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Hazards of reservoir memory
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We add memory effects to the master equation describing a harmonic oscillator embedded in a reservoir.
Solving the time evolution exactly, we show that the model is sensible only in the Markovian limit. Thus we
issue a warning against indiscriminate introduction of memory effects in master equations and call for a
systematic method to obtain corrections to Markovian time evolution.
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I. INTRODUCTION

The introduction of irreversible equations from bas
physical principles has posed a challenging and illuminat
problem for a long time. When quantum theory arose, t
problem acquired new actuality, and Pauli seems to h
been the first to present such a master equation for irrev
ible time evolution@1#.

Later the problem of magnetic induction of the nucle
spin ~nuclear magnetic resonance! required a foundation for
the phenomenological equation introduced by Bloch. S
derivations were soon provided by Wangsness and Bloch@2#
and later by Redfield@3#. The phenomenological equation
assumed that the time evolution would be determined so
by the instantaneous state of the system; this is termed M
kovian evolution in physics literature. The microscopic de
vations, however showed that this derives from assumpt
about the correlation time scales of the reservoirs to wh
the spin couples. It is far from evident that the time evoluti
has the assumed Markovian property. Thus the inte
turned to more general approaches to the relaxation beha
of a system of interest embedded in another one serving
reservoir.

When a physical system is put into contact with a res
voir, the reservoir degrees of freedom can be eliminated
actly to produce a master equation that formally ascribes
time evolution to the degrees of freedom of the system
interest@4–6#. This result, however, is only formal; the so
lution of the equation still requires the solution of the fu
problem of coupled system-reservoir dynamics. To achi
real irreversible time evolution, one needs to apply furth
approximations, which eliminate the reversible, short ti
evolution and push all recurrences beyond the time sc
under investigations. Two such assumptions are the we
field and the short-memory approximations, and con
quently the derivations of the master equations are said t
carried out in the Born-Markov limit.

The weak-interaction approximation asserts that we n
treat the system-reservoir interaction in second order of
turbation theory only. Thus the reservoir is taken to purs
its own time evolution without regard to the much smal
system coupled to it. This assumption is inherent in the v
naming of the reservoir. It is, however, also assumed to
spond instantly, so that we do not need to consider the p
sible delay in its action on the system of interest; this cau
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the system evolution to depend only on the instantane
state of the system. In physics this is called a Markov
behavior, even if its exact mathematical meaning is som
what obscure. The validity conditions for general mas
equations are discussed by Fano@7#.

In this paper we want to draw the attention to the fact t
the two assumptions cannot be considered independent
cannot indiscriminately assume that the reservoir car
memory of its interaction and at the same time remains
affected by the interaction. We do this by introducingad hoc
memory effects into the standard Lindblad form of t
damped harmonic oscillator@8#. We can then solve the time
evolution exactly and show that the result violates physica
reasonable conditions. This we take to mean that one ca
simply add memory effects to dissipative behavior and ret
the physical sense of the equations. We have, however
suggestion how to improve on the Markovian limit, whic
seems to give reasonable results in most cases. There
cases when even this can lead to problems, for a rev
consult@9#.

In perturbative derivations it is often found that the ens
ing master equation is not of the Lindblad form. In fact, the
are cases where the physically well-justified fluctuatio
dissipation theorem is not compatible with this form. Th
does not guarantee that the density matrix retains its pos
ity during the time evolution. There are indications, see Re
@10,11#, that this affects only the initial time evolution. How
ever, when approximative methods, e.g., numerical
proaches, are used, this type of instability makes the pro
dure dangerous and often nonapplicable. A time-evolut
generator with unstable eigenelements, will always tend
amplify small errors and disqualify all approximate a
proaches.

Here we address the problem of a reservoir with mem
and damping times not much longer than the periods of
secular motion induced by the Hamiltonian. Such syste
are found in laser-excited molecular-dynamic experimen
Here the Markovian approximation is not acceptable. A p
nomenological way to introduce damping with memory is
use an environment consisting of Brownian oscillators@12#,
but this method rapidly becomes unwieldy to apply in co
putations. Thus we would like to use our physical intuition
add memory effects, but the present work shows that
cannot be carried out indiscriminately. We start by an ope
tor of the Lindblad form; this is expected to give stable ev
©2001 The American Physical Society08-1
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lution for all times. By adding a physically reasonable de
function, we show that the benevolent behavior of the Lin
blad form is destroyed. To amend this we would need a
terion analogous to the Lindblad one for master equati
with memory. As far as we know, such results have not b
formulated.

