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Excess-noise-enhanced parametric down conversion
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We calculate the influence of excess noise on parametric down conversion in an unstable optical parametric
oscillator(OPO), using a quantum quasimode description. We find a strongly enhanced pair photon generation
rate below threshold as compared to a conventional stable cavity setup of comparable gain and loss. In
addition, the oscillation threshold is lowered due to the influence of the excess noise and the squeezing
properties of the emitted light are significantly changed. In general, the maximal quantum-noise suppression in
one quadrature component is reduced, which poses strong limitations for the practical usefulness of a geo-
metrically unstable OPO source. The analytical results from our quasimode description are in good agreement
with numerical simulations using a positiverepresentation of the field in mode space and in position space.
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[. INTRODUCTION ing, renewed theoretical interest in the origin and interpreta-
tion of this rather counterintuitive phenomenjdi2—14 has

The optical parametric oscillator is one of the most thor-arisen.
oughly theoretically investigated and successfully experi- In our theoretical description of the microscopic origin of
mentally used tools in modern quantum optics. Applicationsexcess noisgl5,16], we looked at a simple genuine quantum
range from the generation of squeezed light and quantunsystem, namely, a single excited two-level atom, and inves-
correlated twin beams to multiphoton entangled states. Thegated the influence of excess noise on spontaneous emis-
generated light fields can be used for purposes such as highion. To this end, we developed an approximate gquantum
resolution spectroscopy, tests for violation of Bell's inequali-description, where the field operators were expanded in ei-
ties, and demonstration of quantum teleportatiah The ther the cavity matched or the adjoint quasimodes. With this
process of optical parametric down conversion is in generahpproach, we were able to discuss the origins and limitations
well understood theoreticallyf2—-5]. Some well-proven of the K-factor approach. In the special case of an active
model Hamiltonians describing the essentials of the systeraystem, we recovered the-fold-enhanced laser linewidth,
dynamics have been found and yield very good agreementhereas for a single atom inside an empty unstable cavity, a
between prediction and experimental verification. The fundamore thorough approach must be taken. In parallel, various
mental process in these models is the generation of quantuaiternative quantum descriptions of excess noise in lasers
entangled pairs of a signal and an idler photon from a singlefactive systems[12,13 were developed, which more or less
pump photon through the nonlinear medium. Below oscilla-confirmed the previously obtained results. These treatments
tion, threshold down conversion has been found to be are based on descriptions using a finite set of normalizable
genuine quantum noise-driven process with no classicabrthogonal “modes of the universe.” Here, the spatially de-
counterpart, similar to spontaneous emission or nuclear dggendent gain and loss implies a coupling to the empty cavity
cay. modes, which can then be identified as the origin of the

In contrast to this success for stable cavity geometries, thexcess noise. It is, however, not obvious how to apply these
situation in quantum optics systems based on an unstablaodels to geometrically unstable situations, where no closed
geometry, e.g., an unstable cavity laser, is completely differoptical path exists for the lasing mode. An alternative pro-
ent. Although the basic concepts of the phenomenon of exposal was to dynamically include the mirrors in the model as
cess noise were laid down by Petermann more than 20 yeassset of damped dipoles and explicitly solve the resulting
ago[6] and have been tested for decades, there are still sonmupled set of equatiorfd7]. Although this approach needs
mysteries and a fundamental quantum-mechanical descripnly few limiting assumptions, the procedure gets rather
tion has been difficult. One fact is that the linewidth of ancomplicated in practice.
unstable cavity laser is considerably larger than the linewidth It is now quite natural to develop the picture of excess
of a stable cavity laser with equal gain and loss properties, imoise further and investigate other genuine quantum noise-
contradiction to the Schawlow-Townes rule. This effect wasdriven processes. In this article, we apply our quasimode
attributed to the nonorthogonality of the cavity mod&$  strategy to spontaneous twin-photon generation as a para-
and amplified spontaneous emission. Some decisive tests digm of a nonlinear quantum noise-driven process. In the
this property were carried out 20 years d&d limiting case of operation well below threshold, adiabatic

