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Multidimensional WKB approximation and the lifetime calculation
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A Wentzel-Kramers-Brillouin~WKB! approach for calculating the lifetime of the ground state of two
coupled oscillators with the most probable escape path along one of the coordinate axes is suggested. The
WKB approximation of the wave function in the neighborhood of this path is obtained by scaling the corre-
sponding variable. An analytic formula for the lifetime is derived and numerically verified. The method is
applied to the Henon-Heiles potentials. It is shown that the WKB method can be, in contrast to the numerical
ones, easily extended to the problems of an arbitrary number of spatial dimensions.

DOI: 10.1103/PhysRevA.64.042101 PACS number~s!: 03.65.Sq
rti
of

rv
cu

la

in

la

ci

th

e
by

ary
the
the

d-
ted

b-
e

the
ion

on
rd
m.
on-

n-
est
ape

in

he
in
ssi-

nt
l

I. INTRODUCTION

The problem of harmonic oscillators coupled by a qua
interaction potential is of interest from the point of view
classical~see e.g.,@1#! as well as quantum mechanics~see
e.g.,@2–5#! and even of general relativity@6#.

Within quantum mechanics, the coupled oscillators se
as an important model system in the study of the unimole
lar vibrational energy transfer~see e.g.,@2–4#! or stationary
states of the vibrational motion of the molecules~see e.g.,
@5#! and the energies of stationary states have been calcu
in a number of papers@7–16#.

In this paper, we investigate this problem from the po
of view of the theory of resonances@17–19#, i.e., we calcu-
late the lifetime of the ground state of two coupled oscil
tors

F2
]2

]x2
2

]2

]y2
1V~x,y!Gc5Ec. ~1!

Here, the potential

V~x,y!5P~x,y!2mQ~x,y! ~2!

consists of the potential of two independent harmonic os
lators

P~x,y!5x21v2y2 ~3!

and the potential describing their coupling

Q~x,y!5x41gx2y21dy4. ~4!

We assume that the coupling constantm is small, 0,m!1
andv, g, andd are real parameters.

Due to the form of the potential, the energyE5ReE
1 i Im E has a small imaginary part ImE,0, which can be
calculated as a series in the coupling constantm @17,18,20–
22#. The lifetime is given by the equationt521/(2 ImE).

To express ImE as a series in the coupling constantm one
usually proceeds as follows@17,20–22#. Starting from the
time-independent version of the continuity equation for
1050-2947/2001/64~4!/042101~11!/$20.00 64 0421
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probability density yieldingImE as a ratio of the probability
current at infinity and the norm of the wave function, th
wave function inside the potential barrier is approximated
the Rayleigh-Schro¨dinger perturbation theory~RSPT!. Since
the dominant contribution to the norm of the quasistation
wave function comes from the region around the origin,
RSPT approximation can be used to calculate the norm of
wave function. The wave function in the classically forbi
den region and outside the potential barrier is approxima
by the Wentzel-Kramers-Brillouin~WKB! wave function.
Then, the WKB approximation is used to calculate the pro
ability current at infinity. The same normalization of th
RSPT and WKB approximations is guaranteed by
asymptotic matching of these functions in the overlap reg
of their mutual validity.

The most difficult step in this procedure is the calculati
of the multidimensional WKB wave function. The standa
formulation of the WKB method cannot be used for this ai
At the zeroth order of the method one has to solve the n
linear equation

S ]S0~x,y!

]x D 2

1S ]S0~x,y!

]y D 2

5V~x,y!2 ReE, ~5!

the analytic solution of which is not known.
It was noted in@17# that to calculate ImE it is not neces-

sary to know the approximate wave function for allx andy.
The dominant contribution to the probability current at infi
ity comes from the neighborhood of the lines of the larg
gradient of the potential, called the most probable esc
paths~MPEP’s!. To calculate ImE it is sufficient to know
these paths and the approximation of the wave function
their neighborhood.

In @17#, the MPEP’s were determined as a solution of t
classical equations of motion and the WKB approximation
the neighborhood of these lines was obtained via semicla
cal approximation. The analytic formula for ImE was de-
rived for the casev51. This result was rederived in@18#
using the path-integral approach~see also@19#!.

In this paper, we shall attack the problem from a differe
point of view. Due to the form of the coupling potentia
©2001 The American Physical Society01-1
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Q(x,y), Eq. ~4!, the probability current at infinity come
from the neighborhood of four linesy50 (x axis!, x50 (y
axis!, y5x andy52x ~see also@17#!. In this paper we will
restrict ourselves to the case when MPEP is directed a
eitherx or y axes, i.e., to the first or second cases. In Sec
we calculate the imaginary part of the energy assuming
the MPEP is directed along thex axis. In the neighborhood
of the MPEP we suggest a novel WKB approximation to
wave function. This approximation is obtained by scali
one of the variables. This is the main point of this paper. T
rest of Sec. II is devoted to elaboration of this idea. First,
find the terms of the WKB expansion. Second, t
asymptotic matching of the RSPT and WKB wave functio
in the overlap region of mutual validity is performed in th
same way as it was done for the one-dimensional probl
@20#. Finally, we derive an analytic formula for ImE for the
ground state of the problem, Eq.~1!. In the Sec. III, this
formula is generalized to the case of the MPEP along thy
axis, to the problems of an arbitrary number of space dim
sions and to the He´non-Heiles Hamiltonians. The result fo
v51 known from previous papers is obtained as a spe
case. New analytic results are verified numerically by me
of the dispersion relation technique and complex sca
method in Sec. IV. It is shown that the multidimension
WKB method provides very accurate results for the sta
having a long lifetime. In the Appendix the properties of t
special functions needed in the Sec. II are derived.

