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Hazards of reservoir memory
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We add memory effects to the master equation describing a harmonic oscillator embedded in a reservaoir.
Solving the time evolution exactly, we show that the model is sensible only in the Markovian limit. Thus we
issue a warning against indiscriminate introduction of memory effects in master equations and call for a
systematic method to obtain corrections to Markovian time evolution.
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[. INTRODUCTION the system evolution to depend only on the instantaneous
state of the system. In physics this is called a Markovian
The introduction of irreversible equations from basic behavior, even if its exact mathematical meaning is some-
physical principles has posed a challenging and illuminatingvhat obscure. The validity conditions for general master
problem for a long time. When quantum theory arose, thisequations are discussed by Fdiig
problem acquired new actuality, and Pauli seems to have In this paper we want to draw the attention to the fact that
been the first to present such a master equation for irrevershe two assumptions cannot be considered independent; we
ible time evolution[1]. cannot indiscriminately assume that the reservoir carries
Later the problem of magnetic induction of the nuclearmemory of its interaction and at the same time remains un-
spin (nuclear magnetic resonanaequired a foundation for affected by the interaction. We do this by introduceudhoc
the phenomenological equation introduced by Bloch. Sucimemory effects into the standard Lindblad form of the
derivations were soon provided by Wangsness and Blath damped harmonic oscillat¢8]. We can then solve the time
and later by Redfield3]. The phenomenological equations evolution exactly and show that the result violates physically
assumed that the time evolution would be determined solelyeasonable conditions. This we take to mean that one cannot
by the instantaneous state of the system; this is termed Masimply add memory effects to dissipative behavior and retain
kovian evolution in physics literature. The microscopic deri-the physical sense of the equations. We have, however, no
vations, however showed that this derives from assumptionsuggestion how to improve on the Markovian limit, which
about the correlation time scales of the reservoirs to whiclseems to give reasonable results in most cases. There are
the spin couples. It is far from evident that the time evolutioncases when even this can lead to problems, for a review
has the assumed Markovian property. Thus the interestonsult[9].
turned to more general approaches to the relaxation behavior In perturbative derivations it is often found that the ensu-
of a system of interest embedded in another one serving asiag master equation is not of the Lindblad form. In fact, there
reservoir. are cases where the physically well-justified fluctuation-
When a physical system is put into contact with a reserdissipation theorem is not compatible with this form. This
voir, the reservoir degrees of freedom can be eliminated exdoes not guarantee that the density matrix retains its positiv-
actly to produce a master equation that formally ascribes aity during the time evolution. There are indications, see Refs.
time evolution to the degrees of freedom of the system 0f10,11], that this affects only the initial time evolution. How-
interest[4—6]. This result, however, is only formal; the so- ever, when approximative methods, e.g., numerical ap-
lution of the equation still requires the solution of the full proaches, are used, this type of instability makes the proce-
problem of coupled system-reservoir dynamics. To achievelure dangerous and often nonapplicable. A time-evolution
real irreversible time evolution, one needs to apply furthemgenerator with unstable eigenelements, will always tend to
approximations, which eliminate the reversible, short timeamplify small errors and disqualify all approximate ap-
evolution and push all recurrences beyond the time scalgsroaches.
under investigations. Two such assumptions are the weak- Here we address the problem of a reservoir with memory
field and the short-memory approximations, and conseand damping times not much longer than the periods of the
qguently the derivations of the master equations are said to b&ecular motion induced by the Hamiltonian. Such systems
carried out in the Born-Markov limit. are found in laser-excited molecular-dynamic experiments.
The weak-interaction approximation asserts that we neetllere the Markovian approximation is not acceptable. A phe-
treat the system-reservoir interaction in second order of pemomenological way to introduce damping with memory is to
turbation theory only. Thus the reservoir is taken to pursuaise an environment consisting of Brownian oscillafdra],
its own time evolution without regard to the much smallerbut this method rapidly becomes unwieldy to apply in com-
system coupled to it. This assumption is inherent in the venputations. Thus we would like to use our physical intuition to
naming of the reservoir. It is, however, also assumed to readd memory effects, but the present work shows that this
spond instantly, so that we do not need to consider the posannot be carried out indiscriminately. We start by an opera-
sible delay in its action on the system of interest; this causetor of the Lindblad form; this is expected to give stable evo-
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lution for all times. By adding a physically reasonable delay We assume the memory kernel to be of second order in
function, we show that the benevolent behavior of the Lind-the couplingV as follows
blad form is destroyed. To amend this we would need a cri-

terion analogous to the Lindblad one for master equations K(t—t")=VZk(t—t'); (€)
with memory. As far as we know, such results have not been ] ) )
formulated. if k(t) is replaced by & function 6(yt), the ordinary Ma-

