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Off-axis vortices in trapped Bose-condensed gases: Angular momentum and frequency splittin

Montserrat Guilleumas and Robert Graham
Fachbereich Physik, Universita¨t Gesamthochschule Essen, 45117 Essen, Germany
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We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at
zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi
regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative
approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the
collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these
results with predictions that would be obtained by the application of a simple sum-rule approach, previously
found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for
off-centered vortices.
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I. INTRODUCTION

Vortices in trapped Bose-condensed gases have rec
been observed at JILA@1# and at ENS@2,3#. At ENS they
have been formed by stirring the condensate with a focu
laser beam with an angular frequencyV. Experimentally
there exists a threshold of the angular frequency of the
ring beam (Vc) to nucleate a single vortex. WhenV;Vc ,
one vortex is created at the stable position at the center o
trap. But atV.Vc , and depending on the frequency of th
stirring beam, it is possible to create configurations with d
ferent number of vortices forming vortex arrays that a
stable compared to a single vortex with correspondin
larger circulation.

The presence of vortices in trapped condensates has
revealed by time-of-flight analysis@1,2# and recently, by ex-
citing the quadrupole oscillations of a stirred Bose-Einst
condensate@3# and observing their frequency splitting. Wit
this method it has also been possible to measure the an
momentum induced by the rotation of the trap. Direct m
surement of the angular momentum is difficult in atom
gases, since most of the diagnostic techniques provide in
mation on the density profiles. As expected, for stirring f
quencies belowVc , no angular momentum is observed@3#,
since no vortex can be nucleated, and just aboveVc , the
angular momentum has a jump of;\, which indicates the
presence of a stable singly quantized vortex at the cente
the trap. However, for higher stirring frequencies, ana priori
unexpected behavior of the angular momentum has been
perimentally found@3#: for V.Vc , when vortex arrays are
nucleated, the measured angular momentum does not s
any jump of size\ as a new singly quantized vortex is nucl
ated, as is, e.g., observed for the corresponding experim
in superfluid helium@4#; instead it is a smooth and increasin
function of V. We shall see that this is not in contradictio
with the quantization of the circulation of a vortex, but it is
consequence of the nucleation of off-axis vortices that form
vortex array.

The purpose of the present paper is to provide a deta
analysis of the dependence of the kinetic energy and
angular momentum on the distance of an off-centered vo
with respect to the symmetry axis. We will generalize t
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results to vortex arrays to give a physical insight of t
smooth behavior of the angular momentum found exp
mentally.

In an axially symmetric trap the axial component of a
gular momentum~m! is a good quantum number, and in th
absence of vortices, the collective excitations of the cond
sate are degenerate with respect to the sign ofm. However,
the presence of vortices breaks this degeneracy, and ele
tary excitations carrying opposite angular momentum are
longer degenerate. The frequency shifts of the quadrup
oscillations due to the presence of a vortex on the symm
axis of the trap, have been calculated in Ref.@5# using a
sum-rule approach. Analytic results for the energy splitti
are obtained in Ref.@5# in the Thomas-Fermi~TF! limit for
the quadrupole modes and have been used in Ref.@3# to
measure the angular momentum of the condensate. Ge
expressions based on the hydrodynamic approach for the
ergy splitting due to a centered vortex have been obtaine
Refs.@6,7# within perturbation theory.

In this paper we consider off-centered quantized vor
lines in large cylindrically confined condensates at zero te
perature, and therefore, no dissipation mechanism@8# is
taken into account. We calculate the kinetic energy and
angular momentum with respect to the symmetry axis@9,10#
of an array of vortex lines in a trapped Bose-condensed
Using the perturbative approach proposed in Ref.@7#, and
assuming the Thomas-Fermi limit, we generalize the anal
expressions for the energy splitting of the low-lying colle
tive modes to consider the effect of the distance of o
centered vortices with respect to the symmetry axis. We a
compare with the results obtained by a direct extension
the sum-rule approach to off-center vortices, but find t
such an extension, at least in the direct version exami
here, fails.

II. VORTEX STATES

We consider a weakly interacting Bose-condensed
confined in a harmonic trapVext(r ) at zero temperature. Th
condensate wave function can be written in terms of its d
sity r(r )5uC(r )u2 and phaseS(r ) by

C~r !5Ar~r !exp@ iS~r !#. ~1!
©2001 The American Physical Society07-1
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The number of atoms in the condensate is*dr uCu25N, and
the superfluid velocity is given byv5(\/M )“S, whereM is
the atomic mass. The ground-state wave function in the
sence of vortices has a spatially constant phase and ther
zero velocity, but when a quantized vortex is present,
phase and the velocity field of the ground state have to
determined according to the boundary conditions of the s
tem.

