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General theory for spontaneous emission in active dielectric microstructures:
Example of a fiber amplifier
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A model for spontaneous emission in active dielectric microstructures is given in terms of the classical
electric field Green’s tensor and the quantum-mechanical operators for the generating currents. A formalism is
given for calculating the Green’s tensor, which does not rely on the existence of a complete power orthogonal
set of electromagnetic modes, and the formalism may therefore be applied to microstructures with gain and/or
absorption. The Green’s tensor is calculated for an optical fiber amplifier, and the spontaneous emission in fiber
amplifiers is studied with respect to the position, transition frequency, and vector orientation of a spatially
localized current source. Radiation patterns are studied using a Poynting vector approach taking into account
amplification or absorption from an active medium in the fiber.
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I. INTRODUCTION

The spontaneous emission properties of an em
changes when it is placed in a small cavity@1#, between
mirrors @2,3#, or in a medium with spatially varying dielec
tric constant@4–8#. The general explanation is that a cavi
or a varying dielectric constant will modify the strength a
distribution of electromagnetic modes with which an emit
can interact, resulting indirectly in altered spontaneous em
sion properties. The effect was first noticed by Purcell
1946 @1# and has since been demonstrated in a numbe
experiments on Rydberg atoms, quantum dots, and rare-e
materials@9–18#. One of the perspectives of the effect is th
spontaneous emission of an emitter can, to some exten
controlled and even engineered by tailoring the surround
structure on a transition wavelength scale.

The standard approach to calculation of the rate of sp
taneous emission for an atom placed in an empty meta
cavity or in free space, is to expand the radiation field
power orthogonal modes normalized to one quantum of
ergy and use the Fermi golden rule. If the emitter is emb
ded in a dielectric material, the coupling between matter
the radiation field requires a QED formulation of Maxwel
equations for the dielectric medium in order to calculate
rate of spontaneous emission from the emitter. For pas
media without gain or absorption, it is possible, as in fr
space, to expand the radiation field in power orthogo
modes and to use the expansion as a basis for quantiza
This is, for example, the method for calculating spontane
emission rates in photonic band-gap structures@19–21#,
where the local density of electromagnetic modes may
strongly modified and even zero in certain frequency ran
due to a periodically varying dielectric constant@21–23#.
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If the material is active and has loss and/or gain, the
lutions to Maxwell’s equations cannot be expanded in pow
orthogonal modes, and the concept of modes becomes m
subtle. In that case, it is convenient to use the electrom
netic fields and generating currents as primary observa
represented by operators that are defined by their comm
tion relations. The relation between field and current ope
tors is given by a classical electric-field Green’s tensor. T
allows a calculation of spontaneous emission even for
tended and dynamically varying structures as, for exampl
modulated laser diode. The studies of QED for dielect
materials have essentially followed two parallel approac
in the physics and the quantum electronics communities,
spectively. The physics approach@24–37# has focused on the
material aspects of QED for dielectrics such as the influe
of absorption, dispersion, and inhomogeneities.

The quantum electronics approach~see, for example, the
papers@38–49# and references in Ref.@44#!, has been driven
by studies of spontaneous emission in optical wavegui
and has explored the effect of the absence of a complete
of power orthogonal modes. In fact, the phenomenon of
cess noise in guided modes introduced by Petermann@38# is,
as pointed out first by Haus and Kawakami@39#, related to
the nonexistence of a complete set of power orthogonal e
tromagnetic modes. The analyses of spontaneous emissi
active dielectric waveguides in Refs.@38–49# are based on
the scalar wave equation for the electromagnetic field. T
scalar methods give the rate of spontaneous emission
guided modes, but they do not give the total rate of spon
neous emission. This requires taking into account the c
pling to the complete radiation field and not only the guid
modes.

In this paper we extend the analysis of spontaneous e
sion, based on the approximate scalar wave equation,
full vectorial approach valid for general active dielectric m
crostructures. The total rate of spontaneous emission from
emitter in an active dielectric medium can be expressed
terms of the classical Green’s tensor, or to be more prec
©2001 The American Physical Society12-1
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T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812
the double-transverse part of the tensor. We present a ge
method for calculating this tensor from complete sets of b
thogonal modes for the vector wave equation. The vecto
nature of the formalism allows calculation of spontaneo
emission depending on position, transition frequency,
polarization of the emitter in a dielectric microstructure w
loss or gain. Vectorial Green’s tensor methods for decay
excited molecules have previously been given for the cas
homogeneous absorbing dielectric media@32#, for an absorb-
ing dielectric surface@35#, and in a series of papers b
Tomaŝand Lenac for absorbing layered structures@50–52#.

We exemplify the method by analyzing spontaneo
emission in an optical fiber. The step-index fiber is su
ciently simple to allow analytical solutions for the Green
function for both passive and active fibers; the solutions
lustrate some subtle issues related to the singularity of
Green’s function that are not easily studied by purely n
merical methods. We take into account both position a
vector orientation of spatially localized generating curren
Our method allows taking spontaneous emission into acco
into the radiation modes of the electromagnetic field, a
thereby the total rate of spontaneous emission from an e
ter embedded in, for example, an active waveguide, may
calculated. Spontaneous emission into radiation modes
previously been considered for passive multilayer dielec
structures@12,53–56#, and decay in the presence of pass
dielectric cylindrical structures has been investigated in R
@57–59#. In the analysis of active fibers, the Green’s tenso
calculated exemplifying the general formalism for calcul
ing Green’s tensors for the vector case. Another exampl
calculating Green’s tensors for active layered structure
given in Ref.@50#.

The paper is organized in the following way. In Sec. II t
model for spontaneous emission in active dielectric mic
structures is given. The general principle for obtaining
electric-field Green’s tensor is given in Sec. III. Using th
principle the transverse electric-field Green’s tensor is
rived for the case of active optical fibers in Sec. IV. Positi
dependence and transition-frequency dependence of sp
neous emission for the passive fiber is given in Sec. V.
diation patterns obtained using a Poynting vector appro
for the active fiber are presented in Sec. VI. Our conclus
is given in Sec. VII.

II. MODEL FOR SPONTANEOUS EMISSION

In this section we present a general Green’s tensor m
for calculating the rate of spontaneous emission in a mate
with a position dependent dielectric constant«(r ). The
model allows« to be complex and thus to represent materi
with absorption or gain. For simplicity, we treat«(r ) as a
scalar. There is no problem in principle to let«(r ) represent
a tensor, and thus to include the case of birefringent ma
als, but the notation will of course be less transparent.
model does require a complete set of biorthogonal mode

The spontaneous emission in the material may be con
ered as being generated by a distribution of spontaneous
rents. The positive frequency part of the current density
represented by an operatorĵ (r ,t) in the Heisenberg picture
03381
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The real current density is thereforeĵ1 ĵ†, where (†) denotes
Hermitian conjugation, and where

ĵ ~r ,t !5
1

2pE0

`

ĵ ~r ;v!e2 ivtdv, ~1!

the integration being only over positive angular frequenc
v.

