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Instabilities in a two-component, species-conserving condensate
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We consider a system of two species of bosons of equal mass, with interadf¢jx$) and U*(|x|) for
bosons of the same and different species, respectively. We present a rigorous proof valid when the Hamiltonian
does not include a species-switching term showing that, Wi&ix|)>U?(|x|), the ground state is fully
“polarized” (consists of atoms of one kind onlyin the unpolarized phase the low-energy excitation spectrum
corresponds to two linearly dispersing modes that are even and odd under species exchange. The polarization
instability is signaled by the vanishing of the velocity of the odd modes.
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The experimental observation of Bose-Einstein condensa- k2
tion (BEC) in dilute atomic systemfl] has triggered a very K=2> ok Y (K) a(K) + P (K) gy (K) 1, (2
intense theoretical activity2]. Attention has broadened to .
include condensates with internal degrees of freedom, or 1
multispecies BEC, which were realized for trapped rubidium — | A3y ABvuriar ]y —
[3] and sodium[4]. Early theoretical analysis af-species UatUp 2[ X &y Ux=yDlpa()pa(y)
condensates focuses on the largdimit for Hamiltonians

invariant underU(m) transformationg5], superfluid-helim +pu(X)p(Y)], 3
mixtures[6], and spin-polarized hydrogéid]. In the context

of BEC much of the theoretical attention concentrates on — | @By eByiX(lx—

spinor condensatd8] in which the internal degrees of free- Uab f XAy V(X =YD pa(x)p(y), @

dom correspond to the different Zeeman states of a particular

hyperfine manifold such as tHfe= 1 manifold in sodium. In In the above equatioris is the kinetic term and the terms
these cases the two-body interaction is invariant under rotgU,+U,) and U,, correspond to the interaction between
tion in species space. On the other hand, for rubidium on&osons of the same and different species, respectively. The
has two nondegenerate internal states corresponding to twaperatorsy;(x) destroy a boson of specie¢i =a,b) at po-
different manifolds, and the two-body interaction is not in-sition x, and obey the following commutation relations
variant under S(2) rotations in species spad®]. The [d/f(x),d/j(x’)]z i jO(x—x"). Also, pi(x) = wiT(x) i (X) and
ground state and excitation spectrum of a two-spe@esnd  i;(k) =V~ Y2 d3x exp(k - X) ;(x) with V the total volume.

b) condensate of this kind was studied in mean field in Ref. Using a variational argument we will prove that, for po-
[10], where it was shown that the quasiparticle energy canentials satisfyingJ*(|x|)>U?(|x|), the ground state of the
become imaginary, signaling an instability when the interspeabove Hamiltonian is completely polarized. By “polarized”
cies repulsior)* is larger than the intraspecies repulsldft e mean that either of the two situations is realiz&d;)

This kind of treatment follows—as do the majority of theo- =0,y =N; or (R)=N,(R,)=0, with N the total particle
retical approaches to BEC—the gross-Pitaevskii mean-field A 3
equation[11]. On the other hand, rigorous resuilts for BEC Number andN;=Jd"xp;(x).

(and many-body problems in generare scarce and at the We note th:?\t, since the masses are the same fo.r both spe-
same time useful in providing control for approximate solu-Ci€S: the kinetic term of Hamiltoniag#) commutes with the
tions. With this motivation, in this paper we consider a two- 11Sing” operator defined as

species system of interacting bosons, and show rigorously

that the instability mentioned_ above corresponds to the ten- OR:f d3x:,//;(x) 'r//b(X)Ez l/’;(k)‘//b(k) (5)
dency of the system to “polarize,” the true ground state con- K

sisting of only one species of bosons whgfi>U?2. We also

discuss the low-energy excitation spectrum and show that thehich conserves the total number of particles but converts
instability is signaled by a divergence of the “compressibil- particles of typeb into particles of typea. More specifically,

ity” associated with exchanging particles from one species tdor the case of different masses for each species we have that

the other at fixed total particle number. [ Og,K]=(1/2my—1/2my) =, K2yl (K) ¢ (K).
The Hamiltonian for our two-species systemdndb) of We have in mind the alkali atoms, which have a hard core
bosons of equal mass is given by i =1) interaction, meaning that the exact wave functions vanish
when the coordinates of two atoms of either species coin-
H=K+Ug+Up+U,p, (1 Ccide

Since the Hamiltonian conserves the particle number for
each species, we can start with the normalized ground-state
with wave function|Wy(N,,Ny)) in the subspace dfi,(N,) par-
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ticles of speciesi(b). The unpolarized situation corresponds
to N,=N,=N/2. Now let us consider the normalized varia-
tional wave functiorf¥,(N,+ Np,0)) obtained by the action
of the rising operator oft¥ (N, ,N,)) N times,

|‘Pv(Na+ Nb10)>=

(OR)™|Wo(Na,Np)).  (6)