II. CALCULATION OF THE IMAGINARY PART
OF THE ENERGY

In this section we perform the calculation of the imag
nary part of the ground state energy at the zeroth order of
d
io
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coupling constantm. To be more concrete, we suppose th
the MPEP is directed along thex axis. The case of the MPEP
directed along they axis is discussed later.

Performing the scalingy→y/v1/2 Eq. ~1! becomes

F2
]2

]x2
1x21vS 2

]2

]y2
1y2D 2mS x41

g

v
x2y2

1
d

v2
y4D Gc5~ReE1 i Im E!c. ~6!

Now we multiply Eq.~6! from the left byc* and inte-
grate in the planexy. Further we take complex conjugate o
Eq. ~6!, multiply it by c from the left and integrate. Subtrac
ing the resulting two equations and integrating by parts
obtain

E
2`

` Fc~x,y!
]c* ~x,y!

]x
2c* ~x,y!

]c~x,y!

]x G
2`

`

dy

1vE
2`

` Fc~x,y!
]c* ~x,y!

]y
2c* ~x,y!

]c~x,y!

]y G
2`

`

dx

52i Im EE
2`

` E
2`

`

uc~x,y!u2dx dy. ~7!

Since we suppose that the dominant contribution to the pr
ability current comes from the current along thex axis, we
neglect the second term on the left-hand side of this eq
tion. Because of the symmetry of the potential in Eq.~6! with
respect to the inversionx→2x, the probability current for
x→` is the same as forx→2`. Hence, the formula for
Im E reads@17#
Im E5
1

i

E
2`

`

lim
x→`

@c~x,y!~]c* ~x,y!/]x!2c* ~x,y!~]c~x,y!/]x!#dy

E
2`

` E
2`

`

uc~x,y!u2dx dy

. ~8!
q.
n
n-
e

r-
on
e

A. Norm of the wave function

The wave functionc(x,y) in the denominator of Eq.~8!
can be at the zeroth order ofm replaced by the unperturbe
wave function, i.e., by the zeroth-order RSPT approximat
@17,20–22#

c0~x,y!5e2(x21y2)/2. ~9!

The norm of this wave function equals

E
2`

` E
2`

`

uc0~x,y!u2dx dy5p. ~10!
n

B. The WKB approximation of the wave function

The probability current at infinity, the numerator of E
~8!, is calculated by means of the WKB wave functio
@17,20–22#. According to our assumption, the dominant co
tribution to the probability current at infinity comes from th
neighborhood of thex axis, that is from the regiony'0. In
this region, the dominant contribution to the probability cu
rent at infinity comes from the classically forbidden regi
x2'mx4 @17,20–22#. To find an approximation to the wav
function in the region of largex'm21/2 and smally'0, we
scale the coordinatex by means of the substitutionx
5m21/2u. Equation~6! then becomes
1-2



rg

ng
i-
n.

e
rie

ch

th

i-

le

e

f
ese

MULTIDIMENSIONAL WKB APPROXIMATION AND TH E . . . PHYSICAL REVIEW A 64 042101
Fm2
]2

]u2
1mv

]2

]y2Gc

5Fu22u41mS vy22
g

v
u2y22E0D1 . . . Gc.

~11!

Here, the RSPT expansion of the real part of the ene
ReE5E01mE11m2E21 . . . was used.

At this point, we would like to emphasize that the scali
of the variablex is the crucial idea for obtaining the mult
dimensional WKB approximation of the wave functio
More detailed discussion follows.

Searching for the solution of Eq.~11! in the form of the
WKB wave function taken at the zeroth order ofm

cWKB
(0) ~u,y!5expFS0~u,y!

m
1S1~u,y!G ~12!

and comparing the terms of the same power inm we find in
the minus first order ofm

]S0~u,y!

]y
50. ~13!

Obviously, this equation has the solution

S0~u,y!5S0~u!. ~14!

In the zeroth order ofm we find

dS0

du
56u~12u2!1/2, ~15!

where the other terms on the left-hand side of Eq.~11! vanish
due to Eq.~13!. Equation~15! can be easily integrated

S0~u!5
~12u2!3/2

3
2A0 . ~16!

Here, we chose the minus sign in Eq.~15! to get the expo-
nentially decaying solution in the classically forbidden r
gion corresponding to the particle going through the bar
to infinity. The integration constant was put equal to2A0.
This constant will be determined from the asymptotic mat
ing of the functions, Eqs.~9! and ~12!. The eikonal term
S0(u) gives the probability current along thex axis. There-
fore, it is not surprising that it has the same form as for
one-dimensional potentialV(x)5x22mx4 @20#.

At the first order ofm we get

2
dS0

du

]S1~u,y!

]u
1

d2S0

du2
1vF ]2S1~u,y!

]y2
1S ]S1~u,y!

]y D 2G
5y2S v2

g

v
u2D2E0 . ~17!

This is the equation for the transport termS1(u,y) which
gives the probability current in the potential well in the v
04210
y

-
r

-

e

cinity of thex axis. The terms depending only on the variab
u can be integrated as in the one-dimensional case@20#

S1~u,y!52
1

4
ln~u22u4!2

E0

4
ln

11~12u2!1/2

12~12u2!1/2

1f~u,y!2A1 , ~18!

where the integration constant was put equal to2A1.
Inserting Eq.~18! into Eq. ~17! we see that the function

f(u,y) obeys the equation

22u~12u2!1/2
]f~u,y!

du
1vF ]2f~u,y!

