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Complete solution of the Schro¨dinger equation for the time-dependent linear potential
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The complete solutions of the Schro¨dinger equation for a particle with time-dependent mass moving in a
time-dependent linear potential are presented. One solution is based on the wave function of the plane wave,
and the other is in the form of the Airy function. A comparison is made between the present solution and former
ones to show the completeness of the present solution.
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The analytical solution of the Schro¨dinger equation with
explicitly time-dependent potential has drawn much attent
over past decades. Besides the intrinsic mathematical in
est, this problem connects with various applications to m
physical problems, for example, the degenerate param
amplifier @1# and the quantum motion of trapped ions in t
Paul trap@2#. To make clear the dynamical properties of t
system with explicitly time-dependent potential, numeric
simulation can be generally applied. However, some inf
mation about the system such as the Berry phase@3# and the
squeezing property@4# will be probably neglected unless w
can obtain the completely analytical solution of the syste

Not all systems with explicitly time-dependent potentia
can be solved analytically. During the past several ye
some efforts have been invested in finding the solution of
time-dependent harmonic-oscillator~TDHO! Hamiltonian.
The most famous work in this respect is the invariant
proach proposed by Lewis and Riesenfeld@5#. In terms of
this idea and other elaborate methods, the TDHO Ham
tonian has been investigated from different angles and
different physical problems@6#. As far as we know, the gen
eral TDHO Hamiltonian with the potential ofg2(t)x2

1g1(t)x1g0(t), wheregi(t) ( i 50,1,2) are arbitrary time-
dependent variables, has been solved, and the exact but
complicated form of the corresponding wave function h
been presented@7#. Recently, a more general TDHO proble
was studied in which the exact form of the propagator co
be found@8#. Moreover, the investigation in this respect h
been extended to the TDHO Hamiltonian with additional p
tentials @9,10#, where the result in Ref.@9# can be used to
approximately describe the dynamics of two trapped c
ions in the Paul trap@11#.

Besides the TDHO problem, the linear potential mod
has also been frequently employed in some other stu
@12,13#. Recently, this model was investigated quantum m
chanically @14#, in which an analytical-wave-function solu
tion for such a system was presented by means of the inv
ant method. Although the author of@14# claimed that his
result is the first presentation in this respect, such a prob
has actually been studied before@15#, in which the solution,
with the form of the Airy function was presented. It wa
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shown @15,16# that the solution with the Airy function for
describing the behavior of the free particle, corresponds
wave packet moving acceleratively with no change of for
However, the acceleration of the Airy packet is not the b
havior of any individual particle, but is caused by the caus
of the family of particle orbits. So there is no contradictio
with Ehrenfest’s theorem that no wave packet can accele
in free space.

The purpose of the present paper is to undertake a c
pletely analytical solution for the problem above along t
idea in@15,16# by means of a simple algebra, named ‘‘tim
space transformation method’’@17#. With the time-space
transformation method, in@17#, we transformed the Schro¨-
dinger equation with TDHO into that with time-independe
harmonic oscillator. But here we will try to transform
Schrödinger equation with a time-dependent linear poten
into that of a free particle. According to@15,16#, there are
only two solutions with nonspreading properties for t
quantum treatment of a free particle. One solution is ba
on the wave function of the plane wave and the other is w
the form of the Airy function. However, as far as we kno
no one has reported these two solutions simultaneousl
treating the Hamiltonian with a time-dependent linear pot
tial. Therefore, in what follows, we will consider a mor
general case than in Refs.@14,15#, i.e., a particle with time-
dependent mass moving in the time-dependent linear po
tial. It can be found that the solution in Ref.@14# is merely a
particular case for a ‘‘standing’’ particle under the potenti
in comparison with our result. Besides, we will present s
cifically the analytical solution of this problem with the form
of the Airy function.

Consider the Schro¨dinger equation for a particle with
time-dependent mass moving in a time-dependent linear
tential, which can be described by the Schro¨dinger equation
in units of \51,

i
]

]t
C~x,t !52

1

2M ~ t !

]2

]x2
C~x,t !1g1~ t !xC~x,t !, ~1!

where M (t) and g1(t) are arbitrary time-dependent var
ables. Performing a unitary transformationC(x,t)
5F(x,t)eib(t)x with b(t) being a time-dependent variab
determined later, we have
©2001 The American Physical Society01-1
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i
]

]t
F~x,t !52

1

2M ~ t !

]2

]x2
F~x,t !2 i

b~ t !

M ~ t !

]

]x
F~x,t !

1
b~ t !2

2M ~ t !
F~x,t !1xḃ~ t !F~x,t !

1g1~ t !xF~x,t !, ~2!

where the dot on the variable denotes the derivative w
respect to time. If we perform the time and space trans
mation ofy5x1n(t) ands5*0

t ds/M (s), wheren(t) will
be determined later, Eq.~2! is changed to

i

M ~ t !

]

]s
f ~y,s!1 i ṅ~ t !

]

]y
f ~y,s!52

1

2M ~ t !

]2

]y2
f ~y,s!

2 i
b~ t !

M ~ t !

]

]y
f ~y,s!1@g1~ t !1ḃ~ t !#@y2n~ t !# f ~y,s!

1
b~ t !2

2M ~ t !
f ~y,s! ~3!

in which F(x,t)5 f (y,s) is used. To delete the term o
(]/]y) f (y,s), we setṅ(t)52b(t)/M (t). Thus

i

M ~ t !

]

]s
f ~y,s!52

1

2M ~ t !