In order to solve the problem, we apply the formalism offovian result emerges. The paramejerefers to the band-
a damping basis introduced by Briegel and Endlé&] and  Width of the reservoir spectrum. . _
elaborated in some detail by the present autfidd. They Equation(1) assumes that we look at the time eyoluuon
also give the eigenoperators for a sgirsystem based on ©OVer some exﬁended llnterval; the very short times dlsplz;y th.e
Pauli operators. This case was earlier noted also in[R6f. details pf the |nteract|qn. We also assume that the coupl_lng is
The spectrum of the Lindblad operator is discussed from &/€ak, i.e.,V—0, but in such a way that the scaled time
more mathematical point of view in Ref16]. variable

The use of eigenoperators for the Lindblad evolution al- ~
lows an exact solution of the problem with memory, and =V 4
looking at specific initial conditions we can show that non-
physical behavior emerges. Not all cases display such beha
ior; in particular, the Markovian limit emerges essentially
correctly. The fact that basic physical requirements may be
violated proves that the approach is flawed, and dooms all a5 -
results derived from this type of approach to be unreliable. 9 _ lim f”V K(t’)Lf)(T—Vzt’)dt’

{;_emains finite. Long ago, van Hoy&7] pointed out that this
Is the limit in which irreversible behavior emerges.
In terms of this variable, Eq1) becomes

We can even pinpoint the source of the problem, but we have dt v-oJo
no suggestion how to amend it.

In Sec. Il, we introduce the master equation with memory
effects added and show how the conventional Markovian re-
sult follows. Section Il summarizes the formal results we
need to derive our solutions to the master equation wittwhich is the ordinary Markovian limit.
memory effects retained. If we want to evaluate the corrections to the limit, we

Section IV presents the general solution and by particumight try to utilize the expansion
larizing it to a simple initial state we can see by inspection
that the result violates obvious physical requirements. Thus . Z (VALK
we conclude that no reliable results can be obtained from p(T-Vi)=> ki
equations of the type we have introduced. We also see what k=0 '
i:/ondmon leads to the unphysmal behawor{ and show in Secl’his retains the Markovian character of the equation, but at

that when these conditions do not prevail, we can obtain : . . a7 .

e expense of the introduction of higher derivatives in the

physically acceptable behavior compatible with Markowandensity operator. This is known to be a dangerous route,

evolution. Finally, Sec. VI discusses the results and the en\ivhich in the case of radiation damping causes the well-
suing problematic situation. ping

known “run-away” solutiong[18]. It seems to us, that either

one goes to the Markovian limit or alternatively the full

Il. THE MARKOVIAN LIMIT OF RESERVOIR problem needs to be solved. We will approach this in the
INTERACTIONS following, but first we need to summarize the tools devel-

We assume that elimination of a reservoir has lead to th@P€d in our earlier papgd].
master equation of a type

Lp(1), (5)

f:K(t’)dt’

d“p(t)
dt |

(6)

1. SUMMARY OF FORMAL RESULTS
dl’;(t) ! ’ ~yr ’ ! ’ ~ ’ ’
“at =f0K(t_t )Lp(t")dt =IOK(t )Lp(t—t")dt’, In this section we present the formal eigenelements of the
1) Lindblad operato(2) satisfying

wherep(t) is the density operator of the system of interest LA=NA, . @)

and the Lindblad operator is defined by These operators have been proved to form a complete set of

A pnmnp mgan Aage operators in which to expand the density operator, a damping
Lp=2apa'—a'ap—pa'a. (2 basis[13].
The operators are found to be labeled by two nonnegative