]y2
1S ]f~u,y!

]y D 2G
5y2S v2

g

v
u2D . ~19!

The solution of this equation is searched for in the form

f~u,y!52
f ~u!

2
y22

ln g~u!

2
. ~20!

By inserting this ansatz into Eq.~19! and comparing the
terms of the same power iny we obtain the equations for th
functions f (u) andg(u)

u~12u2!1/2
d f~u!

du
1v f ~u!25v2

g

v
u2 ~21!

and

u~12u2!1/2

v

d ln g~u!

du
5 f ~u!. ~22!

The functionsf (u) and g(u) can be expressed in terms o
the associate Legendre functions. The explicit form of th
functions is given in the Appendix.

C. The asymptotic matching

To find the integration constantsA0 and A1 in Eqs. ~16!
and~18! we require that foru→0 the RSPT and WKB func-
tions in the zeroth order ofm ~asymptotically! equal@20#

S0~m1/2x,y!

m
1S1~m1/2x,y!5 ln c0~x,y!. ~23!

To get the left-hand side of Eq.~23! accurate in the zeroth
order ofm, we take the expansion of theS0 andS1 functions
nearu50 @20#.

For S0(u) we take the first two terms of the expansion

S0~u!5
1

3
2

u2

2
1O~u4!. ~24!

Substitutingu5m1/2x and dividing this equation bym we get
in the zeroth order ofm
1-3
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S0~m1/2x!

m
5

1

3m
2

x2

2
. ~25!

To get the asymptotic expansion ofS1(u,y) we take

2
ln~u22u4!

4
52

ln u2

4
1O~u2! ~26!

and

2
E0

4
ln

11~12u2!1/2

12~12u2!1/2
52

E0

4
ln

4

u2
1O~u2!. ~27!

By inserting the asymptotic expansion of the functionsf (u)
andg(u) for u→0, Eqs.~A3! and~A9! of the Appendix, into
Eq. ~20! we get also the expansion of the functionf(u,y)

f~u,y!52
y2

2
1

v

4
ln

4

u2
1O~u2!. ~28!

By inserting these expansions, Eqs.~26!, ~27!, and~28!, into
Eq. ~18! and substitutingu5m1/2x we get in the zeroth orde
of m

S1~m1/2x,y!5
E02v21

2
ln x2

y2

2
2

E02v

4
ln

4

m
2

ln m

4
.

~29!

By inserting Eqs.~25! and ~29! and the ground state en
ergyE0511v into the left-hand side of Eq.~23! and Eq.~9!
into the right-hand side of Eq.~23! we obtain in the zeroth
order ofm

1

3m
2

1

4
ln

4

m
2

ln m

4
5

A0

m
1A1 . ~30!

This is the equation for the integration constantsA0 and
A1 we searched for. Using this equation, the WKB and RS
approximations have the same normalization.

We note that for the excited states with the unperturb
energies E052Kx111v(2Ky11), where Kx ,Ky
50,1,2, . . . , it is notpossible to find the overlap region o
the mutual validity of the RSPT and WKB approximation
The asymptotics of the RSPT approximation in the zer
order ofm reads for an arbitrary state

ln c0~x,y!'2
x21y2

2
1Kx ln x1Ky ln y. ~31!

Comparing the multiplicative factors in front of the logarit
mic terms in Eqs.~29! and ~31! shows, quite generally, tha
the RSPT and WKB wave functions overlap only for t
states withKy50. Analogously, taking the MPEP along they
axis we find that the RSPT and WKB approximations ov
lap only for the states withKx50. Obviously, our WKB
approximation does not provide sufficient information abo
the wave function for large distances from thex or y axes.
This approximation is able to describe the exponential
not the power dependence of the wave function in the dir
04210
T

d

.
h

-

t

t
c-

tion perpendicular to that of the probability current. Ther
fore, it can be used for the ground state but not for a gen
excited state.

D. The final formula for Im E

Taking u→` in Eqs. ~16!, ~18!, and ~20! we get the as-
ymptotics of the WKB wave function

cWKB
(0) ~x→`,y!5expF2(

i 50

1

Aim
i 21G

3
eim1/2x3/3~11O~1/x2!!

~2 i !1/2m1/2x

e2 f (m1/2x)y2/2

g~m1/2x!1/2
. ~32!

By inserting the last equation into Eq.~8! and using Eq.~30!
for the constantsA0 andA1 we find that

Im E~m,v,g!52
2

p S 4

m D 1/2

e22/(3m)T~v,g!@11O~m!#,

~33!

where

T~v,g!5 lim
x→`

E
2`

`

exp@2Ref ~m1/2x!y2#dy

ug~m1/2x!u
. ~34!

The argument of the real functionsf (u) and g(u) be-
comes purely imaginary foru.1 and is real foru,1.
Therefore, the functionsf (u) and g(u) become foru.1
purely imaginary, while foru,1 they are real@see the dis-
cussion after Eq.~A6! of the Appendix#. Thus, we can write

lim
x→`

Ref ~m1/2x!5 lim
u→`

Ref ~u!5 f ~u51! ~35!

and

lim
x→`

ug~m1/2x!u5 lim
u→`

ug~u!u5g~u51!. ~36!

