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Instabilities in a two-component, species-conserving condensate

A. G. Rojo
Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 24 November 2000; published 14 August 2001!

We consider a system of two species of bosons of equal mass, with interactionsUa(uxu) and Ux(uxu) for
bosons of the same and different species, respectively. We present a rigorous proof valid when the Hamiltonian
does not include a species-switching term showing that, whenUx(uxu).Ua(uxu), the ground state is fully
‘‘polarized’’ ~consists of atoms of one kind only!. In the unpolarized phase the low-energy excitation spectrum
corresponds to two linearly dispersing modes that are even and odd under species exchange. The polarization
instability is signaled by the vanishing of the velocity of the odd modes.
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The experimental observation of Bose-Einstein conden
tion ~BEC! in dilute atomic systems@1# has triggered a very
intense theoretical activity@2#. Attention has broadened t
include condensates with internal degrees of freedom
multispecies BEC, which were realized for trapped rubidiu
@3# and sodium@4#. Early theoretical analysis ofm-species
condensates focuses on the largem limit for Hamiltonians
invariant underU(m) transformations@5#, superfluid-helim
mixtures@6#, and spin-polarized hydrogen@7#. In the context
of BEC much of the theoretical attention concentrates
spinor condensates@8# in which the internal degrees of free
dom correspond to the different Zeeman states of a partic
hyperfine manifold such as thef 51 manifold in sodium. In
these cases the two-body interaction is invariant under r
tion in species space. On the other hand, for rubidium
has two nondegenerate internal states corresponding to
different manifolds, and the two-body interaction is not i
variant under SU~2! rotations in species space@9#. The
ground state and excitation spectrum of a two-species (a and
b) condensate of this kind was studied in mean field in R
@10#, where it was shown that the quasiparticle energy
become imaginary, signaling an instability when the inters
cies repulsionUx is larger than the intraspecies repulsionUa.
This kind of treatment follows—as do the majority of the
retical approaches to BEC—the gross-Pitaevskii mean-fi
equation@11#. On the other hand, rigorous results for BE
~and many-body problems in general! are scarce and at th
same time useful in providing control for approximate so
tions. With this motivation, in this paper we consider a tw
species system of interacting bosons, and show rigoro
that the instability mentioned above corresponds to the
dency of the system to ‘‘polarize,’’ the true ground state co
sisting of only one species of bosons whenUx.Ua. We also
discuss the low-energy excitation spectrum and show tha
instability is signaled by a divergence of the ‘‘compressib
ity’’ associated with exchanging particles from one species
the other at fixed total particle number.

The Hamiltonian for our two-species system (a andb) of
bosons of equal massm is given by (\51)

H5K1Ua1Ub1Uab , ~1!

with
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@ca

†~k!ca~k!1cb
†~k!cb~k!#, ~2!

Ua1Ub5
1

2E d3x d3yUa~ ux2yu!@ra~x!ra~y!

1rb~x!rb~y!#, ~3!

Uab5E d3xd3yUx~ ux2yu!ra~x!rb~y!. ~4!

In the above equationsK is the kinetic term and the term
(Ua1Ub) and Uab correspond to the interaction betwee
bosons of the same and different species, respectively.
operatorsc i(x) destroy a boson of speciesi ( i 5a,b) at po-
sition x, and obey the following commutation relation
@c i

†(x),c j (x8)#5d i , jd(x2x8). Also, r i(x)5c i
†(x)c i(x) and

c i(k)5V21/2*d3x exp(ik•x)c i(x) with V the total volume.
Using a variational argument we will prove that, for p

tentials satisfyingUx(uxu).Ua(uxu), the ground state of the
above Hamiltonian is completely polarized. By ‘‘polarized
we mean that either of the two situations is realized:^N̂a&
50,̂ N̂b&5N; or ^N̂a&5N,^N̂b&50, with N the total particle
number andN̂i5*d3xr i(x).

We note that, since the masses are the same for both
cies, the kinetic term of Hamiltonian~4! commutes with the
‘‘rising’’ operator defined as

OR5E d3xca
†~x!cb~x![(

k
ca

†~k!cb~k! ~5!

which conserves the total number of particles but conve
particles of typeb into particles of typea. More specifically,
for the case of different masses for each species we have
@OR ,K#5(1/2mb21/2ma)(kk

2ca
†(k)cb(k).

We have in mind the alkali atoms, which have a hard c
interaction, meaning that the exact wave functions van
when the coordinates of two atoms of either species co
cide.

Since the Hamiltonian conserves the particle number
each species, we can start with the normalized ground-s
wave functionuC0(Na ,Nb)& in the subspace ofNa(Nb) par-
©2001 The American Physical Society08-1
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ticles of speciesa(b). The unpolarized situation correspon
to Na5Nb5N/2. Now let us consider the normalized vari
tional wave functionuCv(Na1Nb,0)& obtained by the action
of the rising operator onuC0(Na ,Nb)& Nb times,

uCv~Na1Nb,0!&5
1

ANb!
~OR!NbuC0~Na ,Nb!&. ~6!