In order to solve the problem, we apply the formalism
a damping basis introduced by Briegel and Englert@13# and
elaborated in some detail by the present authors@14#. They
also give the eigenoperators for a spin-1

2 system based on
Pauli operators. This case was earlier noted also in Ref.@15#.
The spectrum of the Lindblad operator is discussed from
more mathematical point of view in Ref.@16#.

The use of eigenoperators for the Lindblad evolution
lows an exact solution of the problem with memory, a
looking at specific initial conditions we can show that no
physical behavior emerges. Not all cases display such be
ior; in particular, the Markovian limit emerges essentia
correctly. The fact that basic physical requirements may
violated proves that the approach is flawed, and dooms
results derived from this type of approach to be unreliab
We can even pinpoint the source of the problem, but we h
no suggestion how to amend it.

In Sec. II, we introduce the master equation with mem
effects added and show how the conventional Markovian
sult follows. Section III summarizes the formal results w
need to derive our solutions to the master equation w
memory effects retained.

Section IV presents the general solution and by parti
larizing it to a simple initial state we can see by inspect
that the result violates obvious physical requirements. T
we conclude that no reliable results can be obtained fr
equations of the type we have introduced. We also see w
condition leads to the unphysical behavior, and show in S
V that when these conditions do not prevail, we can obta
physically acceptable behavior compatible with Markovi
evolution. Finally, Sec. VI discusses the results and the
suing problematic situation.

II. THE MARKOVIAN LIMIT OF RESERVOIR
INTERACTIONS

We assume that elimination of a reservoir has lead to
master equation of a type

dr̂~ t !

dt
5E

0

t

K~ t2t8!Lr̂~ t8!dt85E
0

t

K~ t8!Lr̂~ t2t8!dt8,

~1!

where r̂(t) is the density operator of the system of intere
and the Lindblad operator is defined by

Lr̂52âr̂â†2â†âr̂2 r̂â†â. ~2!

The form assumes the reservoir to be at zero temperature
our argument is not affected by this. We also omit the unit
time evolution deriving from the Hamiltonian; this has n
effect on our argument. For a free-oscillator Hamiltonian
only implies that we work in a rotating frame.
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We assume the memory kernel to be of second orde
the couplingV as follows

K~ t2t8!5V2k~ t2t8!; ~3!

if k(t) is replaced by ad function d(gt), the ordinary Ma-
rovian result emerges. The parameterg refers to the band-
width of the reservoir spectrum.

Equation~1! assumes that we look at the time evolutio
over some extended interval; the very short times display
details of the interaction. We also assume that the couplin
weak, i.e.,V→0, but in such a way that the scaled tim
variable

t̃ 5V2t ~4!

remains finite. Long ago, van Hove@17# pointed out that this
is the limit in which irreversible behavior emerges.

In terms of this variable, Eq.~1! becomes

dr̂

d t̃
5 lim

V→0
E

0

t̃ /V2

K~ t8!Lr̂~ t̃ 2V2t8!dt8

5F E
0

`

K~ t8!dt8GLr̂~ t̃ !, ~5!

which is the ordinary Markovian limit.
If we want to evaluate the corrections to the limit, w

might try to utilize the expansion

r̂~ t̃ 2V2t8!5 (
k50

`
~2V2t8!k

k! Fdkr̂~ t̃ !

d t̃k G . ~6!

This retains the Markovian character of the equation, bu
the expense of the introduction of higher derivatives in
density operator. This is known to be a dangerous ro
which in the case of radiation damping causes the w
known ‘‘run-away’’ solutions@18#. It seems to us, that eithe
one goes to the Markovian limit or alternatively the fu
problem needs to be solved. We will approach this in
following, but first we need to summarize the tools dev
oped in our earlier paper@14#.

III. SUMMARY OF FORMAL RESULTS

In this section we present the formal eigenelements of
Lindblad operator~2! satisfying

LÂn5lnÂn . ~7!

These operators have been proved to form a complete s
operators in which to expand the density operator, a damp
basis@13#.

The operators are found to be labeled by two nonnega
integers$m,l % and are given by

Âm
l 5 (

n50

m

~21!n
m!

~m2n!!
AF l !

n! ~n1 l !! G un& ^n1 l u, ~8!
8-2
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where un& is the ordinary oscillator eigenstate. The corr
sponding eigenvalue has the form

lm
l 52~2m1 l !, ~9!

which guarantees the decay of the system towards the un
ground state

Â0
05u0& ^0u. ~10!