Hence, the functionT(v,g) can be written in the form

T~v,g!5

E
2`

`

exp@2 f ~u51!y2#dy

g~u51!
5

p1/2

Af ~u51!g~u51!
.

~37!

Using the explicit form of the functionsf (u) andg(u) given
in the Appendix the last equation can be rewritten in the fo
~see Appendix!

T~v,g!5
v1/2p

G~11v! H 2 sin@p~n2v!#
G~11n2v!

G~11n1v!J 21/2

,

~38!

where
1-4
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n52
1

2
6

~114g!1/2

2
. ~39!

The imaginary part of the energy, Eq.~33!, was obtained
as the product of three factors. The first one, 2/p, corre-
sponds to the norm of the two-dimensional wave functi
The second one, them-dependent part, is the probability cu
rent for the one-dimensional potentialV(x)5x22mx4. The
last one,T(v,g), is the probability current in the potentia
well in the vicinity of thex axis for x2'mx4. For the one-
dimensional potentialV(x)5x22mx4 this term equals 1.

For g5v(v11), the expression in the curly brackets
Eq. ~38! equals zero and the functionT(v,g) diverges at this
point. For g.v(v11) this expression becomes negati
and the functionT(v,g) is purely imaginary. Therefore, Eq
~33! can be used only for

g,v~v11!. ~40!

When approaching the critical pointg5v(v11) from the
left, Eq. ~33! becomes inaccurate. It is obvious that forg
>v(v11) the assumption of the MPEP oriented along thx
axis is not satisfied.

We note that forg,v(v11) the functionT(v,g) is
monotonically decreasing with increasingv for fixed g and
monotonically increasing with increasingg for fixed v.

For v51, Eqs.~33! and ~38! yield the formula given in
@17,18#.

Finally we note that Eq.~33! was obtained by performing
calculations at the zeroth order ofm. Therefore, the error
following from the use of this equation is of the orderm.

III. GENERALIZATION

In this section we discuss possible generalizations of
formula, Eq.~33!.

A. MPEP along the y axis

In the preceding section we supposed that the MPEP
directed along thex axis. Here we show that, despite th
asymmetry in thex andy variables forvÞ1, the case of the
MPEP directed along they axis can be treated in the sam
manner.

Dividing Eq. ~6! by v we get

F2
]2

]y2
1y21

1

v S 2
]2

]x2
1x2D

2
md

v3 S y41
gv

d
x2y21

v2

d
x4D Gc

5
E

v
c. ~41!

Thus, performing the substitutionsv→ṽ51/v, m→m̃

5md/v3, E→Ẽ5E/v, g→g̃5g/d, and d→ d̃51/d we
can also use Eqs.~33! and~38! for the imaginary part of the
energy given by the probability current along they axis
04210
.

e

as

Im Ẽ~m̃,ṽ,g̃ !5v Im ES md

v3
,

1

v
,
g

d D . ~42!

The condition for applicability of Eq.~38!, g̃,ṽ(11ṽ),
reads in terms of the original parameters

g,
d

v3
v~11v!. ~43!

It means that the assumption of the MPEP directed along
y axis is justified if the parameterg satisfies condition~43!.

Summarizing, our method can be used for the potent
Eq. ~1! if the parameterg obeys inequalities Eqs.~40! or
~43!.

B. Formula for an arbitrary number of space dimensions

The suggested method was also applied to the simp
nonseparable model of theD-dimensional coupled oscillator
with the MPEP oriented along one of the coordinate axe

F(
i 51

D

2
]2

]xi
2

1x1
21(

i 52

D

v i
2xi

22mS x1
41x1

2(
i 52

D

g ixi
2D Gc5Ec,

~44!

where inequalities

g i,v i~v i11!, i 52,3, . . . ,D ~45!

are assumed. Proceeding along the same lines as in the
dimensional case, we easily generalize formula~33! to an
arbitrary number of dimensions

Im E~m,v2 , . . . ,vD ,g2 , . . . ,gD!

52
2

pD/2 S 4

m D 1/2

e22/(3m)P i 52
D T~v i ,g i !@11O~m!#.

~46!

The individual terms in this formula have interpretatio
analogous to that in Eq.~33!. The first one, 2/pD/2, corre-
sponds to the norm of theD-dimensional wave function, the
second one, them-dependent part, gives the probability cu
rent along thex1 axis and the last one, the product of th
functions T(v i ,g i) gives the probability current in theD
21 dimensional well in the neighborhood of thex1 axis.

C. Hénon-Heiles Hamiltonian

The suggested method can be also applied to the cas
the Hénon-Heiles Hamiltonian

F2
]2

]x2
2

]2

]y2
1x21v82y22m8~x31g8xy2!Gc5Ec,

~47!

which differs from the problem Eq.~1! in the power depen-
dence of the variablex in the interaction potential.

Proceeding similarly as in the Sec. II we obtain
1-5
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Im E~m8,v8,g8!52
1

p

4

m8
e28/(15m82)T~2v8,4g8!

3@11O~m82!#, ~48!

where the functionT(2v8,4g8) is given by Eq.~38! for v
52v8 andg54g8. Formula~48! can be used forg8 satis-
fying the inequality

g8,v8~v811/2!. ~49!