]2

]y2
f ~y,s!1@g1~ t !

1ḃ~ t !#y f~y,s!1G~ t ! f ~y,s!, ~4!

where G(t)5b2(t)/2M (t)2@g1(t)1ḃ(t)#n(t). If we as-
sume g1(t)1ḃ(t)50, and f 8(y,s)5 f (y,s)exp
@2i*0

t G(t8)dt8#, we will obtain the following equation for a
free particle with mass equivalent to 1:

i
]

]s
f 8~y,s!52

1

2

]2

]y2
f 8~y,s!. ~5!

From the usual textbook of quantum mechanics, we kn
that the simplest form of the solution isf 8(y,s)
5(1/A2p)exp@i(Ay2A2s/2)# with A being an arbitrary rea
number if we define the particle as propagating or coun
propagating along the direction ofy. Reversing the procedur
above, we can obtain

C~x,t !5
1

A2p
exp$ iA@x1n~ t !#%expH 2 i

A2

2 E
0

t ds

M ~s!J
3expH 2 i E

0

t

G~s!ds1 ixb~ t !J ~6!

with b(t)52*0
t g1(s)ds andn(t)52*0

t @b(s)/M (s)#ds.
To compare with the solution in Ref.@14#, we letg1(t) take
the form ofq(e01e cosvt) and setM (t)5m, which yields
03410
h
r-

w

r-

C~x,t !5
1

A2p
expH iAFx1

q

m S e0

2
t22

e

v2
cosvt1

e

v2D G
2 i

A2t

2mJ expH 2 i
q

v
~e0vt1e sinvt !xJ

3expH 2 i
q2

2mv3 Fe0
2~vt !3

3
12e0e~sinvt

2vt cosvt !1e2S 1

2
vt2

1

4
sin 2vt D G J . ~7!

Obviously, whenA50, our solution is equivalent to Eq.~18!
of Ref. @14# ~Ref. @18#!. As the physical meaning ofA is the
momentum component of the free particle along the pro
gating direction, the solution in Ref.@14# can be considered
as a special case that the particle is ‘‘standing’’ in the pot
tial of g1(t)x.

In fact, for Eq. ~5!, besides the solution with the wav
function of the plane wave, there is a remarkable but
widely known solution, called the ‘‘nonspreading wav
packet’’ or the ‘‘Airy packet’’ solution in the form of
Ai „B@y2B3s2/4#…exp$i(B3s/2)(y2@B3s2/6#)%, in which B is
an arbitrary constant and Ai the Airy function@15,16#. So the
wave function of Eq.~1! is

C~x,t !5Ai S BFx1E
0

t dt

M ~t!
E

0

t

g1~s!ds2S B3

4 DE
0

t ds

M ~s!
2G D

3expH i
B3

2 E
0

t ds

M ~s! Fx1E
0

t dt

M ~t!
E

0

t

g1~s!ds

2
B3

6 S E
0

t ds

M ~s! D 2G J expH 2
i

2E0

t dt

M ~t!

3F E
0

t

g1~s!dsG2J expH 2 ixE
0

t

g1~s!dsJ . ~8!

If we setM (t)5m, we will find that Eq.~8! here is formally
different from Eq.~15! in Ref. @15# ~Ref. @19#!. However, the
correctness of Eq.~8! can be tested simply by substitutin
Eq. ~8! into Eq. ~1! and using the Airy function’s propertie
@20#. It is easily seen that the probability densityuC(x,t)u2
moves without change of form. The Airy packet propaga
along the trajectory given by

x0~ t !5
B3

4 F E
0

t ds

M ~s!G2

2E
0

t dt

M ~t!
E

0

t

g1~s!ds. ~9!

If we chooseM (t)5m and g1(t)5B3/2m, then x0(t)50,
which means the Airy packet is at rest. More specifica
settingg1(t)5q(e01e cosvt) will yield
1-2
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C~x,t !5AiFBS x1
qe0

2m
t22

qe

mv2
cosvt1

qe

mv2
2

B3t2

4m2D G
3expH i

B3t

2m Fx1
qe0

2m
t22

qe

mv2
cosvt1

qe

mv2

2
B3t2

6m2G J 3expH 2 ixS qe0t1
qe

v
sinvt D J

3expH 2 i
q2

2mF e0
2

3
t31

e2

2v3 S vt2
1

2
sin 2vt D

1
2e0e

v3
~sinvt2tv cosvt !G J . ~10!

In this case the Airy packet propagates sinusoidally with
change of form.

In summary, we have presented the completely analyt
solution of a system with a time-dependent-mass part
moving in a time-dependent linear potential. The solut
based on the wave function of the plane wave shows tha
.

.

ri
.
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result in Ref.@14# is merely the solution of the system in
particular case. The other solution with the form of the Ai
function gives the specific form of a solution of the syste
which has not been presented before. Each of the solut
has a free parameter representing the velocity of the w
packet of the solution. As it is exact and complete, t
present result can be used to investigate quantum prope
of the system with a time-dependent linear potential in
wider range of parameters, and serves as a comparison
other approximate works. We hope that the present w
would be helpful for future exploration in this respect.

Note added.Recently the author was informed that
former work @21# for an electron moving in a general time
dependent electromagnetic field, whose result is very sim
to that in the present work, had been carried out by gener
constructing the evolution operators. The solution in@21#
based on the wave function of the plane wave is the sam
in the present work, whereas their solution with the Ai
function is only for a special value ofB defined in Eq.~10!.
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National Natural Science Foundation of China.
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