1
IN!

Note that¥, represents a completely polarized wave
function, with particles of speciea only. Since[Ogr,K]
=0, we have

<\I’v(Na+ Nb,O)l K|\Pv(Na+ Nb!0)>
=(Wo(Na,Np)|[K[Po(Na,Np)), (7)

meaning that the completely polarized variational wave func
tion and the ground state of the subspallg ,(N,) have the
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NaNp

d"Xe [ Wo(X) 2 X [U/ TR UK/
©

|

We see that when the interactions satisfy*(|x|)
>U?(|x|) for all values ofx, AE is a sum of negative terms.
In general the potentials have a repulsive short-range term
and a long-range attractive tail. The condition for validity of
our proof is that there are no “crossings” of the potentials
U*(|x|) and U3(|x|) as a function of the coordinate. The
simplest approximation will be to take the attractive compo-
nents of both potentials as equivale(f the form
—Cg/R% and differing short-range components. This de-
pendence is consistent with calculations for ultracold Na col-
lisions[12].
- Since the completely polarized variational wave function
has lower energy than the true ground state of the partially

same expectation value of the kinetic energy. We stress thfolarized subspace, the gound state will be completely polar-

the function| W ,(N,+ N,,0)) as defined in Eq(6) is normal-
ized only because the exact wave functiphg(N,,Np))

vanishes when any two coordinates coincide. Otherwise wi

ized. It is also evident that the proof is also valid in the case
with different intraspecies interactiots?(x) andU®(x). As
long asU*> U?,U", the ground state is polarized with par-

would have to worry about permutation factors wheneveticles of type a [b] when U?(]x|)<U°(|x]) [(U®(|x|)

coordinates coincide.

<U?(|x|)]. This means that the differenca)®(|x|)

In order to compute the change in the potential energy we- U*(|x|) plays the role of a “symmetry-breaking field.”

write the expectation values &f* andU* as an integral over
all the multiparticle configurations=(I",,I",,) with coordi-
nates{X}FE{xl,Fa, XN T XL ’XNb'Fb}' For each
configurationl” let us regard the particle coordinateé} as
nodes of a graph. There aig,(N,—1)/2 andN,(N,—1)/2
edges connecting pairs of particles of speaeand b, re-
spectively, and\N,N, edges connecting a particles of differ-
ent species. The contribution to the expectation valu
of the potential energyJy=(U,)+(Up)+{Uy,) from this
configuration is a function of the length of the edges
of the graph, which can be classified in three sets

{71, -/ n,-verh {/?,rb’ e /ab(mb—l)/zrb}’
and{/3%, ... ’/ﬁ'ZNbT}’ where/ 7. is one of the possible
Iengths|xklra—x|,ra|, etc. The potential energy is therefore
given by

Na(Na—1)/2

Uo= [ a™xilwoxol 3 Ut

Np(Np—1)/2 NaNp

+ U3 )+ 2 U/ } ®)

=1

with W(Xt) the ground-state wave function in first quanti-
zation.

In the variational wave function all the edges of type
andab are both changed to edges of typeTherefore the

contribution to the potential energy of each edge of configu-

ration I" changes according tdJ a(/ﬁrb)eua(/'f”rb),
UX(~/2%) —U3(/2D). If we call U, the expectation value of
the potential energy in the variational wave function, &jpd
the variational wave function, we obtain thAE=E,—E,
=U,— Uy is given by

Also, note that the above proof is also valid in the presence
of an external potentidl.(x) that is equal for both species,
meaning that the polarization transition also occurs for
trapped atoms.

We note that the bosonic nature of the particles is crucial
for establishing our rigorous proof. If the atomsndb were
fermions, the variational argument ceases to be valid: since

he Hamiltonian conserves species, atoms belonging to dif-
erent species can be considered distinguishable, and the
wave function does not change sign if we exchange any two
atomsa andb following a pathP. If we convert an atona to

an atomb, the wave function has to change sign under the
particle exchange following the same pdhimplying that

we have to introduce an additional node in the wave func-
tion. Formally this means tha®g| ¥ o(N,,Np))=0 for fer-
mions.

We now discuss the low-energy excitation spectrum,
which in the symmetric caseU@=UP) can be computed
using longitudinal sum rulelsl3,14). In the unpolarized case
the excitations correspond to two phonon branches with
wave functions pp =(p2*pP)|0). The operators p\
=V~ Y21 d3xekXp, ; are the Fourier transforms of the den-
sity operators for each species. In other words, since the
Hamiltonian is invariant under exchange of species, the ex-
citations are either even or odd in the species index.

