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One-complex-plane representation approach to continuous variable quantum teleportation
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We formulate continuous variable quantum teleportation on a coherent-state basis. We present low-
dimensional coherent state representation of the quadrature Bell states. This approach turns out to be suitable
for investigating the teleportation process, yielding a simple direct description.
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The description of entangled states and the analysis of _a+at . a-at
their applications has attracted a great deal of attention in X=—> p= T D

guantum optics recently. One of the main motivations of this
trend was the quantum teleportation phenomenon, which w
originally introduced by Benneftl]. The idea of continuous
variable teleportation appeared quite soon after Bennett’
original paper in a work by Vaidmaf2], but this idea was
put into the framework of quantum optics by Braunstein and - -
Kimble quite a bit later than the discrete scherfls How- X|[Xy=X|[X), pl[P)=PI|P) 2
ever, first experimental realizations of discrete and continu-
ous variable teleportation appeared quite simultaneously ifepending on the measurement result, which is the vlue
both case$4,5]. or P, respectively.(The symbol||---) denotes quadrature
The formulation of Braunstein and Kimble in RdB]  eigenstates.
utilizes the Wigner-function formalism. Their scheme may The Bell-state detector of the teleportation scheme in ar-
also be described in terms of either wave functions on ajument consists of ax detector and @ detector, combined
quadrature-state basf$,7] or Fock stateg8,7]. A general  with a beam splitter to convert two local quadrature measure-
covariant description in terms of arbitrary canonically conju-ments to a joint measurement on two modes. The whole
gate observables and their eigenstates is also pogSible  apparatus then projects onto an entangled state of the two
Coherent states have proven to be extremely useful imodes, the quadrature the Bell states, depending on the val-
guantum optics of single mode field. The overcompletenesgesX and P, measured.
of the coherent state basis allows us to introduce representa- With this picture in mind we construct the one-
tions in lower dimensional, or even discrete, subspaces of théimensional representation of quadrature eigenstaidw
phase spacgl0—-12. A similar approach may be fruitful in  word dimension stands for real, and not for complex dimen-
the investigation of entangled multimode fields and their apsion throughout this papgrLet kets containing a single
plications. In this paper we will show that teleportation cannumber denote coherent states. We start with the following
be treated in this manner: the process can be understoatate 10]:
describing entangled states with coherent state integrals.
In what follows we consider the actual teleportation o
scheme of Braunstein and Kimble under ideal circumstances. Sq. vac. p>=/\/(r)f dxG(x)[x),
The physical systems under consideration are single mode o
fields. As entangled states, we consider ideal Einstein-
Podolsky-Rosen pairs obtained from squeezed vacuum in in-
finite squeezing limit, and perfect detection of quadrature
amplitudes, which results in a projection onto quadrature
eigenstates, according to the von Neumann principle. Wghere
also outline the effect of finite squeezing.
This paper is organized as follows. Using a one-
dimensional representation of quadrature eigenstates, we ob- Mr)=

a,Eccording to the von Neumann projection principle, the
measurement results in the projection to one of the eigen-
States,

savac)-Mn [ dyamly, @

r/2
1 e and G, (x)=e (X#e¥-1)

tain a one-complex-plane representation of the two mode Jm e -1’

entangled states playing an important role in teleportation. (4

Then the description of continuous variable teleportation is

provided. These are superpositions of coherent states placed on the real

Local measurements of a given field mode in the schemand imaginary axis of the phase space, respectively. It is
under consideration are carried out by detectors measuringfraightforward to show that the mean values of the quadra-
the value of either of the quadratures tures are 0, and for their variances
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- ~ e tors. Particularly, we may consider a 50/50 beam splitter,
APjsq. vacp) = AX{sq. vac) = "7 with phase shifts chosen so that for the output staje| 3),
the corresponding input state is|(a+ﬁ)/\/§>l|(ﬂ

~ - e - a)/\/§>2. Because of the linearity of the beam splitter, the

AXjsq. vacp) = APisq. vacy =7~ (5 inverse transform of arbitrary superpositions of coherent

states may be written as

hold, and therefore these are squeezed vacuum states. If

tends towards infinity, the variance of the corresponding f 2 fdz ®

guadratures becomes zero, thus the states become quadrature “ pP(a.p)|)|B)
eigenstates:

I | jdzaf dzﬂq)(aﬂ)‘a+ﬁ> ’ﬁ—a>
P=0)=lim|Sq. vac. p), - ' .
=m > 2],
(6) 10
||X=0)= lim|Sq. vac. x). (19
r—e Here®(a,B) is an arbitrary function, and the complex inte-

¢ grals may be replaced by any kinds of integrals or sums.

Equation(10) can be applied in our actual case: according
quadrature eigenstates need to be normalized in terms @) the von Neumann projection principle, the state of output
probability densities instead of individual probabilities. For modes of the beam splitter is projected onto
simplicity in what follows we omit this normalization factor.