A. Condensate density

The ground-state wave functionC(r ) is a stationary so-
lution of the Gross-Pitaevskii equation

S 2
\2¹2

2M
1Vext~r !1guC~r !u2DC~r !5mC~r !, ~2!

where the coupling constantg is given by thes-wave scat-
tering lengtha throughg54p\2a/M , andm is the chemical
potential fixed by the normalization condition of the grou
state.

Nonrotating experimental traps@1–3# have axial symme-
try, with different radial (v') and axial (vz) trapping fre-
quencies, whose ratio defines the anisotropy parametel
5vz /v' . So far, vortex arrays have been produced at E
@2,3# in a highly anisotropic cigar-shaped trap~quasicylindri-
cally symmetric! with l;0.05. Thus, for simplicity, we con
sider an idealized cylindrical trap that is uniform in thez
direction (vz50) and has a harmonic confining potential
the radial direction of the form

Vext~r'!5 1
2 Mv'

2 r'
2 , ~3!

with r'
2 5x21y2. The harmonic trap frequencyv' provides

a typical length scale for the systema'5(\/Mv')1/2.
We consider the Thomas-Fermi regime@11#, valid for

large condensates with positive scattering length, where
kinetic pressure can be neglected compared to the intera
energy density. The ground-state density of the condens
in the absence of vortices, is given by

r0~r'!5
m

g S 12
r'

2

R'
2 D ~4!

for r'<R' and r0(r')50 elsewhere. The Thomas-Ferm
radius of the cylindrical condensate isR'5(2m/Mv'

2 )1/2.
The density is defined in the interval2Rz<z<Rz , where
2Rz is the length of the cylinder. In the cylindrical geometr
the validity of the Thomas-Fermi approximation for th
ground state is guaranteed by the conditionNa/(2Rz)
5N'a@1, or equivalentlym@\v' , whereN'5N/(2Rz)
is the number of atoms per unit length@12#. From Eq.~4!,

N'5E
0

R'

r02pr'dr'5
m

g

pR'
2

2
. ~5!

When a quantized vortex is present at the positionr'0, the
density of the system drops to zero at the center of the vo
core whose size is determined by the healing lengthj. In the
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limit of large systems it can be approximated byj
5@8pr0(r'0)a#21/2, where r0(r'0) is the density of the
condensate at the position of the vortex core but in the
sence of vorticity. For a centered vortex, Eq.~4! yields
r0(0)5m/g, and the corresponding healing lengthj0
5j(0) can be rewritten as

j0

R'

5S a'

R'
D 2

, ~6!

implying the following set of TF inequalities for the lengt
scalesj0!a'!R' . Analogously, from Eq.~4! the local
healing length@12# is

j~r'0 /R'!5
j0

A12r'0
2 /R'

2
. ~7!

Within the TF approximation, analytical expressions for t
density of a vortex state have been obtained for a cente
vortex @6,7# and for a straight off-axis vortex line@13#. How-
ever, in weighted spatial averages of quantities varying o
on the scaleR' , the density of a vortex state may be r
placed by the density of the vortex-free state, the correcti
being only of order (j/R')25(a' /R')4 @7#, which is negli-
gible.

B. Velocity field

We consider states having a quantized vortex line alo
thez axis and all the atoms flowing around it with quantiz
circulation. The property of a single-valued wave functi
leads to the quantization of the circulation around an a
trary closed loop that encloses the vortex core

K5 R v•dl5
\

M R “S•dl5
hk

M
, ~8!

where the integer numberk is the quantum of circulation
For sufficiently large frequenciesV.Vc , a single vortex
line with an integer quantum numberk.1 can, in principle,
appear, but this state is unstable and fragments into a vo
array formed byk vortices, each with a unit of circulation
and positionr'0i (1< i<k) relative to the symmetry axis.

We will not consider large arrays of vortex lines, where
average vortex density can be defined@4,8,9#, but small ones,
corresponding to the experimental region@2,3# of multiple
vortices (k<5). Large vortex arrays may enter the ‘‘turbu
lent’’ region found experimentally. For small vortex array
the density of the system can be approximated by the den
of a vortex-free condensate, because vortices rotating in
same direction experience an effective repulsive interac
@4#, and the inhomogeneities due to the well-separated vo
cores are negligible in the condensate density (j!R').