Recently, more refined experiments have clearly demonelimination of the pump mode enabled us to derive analytical
strated a geometry-dependent laser linewidth, which couldolutions for the dynamics of an unstable cavity optic para-
be well accounted for by the so-called Petermann excessnetric oscillator(OPO using a nonorthogonal quasimode
noise-factorK [9—11]. As a consistent quantum description basis sef18]. We found features that were strongly depen-
of this phenomenon starting from first principles was miss-dent on the excess noise, such as an enhanced intensity and
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modified photon correlations. Furthermore, it turned out thafocal lengthf and Gaussian reflectivity profile with width
excess noise destroyed the squeezing of the subharmorlig;. Restricting ourselves to the paraxial approximation and
beam. An enhanced twin-photon generation rate in a stablene transverse spatial dimension, we find complex Hermite-
resonator was recently also experimentally demonstrate@aussian mode functions for the transverse field modes at
[19] at the expense of a prolonged photon coincidence intetthe symmetry plang=0: (cf. [23])

val (narrower band width of the emitted photgns

In this paper we will also explore the behavior above Un(X) = CyH n(pox) el () (2RO = 0Em0?) (3 )
threshold. For this we must resort to numerical simulations.
Since our expansion in matched and adjoint mode pairs gives vn(X)=CnHn(p} x)eli (k) 2RO = (Fw0?) (5 3

rise to different left- and right-field eigenstates, the phase-
space method we use has to include nondiagonal coherepre, Wo=(220/k,)(1+ r%/zg) is the beam width, R,
state projection operators. As a possible candidate, we ha\L_erO[lJr(Zg/rg)] is the radius of curvature with transverse

c_hosen_ the positive- representatiof20,21] to perform the scalingp= ik, /qo and H, denotes theith Hermite poly-
simulations. Below threshold we can compare our results . L Th Hicients. fixed by th lizati
with previous analytical predictiongl8], finding excellent nomial. The coetficients, ,c, are fixed by the normalization

agreement. In a further step to consolidate these results wonstraints _discussed above. Further, one finds fo(rztnrlei)quasi-
also compare them to quantum simulations in real spafe To‘ﬂ‘ﬁk Hwe;gtla_pc\)/alqgs 7”:[(90_L/2)/(90+L/2)]

which do not rely on any choice of mode expansion, and_ ¢ " " giving explicit expressions for the fre-
hence, give an independent test. guencies and loss rates. The only remaining free parameter is

Extending the simulations to stronger pump amplitudest® complex source poirgo=L/2y1—4l=ro+izo, which
we find an enhancement of the average intensity as well as'd directly linked to the cavity parameteils;L/f +i/N and
lowering of the threshold of oscillation. Calculating the spa-N=mLg/AL would be the Fresnel number of a correspond-
tial field distribution, we find destructive interference with ing hard-edged spherical mirror. ForQ./f<4, the resona-
the higher-order mode contributions that gives rise to a retor is stable andi(x) are simply the well-known Hermite-
duced beam width. Interestingly, we find a surprising plateaaussian modes.

in the two-photon coincidence count rate for rather short Outside this interval fof, the resonator is geometrically
times. unstable and these quasimodes correspond to eigenfunctions

of the inverted harmonic-oscillator potent{@4]. Although

this type of resonator setup might not be very typical, it has

the twin advantages of explicit analytical solubility and a
For the purposes of making this paper self-contained, lecontinuous transition from the stable to the unstable case

us first recall some key aspects of the quasimode expansi@onnecting it to well-known and proved results.

for an unstable cavity as developed in Ref6]. Within the Let us now turn to field quantization. Since these mode

paraxial approximation, the quasimodegx,0) fulfill a self-  pairs fulfill a completeness relation, every field distribution

reproducing condition after one round trip, i.e., the so-callectan be expanded uniquely either in the matched modes or in

matched modes,(x,0) are eigenfunctions of the underlying the adjoint modes. For our purpose it proves advantageous to

Huygens’ integral kerneK(x,x') [22] expand the field operatofpositive and negative frequency

part of the vector potentipin the following way:

II. QUANTUM QUASIMODE ANALYSIS

f dx'K(x,x")up(x",0) = y,Un(x,0). (2.1
Ax,H)=2 an(t)un(x), (2.9

For geometrically unstable systems this operator is not Her-

mitian and the quasimodes are no longer orthogonal. Never- . fonw

theless, there exists a biorthogonal set of adjoint modes A (X’t):; ba(t)vy (X), (2.9

v’ (x,2) (eigenfunctions oK), i.e., (Un,vm) = 8nm, Where

(...) denotes the transverse integral. For any transversely fiyhere a,(t),b/(t) are generalized creation or annihilation
nite system, the matched modes can be normalized to unitynerators for the corresponding matched and adjoint mode
I.e., (Un,Um) =AnmWith Ayp=1. In contrast to this, the norm pajrs. This becomes obvious if we rewrite the canonical

of the adjoint modes contains the Petermann excess noiggual-time commutation relatiofig5] in terms of these op-
factor K, i.e., (vn,vm) =Bnm With By,=K,,. In this case grators:

these modes are complete and fulfillvy (X)u,(x") = 8(x

—x"). For any symmetric mirror setugK( =K) the adjoint [a, ,bIn]= Snms (2.6

modes are proportional to the matched modes(x)

=K un(x) at the symmetry plane. [an,a5]1=Bnm, (2.7
Unfortunately, in general, the quasimodes cannot be ex-

plicitly calculated analytically. There do exist, however, [by,bl1=Anm. (2.9

some exceptions for which they can be found. An important
example of an analytically soluble model is a resonator of Obviously the sets of operatora{,b,) are not indepen-
length L consisting of two symmetric spherical mirrors of dent and we find
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Ill. UNSTABLE CAVITY OPO

b,=2, Air@m, (2.9 . . .
" % nmem To concentrate on the main physical aspects, we restrict

ourselves to an analytically soluble case and consider degen-
erate parametric down conversion with a thin crystain
a;:Z Bmib/ . (2.10 cryst_al assum_ptiorﬁZ?]) in a symmetric unstable resonator.
m In principle, this can be generalized to longer crystals but as
long as no transverse changes are introduced, we do not ex-
Using this field expansion the free-field Hamiltonian can beP€Ct significant qualitative changes. We further assume a uni-
written in the form form plane-wave pump fielép of frequencywp interacting
with the intracavity field(subharmonic modesvia a y®
N medium. Generalizing previous quantum treatments of the
ot ing i i
HF:Z 5 &n mAmnarTnanv 2.10) transverse dynamics in an OF{®,3,5] we will cqncentrate _
nm 2 here on the effects of excess noise. The basic Hamiltonian
can be separated into four parts:

where the frequencies,, are determined from the mode ei-
genvaluesy,. As we are dealing with an open system
(Gaussian aperturehe mode amplitudes decay exponen-
tially with a mean ratex,,. Physically, a fraction of the en- Wwith
ergy is scattered into the continuum modes outside the cav-
ity. In a proper quantum treatment, loss can be modeled by HP:ﬁwPA;f,AP, (3.2
input-output couplings[26] to external reservoirgheat
bathg. Alternatively, we could include the field outside the
resonator into the Hamiltonidr 7]. The second explicit pro-
cedure is rather involved for our case, since the scattering
losses transverse to the cavity axis are not negligible. As far
as the mean mode dynamics is concerned, they are indistin-
guishable from the losses due to mirror transmisgeren
for perfect mirrors [ —) the loss ratey, stays finite in
the unstable cageTracing over the reservoirs and using a
Markov approximation in the first approach will give a mas-
ter equation for the mode dynamics. However, a satisfactor
derivation of this master equation is, to our knowledge, no
known for unstable resonators or might even be impossibl
[14].

H=Hr+Hp+Heaut+Hint, (3.1

Hexi=1(Apely—Abein), 3.3

Hmt:'ﬁ?gf dx[ApA(X,t) 2= ATA(X,1)?], (3.9

where g;, is the pump strengthy is the coupling constant
and the integral extends over the volume of the nonlinear
medium, which is assumed to be transversally very large
Y:ompared with the mode widthvgy. In terms of the quasi-
tmodes, as described in the previous section, we find that the
Felative coupling strengths are given by the integrals

