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Excess-noise-enhanced parametric down conversion
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We calculate the influence of excess noise on parametric down conversion in an unstable optical parametric
oscillator~OPO!, using a quantum quasimode description. We find a strongly enhanced pair photon generation
rate below threshold as compared to a conventional stable cavity setup of comparable gain and loss. In
addition, the oscillation threshold is lowered due to the influence of the excess noise and the squeezing
properties of the emitted light are significantly changed. In general, the maximal quantum-noise suppression in
one quadrature component is reduced, which poses strong limitations for the practical usefulness of a geo-
metrically unstable OPO source. The analytical results from our quasimode description are in good agreement
with numerical simulations using a positive-P representation of the field in mode space and in position space.
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I. INTRODUCTION

The optical parametric oscillator is one of the most th
oughly theoretically investigated and successfully exp
mentally used tools in modern quantum optics. Applicatio
range from the generation of squeezed light and quant
correlated twin beams to multiphoton entangled states.
generated light fields can be used for purposes such as h
resolution spectroscopy, tests for violation of Bell’s inequa
ties, and demonstration of quantum teleportation@1#. The
process of optical parametric down conversion is in gen
well understood theoretically@2–5#. Some well-proven
model Hamiltonians describing the essentials of the sys
dynamics have been found and yield very good agreem
between prediction and experimental verification. The fun
mental process in these models is the generation of quan
entangled pairs of a signal and an idler photon from a sin
pump photon through the nonlinear medium. Below osci
tion, threshold down conversion has been found to b
genuine quantum noise-driven process with no class
counterpart, similar to spontaneous emission or nuclear
cay.

In contrast to this success for stable cavity geometries,
situation in quantum optics systems based on an unst
geometry, e.g., an unstable cavity laser, is completely dif
ent. Although the basic concepts of the phenomenon of
cess noise were laid down by Petermann more than 20 y
ago@6# and have been tested for decades, there are still s
mysteries and a fundamental quantum-mechanical des
tion has been difficult. One fact is that the linewidth of
unstable cavity laser is considerably larger than the linew
of a stable cavity laser with equal gain and loss properties
contradiction to the Schawlow-Townes rule. This effect w
attributed to the nonorthogonality of the cavity modes@7#
and amplified spontaneous emission. Some decisive tes
this property were carried out 20 years ago@8#.

Recently, more refined experiments have clearly dem
strated a geometry-dependent laser linewidth, which co
be well accounted for by the so-called Petermann exc
noise-factorK @9–11#. As a consistent quantum descriptio
of this phenomenon starting from first principles was mi
1050-2947/2001/64~3!/033811~8!/$20.00 64 0338
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ing, renewed theoretical interest in the origin and interpre
tion of this rather counterintuitive phenomenon@12–14# has
arisen.

In our theoretical description of the microscopic origin
excess noise@15,16#, we looked at a simple genuine quantu
system, namely, a single excited two-level atom, and inv
tigated the influence of excess noise on spontaneous e
sion. To this end, we developed an approximate quan
description, where the field operators were expanded in
ther the cavity matched or the adjoint quasimodes. With t
approach, we were able to discuss the origins and limitati
of the K-factor approach. In the special case of an act
system, we recovered theK-fold-enhanced laser linewidth
whereas for a single atom inside an empty unstable cavit
more thorough approach must be taken. In parallel, vari
alternative quantum descriptions of excess noise in la
~active systems! @12,13# were developed, which more or les
confirmed the previously obtained results. These treatm
are based on descriptions using a finite set of normaliza
orthogonal ‘‘modes of the universe.’’ Here, the spatially d
pendent gain and loss implies a coupling to the empty ca
modes, which can then be identified as the origin of
excess noise. It is, however, not obvious how to apply th
models to geometrically unstable situations, where no clo
optical path exists for the lasing mode. An alternative p
posal was to dynamically include the mirrors in the model
a set of damped dipoles and explicitly solve the result
coupled set of equations@17#. Although this approach need
only few limiting assumptions, the procedure gets rath
complicated in practice.

