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Complete solution of the Schralinger equation for the time-dependent linear potential
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The complete solutions of the Schlinger equation for a particle with time-dependent mass moving in a
time-dependent linear potential are presented. One solution is based on the wave function of the plane wave,
and the other is in the form of the Airy function. A comparison is made between the present solution and former
ones to show the completeness of the present solution.
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The analytical solution of the Schitimger equation with shown[15,16 that the solution with the Airy function for
explicitly time-dependent potential has drawn much attentiordescribing the behavior of the free particle, corresponds to a
over past decades. Besides the intrinsic mathematical intewave packet moving acceleratively with no change of form.
est, this problem connects with various applications to manylowever, the acceleration of the Airy packet is not the be-
physical problems, for example, the degenerate parametrmvior of any individual particle, but is caused by the caustic
amplifier[1] and the quantum motion of trapped ions in the of the family of particle orbits. So there is no contradiction
Paul trap[2]. To make clear the dynamical properties of thewith Ehrenfest’s theorem that no wave packet can accelerate
system with explicitly time-dependent potential, numericalin free space.
simulation can be generally applied. However, some infor- The purpose of the present paper is to undertake a com-
mation about the system such as the Berry pfidkand the  pletely analytical solution for the problem above along the
squeezing propertj4] will be probably neglected unless we idea in[15,16 by means of a simple algebra, named “time-
can obtain the completely analytical solution of the system.space transformation method’17]. With the time-space

Not all systems with explicitly time-dependent potentialstransformation method, ifil7], we transformed the Schro
can be solved analytically. During the past several yearsjinger equation with TDHO into that with time-independent
some efforts have been invested in finding the solution of thédarmonic oscillator. But here we will try to transform a
time-dependent harmonic-oscillatdTDHO) Hamiltonian. ~ Schralinger equation with a time-dependent linear potential
The most famous work in this respect is the invariant apinto that of a free particle. According 15,16, there are
proach proposed by Lewis and Riesenfgfd. In terms of only two solutions with nonspreading properties for the
this idea and other elaborate methods, the TDHO Hamilquantum treatment of a free particle. One solution is based
tonian has been investigated from different angles and fofn the wave function of the plane wave and the other is with
different physical problemgs]. As far as we know, the gen- the form of the Airy function. However, as far as we know,
eral TDHO Hamiltonian with the potential of),(t)x? no one has reported these two solutions simultaneously in
+91(t)x+go(t), whereg;(t) (i=0,1,2) are arbitrary time- treating the Hamiltonian with a time-dependent linear poten-
dependent variables, has been solved, and the exact but veigl. Therefore, in what follows, we will consider a more
complicated form of the corresponding wave function hasgeneral case than in Refd4,15, i.e., a particle with time-
been presentdd]. Recently, a more general TDHO problem dependent mass moving in the time-dependent linear poten-
was studied in which the exact form of the propagator couldial. It can be found that the solution in R¢14] is merely a
be found[8]. Moreover, the investigation in this respect hasparticular case for a “standing” particle under the potential,
been extended to the TDHO Hamiltonian with additional po-in comparison with our result. Besides, we will present spe-
tentials[9,10], where the result in Ref9] can be used to cifically the analytical solution of this problem with the form
approximately describe the dynamics of two trapped colcPf the Airy function.
ions in the Paul trajp11]. Consider the Schrdinger equation for a particle with

Besides the TDHO problem, the linear potential modeltime-dependent mass moving in a time-dependent linear po-
has also been frequently employed in some other studiei¢ntial, which can be described by the Sctinger equation
[12,13. Recently, this model was investigated quantum mein units of2=1,
chanically[14], in which an analytical-wave-function solu-
tion for such a system was presented by means of the invari- 9 1 2
ant method. Although the author ¢14] claimed that his i—VP(x,t)=— —W(x,t)+g.(t)x¥(x,1), (1

. . ey at 2M (1) gx2
result is the first presentation in this respect, such a problem
has actually been studied befdtks], in which the solution,
with the form of the Airy function was presented. It was where M(t) and g,(t) are arbitrary time-dependent vari-
ables. Performing a unitary transformationV(x,t)
=d(x,t)e'O* with B(t) being a time-dependent variable
*Electronic address: feng@mpipks-dresden.mpg.de determined later, we have
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where the dot on the variable denotes the derivative with 2Mmaw

respect to time. If we perform the time and space transfor-
mation ofy=x+ v(t) ands=fgdo/M(a), wherep(t) will

1 1
_ ] —wt— —sin 2wt
be determined later, Eq2) is changed to

_ 2
wt coswt) + € 5 7 )