Analogously to Eq.~33!, the first factor in Eq.~48!, 1/p,
corresponds to the norm of the wave function. This term
twice smaller than that for the problem, Eq.~1!. This is due
to the fact that the perturbation potential in Eq.~47! is an odd
function of x, while in Eq. ~1! it is an even function. Thus
while for the problem Eq.~1!, there is a nonzero probabilit
current both at thex→` andx→2` limits, the probability
current vanishes for the problem Eq.~47! at x→2`. The
second (m8-dependent! term in Eq.~48! is the same as fo
the one-dimensional potentialV(x)5x22m8x3 @23# and
gives the probability current along thex axis. The last term,
T(2v8,4g8), gives the probability current in the well in th
vicinity of the x axis for x2'm8x3.

IV. NUMERICAL CALCULATIONS

In this section we describe numerical tests of the anal
formulas found above. This is done in two ways: using
dispersion relation technique and by direct numerical ca
lation.

A. Dispersion relation

The coefficients of the perturbation coefficients of the e
ergy

E5 (
n50

`

Enbn ~50!

for the bound state potentialsV(x,y)5P(x,y)1bQ(x,y),
b.0 can be at large orders calculated via the dispers
relation @17,21,22,24#

En52
1

pE2`

0 Im E~ b̃ !

b̃n11
db̃. ~51!

The dominant contribution to the integral Eq.~51! for n

→` comes from the regionm→0, m52b̃.
Thus, we can calculate perturbation coefficients for

energy of the bound state problems either directly from
perturbation theory or by inserting expression for ImE, Eq.
~33!, into Eq.~51!. This method of verification of the formu
las for ImE can be, however, used only for the potentials
Eq. ~1! that have bound states form52b. In the following
paragraph we find the conditions for the parameters in
~1! following from this requirement.

The existence of the bound states for the poten
V(x,y)5P(x,y)1bQ(x,y) in Eq. ~1! for x50 requiresd
04210
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e
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n

e
e
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.0. Since the termx2y2 reaches its maximum value forx
5y andx52y we rotate the coordinate axes about the rig
angle

x̃5
x1y

A2
, ~52!

ỹ5
x2y

A2
~53!

and get from Eq.~1! an equivalent equation

H 2
]2

] x̃2
2

]2

] ỹ2
1

11v2

2
~ x̃21 ỹ2!1~12v2!x̃ỹ1

b

4
@~ x̃1 ỹ!4

1g~ x̃22 ỹ2!21d~ x̃2 ỹ!4#J c5Ec. ~54!

The stability of the potential in this equation forx̃50 or ỹ
50 requires thatg.2(11d). Thus, the dispersion relatio
Eq. ~51! can be used only for the potentials Eq.~1! satisfying
the conditions

d.0,g.2~11d!. ~55!

These conditions are, however, the conditions restricting
use of the dispersion relation Eq.~51!, not the use of Eq.
~33!.

For m going to zero, behavior of ImE described by Eq.
~33! is given by behavior of them-dependent part
m21/2e22/(3m). Therefore, ford,v3 leading tom.m̃ @see
Eq. ~42!#, the dominant contribution to the probability cu
rent at infinity comes from thex axis, for d.v3 (m,m̃)
from they axis, and ford5v3 (m5m̃) we have to sum the
contributions from both MPEP’s.

Hence, by inserting Eq.~33! with m52b̃ into Eq. ~51!
we obtain the large-order behavior of the series Eq.~50! for
the problem Eq.~1!

En5
4

p2
T~v,g!~21!n11S 3

2D n11/2

G~n11/2!

3@11O~1/n!#, d,v3, ~56!

En5
4v

p2
T~1/v,g/d!A3

2
~21!n11S 3d

2v3D n

G~n11/2!

3@11O~1/n!#, d.v3, ~57!

and

En5
4

p2
@T~v,g!1vT~1/v,g/d!#~21!n11S 3

2D n11/2

3G~n11/2!@11O~1/n!#, d5v3. ~58!
1-6
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TABLE I. The numerical test of the formula Eq.~33! by means of the dispersion relation technique. T
values of the multiplicative constant in Eqs.~56!, ~57!, and~58! obtained numerically by@5,5# Thiele-Pade´

extrapolation of the ratioEn /@(21)n11( 3
2 )n11/2G(n11/2)# from the intervaln from 40 to 50 are compared

with the functions (4/p2)T(v,g) for d,v3, (4/p2)@T(v,g)1vT(1/v,g/d)# for d5v3, and
(4v/p2)T(1/v,g/d) for d.v3 ~denoted as WKB!. D denotes the difference of the analytic and extrapola
values.