The current density is the sum of two partsĵT(r ,t) and
ĵGL(r ,t) with “• ĵT50 and“3( ĵGL /«)50 @60#. It is actu-
ally only the transverse part of the currentsĵT(r ,t), which
contributes to spontaneous emission; the partĵGL(r ,t) con-
tributes to the nonradiative decay rate@32#. For a homoge-
neous medium with constant«, the componentĵGL is simply
the longitudinal part, but for nonhomogeneous media,ĵGL is
the generalized longitudinal part. Notice, that in splitting t
current intoĵT and ĵGL the transverse part is also affected
«, when this is nonuniform.

The average rate of energy dissipation, due to sponta
ous emission, is given in terms of the currentsĵT by

^P&52E ^ ĵT
†~r ,t !•Ê~r ,t !1Ê†~r ,t !• ĵT~r ,t !& d3r , ~2!

where the angled brackets^•••& denote ensemble and tim
averaging, andÊ(r ,t) is the positive frequency part of th
electric-field operator. The field is itself generated by t
transverse currents and satisfies the inhomogeneous w
equation

@2“3“31k0
2 «~r !#Ê~r ;v!52 ivm0ĵT~r ;v! ~3!

in the frequency domain. Herek05v/c is the wave number,
c is the speed of light, andm0 is the permeability, all for
vacuum. The solution to Eq.~3! may be written as

Ê~r ;v!52 ivm0E G~r ,r 8;v!• ĵT~r 8;v! d3r 8 ~4!

in terms of the classical Green’s tensorG(r ,r 8;v). It is de-
fined as a solution to the equation

@2“3“31k0
2«~r !#G~r ,r 8;v!5Id~r2r 8!, ~5!

whered is the Dirac delta function, andI is the unit 333
tensor. We shall only deal with the retarded Green’s ten
lim

e→01
G(r ,r 8;v1 i e), which ensures a causal relationsh

betweenÊ(r ,t) and ĵT(r ,t).
Insertion of Eq.~4! in Eq. ~2! leads to

^P&52
im0

~2p!2E ^ ĵT
†~r ;v!•$v8G~r ,r 8;v8!

2vG†~r 8,r ;v!%• ĵT~r 8;v8!& d3r d3r 8 dv dv8.

~6!
2-2
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GENERAL THEORY FOR SPONTANEOUS EMISSION IN . . . PHYSICAL REVIEW A64 033812
It is often convenient to drop the restriction that the curre
have to be transverse by instead using the double-transv
Green’s tensorGT defined by

GT~r ,r 8;v!5E d T
†~r ,r1!•G~r1 ,r2 ;v!•dT~r2 ,r 8!d3r 1d3r 2 .

~7!

The transverse delta functiondT(r ,r 8) is the operator tha
projects an arbitrary vector function into its transverse p
@26,61#. The construction ofdT is presented in Appendix B

The spontaneous currents are assumed to bed correlated
in space and frequency, i.e.,

^ ĵ l
†~r ;v! ĵ m~r 8;v8!&52Dml~r ;v!d~r2r 8!2pd~v2v8!,

~8!

where ĵ l is the l th component of the current densityĵ , and
Dml is the elementml of the diffusion tensorD. The optical
transitions that contribute to the spontaneous emission,
therefore to the diffusion tensor, will also give a contributi
«sp to the dielectric tensor. The two tensors are related by
fluctuation-dissipation theorem@44#

D5\v2«0nspIm~«sp!, ~9!

i.e., the diffusion tensor is proportional to the imaginary p
of «sp . The factornsp is the population inversion factor fo
the involved quantum states, and«0 is the vacuum permit-
tivity.

The rate of spontaneous emissionG, i.e., the number of
spontaneously emitted photons per unit time, can now
obtained from the rate of energy dissipation by introduc
Eq. ~8! in Eq. ~6! and dividing the integrand by the photo
energy\v. This results in the following simple expressio
for G:

G52
2m0

\2p
ImS E Tr$2D~r ;v!•GT~r ,r ;v!%d3rdv D ,

~10!

where ‘‘Tr’’ indicates the trace of the matrix product. W
will focus on the case where a dipole emitter is localized
r0, and the transition frequency isv0. The diffusion tensor is
then given by

2D5v0
2mm†d~r2r0!2pd~v2v0!, ~11!

where m is the dipole vector, and the rate of spontaneo
emission becomes@32#

G52
2m0v0

2

\
Im@m†

•GT~r0 ,r0 ;v0!•m#. ~12!

The expression~12! allows us to calculate the rate of spo
taneous emission from dipoles, even if the dielectric mate
is a gain medium at the transition frequencyv0. In that case,
the radiation observed outside the material consists of am
fied spontaneous emission from the dipole as well as am
fied spontaneous emission from the gain medium, and
spontaneous emission rateG cannot be determined by simpl
03381
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counting the emitted photons. However, if the dipole rad
tion is due to different processes than the processes that
vide the gain, it may nevertheless be possible to verify
expression~12! experimentally. In the following, we presen
a theoretical method for calculatingG, and we demonstrate
the method for the example of an optical fiber.

III. CONSTRUCTION OF THE ELECTRIC-FIELD
TRANSVERSE GREEN’S TENSOR

This section concerns the general principles for constr
tion of the electric-field Green’s tensorG(r ,r 8;v) defined by
Eq. ~5!. Instead of dealing with the wave equation in th
form ~3!, it is convenient to introduce the vector functio
@26#

g~r !5A«~r !E~r !, ~13!

and to rewrite the wave equation~3! in terms ofg(r ):

2
1

A«~r !
“3“3

g~r !

A«~r !
1k0

2g~r !52 ivm0

jT~r !

A«~r !
.

~14!

The argumentv has been suppressed for simplicity. We w
first derive the Green’s tensorGg(r ,r 8) for g(r ); by Eq.~13!
the Green’s tensorG(r ,r 8) for the electric field is then ob-
tained from the relation

Gg~r ,r 8!5A«~r !G~r ,r 8!A«~r 8!. ~15!

We define an operatorH acting ong(r ) by writing the left-
hand side of Eq.~14! as Hg. The equation for the Green’
tensorGg(r ,r 8) may then be written as

HGg~r ,r 8!5Id~r2r 8!. ~16!