Let us assume a generic quantized vortex line paralle
the z axis at the positionr'0 and with quantized circulation
k. Then, from Eq.~8!, “3v5(hk/M )d(r'2r'0) ẑ, whereẑ
is the unit vector in thez direction, and the superfluid is
irrotational everywhere except for the vortex core atr'

5r'0, where the density vanishes.
7-2
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For a positively oriented vortex in an infinite, uniform
system, the velocity then is

vuni~r'!5
\k

M

ẑ3~r'2r'0!

ur'2r'0u2
. ~9!

In particular, for a centered vortex only the tangential co
ponent carries nonvanishing atomic flux, andv
5\k/(Mr')ŵ, whereŵ is the unit vector in the tangentia
direction in cylindrical coordinates (r' ,w,z). Equation~9!
once again shows that a cutoff of the order of the local he
ing lengthj for the distanceur'2r'0u is needed, because a
distances smaller thanA2j, the velocity ~9! surpasses the
local velocity of soundcs(r')5Aguc(r')u2/M .

For a confined system, the velocity field is affected by
boundary of the system and by the spatially varying dens
and has to fulfill the following physical conditions:~i! the
normal velocity has to vanish at the boundary, and~ii ! the
condition for stationary flow“•(rv)50 has to be satisfied
It is well known from the rotating bucket experiment in s
perfluid helium @9,10,12# that for an homogeneous syste
confined in a cylinder of radiusR' , the normal velocity
vanishes at the boundary by introducing an oppositely
ented image vortex atr'15(R' /r'0)2r'0. The resulting ve-
locity field is

v0~r'!5
\k

M

ẑ3~r'2r'0!

ur'2r'0u2
2

\k

M

ẑ3~r'2r'1!

ur'2r'1u2
. ~10!

If the system has a density gradient, the condition~ii ! for
stationary flow is fulfilled by introducing a small correctio
to the velocity, which can be neglected when the den
varies over a larger scale than the healing length@12#. Thus,
in the Thomas-Fermi limit, the velocity field can be appro
mated asv.v0.

A vortex atr'0 is influenced by the velocity-field induce
by its mirror vortex. If r'0 approaches the boundary, th
velocity diverges, signaling the break-down of the Thom
Fermi approximation. A suitable lower cutoff for the distan
from the boundary,jboundary5R'(j0/2R')2/3, is implied by
restricting the velocities induced by the mirror vortices
the local velocity of sound.

From Eq.~10! one can see that the contribution of a vo
tex ~vortex and image vortex! is additive. Therefore, the ve
locity field corresponding to a vortex array formed byk
singly quantized vortices atr'0i with i 51, . . . ,k, is then

v~r'!5(
i 51

k

vi~r'! ~11!

with

vi~r'!5S \

M

ẑ3~r'2r'0i !

ur'2r'0i u2
2

\

M

ẑ3~r'2r'1i !

ur'2r'1i u2
D , ~12!

wherer'1i5(R' /r'0i)
2r'0i is the position of the vortex im-

age corresponding to thei-vortex.
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III. KINETIC ENERGY

In the Thomas-Fermi limit the dominant part of the exce
energy of a vortex state over the ground state without a v
tex, is given by the kinetic energy of the velocity field@6#. It
is obtained from Eqs.~11! and ~12! in the form

Ekin5(
i 51

k

Ei1(
i 51

k

(
j 51

i 21

Ei j ~13!

with

Ei5
M

2 E2Rz

Rz
dzE

0

R'

dr'r'r0~r' ,z!

3E
0

2p

dwvi
2~r' ,z,w!, ~14!

Ei j 5ME
2Rz

Rz
dzE

0

R'

dr'r'r0~r' ,z!

3E
0

2p

dwvi~r' ,z,w!•vj~r' ,z,w!, ~15!

whereEi is the self-energy of thei vortex andEi j the binary
interaction energy between a couple of vorticesi and j. Let
us define the dimensionless quantities Ẽi

5Ei /(2N\2/MR'
2 ), and analogouslyẼi j and Ẽkin . For an

array of vortex lines along thez axis in the idealized cylin-
drical trap described by Eqs.~3! and~4!, the integrals in Eqs.
~14! and ~15! can be performed and we obtain after som
calculations,1 defining the rescaled distance vector of t
vortex line from thez axis xi5r'0i /R' ,

Ẽi5
12xi

4

2xi
2

ln~12xi
2!1~12xi

2!lnS R'

A2j0
D , ~16!

Ẽi j 5~12xi•xj !lnS 1

~xi2xj !
2D

1S 11
12xi

22xj
22xi

2xj
2

2xi
2xj

2
xi•xj D

3 ln~11xi
2xj

222xi•xj !

2
12xi

22xj
21xi

2xj
2

xi
2xj

2
uxi3xj uarctanS uxi3xj u

12xi•xj
D .