v g d Extrapolation WKB D

2 16/3 0 5.870 083 062 7 5.874 998 385 2 0.49131022

2 4 0 2.570 547 036 1 2.570 547 387 8 0.35131026

2 3 0 1.728 278 668 5 1.728 278 681 5 0.13031027

2 2 0 1.244 216 074 0 1.244 216 079 6 0.55731028

2 -1 0 0.564 598 208 5 0.564 598 210 4 0.19131028

3 3 0 1.222 077 569 9 1.222 077 575 5 0.55731028

5 5 0 1.205 852 575 0 1.205 852 580 6 0.55631028

11 11 0 1.193 691 669 9 1.193 691 675 5 0.55331028

2 4 18/5 2.570 547 370 9 2.570 547 387 8 0.16831027

2 4 4 2.570 547 369 6 2.570 547 387 8 0.18131027

2 4 22/5 2.570 547 364 2 2.570 547 387 8 0.23531027

2 4 16/3 2.570 547 325 6 2.570 547 387 8 0.62131027

2 4 6 2.570 641 847 9 2.570 547 387 8 20.94431024

2 4 20/3 2.569 103 774 6 2.570 547 387 8 0.14431022

2 4 8 5.529 205 877 0 5.528 620 757 0 20.58531023

3 6 27 5.589 645 087 9 5.589 665 089 7 0.20031024

4 8 64 6.069 189 272 2 6.069 174 352 0 20.14931024

10 20 1000 10.039 074 161 9 10.039 075 275 2 0.11131025

2 4 32/3 2.310 262 074 2 2.310 226 605 8 20.35431024

2 4 12 2.159 849 893 7 2.159 850 698 3 0.80431026

2 4 20 1.795 059 117 6 1.795 059 125 6 0.79431028

2 4 40 1.595 941 057 4 1.595 941 063 9 0.65531028
s.
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Using MAPLE we calculated the first 50 coefficientsEn in
the form of the rational numbers for different values ofv, g,
andd satisfying conditions~40! or ~43! and ~55! by the dif-
ference equation method described in@17#. Extrapolating the
ratio of the exactEn coefficients and those given by Eq
~56!, ~57!, and~58! for n from 40 to 50 by means of the@5,5#
Thiele-Pade´ approximants~see e.g.,@25#! we obtained results
shown in Table I. It is seen that forg far from the critical
value v(v11) the accuracy of Eqs.~56!, ~57!, and ~58! is
about eight significant digits. When approaching the criti
value, the accuracy of the formulas goes down as expec
Furthermore, it is seen that ford approaching the valuev3,
the contribution of both MPEP’s has to be taken into a
count.

By inserting Eq.~46! for D53 into Eq.~51! we obtain the
large-order behavior of the series Eq.~50! for the problem
Eq. ~44!

En5
4

p5/2
T~v2 ,g2!T~v3 ,g3!~21!n11S 3

2D n11/2

3G~n11/2!@11O~1/n!#. ~59!
04210
l
d.

-

Using MAPLE we calculated the first 50En coefficients. Nu-
merical verification of Eq.~59! is shown in Table II.

The numerical analysis described above indicates
Eqs.~56!, ~57!, ~58!, and~59! are exact forn going to infin-
ity. This implies that Eqs.~33!, ~42!, and~46! are exact form
going to zero.

B. Direct numerical solution

Formula~48! was compared for some definite values ofm
with the numerical results obtained via the complex scal
method~see e.g.,@23,26–28#!.

It is seen from Table III that for finite values of the cou
pling constantm8 the WKB approximation provides forg
!v(v11/2) good results close to the exact value. As it c
be expected, the agreement between direct numerical s
tion and the WKB method goes down with increasing va
of the coupling constantm8 and for fixedv with increasing
g. Particularly, it is seen that forv53, the WKB method
provides form8 between 0.17 and 0.19, good results only f
g smaller than 2, i.e., only forg sufficiently far from the
critical value 10.5.

Generally speaking, the WKB method is better, t
smaller the value of ImE is. Particularly, for negative value
1-7
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TABLE II. The numerical test of the formula Eq.~46! for D53 by means of the dispersion relatio
technique. The values of the multiplicative constant in Eq.~59! obtained numerically by@5,5# Thiele-Pade´

extrapolation of the ratioEn /@(21)n11( 3
2 )n11/2G(n11/2)# from the intervaln from 40 to 50 are compared

with the function (4/p5/2)T(v2 ,g2)T(v3 ,g3) for fixed v252, g252 and varyingv3 , g3 . D denotes the
difference of the analytic and extrapolated values.

v3 g3 /(2v3) Extrapolation 4T(2,2)T(v3 ,g3)/p5/2 D

2 1 4.452 317 804 3 4.452 318 678 9 0.87431026

3 1 3.934 556 738 0 3.934 556 713 0 20.25031027

5 1 3.661 541 187 0 3.661 541 139 6 20.47431027

5 2 13.966 288 546 8 13.966 290 855 1 0.23031025

5 1/2 2.088 597 929 7 2.088 597 936 0 0.63131028
de
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TABLE III. Comparison of the imaginary part of the energ
Im E obtained via the complex scaling method~denoted as CS! and
WKB approximation for the He´non-Heiles Hamiltonian Eq.~47!.
The last number is rounded. The numbers in the parentheses
the percentage error of the WKB approximation with respect to
complex scaling method.

m8 v8 g8 CS WKB @error (%)]

0.15 A2 21 0.38031029 0.39531029 ~4.2!
0.15 A2 1 0.15231028 0.16731028 ~9.9!
0.15 2 1 0.11931028 0.12931028 ~8.4!
0.15 2 2 0.20731028 0.23031028 ~11.!
0.15 2 3 0.39131028 0.45231028 ~16.!

0.17 1 1/2 0.19931026 0.22231026 ~11.6!
0.17 3 1/2 0.13831026 0.15231026 ~10.1!
0.17 10 1/2 0.12431026 0.13531026 ~8.9!
0.17 50 1/2 0.11931026 0.13031026 ~9.2!
0.17 3 7 0.15931025 0.21231025 ~33!

0.17 3 6 0.10331025 0.13031025 ~26!

0.17 3 2 0.22831026 0.25731026 ~12.7!
0.17 3 1/3 0.13131026 0.14431026 ~9.9!
0.17 3 25 0.26631027 0.27531027 ~3.4!

0.18 1 1/2 0.13631025 0.15431025 ~13.2!
0.18 3 1/2 0.94731026 0.10631025 ~11.9!
0.18 10 1/2 0.84731026 0.93631026 ~10.5!
0.18 50 1/2 0.81531026 0.899 1026 ~10.3!
0.18 3 7 0.10631024 0.14731024 ~39!