The form assumes the reservoir to be at zero temperature bmtegers{m I} and are given by

our argument is not affected by this. We also omit the unitar))n
time evolution deriving from the Hamiltonian; this has no

. o m I / T
effect on our argument. For a free-oscillator Hamiltonian it Al _ DT :
Am nZO( D n'(n+1)! ) (n+1]. (8)

only implies that we work in a rotating frame. (m=n)!
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where |n) is the ordinary oscillator eigenstate. The corre-

_ 1
sponding eigenvalue has the form p(s)=

(0)=2 STK(s) (2m+1)

sk’ &

I — _
A=~ (2m+1), © X (pmiBmt priAn ). (18

which guarantees the decay of the system towards the uniqu}g . . .
ground state It we assume the simplest possible memory function

. K(t—t")=V2exp — y|t—t']), 19
A%=10) (0. (10 (t—t") p—yt=t']) (19
then we obtain the Laplace transform
The eigenvalue$9) have earlier been obtained for the case
of laser cooling19], Sec. VD. — v?
We can also define a complete set of adjoint operators K(s)= sty (20)

B! T by requiring that

The poles of the expressidd8) are then at the positions

Tr(BlmTAln;,):(S”/ 5mm’! (11) y vy 2 v
s:—Eii\/Vz(Zm-i—l)—(g) =-S5 =iQm]).

(21
. (D™ S [[ni(n+)! 1 , _
| _ = =
Bn= ! 2 T TR [n) (n+1]. We further introduce the notatidd (m)=Q(m,l =0). When

n=m these singularities are utilized, the Laplace transfqir®)
(12 canbe inverted8] to give

giving

In terms of these operators we can expand the density o Tt
operator as p(t)=pochAo+ mE:l exp — 7)pm0A%k cog Q(m)t]
p=3 3 mpmAnt plAl), (13) v S S exd - 1
=0 i<h + ZQ(m)sw[Q(m)t] +mE:0 ;1 ex 5
where the parameter ~ Y
L X meAm{ COS{Q(m,l)t]+ m
7I|=1_§5|0 (14

XsinQ(m,)t] +h.C.}. (22

is introduced to take care of the fact that
R R Here we have, in particular,
An= (AT, (15 )
poo=1:  AS=|0)(0]. (23)
It also follows that the imaginary part of evepy,, does not
enter the expansion and hence we may choose these elemehkty small values ofm,|} the frequencie$)(m,l) are imagi-
real. The coefficients are given by nary when

~Tr(B! T/ 16 7

Pmi m P) (16) V2<Z’ (24)
These results were earlier obtained by Briegel and Englert

[]_3], who have also used them to discuss a Variety of probbut for larger values they become real; the solution written

lems in cavity QED[20—26. Here we want to utilize the down above holds for all cases.

formalism to derive the solution of the memory-function ~When the solution is described by damped oscillations,

master equatiofl) the result derived above contains clearly unphysical features.
This is most easily seen if we assume the initial density
IV. SOLUTION OF THE NON-MARKOVIAN EVOLUTION matrix to be in a pure number stgi€0)=|n)(n| when the

initial state is given by(see Ref[14])
In order to obtain the solution to the master equatibn

we evaluate its Laplace transform to (=1)"n!

o - Pmi= i (n—m)1 90 (m=n). (25
sp(s) = p(0)=K(s) L p(s) 17
Introducing this into the solution and calculating the prob-
with the solution ability of remaining in the statgn) we find
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- A A - 2nV? 2n\V?
<n|p(t)|n)=pn0<n|Aﬂ|n)exi{—?)[cos{ﬂ(n)t] <n|p(t)|n>=ex;{— t (l+ . ) (31)
Y
+ Lsir{ﬂ(n)t]} It is easy to verify that this is the correct Markovian decay
2Q(n) rate of the problem, because the master equation is in this
1t y limit
:ex%—?){coiﬂ(n)t]wL—ZQ(n) 4 v
JiP= 7[ZapaT—aTap—paTa], (32
XSif‘[Q(I’I)t]]. (26)
which gives for the initial statén)(n|, the equation
It is obvious that this result is meaningless, because it will d . 2
take negative values for real frequencieén). Thus when- &<n|p(t)|n>= - (n|p(t)|n) (33
ever Y
2 with the solution(31) except for the shifted initial state. The
2nv2>7’Z 27) full result (30) has the physically correct short-time behavior
(n|p(t)|n)=1-—nV22+0(t%). (34)