The eigenvalues~9! have earlier been obtained for the ca
of laser cooling@19#, Sec. V D.

We can also define a complete set of adjoint opera
B̂m

l † by requiring that

Tr~B̂m
l †Âm8

l 8 !5d l l 8 dmm8 , ~11!

giving

B̂m
l 5

~21!m

m! (
n5m

` AS n! ~n1 l !!

l ! D 1

~n2m!!
un& ^n1 l u.

~12!

In terms of these operators we can expand the den
operator as

r5 (
m50

`

(
l 50

`

h l~rmlÂm
l 1rml* Âm

l †!, ~13!

where the parameter

h l512
1

2
d l0 ~14!

is introduced to take care of the fact that

Âm
0 5~Âm

0 !†. ~15!

It also follows that the imaginary part of everyrm0 does not
enter the expansion and hence we may choose these elem
real. The coefficients are given by

rml5Tr~B̂m
l †r̂ !. ~16!

These results were earlier obtained by Briegel and Eng
@13#, who have also used them to discuss a variety of pr
lems in cavity QED@20–26#. Here we want to utilize the
formalism to derive the solution of the memory-functio
master equation~1!

IV. SOLUTION OF THE NON-MARKOVIAN EVOLUTION

In order to obtain the solution to the master equation~1!
we evaluate its Laplace transform to

sr̄~s!2 r̂~0!5K̄~s! L r̄~s! ~17!

with the solution
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r̄~s!5
1

s2K̄~s! L r̂~0!5(
m,l

h lF 1

s1K̄~s! ~2m1 l !
G

3~rmlÂm
l 1rml* Âm

l †!. ~18!

If we assume the simplest possible memory function

K~ t2t8!5V2exp~2gut2t8u!, ~19!

then we obtain the Laplace transform

K̄~s!5
V2

s1g
. ~20!

The poles of the expression~18! are then at the positions

s52
g

2
6 iAV2~2m1 l !2S g

2D 2

[2
g

2
6 iV~m,l !.

~21!

We further introduce the notationV(m)[V(m,l 50). When
these singularities are utilized, the Laplace transform~18!
can be inverted@8# to give

r̂~ t !5r00Â0
01 (

m51

`

expS 2
gt

2 D rm0Âm
0 H cos@V~m!t#

1
g

2V~m!
sin@V~m!t#J 1 (

m50

`

(
l 51

`

expS 2
gt

2 D
3HrmlÂm

l H cos@V~m,l !t#1
g

2V~m,l !

3sin@V~m,l !t#J 1h.c.J. ~22!

Here we have, in particular,

r0051; Â0
05u0& ^0u. ~23!

For small values of$m,l % the frequenciesV(m,l ) are imagi-
nary when

V2!
g2

4
, ~24!

but for larger values they become real; the solution writ
down above holds for all cases.

When the solution is described by damped oscillatio
the result derived above contains clearly unphysical featu
This is most easily seen if we assume the initial dens
matrix to be in a pure number stater̂(0)5un&^nu when the
initial state is given by~see Ref.@14#!

rml5
~21!nn!

m! ~n2m!!
d l0 ~m>n!. ~25!

Introducing this into the solution and calculating the pro
ability of remaining in the stateun& we find
8-3
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^nur̂~ t !un&5rn0^nuÂn
0un&expS 2

gt

2 D H cos@V~n!t#

1
g

2V~n!
sin@V~n!t#J

5expS 2
gt

2 D H cos@V~n!t#1
g

2V~n!

3sin@V~n!t#J . ~26!

It is obvious that this result is meaningless, because it
take negative values for real frequenciesV(n). Thus when-
ever

2nV2.
g2

4
~27!

we obtain negative probabilities. This result appears, beca
then the effective coupling to the reservoirAnV exceeds the
width of the reservoir spectrumg. And for all values ofV
and g, there are somen values above which this occurs
making the whole procedure dangerous and unreliable. T
we conclude that the basic equation~1! is fundamentally
flawed and should not be used. A more sophisticated
proach to memory effects is needed, but we do not kn
how to device such an approach without solving the f
problem of system-reservoir coupling.

V. THE PERTURBATIVE LIMIT

In the case that we have

2nV2!
g2

4
, ~28!

we can expand the root in Eq.~21! as

Ṽ~n!52 iV~n!

5
g

2
A12S 8nV2

g2 D
5

g

2
2

2nV2

g
2

4n2V4

g3
1•••. ~29!

Introducing this into the solution~26! we obtain

^nur̂~ t !un&5expS 2
gt

2 D H cosh@Ṽ~n!t#

1
g

2Ṽ~n!
sinh@Ṽ~n!t#J . ~30!