The operatorH was introduced by Glauber and Lewenste
in their theory of quantum electrodynamics of dielectric m
dia @26#. For passive dielectric media with real«(r ), the
operator is Hermitian, but it is non-Hermitian if«(r ) is com-
plex. The Hermitian conjugateH † is obtained fromH by
replacing«(r ) by its complex conjugate. In both cases w
can assume, that for each set (gn ,ln) of eigensolutions to
Hgn5lngn , there exists a set of eigensolutions (g̃n ,ln* ) to

H †g̃n5ln* g̃n , such that the biorthogonality condition

E @ g̃n~r !#* •gm~r !d3r 5Nndnm ~17!

and the completeness relation

(
n

gn~r !g̃n* ~r 8!

Nn
5Id~r2r 8! ~18!

are satified. Here, the asterisk~* ! denotes complex conjuga
tion. The eigenfunctiong̃n(r ) is denoted the adjoint ofgn(r ).
The eigensolutionsgn are degenerate, so the assignment
the adjoint solution is not unique, but it can be chosen s
that Eqs.~17! and ~18! are fulfilled. The actual choice ma
2-3
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T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812
be adapted to the specific structure under consideration
we will demonstrate for the example of an optical fiber. T
summation sign in Eq.~18! represents an integration for th
case of a continuum of eigensolutions and a summation
discrete eigensolutions. Similarly, the symboldnm in Eq. ~17!
represents a Dirac delta function for eigensolutions in
continuous spectrum of eigenvalues, and a Kronecker d
function for discrete eigensolutions.

By the completeness relation~18!, the Green’s tenso
Gg(r ,r 8) becomes

Gg~r ,r 8!5(
n

gn~r !g̃n* ~r 8!

Nnln
, ~19!

as can be seen by inserting Eq.~19! in Eq. ~16!. Equation
~15! finally leads to the expression

G~r ,r 8;v!5(
n

En~r !@Ẽn~r 8!#*

Nnln
~20!

for the Green’s tensor for the electric field. The electric fie
En5gn /A« is a solution to

2“3“3En1k0
2«~r !En5ln«~r !En , ~21!

and Ẽn5g̃n/A«* . The normalization factorNn is

Nn5E @ g̃n~r !#* •gn~r ! d3r 5E «~r !@Ẽn~r !#* •En~r !d3r .

~22!

The solutions to Eq.~21! must satisfy the equation

k0
2
“•@«~r !En~r !#5ln“•@«~r !En~r !#, ~23!

so we have either

“•@«~r !En~r !#50, ~24!

which describes field solutions in the absence of elec
charges, or else“•@«(r )En(r )#Þ0, and henceln5k0

2. In
the latter case, the eigenvalue problem reduces to

“3“3En~r !50, ~25!

which has solutions of the form

En~r !5“fn~r !, ~26!

where fn(r ) are scalar functions. They have to fulfill th
biorthogonality condition

E «~r !“fn~r !•“@f̃m~r !#* d3r 5Mndnm , ~27!

and this can be achieved by choosing@fn(r ),sn# to be a
complete set of solutions to the eigenvalue problem for
scalar wave equation

“•@«~r !“fn#5snfn . ~28!
03381
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The set@f̃n(r ),sn* # is the corresponding set of adjoint solu
tions. It follows from Eq.~27! and Eq.~28! that the normal-
ization factorMn is given by

Mn52snE @f̃n~r !#* fn~r !d3r . ~29!

These considerations lead to a Green’s tensorG(r ,r 8;v),
which is the sum of two terms

G5GGT1GL , ~30!

whereGGT is the sum~20! over solutions to Eq.~21! and Eq.
~24!. It is therefore generalized transverse, i.e.,“•(«GGT)
50. The other partGL contains only longitudinal eigenfunc
tions, i.e.,

GL~r ,r 8;v!5(
n

“fn~r !@“f̃n~r 8!#*

Mnk0
2

. ~31!

Here we note that the field obtained by inserting the Gree
tensor~30! and any current density into Eq.~4! can always
be split into a generalized transverse part and a purely
gitudinal part. It is then seen using these fields and curr
densities in Eq.~3! that the current density must consist of
purely transverse partjT with “• jT50 generating the gener
alized transverse field, and a partjGL with “3( jGL /«)50
generating the longitudinal field. We also note, that by cho
ing (fn ,sn) to be a complete set of eigensolutions to E
~28!, we ensure by construction that a currentj with a lon-
gitudinal component in Eq.~4! will generate an electric field
that satisfies the Coulomb equation“•(«E)52 i“
• j /(v«0).

We shall only be concerned with the double-transve
Green’s tensor Eq.~7!. Inserting Eq.~30! in Eq. ~7! gives

GT~r ,r 8;v!5(
n

En
T~r !~Ẽn

T@r 8!#*

ln*«~r !@Ẽn~r !#* •En~r !d3r
1dT

†GLdT ,

~32!

where

En
T~r !5E dT

†~r ,r 8!•En~r 8!d3r 8, ~33!

and En are the generalized transverse solutions to Eq.~21!
and Eq.~24!. The transverse delta operatordT is given in
Appendix B. For real«, we haveEn

T5En , dT
†GLdT50 and

henceGT5GGT , but this does not hold for complex«. In the
next section this general approach to the electric-fi
double-transverse Green’s tensor is applied to the cas
active optical fibers.

IV. TRANSVERSE GREEN’S TENSOR FOR THE ACTIVE
OPTICAL FIBER

In this section the general principles for the construct
of the electric-field Green’s tensor, given in the previous s
tion, is applied to the case of an active optical fiber. T
2-4
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GENERAL THEORY FOR SPONTANEOUS EMISSION IN . . . PHYSICAL REVIEW A64 033812
details of the calculation is given in the Appendices.
A schematic of the circular step-index optical fiber

shown in Fig. 1. The structure consists of a circular c
region with refractive indexn1 surrounded by a cladding
region with refractive indexn2. The diameter of the core i
denoted 2a. The extent of the cladding region is assumed
be infinite. A Cartesian coordinate system (x,y,z) is intro-
duced with the origin in the center of the fiber core. The fib
is oriented along thez axis, and the position of a point sourc
is given in cylindrical coordinates by (r,f,z). The sponta-
neous emission depends on both the position and the o
tation of the dipole vectorm. In this paper we will consider
spontaneous emission for emitters oriented along thez axis,
and for emitters oriented in thexy plane. In the latter case
we will be interested only in the average emission for dip
vectors oriented along the two in-plane directionsx and y.
The total spontaneous emission for these two types of or
tation of the generating currents depends only on the radir
due to symmetry considerations.

The formalism developed in Sec. III for calculating th
transverse electric-field Green’s tensor requires that the
eralized transverse eigensolutions@ln ;En(r )# of Eq. ~21! are
obtained.

Taking advantage of the circular symmetry of the probl
we will quantize the eigenfunctionsEn(r ) in cylindrical
wave functions. Generalized transverse solutions may
constructed by introducing both the electric fieldEn and the
magnetic fieldHn given by Hn5“3En /( i ṽnm0), where
ṽn

25v22lnc2, and requiring the tangential components
both fields to be constant across the interface between
and cladding.