Note that Cv represents a completely polarized wa
function, with particles of speciesa only. Since @OR ,K#
50, we have

^Cv~Na1Nb,0!uKuCv~Na1Nb,0!&

5^C0~Na ,Nb!uKuC0~Na ,Nb!&, ~7!

meaning that the completely polarized variational wave fu
tion and the ground state of the subspace (Na ,Nb) have the
same expectation value of the kinetic energy. We stress
the functionuCv(Na1Nb,0)& as defined in Eq.~6! is normal-
ized only because the exact wave functionuC0(Na ,Nb)&
vanishes when any two coordinates coincide. Otherwise
would have to worry about permutation factors whene
coordinates coincide.

In order to compute the change in the potential energy
write the expectation values ofUa andUx as an integral over
all the multiparticle configurationsG[(Ga ,Gb) with coordi-
nates$X%G[$x1,Ga

, . . . ,xNa ,Ga
;x1,Gb

, . . . ,xNb ,Gb
%. For each

configurationG let us regard the particle coordinates$X%G as
nodes of a graph. There areNa(Na21)/2 andNb(Nb21)/2
edges connecting pairs of particles of speciesa and b, re-
spectively, andNaNb edges connecting a particles of diffe
ent species. The contribution to the expectation va
of the potential energyU05^Ua&1^Ub&1^Uab& from this
configuration is a function of the length of the edg
of the graph, which can be classified in three se
$l 1,Ga

a , . . . ,l Na(Na21)/2,Ga

a %, $l 1,Gb

b , . . . ,l Nb(Nb21)/2,Gb

b %,

and$l 1,G
ab , . . . ,l NaNb ,G

ab %, wherel i ,Ga

a is one of the possible

lengthsuxk,Ga
2xl ,Ga

u, etc. The potential energy is therefo
given by

U05E d3NXGuC0~XG!u2F (
i 51

Na(Na21)/2

Ua~ l i ,Ga

a !

1 (
i 51

Nb(Nb21)/2

Ua~ l i ,Gb

b !1 (
i 51

NaNb

Ux~ l i ,G
ab !G , ~8!

with C0(XG) the ground-state wave function in first quan
zation.

In the variational wave function all the edges of typeb
and ab are both changed to edges of typea. Therefore the
contribution to the potential energy of each edge of confi
ration G changes according toUa(l i ,Gb

b )→Ua(l i ,Gb

b ),

Ux(l i ,G
ab )→Ua(l i ,G

ab ). If we call Uv the expectation value o
the potential energy in the variational wave function, andEv
the variational wave function, we obtain thatDE5Ev2E0
5Uv2U0 is given by
03360
-

at

e
r

e

e

:

-

DE5E dNXGuC0~XG!u2 (
i 51

NaNb

@Ua~ l i ,G
ab !2Ux~ l i ,G

ab !#.

~9!

We see that when the interactions satisfyUx(uxu)
.Ua(uxu) for all values ofx, DE is a sum of negative terms
In general the potentials have a repulsive short-range t
and a long-range attractive tail. The condition for validity
our proof is that there are no ‘‘crossings’’ of the potentia
Ux(uxu) and Ua(uxu) as a function of the coordinate. Th
simplest approximation will be to take the attractive comp
nents of both potentials as equivalent~of the form
2C6 /R6) and differing short-range components. This d
pendence is consistent with calculations for ultracold Na c
lisions @12#.

Since the completely polarized variational wave functi
has lower energy than the true ground state of the parti
polarized subspace, the gound state will be completely po
ized. It is also evident that the proof is also valid in the ca
with different intraspecies interactionsUa(x) andUb(x). As
long asUx.Ua,Ub, the ground state is polarized with pa
ticles of type a @b# when Ua(uxu),Ub(uxu) @(Ub(uxu)
,Ua(uxu)#. This means that the differenceUb(uxu)
2Ua(uxu) plays the role of a ‘‘symmetry-breaking field.
Also, note that the above proof is also valid in the prese
of an external potentialUe(x) that is equal for both species
meaning that the polarization transition also occurs
trapped atoms.

We note that the bosonic nature of the particles is cru
for establishing our rigorous proof. If the atomsa andb were
fermions, the variational argument ceases to be valid: si
the Hamiltonian conserves species, atoms belonging to
ferent species can be considered distinguishable, and
wave function does not change sign if we exchange any
atomsa andb following a pathP. If we convert an atoma to
an atomb, the wave function has to change sign under
particle exchange following the same pathP, implying that
we have to introduce an additional node in the wave fu
tion. Formally this means thatORuC0(Na ,Nb)&50 for fer-
mions.

We now discuss the low-energy excitation spectru
which in the symmetric case (Ua5Ub) can be computed
using longitudinal sum rules@13,14#. In the unpolarized case
the excitations correspond to two phonon branches w
wave functions rk

65(rk
a6rk

b)u0&. The operators rk
i

5V21/2*d3xeik•xrx,i are the Fourier transforms of the de
sity operators for each species. In other words, since
Hamiltonian is invariant under exchange of species, the
citations are either even or odd in the species index.