0.18 3 6 0.69131025 0.90031025 ~30!

0.18 3 2 0.15631025 0.17831025 ~14.1!
0.18 3 1/3 0.89831026 0.99531026 ~10.8!
0.18 3 25 0.18331026 0.19131026 ~4.4!

0.19 1 1/2 0.68331025 0.78931025 ~15.5!
0.19 3 1/2 0.47831025 0.53931025 ~12.8!
0.19 10 1/2 0.42831025 0.47931025 ~11.9!
0.19 50 1/2 0.41231025 0.46031025 ~11.6!
0.19 3 7 0.51931024 0.75131024 ~48!

0.19 3 6 0.34131024 0.46131024 ~35!

0.19 3 2 0.78131025 0.91231025 ~17!

0.19 3 1/3 0.45331025 0.50931025 ~12.4!
0.19 3 25 0.93431026 0.97731026 ~4.6!
04210
of g, the method provides very good results in the wi
range of the coupling constantm8 from 0 to about decimals
This can be easily understood, because in the case of
negative values ofg, the assumption of the MPEP directe
along thex axis is fully justified.

V. CONCLUSIONS

An alternative WKB approach for calculating the lifetim
of the ground state of the coupled oscillators was sugges
Assuming that the dominant contribution to the outgoi
probability current comes from that along one of the coor
nate axes we derived an alternativeanalytic formula for the
imaginary part of the energy. This formula extends t
known result in the case of the same frequencies to the
of arbitrary frequencies of the oscillators. This formula w
further generalized for anarbitrary number of space dimen
sions and verified via extensive numerical calculations.
was shown that for the states having a long lifetime,
suggested method provides very accurate results.

The proposed WKB method yields very good results
the ground-state energy. For the excited states, however
proposed approximations seem to be inadequate. For t
states it is not possible to find the overlap region of t
mutual validity of the RSPT and WKB approximations an
hence guarantee the same normalization of these functi
For a general excited state we obviously also need infor
tion about the wave function at larger distances from thex or
y axes than can be achieved by our WKB approximation

If the parameterg is so large that none of the condition
Eqs.~40! and~43!, is satisfied, the suggested method can
be used as well. This is because the functionT(v,g) Eq.
~38! appearing in the final formula for ImE Eq. ~33! be-
comes purely imaginary. In this case the dominant contri
tion to the imaginary part of the energy comes from the lin
y5x and y52x. At a glance, this case can be treated
introducing new variables, Eqs.~52! and ~53!, and applying
our method to Eq.~54! for b52m. However, forvÞ1 a
new coupling termx̃ỹ(12v2) appears in the unperturbe
part of the Hamiltonian. This term prohibits our method fro
being used for vÞ1 and g.v(11v) and g.dv(1
1v)/v3. The physical reason for this is that our method,
least in the present form, can deal only with straight li
MPEP’s, while the discussed case presents the problem
the curved MPEP’s@17#. The extension of our method t

ive
e

1-8
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these problems will be subject of further investigations.
Since the functionT(v,g) diverges at the pointg

5v(v11), the proposed method also does not provide
liable results for the values ofg satisfying conditions~40!
and ~43! but too close to this critical point.

In this paper we considered only the simplest case of
interaction potential, however, for the case of the straight
MPEP’s, the extension to the more complex polynomial p
tentials seems to be straightforward@17#.

From the mathematical point of view, the arguments giv
in this paper are rather heuristic. Nevertheless, on the b
of agreement of analytical and numerical approaches we
lieve that the results of this paper are correct. Thus, from
mathematical point of view these results represent con
tures that should be rigorously proven, namely the follow
ones. First, the agreement of the complex scaling method
the WKB approximation seems to confirm the conjectu
made in@23#, that the complex scaling method works for a
potentials, not only for dilation analytic ones@29#. Second,
one should get rigorous proof of the formula Eq.~33!, as it
was also done for the Avron formula@30# describing the
Zeeman effect in the hydrogen atom in@31,32#. Since the
latter problem can be transformed to a problem similar to
one considered in this paper, namely to the problem of f
coupled oscillators with internal O(2)3O(2) symmetry
@33#, this could be relatively easy. The last and probably
most difficult problem is to find the connection between t
theory of pseudodifferential operators based on the W
quantitization scheme~see e.g.,@31,34,35#! and the approach
suggested in this paper. Such a connection has to exist
cause our formulation of the WKB method gives essentia
the same results as the usual semiclassical one.

The main result of this paper is that the WKB method c
be easily extended to the problems with an arbitrary num
of space dimensions~see also@17#! for the polynomial po-
tentials with the straight line MPEP’s~or for the potentials
that can be well approximated by these potentials!. This is
not valid for any numerical method and from this point
view, the analytic WKB method is preferable to the nume
cal ones.

Until now, the multidimensional WKB calculation of th
lifetime of the ground state of the coupled oscillators h
been restricted to the case of the same oscillators frequen
only. Since the method suggested in this paper generaliz
to a wide class of the potentials with arbitrary frequencies
the oscillators, we believe that it is of much interest.
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APPENDIX

In this appendix we derive the explicit form of the fun
tions f (u) andg(u) and their properties used in Sec. II.

Introducing the variablew5(12u2)1/2 and inserting Eq.
04210
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~22! into Eq. ~21! after some manipulation we get

~12w2!
d2g@~12w2!1/2#

dw2
22w

dg@~12w2!1/2#

dw

1S g2
v2

12w2D g@~12w2!1/2#

50 ~A1!

and

f @~12w2!1/2#5
w221

v

d ln g@~12w2!1/2#

dw
. ~A2!