The eigenmodesEn and the corresponding fieldsHn may
be quantized in cylindrical wave functions in the form

Ea~r,f,z!5Fa~r!eimfeibz, ~34!

Ha~r,f,z!5Ga~r!eimfeibz, ~35!

FIG. 1. Illustration of the circular step-index optical fiber wi
core refractive indexn1, cladding refractive indexn2, and core
diameter 2a. A Cartesian coordinate system (x,y,z) is introduced
with the origin placed in the center of the fiber core, and with
fiber oriented along thez axis. The position of a point source i
given by (r,f,z).
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wherea represents the quantization indices. In a cylindric
coordinate system the vectorsFa(r) and Ga(r) do not de-
pend on the anglef, and therefore thef dependence of
these vectors has been suppressed. The eigensolutions
be divided into two types of solutions, which we refer to
radiation modes and guided modes, respectively. For ra
tion modes, there are four quantization indicesa
5$m,p,b,q%, whereb is the component of the wave vecto
along thez axis, q represents the magnitude of the wa
vector perpendicular to thez axis, m is the angular momen
tum, and the indexp is used to distinguish between tw
degenerate polarization modes for givenm, b, andq.

In the first part of this section, we will consider the co
tribution to the Green’s tensor related to radiation mod
and then come back to the contribution related to guid
modes at the end of the section.

The substitution of Eq.~34! into the eigenvalue problem
~21!, leads to the following differential equations for thez
component of the electric field for the optical fiber

~kr!2
]2Fz,a

]~kr!2
1kr

]Fz,a

]~kr!
1@~kr!22m2#Fz,a50, r<a,

~qr!2
]2Fz,a

]~qr!2
1qr

]Fz,a

]~qr!
1@~qr!22m2#Fz,a50, r.a,

~36!

where

k25~k0
22la!«12b2,

q25~k0
22la!«22b2. ~37!

Here la is the eigenvalue of the eigensolution with quan
zation indicesa, and «15n1

2 and «25n2
2 represent the di-

electric constant in the core and cladding of the fiber, resp
tively.

For radiation modes, eigensolutions exist for all combin
tions ofm, b, andq. By applying the boundary condition tha
the field amplitude must remain finite, both in the core a
cladding, thez component of the two fieldsFa andGa may
be written in the form

Fz,a~r!5H AaJm~kr!, r<a

Ca
1H (1)

m~qr!1Ca
2H (2)

m~qr!, r.a
~38!

Gz,a~r!5H BaJm~kr!, r<a

Da
1H (1)

m~qr!1Da
2H (2)

m~qr!, r.a.
~39!

The other componentsFr,a , Ff,a , Gr,a , andGf,a may be
expressed in terms ofFz,a and Gz,a by using Maxwell’s
equations@62#.

In the above equations,Jm is the Bessel function of the
first kind of orderm, andHm

(1) , Hm
(2) are the Hankel functions

of the first and second kind of orderm. The boundary con-
ditions, which requireFz,a , Ff,a , Gz,a , and Gf,a to be
continuous across the core-cladding interface, result in f
2-5
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linear equations from whichCa
1 , Ca

2 , Da
1 , and Da

2 are
given in terms ofAa andBa . For each set of indicesb, q,
andm, the polarization indexp labels two linearly indepen
dent choices ofAa and Ba . A calculation of the relations
between the coefficientsAa , Ba , Ca

1 , Ca
2 , Da

1 , andDa
2 ,

and a construction of a biorthogonal set of radiation mod
is given in Appendix A.

We define the adjoint solutionẼa to be Ẽa5(Eã)* ,
,
rp
o

re

ar
ne
th

03381
s,

whereã5$2m,p,2b,q%. It is clear that with this definition
Ẽa is a solution to the complex conjugate of Eq.~21!, such
thatH †g̃a5la* g̃a for g̃a5A«* Ẽa . The reversion of angula
momentum (m→2m) and the direction of propagation (b
→2b) are chosen to satisfy the biorthogonality conditi
~17!.

The part of the generalized transverse Green’s tensor
lated to radiation modes, may now be constructed, i.e.,
GGT
(1)~r ,r 8;v!5(

m,p
E

b52`

` E
q50

` «2Fa~r!Fã~r8!exp@ im~f2f8!#exp@ ib~z2z8!#

Na~k0
2«22b22q2!

dbdq, ~40!
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where the normalization factorNa and the biorthogonality of
radiation modes, are given by

E «~r !Ea~r !•Eã8~r !d3r 5Nadmm8dpp8d~b2b8!d~q2q8!.

~41!

Here,a8 is short-hand notation fora85$m8,p8,b8,q8%.
The expression~40! is valid not only for passive fibers

but it may also be used for fibers with gain and/or abso
tion. The expression may be simplified by introducing tw
new parametersk andu related tob andq by

b5k cosu, ~42!

q5k sinu, ~43!

and by taking advantage of the identity

1

x1 i e
5P

1

x
2 ipd~x!, ~44!

whereP refers to the principal value. The corresponding
tarded Green’s tensor, taken atr5r 8, may then be written

GGT
(1)~r ,r ;v1 i e!

5(
m,p

PS E
k50

` E
u50

p «2Fa~r!Fã~r!

Na~k0
2«22k2!

k dk du D
2 i E

u50

p

I ~u!sinu d u, ~45!

where

I ~u!5
p

2 (
m,p

S «2Fa~r!Fã~r!

Na sinu D
k5k0A«2

. ~46!

For a fiber with absorption or gain in the core region~but not
for a passive fiber! the principal value integral taken atr
5r 8 does converge, and this is true for both the imagin
part and real part of the integral. The modeling of sponta
ous emission in active fibers requires a calculation of
-

-

y
-

e

imaginary part of the principal-value integral. However, f
passive structures the calculation is greatly simplified, si
in this case«2Fa(r)Fã(r)/Na is real, and the principal-
value integral does not contribute to Im@GGT

(1)(r ,r ;v1 i e)#,
which is the term appearing in expression~12!. In the second
term of Eq.~45! the angleu may be interpreted as the off
axis angle of propagation for light emitted into radiatio
modes, and accordingly the expression has the form o
integration over an off-axis angular radiation pattern, wh
the radiation patternI (u) is given by Eq.~46!. This interpre-
tation is, however, only valid for passive structures, sin
I (u) may become negative for certain angles for active str
tures. A similar simple calculation of radiation patterns is n
possible via Eq.~45! for active structures. In this case
calculation of physically meaningful radiation patterns mu
take into account amplification and absorption, which is p
sible by calculating radiation patterns using the Poynt
vector. Radiation patterns for active structures are conside
in Sec. VI.

