would appear that
« _ ; . o )
Un (R:0)  Ur(R;0) Blci):gerturbanve effects are important at arbitrarily weak cou
/ However, we know that this cannot be the case, since for
R ))] a8

Rn/Z—lu_ weak coupling the scattering length should go smoothly to its
uzr(R) square-well value. We would expect a perturbative descrip-
tion in the singular potential to be valid when the potential
energy— A x " is much smaller than the kinetic enengy?.
and This leads to the condition

+0
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u(r)

FIG. 3. The exact zero-energy wave functi¢solid line) at
smallr compared with the wave function obtained in perturbation
theory to leading ordetsmall dashes next-to-leading orde(me-
dium dashes and next-to-next-to-leading orddfarge dashes
Quantities on both axes are dimensionless. -12}

>PH* @

[ 2 X 4
> Ht o

r>r0)\ﬁ/(”72) or k<r617\[1’(”72). (43 FIG. 5. Natural logarithm of the errotd (k)| = og— dr' as a
function of the natural logarithm of the energy for=4. The pairs
of cutoffs (R,R’) are (0.16,0.08)diamonds, (0.08,0.04)(stars,

In effect, taking ¢, from Eq. (20) we find, for \| /R ? (0.04,0.02)(squarel and (0.02,0.01)triangles.
<1,

VIl. NUMERICS
a, tan \sR)| 1 tan(VAsR) In this section we analyze therf/potential numerically.
R 1- 7\/77% ) 1+ 7\/)\773 For simplicity, we take B =r,=1; thereforex=r and »
s s =k=2E. The long-distance potential is then completely
tan(VAgR) 2 AL A2 determined by, which we take to be unity. We cogzsider the
+| —— =2 O =4 (44)  “natural case,” which is characterized y,~ (N )" and
VAsR the “unnatural case,” which is characterized ay>(\ )2

In Fig. 4 we show phase shift§(k) in a natural case

Leading order reproduces the square-well scattering Iengtﬁw‘s(o'l):o'1 a”?' ?{’4: —101.29 for various cutoffs. We
and the corrections are analytic i . Hence, there is, in see that, as anticipated, the low-energy phases are to a good

fact, no nonanalyticity near zero coupling in the presence ofPProximation cutoff independent; cutoff dependence be-
the square well. comes more pronounced as the cutoff radius and the energy

Of course, if the cutoffR is taken at values where the &€ incrqased. In Fig. 5 we plot the error analysis:(thﬂp-
oscillatory behavior of the wave function has set R, ra;l Icr)]garlthm ?fl the grrzors|fA5(k)|:5R—f Or S A func_tlonf
- : : : . _of (the natural logarithm of theenergy for various pairs o
S)‘i/(n .2)’ then there is no sense n which perturb"jltloncut(offs We find tr?at the errorz scaleglg?s as expecteg on the
theory in\| can capture the true behavior of the wave func- '

tion. This is made clear in Fig. 3 where several orders in apass of Eq(42). In Figs. 6 and 7 we show the corresponding

. . o . results in an “unnatural” casq §(0.1)=#/3 and ¢,=
perturbative expansion of the=4 singular-potential wave —98.954. Again we find that the errors scale kg
function are plotted against the exact singular-potential wave =~ - A9
function in the short-distance region.

VIIl. CONCLUSION

We have reconsidered singular potentials of the formfi 1/

with n=2 from the viewpoint of modern renormalization
.
1™y
.l
l!-.
.“5 10 k 15 20
kg
-1 by i
0‘.
-2 ““s::"0
"i***:".‘.
(5(k '!,,****,,*::o.“'

FIG. 4. Phase shift§in radiang & vs energy in the case of a -3 ?::,:::**::::n
natural scattering length far=4. Various cutoffs are given with "H??!},.::
the square well tuned to give the same scattering length. The cutoff: - Teelas
are R=0.01 (doty, R=0.02 (triangles, R=0.04 (squarey R
=0.08(starg, andR=0.16 (diamonds. FIG. 6. Same as Fig. 4 for an unnatural scattering length.
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k renormalization-group flow. This is a unique situation in field
theory/critical phenomena, where the standard behavior cor-

responds to counterterms approaching either zero

(asymptotic freedomor infinity as the momentum cutoff

-2} goes to infinity[8].
|A5(k)| Naively, it appears that the singular potentials have a
e nonanalytical dependence on the coupling parameter even at
-7 . AA“ / weak coupling. This would negate a perturbative description
A

J -.-':** o at weak coupling, a conclusion that must be incorrect. One
. s o x *:‘..0’ r_mght imagine some as yet e_xperlment_ally |ny|S|bIe light par-
A a YLt ot ticle that interacts at long distances via a singular potential
a a x ¥ ¢ (e.g., an axion If the behavior of the wave function were
] * . ’_8 such that there is a branch point at the origin of the coupling-
j ¢ constant plane, then nonperturbative effects would persist

even for couplings of gravitational strength. We have seen
FIG. 7. Same as Fig. 5 for an unnatural scattering length. that this nonanalyticity is an artifact that is removed by
short-distance physics encoded by the square well.
theory. We have shown that the well-known pathologies near Renormalization renders low-energy phase shifts cutoff
the origin are cured by a square-well counterterm that repréndependent up t@(k?) corrections. The cutoff dependence
sents the effect of unknown short-distance physics. Th&f these errors is not generally a power law as one expects in
renormalization-group evolution of this counterterm has peWilsonian EFT. The renormalization-group flow introduces
riodic behavior. The counterterm is not determined uniquelycomplicated oscillatory behavior in the corrections, which
at any given cutoff due to the infinite number of branches ofonetheless is small for judiciously chosen cutoffs. Our the-
the renormalization-group flow, and one is allowed to free|yoretical expectations of the error have been confirmed nu-
jump from branch to branch at will without Causing any merica"y. We eXpeCt that the methods developed in this pa-
change in the low-energy phase shiits to O(k?) correc-  Per will prove useful to those interested in the cornucopia of
tions. physical systems whose long-distance behavior is governed
The dependence of the number of bound states on thdy singular potentials.
choice of branch is complex. Arguments similar to the one
leading to Eq.14) are valid for a generic singular potential

as long as(i) the binding energy is much smaller than  \we thank David Kaplan, Hans Hammer, and Martin Sav-
\s/(2Mr§) [in order that the binding energy can be disre-age for valuable conversations and Sid Coon for bringing
garded in the left-hand side of E0)] and(ii) the binding  Ref.[14] to our attention. U.v.K. thanks the Nuclear Theory
energy is much larger than, /(2Mr3) [so the fact that Group and the Institute for Nuclear Theory at the University
f(rirg)#1 is inconsequenti§l The resulting spectrum of Washington for hospitality, and RIKEN, Brookhaven Na-
shows a power-law distribution that is given by the WKB tional Laboratory, and the U.S. Department of Ene(@yant
estimateg14]. We see now that @88 —0 andAg(R)—> the = No. DE-AC02-98CH10886for providing the facilities es-
region of validity of the calculation sketched above growssential for the completion of this work. This research was
and more and more bound states are created. If, in addition ®upported in part by DOE Grants No. DE-FG03-97ER41014
keeping the phase shifts cutoff independent, one also d€S.R.B) and DOE-ER-40561P.F.B), and by N.S.F. Grant
mands that the number of bound states be fixed, the value &fo. PHY 94-2047QU.v.K.). L.C. and J.Mc. are grateful to
the countertermy g jumps down a branch at every cycle. We the University of Washington REU program of the NSF for
are then left with a periodic, limit-cycle behavior for the support.
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