It is now quite natural to develop the picture of exce
noise further and investigate other genuine quantum no
driven processes. In this article, we apply our quasimo
strategy to spontaneous twin-photon generation as a p
digm of a nonlinear quantum noise-driven process. In th
limiting case of operation well below threshold, adiaba
elimination of the pump mode enabled us to derive analyt
solutions for the dynamics of an unstable cavity optic pa
metric oscillator~OPO! using a nonorthogonal quasimod
basis set@18#. We found features that were strongly depe
dent on the excess noise, such as an enhanced intensity
©2001 The American Physical Society11-1
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LAMPRECHT, OLSEN, COLLETT, AND RITSCH PHYSICAL REVIEW A64 033811
modified photon correlations. Furthermore, it turned out t
excess noise destroyed the squeezing of the subharm
beam. An enhanced twin-photon generation rate in a st
resonator was recently also experimentally demonstra
@19# at the expense of a prolonged photon coincidence in
val ~narrower band width of the emitted photons!.

In this paper we will also explore the behavior abo
threshold. For this we must resort to numerical simulatio
Since our expansion in matched and adjoint mode pairs g
rise to different left- and right-field eigenstates, the pha
space method we use has to include nondiagonal cohe
state projection operators. As a possible candidate, we h
chosen the positive-P representation@20,21# to perform the
simulations. Below threshold we can compare our res
with previous analytical predictions@18#, finding excellent
agreement. In a further step to consolidate these results
also compare them to quantum simulations in real space@5#,
which do not rely on any choice of mode expansion, a
hence, give an independent test.

Extending the simulations to stronger pump amplitud
we find an enhancement of the average intensity as well
lowering of the threshold of oscillation. Calculating the sp
tial field distribution, we find destructive interference wi
the higher-order mode contributions that gives rise to a
duced beam width. Interestingly, we find a surprising plate
in the two-photon coincidence count rate for rather sh
times.

II. QUANTUM QUASIMODE ANALYSIS

For the purposes of making this paper self-contained,
us first recall some key aspects of the quasimode expan
for an unstable cavity as developed in Ref.@16#. Within the
paraxial approximation, the quasimodesun(x,0) fulfill a self-
reproducing condition after one round trip, i.e., the so-cal
matched modes un(x,0) are eigenfunctions of the underlyin
Huygens’ integral kernelK(x,x8) @22#

E dx8K~x,x8!un~x8,0!5gnun~x,0!. ~2.1!

For geometrically unstable systems this operator is not H
mitian and the quasimodes are no longer orthogonal. Ne
theless, there exists a biorthogonal set of adjoint mo
vn* (x,z) ~eigenfunctions ofKT), i.e., (un ,vm)5dnm, where
~.,.! denotes the transverse integral. For any transversel
nite system, the matched modes can be normalized to u
i.e., (un ,um)5Anm with Ann51. In contrast to this, the norm
of the adjoint modes contains the Petermann excess n
factor Kn , i.e., (vn ,vm)5Bnm with Bnn5Kn . In this case
these modes are complete and fulfill(nvn* (x)un(x8)5d(x
2x8). For any symmetric mirror setup (KT5K) the adjoint
modes are proportional to the matched modesvn* (x)
5AKnun(x) at the symmetry plane.

Unfortunately, in general, the quasimodes cannot be
plicitly calculated analytically. There do exist, howeve
some exceptions for which they can be found. An import
example of an analytically soluble model is a resonator
length L consisting of two symmetric spherical mirrors
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focal length f and Gaussian reflectivity profile with width
LG . Restricting ourselves to the paraxial approximation a
one transverse spatial dimension, we find complex Herm
Gaussian mode functions for the transverse field mode
the symmetry planez50: ~cf. @23#!

un~x!5cnHn~p0x!e[ 2 i (kn)/(2R0)]x2
e2(x2/w02) , ~2.2!

vn~x!5 c̃nHn~p0* x!e[ i (kn)/(2R0)]x2
e2(x2/w02) . ~2.3!