The expressions~34!, ~35!, ~36!, and ~37! are also valid
for guided modes, whereq is now a complex parameter wit
a positive imaginary part leading to exponential decay inr
of the amplitude of the eigenfunction. In this case the eig
functions are restricted to propagation only along thez axis,
and the degrees of freedom have been reduced relativ
radiation modes. Therefore,b andq can no longer be chose
independently of one another, and only three quantiza
indicesa5$m,n,b% must be summed over. We follow th
usual convention and replaceq by the variableg52 iq. The
z component of a guided mode may then be written as

Fz,a~r!5H AaJm~kr!, r<a,

CaKm~gr!, r.a,
~47!

Gz,a~r!5H BaJm~kr!, r<a,

DaKm~gr!, r.a.
~48!

HereKm is the modified Bessel function of the second ki
of orderm. As is also the case for radiation modes, the c
efficientsAa , Ba , Ca , andDa must be chosen so that th
2-6
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boundary conditions are satisfied. Due to these conditio
the allowed values forg become functions ofa, i.e., g
5ga . Furthermore, each modem,n only exists for ubu
>bm,n,c , wherebm,n,c is a cutoff propagation constant suc
that Re(ga)>0 for ubu>bm,n,c . Here, we choose to use re
propagation constantsb, and accordingly the eigenvaluesla

become complex. We will not go into a detailed derivation
the guided modes of the fiber here, as this is a topic that
been studied extensively in the literature~see, for example
Refs. @63,64#!. The contribution to the Green’s tensor fro
the guided modes may be written

GGT
(2)~r ,r 8;v!

5(
m,n

E
ubu>bmn,c

«2Fa~r!Fã~r8!eib(z2z8)eim(f2f8)

Na~k0
2«21ga

22b2!
db,

~49!

where ã5$2m,n,2b%. The normalization factorNa and
biorthogonality relation for guided modes are given by

Nadmm8dnn8d~b2b8!5E «~r !Ea~r !•Eã8~r !d3r .

~50!

As was also the case for radiation modes, the imaginary
may be greatly simplified for passive structures by tak
advantage of the identity~44!, i.e.,

Im~GGT
~2!~r ,r ;v1 i e!!

52p( 8m,nS «2Fa~r!Fã~r!

NaU d

db
~b22ga

2!U D
b22ga

25k
0
2«2

.

~51!

Here, the prime means that only modesm,n with ubm,n,cu
,k0A«2 should be summed over.

The generalized transverse part of the retarded Gre
tensor may now be obtained as the sum of the two contr
tions given in Eqs.~40! and ~49!. The double-transvers
Green’s tensor may be obtained by replacing the general
transverse fields in the numerators of Eqs.~40! and ~49! by
the transverse part of these fields. A method for calcula
the transverse part of the generalized transverse field
given in Appendix B. For fibers with relatively weak inde
contrast, the difference between the generalized transv
and the usual transverse@26,61# Green’s tensor is almos
negligible. However, this may not be the case for dielec
structures with high index contrasts such as those inve
gated by, for example, Dodabalapuret al. @65#.

V. SPONTANEOUS EMISSION IN A PASSIVE FIBER

In this section we will evaluate the spontaneous emiss
going into radiation modes and bound modes for a pas
optical fiber. Only for passive fibers is it really meaningful
consider the fraction of spontaneous emission going into s
03381
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cific modes, in this case, due to the existence of a comp
set of orthogonal eigenmodes. In the following section
will then consider physically meaningful radiation patter
for active fibers, taking into account the effect of gain a
absorption.

The passive fiber under concern, is defined by a core
fractive index n151.45, a cladding refractive indexn2
51.43, and a core radiusa52 mm. The emitter is located a
r05(r0 ,f0 ,z0) in the fiber. In order to properly normaliz
the spontaneous emission, we will introduce the spontane
emissionGhom from an emitter in a passive homogeneo
dielectric material with the same refractive index as the c
of the optical fiber, i.e.,

Ghom5
v0

3m2n1

\«0c33p
, ~52!

wherem is the norm of the dipole vectorm. This expression
is easily obtained using Eq.~12! for the case of a dipole a
positionr050, and dipole orientation along thez axis, or by
using the results for homogeneous dielectrics given in R
@32#.

An example of the position dependence of the sponta
ous emission for an emitter with transition waveleng
1560 nm in the core of the fiber, is shown in Fig. 2 for t
case of dipole orientation along thez axis (Gz) and for the
average over the two in-plane dipole orientationsx and y,
i.e., G'5(Gx1Gy)/2. The spontaneous emission averag
over all dipole orientations is given byG5(Gx1Gy1Gz)/3.
The spontaneous emission into radiation modes cle
shows a modulation with position in the fiber, which may
explained as a cavity effect. The periodicityDr0 in the spon-
taneous emission with position in the fiber core due to c
structive destructive interference arising from reflections
the core-cladding interface, should be roughly equal to o
half wavelength in the medium, i.e.,

Dr0

a
'

l0

2an1
. ~53!

From this expression, we obtain the periodicityDr0 /a
'0.27. From the total emission for emitters withz dipole
direction @see Fig. 2~c!# the distance between local maxim
or local minima is in the range from 0.26 to 0.28.

Almost no spontaneous emission goes into guided mo
for the case of dipole orientation along thez axis. This is due
to the electric field of the fundamental guided mode of t
optical fiber having a negligible field component along thez
axis, i.e., the electric field is primarily in thexy plane. Emis-
sion into radiation modes for dipole orientation in thexy
plane is clearly lower compared to the case of dipole ori
tation along thez axis. This is due to part of the spontaneo
emission being captured by the optical waveguide. From
total spontaneous emission into both guided modes and
diation modes, we see that the total spontaneous emissi
close toGhom for all positions. Therefore Fig. 2~b! also gives
a good estimate for the spontaneous emission factor, i.e.
fraction of the spontaneous emission going into the guid
modes of the optical waveguide. The decrease in the t
2-7
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spontaneous emission near the core-cladding interface,
be explained from the fact that the spontaneous emissio
homogeneous dielectrics scales with the refractive index@see
Eq. ~52!#, and emitters close to the core-cladding interfa
are affected by the presence of a material with a lower
fractive index. The total emission near the core-cladding
terface is clearly different for the different dipole orient
tions. This may be explained from the fact that the bound
conditions at the core-cladding interface depend on the fi

FIG. 2. Spontaneous emission as a function of position for
emitter in the core of a step-index fiber with core refractive ind
n151.45, cladding refractive indexn251.43, and core radiusa
52 mm. The emission wavelength isl051560 nm.
03381
ay
in

e
-
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ld

orientation, i.e., the tangential electric-field components
constant across the interface, whereas normal compon
differ by the factorn1

2/n2
251.03.