] . (7)
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i J . J 1 J
T 5= f (V) Fiv(t)—=f(y,s)= - 52— —f(y,9) Obviously, wherA=0, our solution is equivalent to E¢L8)
M(t) Js ay 2M() g of Ref.[14] (Ref.[18]). As the physical meaning & is the
momentum component of the free particle along the propa-

—i & —f(y,s)+[g.(t)+ B I[y— v(t)]f(y,s) gating direction, the solution in Reff14] can be considered
M(t) dy as a special case that the particle is “standing” in the poten-
,3( £)2 tial of g4(t)x.
2M(t) f(y,s) ©) In fact, for Eq.(5), besides the solution with the wave

function of the plane wave, there is a remarkable but not
. . . widely known solution, called the “nonspreading wave
in which ®(x,t)=f(y,s) is used. To delete the term of packet” or the “Airy packet” solution in the form of

(alay)f(y,s), we setr(t)=—B(t)/M(t). Thus Ai(B[y—B3s%/4])expi(B3J2) (y—[B3s%/6])}, in which B is
an arbitrary constant and Ai the Airy functi¢mb5,16. So the
1 P wave function of Eq(1) is
M(D) 25 (y )__Td_yzf(y’S)Jr[gl(t)

x+J M (o) fgl( o)do— (BB)J;Md((;)Z
[ i or 1o
}exP[__y o

t
]exp{—ixJogl(cr)dcr}. (8)
From the usual textbook of quantum mechanics, we know
that the simplest form of the solution ig’'(y,s) If we setM (t) =m, we will find that Eq.(8) here is formally
= (12 m)exdi(Ay—A%s/2)] with A being an arbitrary real different from Eq.(15) in Ref.[15] (Ref.[19]). However, the
number if we define the particle as propagating or countercorrectness of Eq(8) can be tested simply by substituting
propagating along the direction gfReversing the procedure EQ. (8) into Eq. (1) and using the Airy function’s properties

|

+AMIYF(Y,9)+G(Df(y,s), @  ¥(xt)= m(

where G(t) = B2(t)/2M (t) —[g,(t) + B(t)v(t). If we as- ox B_ f
sume  g,(t)+B(t)=0, and f'(y,s)="f(y,s)exp 2
[—ifG(t")dt'], we will obtain the following equation for a
free particle with mass equivalent to 1:

B®
F

2

d , 190 , T
'(7_sf (y,s)=—§a—y2f (y,s). ) X fo 0:(o)do

above, we can obtain [20]. It is easily seen that the probability densjty (x,t)|?
moves without change of form. The Airy packet propagates
1 A2 [t do along the trajectory given by
P(x,t)= Eexp{lA[H— v(t)]}exp{ —i 7Jo|\/| . ]
: o—ﬁ_fd“ - [ [ Caerne. @
><exp{ —if G(a)da+ixB(t)J ©) W=7 JoM(o)| ~ JoM(n) o 9l
0

with B(t)=— f{g:(0)do andv(t)=—[{[B(d)/M(a)]do.  If we chooseM (t)=m and g;(t)=B3/2m, thenx,(t)=0,
To compare with the solution in Reff14], we letg,(t) take  which means the Airy packet is at rest. More specifically,
the form ofq(eg+ e coswt) and setM (t) =m, which yields  settingg;(t) =q(ey+ € coswt) will yield
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result in Ref.[14] is merely the solution of the system in a
particular case. The other solution with the form of the Airy
function gives the specific form of a solution of the system,
which has not been presented before. Each of the solutions
has a free parameter representing the velocity of the wave
packet of the solution. As it is exact and complete, the
present result can be used to investigate quantum properties
of the system with a time-dependent linear potential in a
wider range of parameters, and serves as a comparison with
other approximate works. We hope that the present work
would be helpful for future exploration in this respect.

Note added.Recently the author was informed that a
former work[21] for an electron moving in a general time-
dependent electromagnetic field, whose result is very similar
to that in the present work, had been carried out by generally
constructing the evolution operators. The solution[21]
based on the wave function of the plane wave is the same as

In this case the Airy packet propagates sinusoidally with nQ,, the present work, whereas their solution with the Airy

change of form. ~ function is only for a special value @& defined in Eq(10).
In summary, we have presented the completely analytical

solution of a system with a time-dependent-mass particle The discussion with I. Guedes and Hanting Wang is
moving in a time-dependent linear potential. The solutionhighly acknowledged. The work was partly supported by the

based on the wave function of the plane wave shows that thiational Natural Science Foundation of China.
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