Here, w05(2z0 /kn)(11r 0
2/z0

2) is the beam width,R0

5r 0@11(z0
2/r 0

2)# is the radius of curvature with transvers
scalingp5Aikn /q0 and Hn denotes thenth Hermite poly-
nomial. The coefficientscn ,c̃n are fixed by the normalization
constraints discussed above. Further, one finds for the qu
mode eigenvalues gn5@(q02L/2)/(q01L/2)# (2n11)

[e2(kn1 ivn)(2L/c) giving explicit expressions for the fre
quencies and loss rates. The only remaining free paramet
the complex source pointq05L/2A124/l[r 01 iz0, which
is directly linked to the cavity parameters;l 5L/ f 1 i /N and
N5pLG

2 /lL would be the Fresnel number of a correspon
ing hard-edged spherical mirror. For 0,L/ f ,4, the resona-
tor is stable andun(x) are simply the well-known Hermite
Gaussian modes.

Outside this interval forf, the resonator is geometricall
unstable and these quasimodes correspond to eigenfunc
of the inverted harmonic-oscillator potential@24#. Although
this type of resonator setup might not be very typical, it h
the twin advantages of explicit analytical solubility and
continuous transition from the stable to the unstable c
connecting it to well-known and proved results.

Let us now turn to field quantization. Since these mo
pairs fulfill a completeness relation, every field distributio
can be expanded uniquely either in the matched modes o
the adjoint modes. For our purpose it proves advantageou
expand the field operators~positive and negative frequenc
part of the vector potential! in the following way:

A~x,t !5(
n

an~ t !un~x!, ~2.4!

A†~x,t !5(
n

bn
†~ t !vn* ~x!, ~2.5!

where an(t),bn
†(t) are generalized creation or annihilatio

operators for the corresponding matched and adjoint m
pairs. This becomes obvious if we rewrite the canoni
equal-time commutation relations@25# in terms of these op-
erators:

@an ,bm
† #5dnm , ~2.6!

@an ,am
† #5Bnm , ~2.7!

@bn ,bm
† #5Anm . ~2.8!

Obviously the sets of operators (an ,bn) are not indepen-
dent and we find
1-2
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EXCESS-NOISE-ENHANCED PARAMETRIC DOWN CONVERSION PHYSICAL REVIEW A64 033811
bn5(
m

Anmam , ~2.9!

an
†5(

m
Bmnbm

† . ~2.10!

Using this field expansion the free-field Hamiltonian can
written in the form

HF5(
nm

\
vn1vm

2
Amnam

† an , ~2.11!

where the frequenciesvn are determined from the mode e
genvaluesgn . As we are dealing with an open syste
~Gaussian aperture! the mode amplitudes decay expone
tially with a mean ratekn . Physically, a fraction of the en
ergy is scattered into the continuum modes outside the
ity. In a proper quantum treatment, loss can be modeled
input-output couplings@26# to external reservoirs~heat
baths!. Alternatively, we could include the field outside th
resonator into the Hamiltonian@17#. The second explicit pro-
cedure is rather involved for our case, since the scatte
losses transverse to the cavity axis are not negligible. As
as the mean mode dynamics is concerned, they are indi
guishable from the losses due to mirror transmission@even
for perfect mirrors (Lg→`) the loss rategn stays finite in
the unstable case#. Tracing over the reservoirs and using
Markov approximation in the first approach will give a ma
ter equation for the mode dynamics. However, a satisfac
derivation of this master equation is, to our knowledge,
known for unstable resonators or might even be imposs
@14#.

Nevertheless, consistency of the effective time evolut
for the field density operator is guaranteed if one uses
following ansatz for the master equation:

ṙF52
i

\
@HF ,rF#1(

nm
Anm$~kn1km!anrFam

† 2knam
† anrF

2kmrFam
† an%. ~2.12!

Note that this master equation is of the Lindblad form a
represents the only consistent way, within the Markov
proximation, to yield the exponential damping of the fie
modes, i.e.,ȧn;2knan . In practice, we will make use o
stochastic differential equations for the field operators the
selves rather than solving this master equation. That me
that for the positiveP representation just the exponenti
mode damping turns out to be important. Let us, howev
mention at this point that although looking rather intuiti
here, the validity of a master equation treatment can
doubtful if the system is too strongly coupled to the res
voir. As has been suggested recently, this can be the cas
significantly unstable resonators@14# or for very small
apertures.
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III. UNSTABLE CAVITY OPO

To concentrate on the main physical aspects, we res
ourselves to an analytically soluble case and consider de
erate parametric down conversion with a thin crystal~thin
crystal assumption@27#! in a symmetric unstable resonato
In principle, this can be generalized to longer crystals bu
long as no transverse changes are introduced, we do no
pect significant qualitative changes. We further assume a
form plane-wave pump fieldAP of frequencyvP interacting
with the intracavity field~subharmonic modes! via a x (2)

medium. Generalizing previous quantum treatments of
transverse dynamics in an OPO@2,3,5# we will concentrate
here on the effects of excess noise. The basic Hamilton
can be separated into four parts:

H5HF1HP1Hext1Hint , ~3.1!

with

HP5\vPAP
†AP , ~3.2!