Figure 3 shows the spontaneous emission as a functio
normalized frequencyV5k0aAn1

22n2
2 for an emitter in the

center of the fiber core (r050). Also, in this case, the peri
odic oscillations, seen in the spontaneous emission, is du
constructive destructive interference arising due to refl
tions at the core-cladding interface. The oscillations in

n
x

FIG. 3. Spontaneous emission as a function of normalized
quency for an emitter located in the center of the core of a s
index fiber withn151.45, n251.43,a52 mm.
2-8



-
ts
r
th

um
a

ss
m
ta
o

te

to

o-
is
is
ca
ria

t
di
-

ha
nd

gle

ing
has

the

n’s
rans-
ent
ion.

ent
a

e of
-

the

he

lane

r

GENERAL THEORY FOR SPONTANEOUS EMISSION IN . . . PHYSICAL REVIEW A64 033812
total spontaneous emission@Fig. 3~c!# are clearly larger for
emitters oriented along thez axis. Emitters with this orienta
tion emit primarily in thexy plane, and interference effec
due to reflections from the core-cladding interface are the
fore more pronounced. Emitters placed in the center of
waveguide with dipole orientation in thexy plane are only
allowed to interact with modes having angular moment
m561. The fundamental fiber mode starts to become loc
ized for normalized frequenciesV just below 1. There are
also guided modes with angular momentum61 that become
allowed for V>4. Around both frequenciesV51 and V
54, a strong decrease is seen in the spontaneous emi
going into radiation modes for in-plane dipoles. This is co
pensated by a corresponding strong increase in the spon
ous emission into guided modes, and the total rate of sp
taneous emission is oscillating with frequency aroundGhom.
The spontaneous emission into guided modes for emit
with dipole orientation along thez axis, starts at normalized
frequencies aroundV'2.4. This frequency corresponds
the single-mode cutoff of step-index optical fibers@62#.

VI. SPONTANEOUS EMISSION ANGULAR RADIATION
PATTERNS

The emission of radiation from active dielectric micr
structures, will in general differ from the spontaneous em
sion due to the amplification or absorption of light. In th
section we will present radiation patterns for active opti
fibers, taking into account the effect of the active mate
using a Poynting-vector approach.

In Fig. 4 the optical fiber is oriented along thez axis in a
Cartesian coordinate system (x,y,z). Two anglesu and f
are introduced. The angular radiation pattern is defined as
radial emission per unit solid angle as a function of the
rection given byu andf. In evaluating the angular sponta
neous emission pattern in a rigorous way, we may note t
far away from the active fiber, the power flux is radial, a
the power fluxdP per unit solid angledV may be written in
the form

dP

dV
5R2uS~R!u, ~54!

FIG. 4. Illustration of an optical fiber oriented along thez axis in
a Cartesian coordinate system (x,y,z). Two anglesu and f are
introduced.
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whereR is the position relative to the source,R5uRu, andS
is the Poynting vector, which for large distancesR reduces to

S52
R

R
«0n2c^Ê†

•Ê&. ~55!

The emission rate into radiation modes per unit solid an
dV is given by

dG

dV
5 lim

R→`

1

\v
uS~R!uR2. ~56!

Note that this expression only equals thespontaneousemis-
sion for passive structures, since for the case of amplify
or absorbing structures, the spontaneously emitted light
been amplified or attenuated by the active medium.

The electric field at large distances is given in terms of
Green’s tensor and generating currents by

Ê~R!5E E G~R,r 8;v1 i e!•@2 im0v ĵT~r 8!#d3r 8.

~57!

According to this equation, and the properties of the Gree
tensor, the transverse currents generate a generalized t
verse electric field. However, only the transverse compon
of these fields contribute to the rate of spontaneous emiss
At large distances from the fiber, the longitudinal compon
of the electric field is negligible, and the field at such
distance is transverse.

For the case of delta-correlated currents, the amplitud
the electric field squared at positionR generated by the trans
verse part of a dipole current at positionr0 with dipole ori-
entationei , is given by

^Ê~R!†
•Ê~R!&

5m0
2v4m2U E G~R,r 8;v!•dT~r 8,r0!•eid

3r 8U2

,

~58!

and the spontaneous emission per unit solid angle in
direction given byR, may in the limit of large distancesR
5uRu be written

dG

dV
5

v3m2A«2

\«0c3
2 lim

R→`
U E G~R,r 8;v!•dT~r 8,r0!•eid

3r 8U2

.

~59!

For a gain medium, the expression~59! only gives the am-
plified emission from the dipole atr0. We ignore the ampli-
fied spontaneous emission from the gain medium itself. T
latter can be included by calculating^Ê†

•Ê&, using Eq.~57!
and the correlation relation~8!.

For large R, the electromagnetic field behaves as a p
wave with the wave numberk0A«25Ab21q2, and the mag-
nitude ofb andq is determined from the off-axis angleu of
the vectorR, i.e., b5k0A«2 cosu andq5k0A«2 sinu. With
this restriction imposed onb, q, and using the notation fo
2-9
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T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812
radiation modes in Sec. IV, a general expression for the
gular emission pattern for active fibers generated by curr
at position (r0 ,f0 ,z0) is given by

dG

dV
5

v3m2A«2

\«0c3
2

~2p!2

k0
2«2sin4u

3S U(
m,p

Ca
1e2 i (mp/2)

Fi ,ã
T~r0!eim(f2f0)

Na
U2

1U(
m,p

A m0

«0«2
Da

1e2 i (mp/2)
Fi ,ã

T~r0!eim(f2f0)

Na
U2D .

~60!

Here, Fi ,ã
T(r0)e2 imf0e2 ibz0 is the component of the field

Eã
T(r0) in the directionei , corresponding to the orientatio

of the dipole vector. Note that the emission per unit so
angle Eq.~60! depends on both anglesu andf, whereas the
radiation pattern Eq.~46! does not depend onf.