we obtain negative probabilities. This result appears, because
then the effective coupling to the reservqinV exceeds the This satisfies the initial time evolution with a smooth onset
width of the reservoir spectruny. And for all values ofV  of the deviation from the correct initial value. The fact that
and vy, there are some values above which this occurs, the long-time exponential behavior needs to be corrected for
making the whole procedure dangerous and unreliable. Thuke initial nonexponential onset of the evolution is well
we conclude that the basic equati¢h is fundamentally known from Brownian-motion-type models, and it has been
flawed and should not be used. A more sophisticated apgermed an “initial slip” by Haake and Lewenstej27].
proach to memory effects is needed, but we do not know Even if we do not retain terms only to lowest ordeM#,
how to device such an approach without solving the fullthe behavior remains meaningful in the present limit. In the
problem of system-reservoir coupling. exponential regime of long-time evolution, the res(80)
gives an expression of the form
V. THE PERTURBATIVE LIMIT ~
(nlp()n)=exp(—T't)(1+e), (35
In the case that we have

, wheree is positive and the decay rate is
Y
2l
2nVes —, (28 8nV2
1-1/1-

‘)/2

4 Y
=3

we can expand the root in ER1) as
2nV2  4n?v* 16n3Ve
= + +

Q(n)=—-iQ(n) 5 7 e +0(V8), (36)
_Y -~ 8nV? which is always positive and implies decay. Thus we find
2 e that when the conditioK28) is satisfied, the solution is both
physically meaningful and asymptotically correct. However,
y 2nV?  4n2v4 because the condition depends on the initial state, it will
5 T_ TJF T (29) eventually be violated for some value nfand thus the so-

lution is not acceptable for an arbitrary initial state.

Introducing this into the solutiof26) we obtain
VI. CONCLUSION

- yt ~ We have discussed the introduction of finite-memory ef-
(n|p(t)|n>:ex;{ - ?) [ costi(n)t] fects in a system dynamics ensuing from the elimination of a
reservoir. By choosing the simplest example of a damped
harmonic oscillator and an exponentially decaying memory,
. (300  we have shown that blatantly nonphysical behavior emerges.
Only in the Markovian limit, can we claim that the descrip-
tion produces sensible and reliable results. Hence we con-
For large times this becomes clude that such models cannot be utilized with confidence in

+ j/ sink[f)(n)t]
2Q(n)
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more complicated situations, where the physical conseno systematic corrections to the Markovian limit can be de-
guences are harder to survey. rived from the explanation.

The objection may be raised that our conclusions follow We know that an exact elimination of the reservoir vari-
from an oversimplified model, and that they are not generiables can be performed for simple cag28. In the Markov-
enough to constitute a universally applicable warning againsgn limit, this gives superficially simple results, which how-
models with memory. We, on the other hand, believe this nogyer have been shown to be flawed as they sfaell The
to be so; the fact that even a simple and physically fullyreason seems to be that linear-response theory requires the
und_erstood situation produces nonsensical results is 'ndee%ﬂysically sensible fluctuation-dissipation theorem to hold,
Serious warning. he oridin of th hvsical f but this is not universally compatible with the mathematical

We may try to survey the origin of the nonphysical fea- o irements on an acceptable Lindblad operator. Remark-

tures. The relation(27) tells us that the bandwidth of the fably enough, the rotating-wave approximation seems to cor-

reservorr 1s I_ess thaﬂ the rate of chan_ge of the system due I8ct the situation and give a consistent damping behavior for
the reservoir coupling. The reservoir cannot respond fasth . )
the harmonic oscillatof9].