The excitation energies are given by

vk
65

^0urÀk
6 Hrk

6u0&

^0urÀk
6 rk

6u0&
, ~10!

where we have shifted the origin of energies (H→H2E0 ;
Hu0&50). We will first show that ^0urÀk

6 Hrk
6u0&

5nk2/2m, with n5N/V. Consider
8-2
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^0urÀk
a Hrk

bu0&5
1

2
^0u$@rÀk

a ,H#rk
b1rÀk

a @rk
b ,H#%u0&

~11!

5
\2

2m (
q,q8

k•q^0u@ca
†~q82k!

3ca~q8!cb
†~q1k!cb~q!2ca

†~q1k!

3ca~q!cb
†~q82k!cb~q8!#u0&, ~12!

with Eq. ~12! following from the direct evaluation of the
commutators in Eq.~11!. Since the ground state is symmetr
under species exchange, and since the operatorsb and a
commute, Eq. ~12! implies that ^0urÀk

a Hrk
bu0&

5^0urÀk
b Hrk

au0&50. On the other hand, if in Eq.~12! we
replace b with a we obtain the usual sum rul
^0urÀk

a Hrk
au0&5(\2k2/2m)V21^0u(qca

†(q)ca(q)u0&, which
implies that for the even and odd modes the exact-f sum rule
applies@15#: ^0urÀk

6 Hrk
6u0&5nk2/2m, or, which is equiva-

lent to

nE dvvS6~k,v!5
nk2

2m
, ~13!

with

S6~k,v!5n21(
n

u^nurk
6u0&u2d~v2vn! ~14!

the dynamic structure factor of the even and odd modes.
excitation energies are therefore given by

vk
65

k2

2mS6~k!
, ~15!

with S6(k)5*dvS6(k,v) the corresponding static
structure factor.

We can establish compressibility sum rules forS6(k,v)
by considering the response of the system to an exte
perturbationH68 5l/2(k(rk

61r2k
6 ) that couples to eithe

the even or odd modes. We follow the analysis of Ref.@14#
and assume that in the long wave-length limit the pertur
wave function is locally the same as the unperturbed
with a modulated density~even or odd for each mode!. We
obtain

lim
k→0

E dv
S6~k,v!

v
5

1

2mv6
2

, ~16!

with

v1
2 5

n

m

]2e0~n,n2!

]n2 , v2
2 5

n

m

]2e0~n,n2!

]n2
2 , ~17!
03360
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ande0(n,n2) the ground-state energy per unit volume wr
ten as a function of the total densityn5na1nb and the den-
sity differencen25na2nb . Since in the long wave-length
limit the sum rules are exhausted by the above quasiparti
@15# @ lim

k→0
S6(k,v)5S6(k)d(v2vk

6)#, the sum rules

~13! and ~16! imply that two branches have energiesvk
6

5v6k, with the corresponding structure factors given
S6(k)5k/2mv6 . The low-energy spectrum therefore co
sists of two linear modes, corresponding to modulations
the density with the two species ‘‘in phase’’~even mode! and
‘‘out of phase’’~odd mode!, respectively. The odd mode ha
total densityn constant in all space, and in the spinor la
guage~where the species index is treated as a spin 1/2! cor-
responds to a spin density wave. We can see qualitativ
that the odd modes have lower frequency by perturb
around low values of the interspecies interaction. ForUx

50 the even and odd modes are degenerate. If we turn onUx

the odd mode will have lower expectation value^Ux& since
locally ^ra(x)rb(x)&1.^ra(x)rb(x)&2 . This is reasonable
as long as the repulsive component ofUx is dominant. If we
now increaseUx we will reach the instability discusse
above: whenUx5Ua the ground state is multiply degenera
with all the polarized wave functionsuC0@(N2M )/2,(N
1M )/2#& (M52N, . . . ,N) having the same energy. Thi
implies thatv2→0, sincee0(n,n2)5e0(n,0). Therefore the
instability towards a polarized state is signaled by a vani
ing velocity of the odd modes, or, equivalently, by a dive
gence of the ‘‘compressibility’’k2}@]2e0(n,n2)/]n2

2 #21

associated with changes in species polarization at cons
particle number.

Finally, we note that our proof is not valid in the presen
of a field coupling the two species of the form
R*d3x@ca

†(x)cb(x)1H.c.#. This term corresponds~in the
spinor language! to a magnetic field tilted with respect to th
direction of the otherwise fully polarized system. If the sy
tem is prepared in the unstable regime with fixedNa andNb
and no mechanism of interconversion is allowed, our pr
indicates that the system will separate into two phases. T
kind of phase separation was discussed within the Bogo
bov model by Nepomnyaschii@16#. An infinitesimal cou-
pling with a heat bath that allows the system to equilibr
will equate the chemical potentials of both species and
duce a transition to a state of one species only. The pre
kinetics and the time scale to reach equilibrium are beyo
the scope of our paper.

When RÞ0 the solutions will not be completely polar
ized even in the case whereUx.Ua, but the ground state
will be ‘‘rotated’’ with respect to the quantization axis i
species space. The detailed mean-field analysis of this p
lem is the subject of a forthcoming paper@17#.

We thank Chris Search, Paul Berman, and Paul Julie
for very valuable discussions.
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