Figure 5 shows a calculation of the off-axis angular sp
taneous emission pattern Eq.~60! averaged over the anglef
for an emitter in the center of the fiber core and at the edg
the fiber core, respectively, for a passive step-index fi
with core refractive index 1.45, cladding refractive ind
1.43, and core radius 2mm. The results presented in th
figure may also be obtained directly using the off-axis an
lar radiation pattern given in Eq.~46!. In fact, for a passive
fiber, the sum of expression~60! integrated over all solid
angles and the corresponding contribution from guid
modes, will equal the expression~12!. The transition wave-
length of the emitter is 1560 nm. The radiation pattern
emitters oriented along thez axis (Gz) closely resembles a
figure eight (Gz}sin2u), which is the radiation pattern gen
erated by a dipole in a homogeneous dielectric medium.
of the radiation generated by emitters oriented in thexy
plane, is captured by the optical waveguide, and for sm

FIG. 5. Spontaneous emission as a function of the off-axis an
for an emitter in the center of the core and an emitter at the edg
the core of a step-index fiber withn151.45, n251.43, a52 mm,
and forl051560 nm.
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off-axis anglesu, the radiation pattern is clearly modifie
relative to the case of a homogeneous dielectric med
(Gx1Gy}11cos2u). The radiation patterns, shown in Fig.
are characterized by a peak for a small off-axis angleu. As
the transition wavelength decreases and approaches the
off wavelength for the next guided mode, the peaks w
grow larger and the peak angle will move toward 0. As t
wavelength drops below the cutoff wavelength, the pe
being nearly parallel to thez axis will disappear, and a new
guided mode will appear. This explains that although abr
changes with frequency is possible for the emission into
diation modes and guided modes, a similar abrupt cha
should not be expected in the sum of emission into radia
modes and guided modes. This is also in agreement with
results shown in Fig. 3.

Figure 6 shows a similar calculation of the angular em
sion patterns averaged over the anglef for the case of emit-
ters at the edge of the fiber core for the cases of fibers w
amplification and absorption. Clearly, by comparing Figs
and 6, the effect from absorption in the fiber is a reduction
the peaks seen for small angles in Fig. 5~b!, and the effect of
gain is that these peaks are enhanced. The effect of an a
medium will be most pronounced for small off-axis anglesu,
where the emitted light will interact with the active materi
for a longer time and over longer lengths. Consequently,
amplification of spontaneous emission from in-plane emitt
(Gx1Gy) will be more efficient compared to the case
emitters directed along thez axis (Gz). The spontaneous
emission, as a function of position into radiation modes fo
passive structure, was given in Fig. 2~a!. In this case, the
emission for in-plane emitters@G'5(Gx1Gy)/2# is clearly
lower for all positions r0<a compared to the case o
z-directed emitters (Gz). As was the case for Fig. 5, the Fig
2~a! may also be obtained by integrating Eq.~60! over all
solid angles. The physically measurable emission into ra
tion modes must reflect the effect of amplification or abso
tion for structures with an active medium. Figure 7 shows
measurable emission into radiation modes as a function
positionr0 for a fiber with gain. The emission for both th
considered orientations of the currents has increased rela
to the spontaneous emission in the corresponding pas

le
of

FIG. 6. Spontaneous emission as a function of the off-axis an
for an emitter at the edge of the core of a step-index fiber witha
52 mm,n251.43 and~a! n151.452 i0.003,~b! n151.451 i0.003,
and forl051560 nm.
2-10
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GENERAL THEORY FOR SPONTANEOUS EMISSION IN . . . PHYSICAL REVIEW A64 033812
fiber, and the emission from in-plane oriented emitters (G')
has been amplified more, relative to the case ofz-directed
emitters (Gz). For both orientations of the emitter, the am
plification is clearly larger for emitters in the center of th
core (r050) relative to emitters at the edge of the co
(r05a).

For active fibers, where the distribution of active mater
is a function of the radiusr only, averaging over the anglef
is reasonable. However, the Poynting-vector approach d
allow the dependence on the anglef, relative to the angle
f0, related to the position of the emitter, to be taken in
account in the radiation patterns. An example is given
f2f050, p in Fig. 8 for a fiber with absorption, a passiv
fiber, and a fiber with gain. The emitter is placed at the e
of the core. The radiation patterns are clearly asymmetric
to the asymmetric position of the emitter (r0Þ0). The effect
of amplification or absorption is strongest forf2f05p,
since this direction corresponds to the opposite side of
active fiber relative to the emitter. Also, in this case, t
peaks observed for small off-axis anglesu for a passive fiber,
increases~decreases! for a fiber with gain~absorption!.

VII. CONCLUSION

In conclusion, a general method has been developed
the modeling of spontaneous emission in active dielec

FIG. 7. Emission into radiation modes as a function of posit
for an active fiber withn151.45–i0.003 ~gain!, n251.43, a52
mm, and forl051560 nm.

FIG. 8. Spontaneous emission as a function of the off-axis an
for an emitter at the edge of the core of a step-index fiber wita
52 mm, n251.43,~a! n151.452 i0.003,~b! n151.451 i0.000,~c!
n151.451 i0.003, and forl051560 nm.
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microstructures. The fully vectorial method is based on
classical retarded electric-field Green’s tensor, giving the
lation between the quantum-mechanical operators for
electric field and the generating currents. Taking advant
of the currents related to spontaneous radiative decay b
transverse currents, allows a formalism, where only
double-transverse Green’s tensor needs to be calculated
double-transverse part of the Green’s tensor thus becom
key ingredient in the model for spontaneous emission. A g
eral approach was given for the construction of the Gree
tensor for active dielectric microstructures. This approa
does not rely on the existence of a complete power ortho
nal set of electromagnetic modes, and is therefore valid
dielectric structures with absorption and/or amplification.

The method for spontaneous emission was applied t
fiber amplifier, and as a first step the Green’s tensor for
structure was calculated. One of the terms in the calcula
expression for the electric-field Green’s tensor was int
preted as an integration over an off-axis angular radiat
pattern, and agreement has been found with this interpr
tion and the radiation patterns calculated using the Poyn
vector. A similar interpretation of the expression for th
Green’s tensor for fibers with gain or absorption is not p
sible, since a physically measurable radiation pattern m
take into account the amplification or absorption of spon
neously emitted light due to the presence of an active m
dium. A Poynting-vector approach has the advantage
radiation patterns that depend on both the off-axis angle
the azimuthal angle, may be obtained.

For a passive fiber, the expressions for the relevant p
of the Green’s tensor become particularly simple, and
passive fibers the spontaneous emission going into radia
modes and guided modes was studied. Although the emis
into these two types of modes is clearly different, and a
depend on the orientation of the generating currents, the
of these two contributions oscillates closely around the r
of spontaneous emission for a homogeneous dielectric
dium with the same refractive index as the fiber core. T
oscillations observed with position and frequency are
plained as a consequence of destructive and constructiv
terference due to reflections from the interface between
fiber core and cladding. Abrupt changes with frequency
the emission into radiation modes and guided modes w
observed at frequencies where new guided modes app
Similar abrupt changes with frequency are not observed
the sum of these two contributions. This was explained fr
radiation patterns calculated using the Poynting-vector
proach, where strong peaks, being nearly parallel to fi
axis, exist just before the next guided mode appears.
peaks disappear as the new guided mode appears.

The effect of an active medium on the radiation pattern
strongest for emission propagating at small off-axis ang
In particular, the peaks transforming into a new guided mo
as the frequency increases, are enhanced~attenuated! for a
core region with gain~absorption!.