For large times this becomes
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^nur̂~ t !un&5expS 2
2nV2

g
t D S 11

2nV2

g2 D . ~31!

It is easy to verify that this is the correct Markovian dec
rate of the problem, because the master equation is in
limit

d

dt
r̂5

V2

g
@2âr̂â†2â†âr̂2 r̂â†â#, ~32!

which gives for the initial stateun&^nu, the equation

d

dt
^nur̂~ t !un&52

2nV2

g
^nur̂~ t !un& ~33!

with the solution~31! except for the shifted initial state. Th
full result ~30! has the physically correct short-time behavi

^nur̂~ t !un&512nV2t21O~ t3!. ~34!

This satisfies the initial time evolution with a smooth ons
of the deviation from the correct initial value. The fact th
the long-time exponential behavior needs to be corrected
the initial nonexponential onset of the evolution is we
known from Brownian-motion-type models, and it has be
termed an ‘‘initial slip’’ by Haake and Lewenstein@27#.

Even if we do not retain terms only to lowest order inV2,
the behavior remains meaningful in the present limit. In t
exponential regime of long-time evolution, the result~30!
gives an expression of the form

^nur̂~ t !un&5exp~2Gt !~11«!, ~35!

where« is positive and the decay rate is

G5
g

2 S 12A12S 8nV2

g2 D D
5

2nV2

g
1

4n2V4

g3
1

16n3V6

g5
1O~V8!, ~36!

which is always positive and implies decay. Thus we fi
that when the condition~28! is satisfied, the solution is both
physically meaningful and asymptotically correct. Howev
because the condition depends on the initial state, it w
eventually be violated for some value ofn and thus the so-
lution is not acceptable for an arbitrary initial state.

VI. CONCLUSION

We have discussed the introduction of finite-memory
fects in a system dynamics ensuing from the elimination o
reservoir. By choosing the simplest example of a damp
harmonic oscillator and an exponentially decaying memo
we have shown that blatantly nonphysical behavior emerg
Only in the Markovian limit, can we claim that the descri
tion produces sensible and reliable results. Hence we c
clude that such models cannot be utilized with confidence
8-4
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more complicated situations, where the physical con
quences are harder to survey.

The objection may be raised that our conclusions foll
from an oversimplified model, and that they are not gene
enough to constitute a universally applicable warning aga
models with memory. We, on the other hand, believe this
to be so; the fact that even a simple and physically fu
understood situation produces nonsensical results is inde
serious warning.

We may try to survey the origin of the nonphysical fe
tures. The relation~27! tells us that the bandwidth of th
reservoir is less than the rate of change of the system du
the reservoir coupling. The reservoir cannot respond
enough to follow the evolution induced by the interactio
This is just the limit when the Markovian behavior is e
pected to break down, but it is also seen to be the limit wh
the simple introduction of memory effects becomes unph
cal. We can understand this, because our simple mode~1!
introduces the memory as a passive effect. The Markov
limit is the one where all influence the system imposes on
reservoir is lost in its vastness without feeding any eff
back. When memory is introduced, the influence on the
ervoir undergoes its dynamical evolution, and its effect ba
on the system is to be modified by this. The passive mo
we have introduced fails to do this, and the unphysical f
tures may be seen to derive from this fact. This statem
however, does not suggest any way to amend the situa
m

,

y
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no systematic corrections to the Markovian limit can be d
rived from the explanation.

We know that an exact elimination of the reservoir va
ables can be performed for simple cases@28#. In the Markov-
ian limit, this gives superficially simple results, which how
ever have been shown to be flawed as they stand@29#. The
reason seems to be that linear-response theory require
physically sensible fluctuation-dissipation theorem to ho
but this is not universally compatible with the mathematic
requirements on an acceptable Lindblad operator. Rem
ably enough, the rotating-wave approximation seems to
rect the situation and give a consistent damping behavior
the harmonic oscillator@9#.

We have shown that even the mathematicaly reliable
numerically stable Lindblad-operator form leads to instab
ties when memory effects are added arbitrarily. We know t
there exists an exact memory kernel, but this is usually
identifiable. In applications it thus has to be replaced
physically motivated approximations. We have no univer
criteria to judge when this is mathematically safe. This pa
analyses such a case in order to find out the hazards that
be inherent in the approach.

The main conclusion of this paper is a warning against
use of approximate models with memory and a challenge
develop systematic corrections to Markovian time evolut
in physical systems.
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