However, lim _AN(r)=0, which expresses the fact tha

The states in Eq(6) can then be written as |‘1’procg< F,)=||X)1||P>2
[|[P=0)= lim f der(x)|x>=f dx|x), —>f dyf dxd*PX|X+iy)|x+iP),,
r—oo — o0 — 00 — 0 — 0
) ) ) (1)
[1X=0)= lim f_ocdyGr(y)hy): f_mdy||y>. thus its inverse transform, the corresponding Bell state reads

r—oo

Finally, quadrature eigenstates can be obtained by shifting o o {(XP—Xy)
states in Eq.(7) using the Glauber displacement operator |B(X,P))=ﬁwdyﬁwdxe' Y

D(a)=explea’—a*a):

x+iy+X+iP>
1

V2

o X—iy+iP—X
||P>=D(iP)||P=O>=f dXeiXP|X+iP>, X T . (12
i ,
(8) . ,
A * , Introducing two complex variables
||X>=D(X)||X=0)=f dye MY|X+iy).
- X+iy X+iP
Now we consider the Bell-state detector. Suppose that 7'—fv = 2 (13

modes 1 and 2 interfere on the lossless beam splitter BS, and

then the quadraturefs of mode 1 andf) of mode 2 are the state in Eq(12) reads
measured, and they were found to ¥end P, respectively.
The measurement projects the state of modes 1 and 2 at the *_pk
output port of the b%arjn splitter to |B(X’P)>:J d2yef Ay Ay y* —A%),. (14)

W prog o) = |1 X)al[P)2. (9  These are the quadrature Bell states playing an important

role in continuous variable quantum teleportation.

This is a product state basis on the Hilbert space of these two Starting from the one real dimensional representation in
modes. Our aim is to calculate the inverse beam-splitteEq. (8) of the quadrature eigenstates, we have obtained a
transform of the stateg¥oq ), which will yield an en-  representation of a two mode state which is a superposition
tangled state basis. We note that the connection of displacef two mode coherent states with amplitudes on one single
ment and entangled states appears in other descriptions téomplex plane. Therefore we call it one-complex-plane rep-

[9,13]. resentation.
Armed with the representations in E(), we may de- If A=0, then we obtain the state
scribe the action of a beam splitter quite simply. Two-mode
coherent states interfere on beam splitters as classical fields, 2
is. thei i inilati [Wepria)= | d*¥Iv)al7v*)a. (1)
that is, their amplitudes transform as the annihilation opera- EPRI 1
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It will be shown in a separate paper that this is the onewhich is valid for any functiorf analytical ina™* . Applying
complex plane representation of a two-mode infinitelyEq. (20) twice, integrating ovely and the ovels, we obtain
squeezed vacuum state. The effect of finite squeezing can be
represented by the Gaussian fac@r(\/2|y|) in the inte- W) :J' 2aG (\/§|a|)e—(\a\2/2)e—2Aa*
grand if Eq.(15) inherited from Eq(7). s '

Let us now turn our attention to the teleportation process.
Alice has an arbitrary quantum stgt&,,) in mode 1, which

she wants to teleport to Bob. A general pure state may bg, the limit of ideal entanglemen6, (v2|a|)— 1, this state
written in Glauber’s analytic representation as becomes

X f(a* +2A%)|a)s. (21

W= [ ape PR1E g, as [¥4)=D(=28)¥ ) 22

The state in mode 3 is a shifted version of the incoming
where f(B*) is an analytic function of3*. Alice and Bob  state. Bob, in the knowledge & and X, can carry out the

share a two-mode squeezed vacuum state inverse displacement to restore the original state.
Note that the displacement to be done by Bob is the iden-
W = | d2aG.(\2 * , 1 tity operator if and only ifX=P=0, a_md _in this case the
[Veer2s f “ r(\/—|a|)|a ERE a9 two-mode Bell state measured by Alice is the same as the

shared entangled state. The same situation appears in the
Ease of discrete variable teleportation.

If the entangled state is not ideal, tBe(/2|«|) Gaussian
smoothing factor appears in E@1). After the inverse dis-

as an EPR state for the teleportation. As discussed prev,
ously, in the ideal cas&,(\2|a|)—1. The state of the
whole system of all three modes is thus initially

1) 105 [ W) 1@ |V £pr) 0 placement, the result of the teleportation reads
| in
:f da f d?8G, (V2] al)e (A7) W)= J daG (V2| a—2A)e” 2 (a*)]a). (23)
X £(8*)| B)ala* ol @)s. (18) The smoothing depends not only enbut also onA as a

consequence of the finite number of photons contained in the
In the next step, Alice then carries out a joint measuremengntangled state. We remark that in order to calculate fidelity
resulting a pair of valueX,P, which is communicated to of teleportation(cf. Ref. [13]) in our formalism, one may
Bob via a classical channel. This measurement results in th@verage inA by forming a density matrix from the state in
projection of the state of modes 1 and 2 to one of the quadra&q. (23), and calculating the probability distribution @
ture Bell states in Eq(14). Therefore in what follows we from Eq.(21).
shall omit all constant multiplying factors from the formulas. ~ We have shown that by using one-complex-plane coherent

The (unnormalized projected state of mode 3 reads state representation of quadrature states, quadrature Bell
states can be represented by integrating on a single complex
| W) 3=1AB(X,P)[Wi)123 plane. Using this representation we have found that an alter-
native and rather plausible description of continuous variable
:f d2af dzﬁf dzyGr(\/§|a|)e_(|B|2/Z) quantum teleportation can be formulated. This approach is
different from all previous considerations applying Wigner

* o Ay* functions, photon number states, or quadrature wave func-

X *\ A" y— Ay 4 * _ AK| K . ; ' - ’ -
f(p*)e (y+AIB)y* —A[a*)]a)s tions. Regarding the role of coherent states, in the develop-
(19 ment of the theory of nonclassical states of light, our ap-
proach may prove to be useful in the further investigation of

The integrals i3 and y can be evaluated via the successivequamum teleportation and related phenomena.

application of the Glauber’s integral identity
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