APPENDIX A: BIORTHOGONALITY AND
NORMALIZATION OF RADIATION MODES

This appendix concerns the relations between the co
cientsAa , Ba , Ca

1 , Ca
2 , Da

1 , andDa
2 in Eqs.~38! and~39!

le
2-11
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T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812
for a given set of quantization parametersm,b, andq, and
we will use the notation introduced in Sec. IV. Due to t
boundary conditions at the core-cladding interface, these
efficients are not independent. Furthermore, in this appen
a biorthogonal set of radiation modes is constructed, an
normalization integral for the modes is calculated.

The relations betweenCa
1 , Ca

2 , Da
1 , Da

2 , and Aa and
Ba may be expressed by first introducing a number of c
stants

T5Hm
(1)8~qa!Hm

(2)~qa!2Hm
(2)8~qa!Hm

(1)~qa!5
4i

pqa
,

~A1!

K15 i
b

a
mJm~ka!Hm

(2)~qa!Ab21q2

«2

«22«1

k2q2
, ~A2!

K25 i
b

a
mJm~ka!Hm

(1)~qa!Ab21q2

«2

«22«1

k2q2
, ~A3!

M15
1

k
Jm8~ka!Hm

(2)~qa!2
1

q
Jm~ka!Hm

(2)8~qa!,

~A4!

M25
1

k
Jm8~ka!Hm

(1)~qa!2
1

q
Jm~ka!Hm

(1)8~qa!,

~A5!

L15
«1

k
Jm8~ka!Hm

(2)~qa!2
«2

q
Jm~ka!Hm

(2)8~qa!,

~A6!

L25
«1

k
Jm8~ka!Hm

(1)~qa!2
«2

q
Jm~ka!Hm

(1)8~qa!,

~A7!

where here (8) denotes the derivative with respect to t
argument.

In terms of these constants, the relations betweenAa ,
Ba , Ca

1 , Ca
2 , Da

1 , and Da
2 , obtained from the boundar

conditions, may be written

Ca
15

q

T«2
~AaL11m0cBaK1!, ~A8!

Ca
25

q

T* «2

~AaL21m0cBaK2!, ~A9!

m0cDa
152

q

T
~AaK12m0cBaM1!, ~A10!

m0cDa
252

q

T*
~AaK22m0cBaM2!. ~A11!

Clearly, only two coefficients are linearly independent, a
the indexp will be used to label two such linearly indepe
03381
o-
ix,
a

-

d

dent solutions. These two solutions must be chosen so
the biorthogonality requirement

E «~r !Ea~r !•Eã8~r !d3r 5Nadmm8dpp8d~b2b8!d~q2q8!

~A12!

is satisfied. Similar to what was reported in Ref.@66# for
dielectric waveguides, all finite terms resulting from the i
tegration in the fiber core, will cancel with each other. T
singular terms that give rise to the Dirac delta function
result only as the integration limits tend to infinity. Takin
advantage of the cancellation of finite terms, we need o
identify the factorNa in front of the d functions. Thereby,
the evaluation of the integral in Eq.~A12! is aided signifi-
cantly by taking advantage of the following limiting forms o
the Hankel functions:

Hm
(1)~qr!'A 2

pqr
ei (qr2mp/22p/4), r@1/q, ~A13!

Hm
(2)~qr!'A 2

pqr
e2 i (qr2mp/22p/4), r@1/q.

~A14!

Straightforward calculations then lead to

E
r50

`

@Fa~r!•Fã8~r!#
b5b8
m5m8

rdr

5
4

qq8Aqq8
H F ~qq81b2!Ca

1Ca8
2

2
m0

«0«2
A~b21q2!~b21q82!Da

1Da8
2 Gd1~q2q8!

1F ~qq81b2!Ca
2Ca8

1

2
m0

«0«2
A~b21q2!~b21q82!Da

2Da8
1 Gd2~q2q8!J

3~21!m1non-singular terms, ~A15!

where

d6~q2q8!5
1

2pEr50

`

e6 i (q2q8)rdr. ~A16!

Note thatd(q2q8)5d1(q2q8)1d2(q2q8).
The polarization indicesp, p8 represent a specific choic

of the sets of coefficientsAa , Ba and Aa8 , Ba8 for a
5$m,p,b,q% anda85$m,p8,b,q%. A convenient choice of
coefficients is Aa51, Aa851, Ba5 ih, and Ba852 ih,
sinceh can be chosen in such a way that the two polarizat
modes are biorthogonal. The requirement for two modes
be biorthogonal is obtained from Eq.~A15!, i.e.,
2-12
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Ca
1Ca8

2
2

m0

«0«2
Da

1Da8
2

5Ca
2Ca8

1
2

m0

«0«2
Da

2Da8
1

50.

~A17!

Using Eqs.~A8!–~A11! biorthogonal modes are obtained f

h25
«0«2

m0

«2K1K22L1L2

«2K1K22«2
2M1M2

. ~A18!

For a homogeneous dielectric medium with dielectric co
stant «2, the equation~A18! reduces to the well-knownh
56A«0«2 /m0.

The normalization factorNa is obtained from Eq.~A12!
and Eq.~A15!, i.e.,

Na5«2~2p!24
b21q2

q3 FCa
1Ca

22
m0

«0«2
Da

1Da
2G~21!m.

~A19!

APPENDIX B: THE TRANSVERSE DELTA OPERATOR dT

FOR NONHOMOGENEOUS DIELECTRIC MEDIA

This appendix concerns the construction of the transve
delta operatordT related to a dielectric constant«(r ). It is
defined as the operator that projects an arbitrary vector fi
F(r ) onto its transverse componentFT(r ), i.e., dTF5FT ,
where

F5FT1FGL ~B1!
-

n-

-

s

e

v

rd

m

ns

03381
-

se

ld

with “•FT50 and“3(FGL /«)50.
By inspection one can easily verify that

FGL5(
n

«~r !“fn~r !

Mn
E @“f̃n~r 8!#* •F~r 8!d3r 8,

~B2!

wherefn and Mn are given by Eq.~28! and Eq.~29!. The
expression obviously satisfies the condition forFGL /« being
longitudinal, and the completeness of the solutions to
~28! ensures thatF2FGL is transverse. Hence

dTF5FT5F2FGL , ~B3!

and

dT
†F~r !5F~r !2(

n

“f̃n~r !

Mn*

3E @«~r 8!“fn~r 8!#* •F~r 8!d3r 8. ~B4!

In the case of a passive structure~real «) we have

dT
†En5En

T5En , ~B5!

and

dT
†
“fn50 ~B6!

for a generalized transverse fieldEn and for any solutionfn
to Eq. ~28!. For Eq.~32! this implies thatGT5GGT .
en,

m

,
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