* * H
Nevertheless, consistency of the effective time evolutio d>iun(x)funt,r(]x) andfdxtvn ()_()U”I‘_(X) ,*resp_ec\:/t%ely_ The sy;n
for the field density operator is guaranteed if one uses thEe ry o h € resonator t')mp'eS)“(Xgl._ “lf“(g)’ an h
following ansatz for the master equation: ence, the interaction becomes diagonal due to the
biorthogonality of the quasimodes. After some algebra, we
find

. i
F’F:_%[HPPF]‘F%1 Anm{("n"”‘m)aona:n_ Kna:”laon Al
=)
Ap\/Kanz——az) : (3.9
UK,

Note that this master equation is of the Lindblad form andNote that although each of the individual terms of this sum is

represents the only consistent way, within the Markov aphot explicitly Hermitian and shows formal asymmetry be-

proximation, to yield the exponential damping of the field tweéen photon production and annihilation, the total Hamil-

modes, i.e.A,~— k,a,. In practice, we will make use of tonian is Hermitian. Nevertheless, from this way of writing
1 reetin n*n 1

stochastic differential equations for the field operators them'Ehe Hamiltonian we may already expect enhancement of the

selves rather than solving this master equation. That mearﬁ o-photon generation rate via the excess noise. In principle,

that for the positiveP representation just the exponential © choice to expand the fields in this way is arbltrary,_ but
will prove to be very useful for the subsequent calculations.

mode damping turns out to be important. Let us, however,_. .
mention at this point that although looking rather intuitive Finally, 'the pump-fleld .IOSS%P are treated by the standard
geservoir coupling to give

here, the validity of a master equation treatment can b
doubtful if the system is too strongly coupled to the reser- )
voir. As has been suggested recently, this can be the case for I

ifg
Hint:T;

- KmPFaLan}- (2.12

__r t_at o at
significantly unstable resonatofd4] or for very small PP~ 7i LHeppl T Kp(2ApppAy = ApAppp— ppApAR).
apertures. (3.6
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IV. POSITIVE- P SIMULATION OF THE INTRACAVITY find an increased noise intensity in our system. This lends
FIELD DYNAMICS support to the interpretation of excess noise as a local en-

In general, the solution for the quantum dynamics inducecﬁh”mcement of the vacuum quantum fluctuations.

by the above Hamiltonian cannot be found analytically.
Hence, we have to resort to numerical techniques. For this

we will employ the well-established method of representing  starting from these equations, let us first restrict ourselves
the field by a positive? function[20] and solving the corre-  tq the simplest possible case and consider only a single-mode
sponding stochastic differential equations equivalent to thgngex n. Below threshold, there is actually no good justifica-
Fokker-Planck equation. The Glautierepresentation is not  tjon for such a truncation, but in the oscillation regime above
useful for simulation of this system since the resultingthreshold, one can expect only the lowest loss mode to be
Fokker-Planck equation has a nonpositive diffusion matrixsjgnificantly excited, as it is true for the stable case. If we
Similarly, due to the large number of modes involved, aneglect all other amplitudes and restrict ourselves to the
Wigner function approach would converge only slowly. Let\yeak-coupling regime, where the expectation values can be
us emphasize here that by choosing the posiivepresen-  factorized, we find the following analytical expressions for

tation, only normally ordered field-expectation values entefne steady-state intensitintracavity photon numbegf33:
into the noise correlations. Hence, the vacuum noise in the

reservoir does not explicitly enter into the simulation dynam- K2+ A2
: ; : - _/at _

ics and we only get field-dependent noise sources stemming lp=(ApAp)ss= >
from the nonlinearity of the Hamiltonian. This also strongly Kg
simplifies the treatment of a spatially varying damping.