Hext5 i ~AP« in* 2AP
†« in!, ~3.3!

Hint5
i\g

2 E dx@APA~x,t !†22AP
†A~x,t !2#, ~3.4!

where« in is the pump strength,g is the coupling constan
and the integral extends over the volume of the nonlin
medium, which is assumed to be transversally very la
compared with the mode widthw0. In terms of the quasi-
modes, as described in the previous section, we find that
relative coupling strengths are given by the integr
*dxun(x)um(x) and*dxvn* (x)vm* (x), respectively. The sym-
metry of the resonator impliesvn* (x)5AKnun(x), and
hence, the interaction becomes diagonal due to
biorthogonality of the quasimodes. After some algebra,
find

Hint5
i\g

2 (
n

S APAKnbn
†22

AP
†

AKn

an
2D . ~3.5!

Note that although each of the individual terms of this sum
not explicitly Hermitian and shows formal asymmetry b
tween photon production and annihilation, the total Ham
tonian is Hermitian. Nevertheless, from this way of writin
the Hamiltonian we may already expect enhancement of
two-photon generation rate via the excess noise. In princi
the choice to expand the fields in this way is arbitrary, b
will prove to be very useful for the subsequent calculatio
Finally, the pump-field losseskP are treated by the standar
reservoir coupling to give

ṙP52
i

\
@HP ,rp#1kP~2APrPAp

†2Ap
†APrP2rPAP

†AP!.

~3.6!
1-3
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IV. POSITIVE- P SIMULATION OF THE INTRACAVITY
FIELD DYNAMICS

In general, the solution for the quantum dynamics induc
by the above Hamiltonian cannot be found analytica
Hence, we have to resort to numerical techniques. For
we will employ the well-established method of represent
the field by a positive-P function @20# and solving the corre-
sponding stochastic differential equations equivalent to
Fokker-Planck equation. The GlauberP representation is no
useful for simulation of this system since the resulti
Fokker-Planck equation has a nonpositive diffusion mat
Similarly, due to the large number of modes involved,
Wigner function approach would converge only slowly. L
us emphasize here that by choosing the positive-P represen-
tation, only normally ordered field-expectation values en
into the noise correlations. Hence, the vacuum noise in
reservoir does not explicitly enter into the simulation dyna
ics and we only get field-dependent noise sources stemm
from the nonlinearity of the Hamiltonian. This also strong
simplifies the treatment of a spatially varying damping.

Similar to the orthogonal mode case, a generaliz
positive-P representation may be introduced as the exp
sion of a given density operator in nondiagonal coher
state projection operators@20,28#. The main difference is tha
the operatorsbn

† here play the role of the usual creation o
eratorsan

† in an orthogonal basis. After some algebra we fi
the following stochastic differential equations for the ind
pendent variablesan ,an

1 ,aP ,aP
1 corresponding to the

quasimode operatorsan ,an
† ,AP ,AP

† , i.e.,

ȧn52~kn2 iDn!an1gaP
AKn(

m
Amnam

1

1AgaP
AKndVn ,

ȧn
152~kn1 iDn!an

11gaP
1AKn(

m
Anmam

1AgaP
1AKndWn ,

ȧP52kPaP2g/2(
n

an
2/AKn1« in ,

ȧP
152kPAP

12g/2(
n

an
12/AKn1« in* , ~4.1!

where Dn5vn2vP/2 denotes the detuning anddVn ,dWn
are independent Wiener noise increments@26# satisfying
^dVndVm&5^dWndWm&5dnm ,^dVndWm&50. The first ob-
vious but not unexpected difference from the conventio
stable cavity equations@2,3,5# is that the individual mode
equations are no longer independent for nonorthogo
modes. The second very interesting difference is the
creased noise strength amplified by a factor ofAKn ~cf.
@17,29#!. Similar to the fact that spontaneous emission in
the lasing mode of, for example, unstable gain-guided la
is directly enhanced by the excess-noise factor@6,7,15#, we
03381
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find an increased noise intensity in our system. This le
support to the interpretation of excess noise as a local
hancement of the vacuum quantum fluctuations.

