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One-complex-plane representation approach to continuous variable quantum teleportation
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1Department of Nonlinear and Quantum Optics, Research Institute for Solid State Physics and Optics, Hungarian Academy of S
P.O. Box 49, H-1525 Budapest, Hungary

2Institute of Physics, University of Pe´cs, Ifjúság út 6, H-7624 Pe´cs, Hungary
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We formulate continuous variable quantum teleportation on a coherent-state basis. We present low-
dimensional coherent state representation of the quadrature Bell states. This approach turns out to be suitable
for investigating the teleportation process, yielding a simple direct description.
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The description of entangled states and the analysis
their applications has attracted a great deal of attention
quantum optics recently. One of the main motivations of t
trend was the quantum teleportation phenomenon, which
originally introduced by Bennett@1#. The idea of continuous
variable teleportation appeared quite soon after Benn
original paper in a work by Vaidman@2#, but this idea was
put into the framework of quantum optics by Braunstein a
Kimble quite a bit later than the discrete schemes@3#. How-
ever, first experimental realizations of discrete and conti
ous variable teleportation appeared quite simultaneousl
both cases@4,5#.

The formulation of Braunstein and Kimble in Ref.@3#
utilizes the Wigner-function formalism. Their scheme m
also be described in terms of either wave functions o
quadrature-state basis@6,7# or Fock states@8,7#. A general
covariant description in terms of arbitrary canonically con
gate observables and their eigenstates is also possible@9#.

Coherent states have proven to be extremely usefu
quantum optics of single mode field. The overcompleten
of the coherent state basis allows us to introduce represe
tions in lower dimensional, or even discrete, subspaces o
phase space@10–12#. A similar approach may be fruitful in
the investigation of entangled multimode fields and their
plications. In this paper we will show that teleportation c
be treated in this manner: the process can be unders
describing entangled states with coherent state integrals

In what follows we consider the actual teleportati
scheme of Braunstein and Kimble under ideal circumstan
The physical systems under consideration are single m
fields. As entangled states, we consider ideal Einst
Podolsky-Rosen pairs obtained from squeezed vacuum in
finite squeezing limit, and perfect detection of quadrat
amplitudes, which results in a projection onto quadrat
eigenstates, according to the von Neumann principle.
also outline the effect of finite squeezing.

This paper is organized as follows. Using a on
dimensional representation of quadrature eigenstates, we
tain a one-complex-plane representation of the two m
entangled states playing an important role in teleportat
Then the description of continuous variable teleportation
provided.

Local measurements of a given field mode in the sche
under consideration are carried out by detectors measu
the value of either of the quadratures
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x̂5
â1â†

2
, p̂5

â2â†

2i
. ~1!

According to the von Neumann projection principle, th
measurement results in the projection to one of the eig
states,

x̂uuX&5XuuX&, p̂uuP&5PuuP& ~2!

depending on the measurement result, which is the valuX
or P, respectively.~The symboluu•••& denotes quadrature
eigenstates.!

The Bell-state detector of the teleportation scheme in
gument consists of anx̂ detector and ap̂ detector, combined
with a beam splitter to convert two local quadrature measu
ments to a joint measurement on two modes. The wh
apparatus then projects onto an entangled state of the
modes, the quadrature the Bell states, depending on the
uesX andP, measured.

With this picture in mind we construct the one
dimensional representation of quadrature eigenstates.~The
word dimension stands for real, and not for complex dime
sion throughout this paper.! Let kets containing a single
number denote coherent states. We start with the follow
states@10#:

uSq. vac. p&5N~r !E
2`

`

dxGr~x!ux&,

uSq. vac. x&5N~r !E
2`

`

dyGr~y!u iy&, ~3!

where

N~r !5
1

Ap

er /2

Ae2r21
, and Gr~x!5e2(uxu2/e2r21).

~4!