V. SINGLE-MODE APPROXIMATION

Similar to the orthogonal mode case, a generalized ¢ _2KP\/K2+ A% (|ei| B
positiveP representation may be introduced as the expan- ls=(a'a)ss= 92 &th 1], 5.2
sion of a given density operator in nondiagonal coherent
state projection operatof0,28. The main difference is that with
the operatorbx here play the role of the usual creation op-
eratorsar“: in an orthogonal basis. After some algebra we find Kp VKZ+A?
the following stochastic differential equations for the inde- Sth:Tg' (5.2
pendent variablesa,,a, ,ap,ap corresponding to the
guasimode operatois, ,ax Ap ,AL, ie., Obviously, this gives a significantly lower oscillation thresh-

old for the OPO and an increase in the probability of down
conversion by the excess-noise-fackorOf course, in prac-
tice one needs a much stronger pump in unstable cavity ge-
ometries to achieve a comparable intracavity intensity due to
N /ga \/K—dv the usually larger losses, «,. Nevertheless, it may be pos-
Py Tne sible to find a system with large excess noise and relatively
low loss rates using hard apertures or small holes in the

dn: —(kp—i1Apan+gapV KnE Amnar;
m

a; =—(ky+iAy)a, +ga) VK> Anm@m mirrors, where diffraction plays an important rqles].
m
VI. TWO-PHOTON GENERATION BELOW THRESHOLD
+ Vogag VK, dW, :
Py Let us now return to the full coupled multimode equa-

_ tions. For sufficiently weak pumpingvell below thresholy
ap=— kpap—g/2>, aﬁ/\/K_n+ Ein we can linearize our equations, neglect pump depletion, and
n adiabatically eliminate the pump dynamics from the system.
As in the stable cavity cagé], the resulting field amplitudes
ap=—kpAL—0/2>, at\K,+ek,, (4.1 and intensities in this limit can be calculated analytically
n [18], with the pump field fixed to its steady-state valig,
=&j,/Kk,. After some calculations, we find the following

where A= w, — wp/2 denotes the detuning arty ,dWn ¢ 012 or the intracavity field intensityphoton number

are independent Wiener noise incremefi@$] satisfying
(dVpdV) = (dW,d W} = Sy, (dV,dW,,)=0. The first ob-
vious but not unexpected difference from the conventional Iss(x)=2 (aﬁam>u§um=2 fomBmnUn U, (6.1
stable cavity equationf2,3,5 is that the individual mode nm nm
equations are no longer independent for nonorthogonal ith
modes. The second very interesting difference is the in-

creased noise strength amplified by a factor &€, (cf. d
[17,29). Similar to the fact that spontaneous emission into from= b
the lasing mode of, for example, unstable gain-guided lasers 27 [€2—AZ— (kntiw)?|[€5— A2 — (km—iw)?]
is directly enhanced by the excess-noise fafor,15, we (6.2

2
EO(Kn+ Km)
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FIG. 1. This picture compares the spatial signal intenk(&)
calculated using the positiie-representatiorisolid line) with the
analytical solution Eq(6.1) (dashed lingand the single-mode pre- FIG. 2. Comparison of the steady-state signal intensity distribu-
diction excluding excess noidelotted ling well below threshold  tion I(x) for a hard-edged unstable resonator of 100 wavelength
en,=0.5¢y,. For the other parameters, we have chosgn transverse size calculated by real-space simuldtofid ling) with
=10"%k,, L/f=—100,N=10, giving rise to an excess-noise fac- the analytical solution Ed6.1) (solid line with dot$ and the single-
tor of K~1.5. mode prediction excluding excess noiglashed ling well below

thresholde;,=0.1ey,. The parameters were chosen to give a K
and ep=gej, / k. Note that the sum includes nondiagonal factor of K~2.7 for the lowest-loss-effective eigenmode.
terms in the mode contributions, which implies interference
between photon pairs generated in different mode pairs. Thiss a bottom line we have to simulate
prevents the appearance of a simléactor in front of the

sum. Nevertheless, the intensity has a similar shape to the g ] - c? ) .
ground mode, but with an excess-noise enhancement. Com; A1) == ) +IA+T 5= VHAX D) +gAA™ (X,1)
paring these results with our positiV®esimulations, we find