V. SINGLE-MODE APPROXIMATION

Starting from these equations, let us first restrict oursel
to the simplest possible case and consider only a single-m
indexn. Below threshold, there is actually no good justific
tion for such a truncation, but in the oscillation regime abo
threshold, one can expect only the lowest loss mode to
significantly excited, as it is true for the stable case. If
neglect all other amplitudes and restrict ourselves to
weak-coupling regime, where the expectation values can
factorized, we find the following analytical expressions f
the steady-state intensity~intracavity photon number! @33#:

I P5^AP
†AP&ss5

k21D2

Kg2
,

I S5^a†a&ss5
2kPAk21D2

g2 S u« inu
« th

21D , ~5.1!

with

« th5
kPAk21D2

AKg
. ~5.2!

Obviously, this gives a significantly lower oscillation thres
old for the OPO and an increase in the probability of do
conversion by the excess-noise-factorK. Of course, in prac-
tice one needs a much stronger pump in unstable cavity
ometries to achieve a comparable intracavity intensity du
the usually larger lossesk,kp . Nevertheless, it may be pos
sible to find a system with large excess noise and relativ
low loss rates using hard apertures or small holes in
mirrors, where diffraction plays an important role@18#.

VI. TWO-PHOTON GENERATION BELOW THRESHOLD

Let us now return to the full coupled multimode equ
tions. For sufficiently weak pumping~well below threshold!
we can linearize our equations, neglect pump depletion,
adiabatically eliminate the pump dynamics from the syste
As in the stable cavity case@5#, the resulting field amplitudes
and intensities in this limit can be calculated analytica
@18#, with the pump field fixed to its steady-state valueAss
5« in /kp . After some calculations, we find the followin
formula for the intracavity field intensity~photon number!:

I ss~x!5(
nm

^an
†am&un* um5(

nm
f nmBmnun* um , ~6.1!

with

f nm5E dv

2p

e0
2~kn1km!

@e0
22Dn

22~kn1 iv!2#@e0
22Dm

2 2~km2 iv!2#
~6.2!
1-4
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EXCESS-NOISE-ENHANCED PARAMETRIC DOWN CONVERSION PHYSICAL REVIEW A64 033811
and e05g« in /kp . Note that the sum includes nondiagon
terms in the mode contributions, which implies interferen
between photon pairs generated in different mode pairs. T
prevents the appearance of a simpleK factor in front of the
sum. Nevertheless, the intensity has a similar shape to
ground mode, but with an excess-noise enhancement. C
paring these results with our positive-P simulations, we find
excellent agreement as depicted in Fig. 1.

One of the key properties of the adjoint mode matrix
that B5A21. However, truncating this matrix to a finit
number of mode contributions strongly perturbs this pro
erty. It can be shown that using the matrixA21 instead ofB
is numerically more accurate, althoughB is analytically
known in principle. For this reason, we have replacedB with
A21 to evaluate the sums in Eq.~6.1!. This numerical im-
provement was first found by Kostenbauderet al. @30# in
expanding an arbitrary field distribution in nonorthogon
modes.

So far the analytical calculations, as well as the numer
results, both rely on the quasimode field expansion, the
lidity of which may be considered unproven. Of course, o
can easily change the parameters from an unstable to a s
cavity and continuously follow the predictions. As expecte
we find a perfect transition from our predictions to the we
known standard results.