These are superpositions of coherent states placed on the
and imaginary axis of the phase space, respectively. I
straightforward to show that the mean values of the quad
tures are 0, and for their variances
©2001 The American Physical Society02-1
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D p̂uSq. vac.p&
2 5D x̂uSq. vac.x&

2 5
e22r

4
,

D x̂uSq. vac.p&
2 5D p̂uSq. vac.x&

2 5
e2r

4
~5!

hold, and therefore these are squeezed vacuum statesr
tends towards infinity, the variance of the correspond
quadratures becomes zero, thus the states become quad
eigenstates:

uuP50&5 lim
r→`

uSq. vac. p&,

~6!
uuX50&5 lim

r→`

uSq. vac. x&.

However, lim
r→`

N(r )50, which expresses the fact th

quadrature eigenstates need to be normalized in term
probability densities instead of individual probabilities. F
simplicity in what follows we omit this normalization facto
The states in Eq.~6! can then be written as

uuP50&5 lim
r→`

E
2`

`

dxGr~x!ux&5E
2`

`

dxux&,

~7!

uuX50&5 lim
r→`

E
2`

`

dyGr~y!u iy&5E
2`

`

dyu iy&.

Finally, quadrature eigenstates can be obtained by shif
states in Eq.~7! using the Glauber displacement opera
D̂(a)5exp(aâ†2a* â):

uuP&5D̂~ iP !uuP50&5E
2`

`

dxeixPux1 iP&,

~8!

uuX&5D̂~X!uuX50&5E
2`

`

dye2 iXyuX1 iy&.

Now we consider the Bell-state detector. Suppose
modes 1 and 2 interfere on the lossless beam splitter BS,
then the quadraturesx̂ of mode 1 andp̂ of mode 2 are
measured, and they were found to beX andP, respectively.
The measurement projects the state of modes 1 and 2 a
output port of the beam splitter to

uCprodX,P
&5uuX&1uuP&2 . ~9!

This is a product state basis on the Hilbert space of these
modes. Our aim is to calculate the inverse beam-spli
transform of the statesuCprodX,P

&, which will yield an en-
tangled state basis. We note that the connection of displ
ment and entangled states appears in other description
@9,13#.

Armed with the representations in Eq.~8!, we may de-
scribe the action of a beam splitter quite simply. Two-mo
coherent states interfere on beam splitters as classical fi
that is, their amplitudes transform as the annihilation ope
03430
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tors. Particularly, we may consider a 50/50 beam split
with phase shifts chosen so that for the output stateua&1ub&2

the corresponding input state isu(a1b)/A2&1u(b
2a)/A2&2. Because of the linearity of the beam splitter, t
inverse transform of arbitrary superpositions of coher
states may be written as

E d2aE d2bF~a,b!ua&1ub&2

→E d2aE d2bF~a,b!Ua1b

A2
L

1

Ub2a

A2
L

2

.

~10!

HereF(a,b) is an arbitrary function, and the complex inte
grals may be replaced by any kinds of integrals or sums

Equation~10! can be applied in our actual case: accordi
to the von Neumann projection principle, the state of out
modes of the beam splitter is projected onto

uCprodX,P
&5uuX&1uuP&2

→E
2`

`

dyE
2`

`

dxei (xP2Xy)uX1 iy&1ux1 iP&2 ,

~11!

thus its inverse transform, the corresponding Bell state re

uB~X,P!&5E
2`

`

dyE
2`

`

dxei (xP2Xy)Ux1 iy1X1 iP

A2
L

1

3Ux2 iy1 iP2X

A2
L

2

. ~12!

Introducing two complex variables

gª
x1 iy

A2
, Aª

X1 iP

A2
, ~13!

the state in Eq.~12! reads

uB~X,P!&5E d2geAg* 2A* gug1A&1ug* 2A* &2 . ~14!

These are the quadrature Bell states playing an impor
role in continuous variable quantum teleportation.

Starting from the one real dimensional representation
Eq. ~8! of the quadrature eigenstates, we have obtaine
representation of a two mode state which is a superposi
of two mode coherent states with amplitudes on one sin
complex plane. Therefore we call it one-complex-plane r
resentation.