excellent agreement as depicted in Fig. 1. +&(x,1), (6.3

One of the key properties of the adjoint mode matrix is
that B=A"1. However, truncating this matrix to a finite whereI'(x)=«(x)+i4d(x) gives the transverse spatial de-
number of mode contributions strongly perturbs this propsendence of the lossegx) and the mirror phase shif(x).
erty. It can be shown that using the matAx ! instead ofB Here, £(x,t) denotes a complex spatially and temporally un-
is numerically more accurate, althoudh is analytically correlated white-noise source accounting for the quantum
known in principle. For this reason, we have replaBagith  fluctuations. Its properties can be determined from the real-
A1 to evaluate the sums in E@.1). This numerical im- space Fokker-Planck equation. The details of the derivation
provement was first found by Kostenbaudsral. [30] in  of this equation can be found in R¢b].
expanding an arbitrary field distribution in nonorthogonal In Fig. 2, we compare these real-space simulations with
modes. our analytical result for the case of a hard-edged resonator
So far the analytical calculations, as well as the numericawith negatively curved parabolic mirrors, i.&/f=—1, L,
results, both rely on the quasimode field expansion, the va=La, N=10. The corresponding factor for the lowest-
lidity of which may be considered unproven. Of course, ondoss gquasimode for the chosen parameters is of the order of
can easily change the parameters from an unstable to a stali{e=2.7.
cavity and continuously follow the predictions. As expected, We clearly see that the results of the simulati@olid
we find a perfect transition from our predictions to the well-line) and Eq.(6.1) (solid line with dotg agree surprisingly
known standard results. well. However, the result strongly differs from a naive cal-
As a further and more independent test of our model, weeulation based on effective modes but neglecting the excess-
have generalized a real-space quantum simulation of theoise factor(dashed ling Note that, while the evaluation of
transverse dynamics in an OPO, which was developed bthe sum in Eq(6.1) takes only a fraction of a second, we had
Gatti and coworker$5] based on earlier work by Kolobov to run the corresponding real-space simulation on 400-point
and Sokolo\31]. In this model a Wigner oP representation grid for several hours to obtain only a moderate convergence
for the quantized field in real spadas opposed to mode of the resulting intensity distribution. The slightly higher in-
space is developed and stochastic field equations are detensity value obtained by the simulation can be attributed to
rived. This model can be easily adapted to unstable cavitiethe fact that no linearization assumption was used in the
by simply changing the mirror curvature. Fortunately in thissimulations. To check our simulation, we have also com-
case we are not limited to a specific mirror or loss geometrypared the case of a finite-size mirror in a stable configuration
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FIG. 3. Steady-state signal intenslty(*' ) and pump intensity t [1/x]
Ip (x') as a function of the excess-noise-factérfor different
values of the mirror curvaturk/f. The pump strength is fixed at FIG. 4. The figure shows the signal intensity(solid line), the
ein=0.9%,. We compare our results with the single-mode ap-pump intensityl  (dashed ling and the contribution of the ground
proximation [Eq. (5.1)] containing the full excess-noise-factsr  mode(aja,) (dash-dotted linewell above threshold:;,= 1.5y, .
(dashed linesand K (dotted lines. Compared to the stable steady-state valetted ling we find a

clear enhancement due to excess nolsg~(1.5).
by simply reversing the mirror curvature. In this case all

three curves agree almost perfectly and give the well-knowfp!2t€au_significantly above the steady-state value. During
results obtained by Lugiato and Marzd]. this interval, the system exhibits a maximum of the photon

pair generation via parametric amplification. Later, as the
signal field builds up, pump depletion becomes important
and the pump intensity decreases to its steady state in a

Having demonstrated the accuracy of our method, wélightly oscillatory manner. Here, we have chosep,
may now start investigating different parameter regimes=1-%t, 9=0.0l, xp=rq (the rest of parameters are the
First we would like to study the influence of the excess noise@Me as in Fig. 2 We have considered 15 modes and
on the threshold characteristics in the single-mode approxieUmmed over 10,000 stochastic trajectories. For simplicity,

mation[Eq. (5.2)]. For this purpose, we calculate the signal we have set all detunings to zero in this case. We find a clear
and pump intensitie§photon numbeis enhancement of the signal intensisolid line) when com-
pared to the stable cavity resuttotted ling, which can be

N attributed to the excess-noise factorkof=1.5 appearing in
IS:% (@pam)Anm, (7)) the noise correlation term.