As a further and more independent test of our model,
have generalized a real-space quantum simulation of
transverse dynamics in an OPO, which was developed
Gatti and coworkers@5# based on earlier work by Kolobo
and Sokolov@31#. In this model a Wigner orP representation
for the quantized field in real space~as opposed to mod
space! is developed and stochastic field equations are
rived. This model can be easily adapted to unstable cav
by simply changing the mirror curvature. Fortunately in th
case we are not limited to a specific mirror or loss geome

FIG. 1. This picture compares the spatial signal intensityI (x)
calculated using the positive-P representation~solid line! with the
analytical solution Eq.~6.1! ~dashed line! and the single-mode pre
diction excluding excess noise~dotted line! well below threshold
« in50.5« th . For the other parameters, we have choseng
51024k0 , L/ f 52100,N510, giving rise to an excess-noise fa
tor of K'1.5.
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]

]t
A~x,t !52FG~x!1 iD1 i

c2

2v
¹2GA~x,t !1gApA* ~x,t !

1j~x,t !, ~6.3!

where G(x)5k(x)1 id(x) gives the transverse spatial d
pendence of the lossesk(x) and the mirror phase shiftd(x).
Here,j(x,t) denotes a complex spatially and temporally u
correlated white-noise source accounting for the quan
fluctuations. Its properties can be determined from the re
space Fokker-Planck equation. The details of the deriva
of this equation can be found in Ref.@5#.

In Fig. 2, we compare these real-space simulations w
our analytical result for the case of a hard-edged reson
with negatively curved parabolic mirrors, i.e.,L/ f 521, Lx
5Lp, N510. The correspondingK factor for the lowest-
loss quasimode for the chosen parameters is of the orde
K'2.7.

We clearly see that the results of the simulation~solid
line! and Eq.~6.1! ~solid line with dots! agree surprisingly
well. However, the result strongly differs from a naive ca
culation based on effective modes but neglecting the exc
noise factor~dashed line!. Note that, while the evaluation o
the sum in Eq.~6.1! takes only a fraction of a second, we ha
to run the corresponding real-space simulation on 400-p
grid for several hours to obtain only a moderate converge
of the resulting intensity distribution. The slightly higher in
tensity value obtained by the simulation can be attributed
the fact that no linearization assumption was used in
simulations. To check our simulation, we have also co
pared the case of a finite-size mirror in a stable configura

FIG. 2. Comparison of the steady-state signal intensity distri
tion I (x) for a hard-edged unstable resonator of 100 wavelen
transverse size calculated by real-space simulation~solid line! with
the analytical solution Eq.~6.1! ~solid line with dots! and the single-
mode prediction excluding excess noise~dashed line! well below
threshold« in50.1« th . The parameters were chosen to give a
factor of K'2.7 for the lowest-loss-effective eigenmode.
1-5
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by simply reversing the mirror curvature. In this case
three curves agree almost perfectly and give the well-kno
results obtained by Lugiato and Marzoli@4#.

VII. UNSTABLE OPO ABOVE THRESHOLD

Having demonstrated the accuracy of our method,
may now start investigating different parameter regim
First we would like to study the influence of the excess no
on the threshold characteristics in the single-mode appr
mation @Eq. ~5.2!#. For this purpose, we calculate the sign
and pump intensities~photon numbers!

I S5(
nm

^an
†am&Anm , ~7.1!

I P5^AP
†AP&, ~7.2!

as a function of mirror curvature, ranging from the stab
into the unstable regime (0.2.L/ f .20.2, N520), while
keeping the pump strength« in fixed at 95% of the~stable!
threshold value. The horizontal axis of the plot has be
rescaled to give theK factor for the chosen parameters. F
the remaining parameters, we have choseng50.01k0 ,
kp5k0. Figure 3 shows that one reaches the threshold wh
the field starts oscillating for an excess-noise factorK of
approximately 1.2 that can be interpreted as an excess-n
induced phase transition. If we compare the result with
single-mode case@Eq. ~5.1!# we find that it is not the full
excess noise factor but something betweenK and AK that
enters into the dynamics. This is indicated by the dashed
dotted lines for both pump and signal field.