enough to follow the evolution induced by the interaction. . .
This is just the limit when the Markovian behavior is ex- We have shown that even the mathematicaly reliable and
rpumerically stable Lindblad-operator form leads to instabili-

pected to break down, but it is also seen to be the limit whe L
the simple introduction of memory effects becomes unphysi:"es when memory effects are added arbitrarily. We know that

cal. We can understand this, because our simple mdgel f[here_ _exists an exa(_:t memory kernel, but this is usually not
introduces the memory as a passive effect. The Markoviafflentifiable. In applications it thus has to be replaced by
limit is the one where all influence the system imposes on th@hysically motivated approximations. We have no universal
reservoir is lost in its vastness without feeding any effectcriteria to judge when this is mathematically safe. This paper
back. When memory is introduced, the influence on the resanalyses such a case in order to find out the hazards that may
ervoir undergoes its dynamical evolution, and its effect backe inherent in the approach.

on the system is to be modified by this. The passive model The main conclusion of this paper is a warning against the
we have introduced fails to do this, and the unphysical feause of approximate models with memory and a challenge to
tures may be seen to derive from this fact. This statementjevelop systematic corrections to Markovian time evolution
however, does not suggest any way to amend the situatiom physical systems.

[1] W. Pauli, in Probleme der Modernen Physik, Festschrift zum[15] S. Stenholm and D. ter Haar, Physi@amsterdam 32, 1361

60. Geburtstage A. Sommerfelaslited by P. DebyéHirzel, (1966.
Leipzig, 1928. [16] F. Cipriani, F. Fagnola, and J. M. Lindsay, Commun. Math.
[2] R. K. Wangsness and F. Bloch, Phys. R&9, 728(1953. Phys.210, 85 (2000.
[3] A. G. Redfield, IBM J. Res. De\, 19 (1957). [17] L. van Hove, PhysicdAmsterdam 21, 517 (1959; 23, 441
[4] R. Zwanzig, J. Chem. Phy83, 1338(1960. (1957.
[5] U. Fano, Phys. Rew31, 259(1963. [18] J. D. Jackson(Classical ElectrodynamicéWiley, New York,
[6] R. Zwanzig, inLectures in Theoretical Physics (Bouldeed- 1975, Sec. 17.
ited by W. E. Britten(Wiley, New York, 1963, Vol. IIl, p. 106. [19] S. Stenholm, Rev. Mod. Phy58, 699 (1986.
[7] U. Fano, Phys. Re®6, 869 (1954). [20] C. Ginzel, H.-J. Briegel, U. Martini, B.-G. Englert, and A.
[8] S. M. Barnett and P. M. Radmor&jethods in Theoretical Schenzle, Phys. Rev. A8, 732(1993.
Quantum OpticgOxford University Press, Oxford, England, [21] H.-J. Briegel, B.-G. Englert, C. Ginzel, and A. Schenzle, Phys.
1997). Rev. A49, 5019(1994).
[9] S. Stenholm, iMQuantum Dynamics of Simple Systeedited [22] B.-G. Englert, M. Naraschewski, and A. Schenzle, Phys. Rev.
by G.-L. Oppo, S. M. Barnett, E. Riis, and M. Wilkinsg- A 50, 2667 (1994).
stitute of Physics, Bristol, 1996p. 267. [23] H.-J. Briegel and B.-G. Englert, Phys. Revb& 2361(1995.
[10] S. Gnutzmann and F. Haake, Z. Phys. B: Condens. Ma@&r  [24] H.-J. Briegel, G. M. Meyer, and B.-G. Englert, Europhys. Lett.
263(1996. 33, 515(1996.
[11] W. J. Munro and C. W. Gardiner, Phys. Rev. 58, 2633 [25] H.-J. Briegel, G. M. Meyer, and B.-G. Englert, Phys. Rev. A
(1996. 53, 1143(1996.
[12] S. Mukamel, Principles of Nonlinear Optical Spectroscopy [26] G. M. Meyer and H.-J. Briegel, Phys. Rev.58, 3210(1998.
(Oxford University Press, Oxford, England, 1995 [27] F. Haake and M. Lewenstein, Phys. Rev28, 3606(1983.

[13] H.-J. Briegel and B.-G. Englert, Phys. Rev4& 3311(1993. [28] A. O. Caldeira and A. J. Leggett, Physical®1, 587 (1983.
[14] S. M. Barnett and S. Stenholm, J. Mod. Of¥, 2869(2000. [29] V. Ambegaokar, Ber. Bunsenges. Phys. Ch86).400(1991).

033808-5