~17!

1It is useful for this purpose to adopt a complex representation
the transverse vectorr'→z5x1 iy and of the velocity field of a
vortex atz0 in the formvj→v j5(\/M ) iz/(r'

2 2zz0* ) with complex
conjugatev j* 52(\/M ) i /(z2z0), and to perform the integral ove
w at a fixed value ofr'5uzu as a complex contour-integration mak
ing use of the residuum theorem.
7-3
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Here the healing lengthA2j0 /R' is used as a cutoff. It is o
interest to remark that forR' andj0 fixed, bothEi andEi j

are proportional toN. Expression~16! for the kinetic energy
of a vortex in the presence of its image vortex~self-energy!,
agrees with the result presented by Fetter@14# for one vortex.
The kinetic energy of an array of vortices without their im
ages was calculated by Castin and Dum@15#. Due to the
presence of image vortices, introduced to ensure the van
ing of the normal component of the velocity at the bounda
our result differs from that in Ref.@15#, but it is only slightly
more complicated.

In Fig. 1 we plot the kinetic energy of symmetrical arra
of singly quantized 1, 2, 3, and 4 vortices, analogous to
experimental configurations of Ref.@3#, as a function of the
normalized distance from the trap axis. The kinetic ene
goes to zero as the distance of the vortices from the boun
of the condensate goes to zero. This is a consequence o
boundary condition on the surface, where each vortex m
its image and thus is annihilated in the process. As m
tioned in the preceding section, a lower cutoff must be i
posed on the distance of the vortex line from the bound
This is tantamount to restrictingxi by xi,12(j0/2R')2/3.
The energy is maximal at the center of the trap, where
pression~17! diverges logarithmically unless a cutoff on th
minimal distance of the vortex cores from thez axis is im-
posed, whose size is again taken asA2j0 /R' . Figure 1
makes it clear that a single vortex or a vortex array must
created at the boundary, where the energy required to se
the necessary velocity field, becomes vanishingly sm
However, as we have already mentioned, the description
vortex close to the boundary, is outside the scope of
present approach, because there the Thomas-Fermi app
mation, on which it is based, breaks down.

FIG. 1. Dimensionless energy of symmetrical vortex arrays o
2, 3, and 4 singly quantized vortices~from bottom curve to top
curve, respectively! as a function of the rescaled distance of t
vortex lines from thez axis. The condensate hasN52.53105 atoms
of 87Rb with R'53.8 mm, which correspond to the experiment
parameters of Ref.@3#
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IV. ANGULAR MOMENTUM

Let us recall the expression of the angular momentum o
vortex state in an imperfect Bose gas@9,10#. We consider an
axially symmetric condensate and are interested in the an
lar momentum around its symmetry axis defined along thz
axis. For a single vortex at a distancer'0 from the symmetry
axis, the angular momentum of the system with respect to
z axis must be calculated by integrating over the whole v
ume of the system:

^L &5E d3rr~r !~r3v!, ~18!

wherev is the superfluid velocity around the vortex andr(r )
is the condensate density. As discussed already, we can
glect in the TF limit the effect of the vortex on the densi
profile and taker(r ).r0(r ). Then, using cylindrical coordi-
nates around thez axis, we haver0(r )5r0(r' ,z). In the
present geometry,L is parallel to the axis of rotation and it
magnitude is given by

^Lz&5E d3rr0~r' ,z!ẑ•~r3v!. ~19!

The triple scalar product can be written asẑ•(r3v)
5r'vw , wherevw is the tangential component of the velo
ity. Assuming that the boundaries of the system are given
2Rz<z<Rz , 0<r'<R' , then

^Lz&5E
2Rz

Rz
dzE

0

R'

r0~r' ,z!r'dr'E
0

2p

vwr'dw. ~20!

It can be easily seen that, for fixedr' and z, the angular
integral is a line integral around a closed path, which cor
sponds to the quantization of the circulation~8!. Therefore,
the angular integral in Eq.~20! will contribute only when the
closed contour encloses the vortex core. That is,

E
0

2p

vwr'dw5 R
r' ,z

v•dl5
\k

m
2pu~r'2r'0!, ~21!

whereu(r'2r'0) is the step function. Remarkably, the d
tailed form of the velocity field around the vortex drops o
in this expression. In particular, the mirror vortex contribu
ing in Eq. ~12!, does not contribute to this integral at a
because it is positioned outside the condensate and ther
never enclosed by the integration contour in Eq.~21!. This
leads to the following result for the angular momentum:

^Lz&5E
2Rz

Rz
dzE

r'0

R'2p\k

m
r'r0~r' ,z!dr' . ~22!