Let us now explore the OPO dynamics well above thre
old in more detail. If we turn on the pump at a given tim
t50, a typical feature visible in Fig. 4 appears. The pum
intensity ~dashed line! grows rapidly and reaches an ear

FIG. 3. Steady-state signal intensityI S ~‘*’ ! and pump intensity
I P ~’x’ ! as a function of the excess-noise-factorK for different
values of the mirror curvatureL/ f . The pump strength is fixed a
« in50.95« th . We compare our results with the single-mode a
proximation @Eq. ~5.1!# containing the full excess-noise-factorK
~dashed lines! andAK ~dotted lines!.
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plateau significantly above the steady-state value. Dur
this interval, the system exhibits a maximum of the phot
pair generation via parametric amplification. Later, as
signal field builds up, pump depletion becomes import
and the pump intensity decreases to its steady state
slightly oscillatory manner. Here, we have chosen« in
51.5« th , g50.01k0 , kP5k0 ~the rest of parameters are th
same as in Fig. 2!. We have considered 15 modes a
summed over 10,000 stochastic trajectories. For simplic
we have set all detunings to zero in this case. We find a c
enhancement of the signal intensity~solid line! when com-
pared to the stable cavity result~dotted line!, which can be
attributed to the excess-noise factor ofK'1.5 appearing in
the noise correlation term.

FIG. 5. The rapid decrease of higher mode coefficients,uanu2

5^an
†an&, as the mode indexn increases.

-
FIG. 4. The figure shows the signal intensityI S ~solid line!, the

pump intensityI P ~dashed line!, and the contribution of the ground
mode^a0

†a0& ~dash-dotted line! well above threshold« in51.5« th .
Compared to the stable steady-state value~dotted line! we find a
clear enhancement due to excess noise (K0'1.5).
1-6
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EXCESS-NOISE-ENHANCED PARAMETRIC DOWN CONVERSION PHYSICAL REVIEW A64 033811
Interestingly, if we calculate the contribution of th
lowest-order resonator mode^a0

†a0& ~dash-dotted line in Fig.
4! to the total intensity, the result is larger than the final to
sum over all modes. Although the higher-order mode con
butions vanish rapidly with growing mode index~Fig. 5!
they tend to interfere destructively with the ground mode.
general, this gives rise to a narrower spatial distribution
the signal intensity,

I S~x!5(
nm

^an
†am&un* um . ~7.3!

This is depicted in Fig. 6 where we compare the spatial
tensity distributionI S(x) ~solid line! at the steady state with
the stable single-mode result~dashed line!.

Finally, let us now look at the photon statistics, and
particular, at the coincidence count rate,

g2~0!5
^a†a†aa&

^a†a&2
, ~7.4!

which is a central quantity concerning pair photon gene
tion. This quantity is related to the probability of detectin
two photons at the same time. We again find very interes
features in Fig. 7. At the moment we turn on the pump fi
(t50), g2(0) diverges due to the well-known fact that th
squeezing is growing faster than the intensity@32# (^a†a&
;t2 and ^a2&,^a†2&;t). Before the signal field has signifi
cantly increased, the two-photon probability reaches a m
stable state again corresponding to the regime of param
amplification. In the regime of steady-state operation,g2(0)
reduces to its coherent state value.

FIG. 6. The signal fieldI S(x) ~solid line! shows an overall
excess-noise enhancement and is narrowed compared to the s
mode steady-state result~dashed line! due to destructively interfer-
ing higher-mode contributions.
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VIII. CONCLUSIONS

We have shown that excess noise can be expected to
an important role in parametric down conversion. Belo
threshold, we find a signal-intensity enhancement appro
mately proportional to the Petermann factorK. Above thresh-
old, the enhancement factor is somewhat smaller but
important. In general, the threshold is modified and we p
dict a lowered oscillation threshold due to excess no
These results are in agreement with the interpretation
parametric down conversion as a spontaneous, quan
noise-driven process. On the other hand, the gain of inten
is accompanied by a reduction of photon pair correlati
Whereas below threshold the photons are dominantly p
duced in pairs, we found that the photon statistics are alm
Poissonian above threshold, which of course still holds w
out excess noise. In the oscillation regime, higher-or
mode contributions tend to interfere destructively with t
lowest-order mode contribution, giving rise to a narrow
effective beam width.

Although there remain some open questions in our mo
there are several tests giving us strong confidence in th
results. We have found excellent agreement between bot
our independent numerical descriptions and the analyt
treatment below threshold@18#. We have also performed th
simulations in both the positive-P and Wigner representa
tions, giving essentially the same predictions for low-ord
expectation values.
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FIG. 7. The correlation functiong2(0) shows a metastable sta
before it reaches unity at the steady state.
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