Equation ~A1! is the equation for the associated Legend
functions on the cut21,w,1 @36#. Let us note that Eqs
~A1! and ~A2! are for v51 identical to Eqs.~4.17! and
~4.18! of @17#. However, they are derived in a different wa
here.

The physically relevant solution of Eqs.~A2! and ~A1!
can be found from the requirement that the overlap region
mutual validity of the RSPT and WKB approximations e
ists. To satisfy Eq.~23!, we have to get on the left-hand sid
of this equation the term2y2/2 appearing in lnc0(x,y) on
the right-hand side of this equation@see Eq.~9!#. Therefore,
f (u) in Eq. ~20! has to approach 1 foru→0, i.e.,

f ~u!511O~u2! ~A3!

and g(u) has foru→0 behaved in such a way that all th
terms proportional to lnx on the left-hand side of Eq.~23!
cancel. The solution of Eq.~A1! satisfying these conditions
is

g@~12w2!1/2#5G~11v!Pn
2v~w!, ~A4!

where Pn
2v(w) denotes the associate Legendre function

the first kind@36#

Pn
2v~w!5

1

G~11v! S 12w

11wD v/2

FS 2n,n11,11v,
12w

2 D .

~A5!

Here,n is the solution of the quadratic equation

n~n11!5g ~A6!

and F(2n,n11,11v,(12w)/2) is the hypergeometric
function @36#.

At this point it will be useful to comment the last tw
equations. First, we note that the functionPn

2v(w) is a real
function of generally complex variablew5(12u2)1/2. This
is due to the fact thatn, although generally complex, appea
in the series defining the hypergeometric function in the fo
of the productn(n11) only @36#. Now, sincew is real for
u,1 and purely imaginary foru.1, the functionPn

2v(w)
has real values foru,1 and purely imaginary values foru
.1. From Eqs.~A4! and ~A2! we easily see that the sam
1-9
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holds also for the functionsg(u) and f (u). This fact is used
in Eqs.~35! and ~36! of Sec. II.

Second, there is a question which of the solution of E
~A6!

n52
1

2
6

~114g!1/2

2
~A7!

is physically relevant. It is seen, however, that due to
symmetry@36#

Pn
2v~w!5P2n21

2v ~w!, ~A8!

the two solutions given by Eq.~A7! are physically equiva-
lent. For this reason, an arbitrary of these solutions can
taken.

Now we derive the asymptotic expansion of the functi
g(u) for u→0. The hypergeometric functionF(2n,n11,1
1v,(12w)/2) in Eq. ~A5! goes to 1 foru→0 (w→1).
Therefore, we get from Eqs.~A4! and~A5! that the function
g(u) behaves foru→0 (w→1) as

g~u!5S 12~12u2!1/2

11~12u2!1/2D v/2

@11O~u2!#

5S u2

4
1O~u2! D v/2

@11O~u2!#. ~A9!

Finally, we derive the explicit form of the function
T(v,g) needed in the final formula Eq.~33! for Im E

T~v,g!5
p1/2

Af ~u51!g~u51!
. ~A10!

Using Eqs.~A2! and~A4! at the pointw50 corresponding to
the pointu51 we can rewrite the last equation in the form
04210
.

e

e

T~v,g!5
p1/2v1/2

A2
dg~~12w2!1/2!

dw
uw50g~w50!

5
p1/2v1/2

G~11v!
S 2Pn

2v~w50!
dPn

2v~w!

dw
Uw50D 21/2

.

~A11!

Taking into account the properties of the associate Legen
functions and the Gamma function@36#

Pn
2v~w50!5

22v

Ap
cosFp2 ~n2v!G GS 11n2v

2 D
GS 11

n1v

2 D ,

~A12!

dPn
2v~w!

dw
uw505

22v11

Ap
sinFp2 ~n2v!GGS 11

n2v

2 D
GS 11n1v

2 D ,

~A13!

and

G~2z!5~2p!21/222z21/2G~z!G~z11/2!, ~A14!

the formula for the functionT(v,g) can be further simplified
to the form identical to Eq.~38! of Sec. II

T~v,g!5
v1/2p

G~11v! H 2 sin@p~n2v!#
G~11n2v!

G~11n1v!J 21/2

.

~A15!
ys.
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Čı́žek, and J. Paldus, Phys. Rev. A32, 1965~1985!.
@22# C. M. Bender and T. T. Wu, Phys. Rev. D7, 1620~1973!; T. I.

Banks and C. M. Bender, J. Math. Phys.13, 1320 ~1972!; C.
M. Bender and T. T. Wu, Phys. Rev. Lett.27, 461 ~1971!.

@23# R. Yaris, J. Bendler, R. A. Lovett, C. M. Bender, and P.
Fetters, Phys. Rev. A18, 1816~1978!; C. M. Bender and G. V.
Dunne, J. Math. Phys.40, 4616~1999!.

@24# B. Simon, Ann. Phys.~N.Y.! 58, 76 ~1970!.
@25# J. Čı́žek and E. R. Vrscay, Int. J. Quantum Chem.21, 27

~1982!; see also C. M. Bender and S. A. Orszag,Advanced
Mathematical Methods for Scientist and Engineers~McGraw-
Hill, New York, 1978!.

@26# N. Moiseyev, Phys. Rep.302, 211 ~1998!.
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