The excitation energies are given by

(0lp=Hpic|0)
(0lpZpic|0)

(10

.
O

where we have shifted the origin of energi¢$s-tH—Eg;
H|0)=0). We will first show that (O|pZ,Hp,|0)
=nk?/2m, with n=N/V. Consider
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1 and ey(n,n_) the ground-state energy per unit volume writ-

<O|PikHPE|0>:§<0|{[P3k Hlpg+p2il R HI}O) ten as a function of the total density=n,+n, and the den-

(12) sity differencen_=n,—n,. Since in the long wave-length
limit the sum rules are exhausted by the above quasiparticles
[15] [Iimkﬁosi(k,w)zsi(k) S(w—wy)], the sum rules

(13) and (16) imply that two branches have energieg
N ot =v .k, with the corresponding structure factors given by
X a() (At K) ()~ Y@ K) S*(k)=k/2mv .. . The low-energy spectrum therefore con-
X () (q —K)hp(q')]|0), (12 sists of two linear modes, corresponding to modulations of
the density with the two species “in phageVen modgand
with Eq. (12) following from the direct evaluation of the <«out of phase”(odd mode, respectively. The odd mode has
commutators in Eq(11). Since the ground state is symmetric tota| densityn constant in all space, and in the spinor lan-
under species exchange, and since the operdn:ca%d &  guage(where the species index is treated as a spin dg2-
commute, Eq. (12) implies that (0[pZHpel0)  responds to a spin density wave. We can see qualitatively
:<0|PEKHP?|Q>:0- On the other hand, if in Eq12) we  that the odd modes have lower frequency by perturbing
replace b with a we obtain the usual sum rule around low values of the interspecies interaction. EGr
(0] p2Hpi|0) = (A*k*2m)V (0| ql(q) ¥a(0)[0), which  —( the even and odd modes are degenerate. If we tuk#on
implies that for th+e even and odd modes the exagtm rule  the odd mode will have lower expectation val(lé*) since
applies[15]: (0|pZ,Hp, |0)=nk?/2m, or, which is equiva- locally (pa(X)pp(X)}+>(pa(X)pp(X))_ . This is reasonable

ﬁ2
_ trar
——Zm% k-(0l[¥3(a' k)

lent to as long as the repulsive componentufis dominant. If we
2 now increaseU” we will reach the instability discussed
nf dowS™ (k,w)= om (13)  above: wherJ*=U? the ground state is multiply degenerate

with all the polarized wave functions¥ [ (N—M)/2,(N
with +M)/2]) (M=—N, ... ,N) having the same energy. This

implies thatv ~ — 0, sinceey(n,n_) = €¢(n,0). Therefore the
. R a2 instability towards a polarized state is signaled by a vanish-
S (k,w)=n ZV (v]p|0)[“0(w—w,) (14 ing velocity of the odd modes, or, equivalently, by a diver-
gence of the “compressibility”fc_oc[azoso(n,n_)/anz_]‘1
the dynamic structure factor of the even and odd modes. Thassociated with changes in species polarization at constant

excitation energies are therefore given by particle number.
Finally, we note that our proof is not valid in the presence
. k? of a field coupling the two species of the form
@k :Wi(k)’ (15 R A3X[ 41 (X) p(X) +H.c.]. This term correspondén the

spinor languageto a magnetic field tilted with respect to the
with  S*(k)=fdwS"(k,w) the corresponding static- direction of the otherwise fully polarized system. If the sys-
structure factor. tem is prepared in the unstable regime with fixdandNy
We can establish compressibility sum rules ®t(k,0)  and no mechanism of interconversion is allowed, our proof
by considering the response of the system to an externdidicates that the system will separate into two phases. This
perturbationH’, =\/23,(px +p=,) that couples to either kind of phase separation was discusse_d _vvi_thin_ the Bogoliu-
the even or odd modes. We follow the analysis of R&fi] ~ bov model by Nepomnyaschjil6]. An infinitesimal cou-
and assume that in the long wave-length limit the perturbed!ing with a heat bath that allows the system to equilibrate
wave function is locally the same as the unperturbed ondill equate the chemical potentials of both species and in-

with a modulated densitgeven or odd for each mogleve ~ duce a transition to a state of one species only. The precise
obtain kinetics and the time scale to reach equilibrium are beyond

the scope of our paper.
S (k,w) 1 WhenR+#0 the solutions will not be completely polar-
f do = : (16)  ized even in the case whek#*>U?, but the ground state
will be “rotated” with respect to the quantization axis in
species space. The detailed mean-field analysis of this prob-
lem is the subject of a forthcoming pagddr7].

lim
k—0 ® 2ml)i
with

2
n an,n,), (17) We thank Chris Search, Paul Berman, and Paul Julienne
m an< for very valuable discussions.
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