If A50, then we obtain the state

uCEPR id.&5E d2gug&1ug* &2 . ~15!
2-2
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It will be shown in a separate paper that this is the o
complex plane representation of a two-mode infinite
squeezed vacuum state. The effect of finite squeezing ca
represented by the Gaussian factorGr(A2ugu) in the inte-
grand if Eq.~15! inherited from Eq.~7!.

Let us now turn our attention to the teleportation proce
Alice has an arbitrary quantum stateuC in& in mode 1, which
she wants to teleport to Bob. A general pure state may
written in Glauber’s analytic representation as

uC in&15E d2be2(ubu2/2)f ~b* !ub&1 , ~16!

where f (b* ) is an analytic function ofb* . Alice and Bob
share a two-mode squeezed vacuum state

uCEPR&235E d2aGr~A2uau!ua* &2ua&3 , ~17!

as an EPR state for the teleportation. As discussed pr
ously, in the ideal caseGr(A2uau)→1. The state of the
whole system of all three modes is thus initially

uC i&1235uC in&1^ uCEPR&23

5E d2aE d2bGr~A2uau!e2(ubu2/2)

3 f ~b* !ub&1ua* &2ua&3 . ~18!

In the next step, Alice then carries out a joint measurem
resulting a pair of valuesX,P, which is communicated to
Bob via a classical channel. This measurement results in
projection of the state of modes 1 and 2 to one of the qua
ture Bell states in Eq.~14!. Therefore in what follows we
shall omit all constant multiplying factors from the formula
The ~unnormalized! projected state of mode 3 reads

uC f&3512̂ B~X,P!uC i&123

5E d2aE d2bE d2gGr~A2uau!e2(ubu2/2)

3 f ~b* !eA* g2Ag* ^g1Aub&^g* 2A* ua* &ua&3 .

~19!

The integrals inb andg can be evaluated via the success
application of the Glauber’s integral identity

1

pE d2ae2uau21ab* f ~a* !5 f ~b* !, ~20!
d

r,
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which is valid for any functionf analytical ina* . Applying
Eq. ~20! twice, integrating overg and the overb, we obtain

uC f&35E d2aGr~A2uau!e2(uau2/2)e22Aa*

3 f ~a* 12A* !ua&3 . ~21!

In the limit of ideal entanglement,Gr(A2uau)→1, this state
becomes

uC f&5D~22A!uC in&. ~22!

The state in mode 3 is a shifted version of the incom
state. Bob, in the knowledge ofP and X, can carry out the
inverse displacement to restore the original state.

Note that the displacement to be done by Bob is the id
tity operator if and only ifX5P50, and in this case the
two-mode Bell state measured by Alice is the same as
shared entangled state. The same situation appears in
case of discrete variable teleportation.

If the entangled state is not ideal, theGr(A2uau) Gaussian
smoothing factor appears in Eq.~21!. After the inverse dis-
placement, the result of the teleportation reads

uC f&5E d2aGr~A2ua22Au!e2uau2/2f ~a* !ua&. ~23!

The smoothing depends not only onr but also onA as a
consequence of the finite number of photons contained in
entangled state. We remark that in order to calculate fide
of teleportation~cf. Ref. @13#! in our formalism, one may
average inA by forming a density matrix from the state i
Eq. ~23!, and calculating the probability distribution ofA
from Eq. ~21!.

We have shown that by using one-complex-plane cohe
state representation of quadrature states, quadrature
states can be represented by integrating on a single com
plane. Using this representation we have found that an a
native and rather plausible description of continuous varia
quantum teleportation can be formulated. This approac
different from all previous considerations applying Wign
functions, photon number states, or quadrature wave fu
tions. Regarding the role of coherent states, in the deve
ment of the theory of nonclassical states of light, our a
proach may prove to be useful in the further investigation
quantum teleportation and related phenomena.
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