VII. UNSTABLE OPO ABOVE THRESHOLD

Ip=(AbAp), (7.2 16

as a function of mirror curvature, ranging from the stable 14
into the unstable regime (GAL/f>—0.2, N=20), while
keeping the pump strength,, fixed at 95% of thegstable 12
threshold value. The horizontal axis of the plot has been
rescaled to give th& factor for the chosen parameters. For . .10
the remaining parameters, we have chospn0.01x, N
»= Ko- Figure 3 shows that one reaches the threshold where 8. 8
the field starts oscillating for an excess-noise fadtoof
approximately 1.2 that can be interpreted as an excess-noise
induced phase transition. If we compare the result with the 4
single-mode casgEq. (5.1)] we find that it is not the full

[=2)

excess noise factor but something betwéeand \/R that 2

enters into the dynamics. This is indicated by the dashed an

dotted lines for both pump and signal field. 0 e L
Let us now explore the OPO dynamics well above thresh- 456 7n § 9 101112 13 14

old in more detail. If we turn on the pump at a given time
t=0, a typical feature visible in Fig. 4 appears. The pump FIG. 5. The rapid decrease of higher mode coefficiehts|?
intensity (dashed ling grows rapidly and reaches an early =(aa,), as the mode inder increases.
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FIG. 7. The correlation functiog,(0) shows a metastable state

FIG. 6. The signal field g(x) (solid line) shows an overall tl)e_fore it reaches unity at the steady state.

excess-noise enhancement and is narrowed compared to the sing
mode steady-state resuttashed ling due to destructively interfer-
ing higher-mode contributions. VIIl. CONCLUSIONS

We have shown that excess noise can be expected to play
Interestingly, if we calculate the contribution of the an important role in parametric down conversion. Below
lowest-order resonator modaga,) (dash-dotted line in Fig.  threshold, we find a signal-intensity enhancement approxi-
4) to the total intensity, the result is larger than the final totalmately proportional to the Petermann fadkorAbove thresh-
sum over all modes. Although the higher-order mode contriold, the enhancement factor is somewhat smaller but still
butions vanish rapidly with growing mode inddkig. 5  important. In general, the threshold is modified and we pre-
they tend to interfere destructively with the ground mode. Indict a lowered oscillation threshold due to excess noise.
general, this gives rise to a narrower spatial distribution ofThese results are in agreement with the interpretation of
the signal intensity, parametric down conversion as a spontaneous, quantum-
noise-driven process. On the other hand, the gain of intensity
is accompanied by a reduction of photon pair correlation.
|s(X)=E <axam>u:um. (7.3 Wheregs bglow threshold the photons are QO.minantIy pro-
nm duced in pairs, we found that the photon statistics are almost
Poissonian above threshold, which of course still holds with-
o . o .. out excess noise. In the oscillation regime, higher-order
This is depicted in Fig. 6 where we compare the spatial inyhoge contributions tend to interfere destructively with the

tensity distri_butionl s(x) (solid line) at _the steady state with |g\yest-order mode contribution, giving rise to a narrower
the stable single-mode resuttashed ling effective beam width.

Finally, let us now look at the photon statistics, and in  ajthough there remain some open questions in our model,
particular, at the coincidence count rate, there are several tests giving us strong confidence in these
results. We have found excellent agreement between both of
our independent numerical descriptions and the analytical
=" (7.4 treatment below threshold 8]. We have also performed the

(afa>2 simulations in both the positive- and Wigner representa-

tions, giving essentially the same predictions for low-order

D . . . expectation values.
which is a central quantity concerning pair photon genera-

tion. This quantity is related to the probability of detecting

two photons at the same time. We again find very interesting
features in Fig. 7. At the moment we turn on the pump field
(t=0), g,(0) diverges due to the well-known fact that the  We would like to thank A. S. Parkins and S. M. Tan for

squeezing is growing faster than the intengid2] ((a'a) very helpful discussions and willing assistance. C.L. wishes
~t? and(a?),(a'?)~t). Before the signal field has signifi- to thank the Physics Department of the University of Auck-
cantly increased, the two-photon probability reaches a metdand for generous hospitality. This work was supported by
stable state again corresponding to the regime of parametribe University of Innsbruck, the Austrian FWF under Grant
amplification. In the regime of steady-state operatmy{0) No. 13435, the University of Auckland Research Committee,
reduces to its coherent state value. and the Marsden Fund of the Royal Society of New Zealand.
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