Due to the step function, only the part of the Bose cond
sate atr'>r'0, that is outside the smallest circle around t

,

7-4
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z axis, which still encloses the vortex line, contributes to
total angular momentum and therefore to the moment of
ertia of the condensate.2

We will consider a large cylindrical condensate, whi
provides a good approximation for very elongated cig
shaped traps in the Thomas-Fermi regime. Inserting in
~22! the Thomas-Fermi density~4!, it follows that the angu-
lar momentum per particle is

^ l z&5
^Lz&
N

5\kF12S r'0

R'
D 2G2

. ~23!

For fixedR' , it is independent ofN. It is worth stressing tha
Eq. ~23! is the dominant term of the angular momentu
where corrections of order (j/R')25(a' /R')4 are ne-
glected. Equation~23! shows that even though the circulatio
~8! around each vortex is quantized in units of\/M , the
angular momentum per particle around thez axis is not quan-
tized in units of\, in general.

SinceL is linear in the velocity field, contributions from
additional vortices are additive and the angular momen
per particle~23! can be generalized to a vortex array ofk
singly quantized vortices atr'0i ( i 51 . . .k) as

^ l z&5\(
i 51

k F12S r'0i

R'
D 2G2

. ~24!

It is interesting to note, that for a singly quantized vort
(k51), ^ l z& is equal to\ only when the vortex line is cen
tered at thez axis. Otherwisê l z& is strictly less than\ and
decreases when the position of the vortex core moves a
from the center and approaches the boundary of the con
sate. When the vortex core reaches the edge of the con
sate (r'0.R') then ^ l z&.0. Analogously, whenk singly
quantized vortices are present, the angular momentum
particle is lower thank\, unless all cores are along thez axis
@3#. But this configuration corresponds to one vortex w
circulation k\/M , which is unstable whenk.1 @17#, and
breaks into an array ofk vortices all with unit quantization
\/M .

Let us now calculate the angular momentum per part
in the simplest vortex arrays in cylindrical traps rotating w
angular velocityV. They are created if the array is permitte
to reach a state of relative equilibrium minimizing the ener

2The expression~22! can be generalized to take into account
more realistic three-dimensional vortex line. Real axially symme
traps are not cylindrical, but provide also a longitudinal harmo
confinement (vzÞ0). It induces an inhomogeneity and a dens
gradient of the condensate along the longitudinal direction that
affect the velocity. The resulting vortex line must then deform alo
its length@15,16# and meet the boundary of the condensate at a r
angle in order to satisfy the physical conditions for the veloc
field. Therefore, the distance vector of a quantized vortex from
z axis in general depends onz: r'05r'0(z). By taking as a limit of
radial integrationr'0(z) in Eq. ~22!, the angular momentum expres
sion ~22! allows us to take into account such more complica
vortex configurations.
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Ekin~V!5Ekin~0!2V^Lz&. ~25!

HereEkin(0) is the kinetic energy~13! of the vortex array in
the nonrotating trap. As before we consider symmetrical
rays of 1–4 vortices. In Fig. 2 the kinetic energy~25! is
plotted against the common normalized distance of the v
tices from thez axis, for an angular velocityV/2p540 Hz,
which is, in our idealized two-dimensional trap and with
the Thomas-Fermi approximation, the critical frequen
where the two-vortex array first becomes stable. The co
sponding critical frequencies for the symmetrical 1, 3, an
vortex arrays are, respectivelyVc533.6,43.3, and 46 Hz
where we have chosen for the sake of concreteness, the
ues ofM ,R' according to the experiment described in R
@3#. As expected, the critical frequency is larger for lar
vortex arrays. These values are different from and mu
lower than the measured critical rotation frequencies
which vortices or vortex arrays are first observed to app
because of the existence of energy barriers, which mus
overcome before the relative energy minima, formed by
vortex states, can be reached.

It can be seen that in the rotating trap, for sufficiently hi
values ofV, a single vortex is in relative or absolute equ
librium only at the rotation axis, as is, of course well-know
while the symmetrical arrays of vortices have equilibria
finite distances from thez axis, which increase with the num
ber of vortices because of their mutual repulsion. In Fig
we plot for the same vortex arrays at the corresponding e
librium configuration, the average angular momentum
particle as a function ofV. With increasingV, the equilib-
rium positions of the vortices in the arrays move towards
z axis and the average angular momentum therefore
creases. For a single vortex, since the stable position is a
trap center independently of the rotation frequency, the
gular momentum is always 1\.

c
c

ll
g
t

e

d

FIG. 2. Dimensionless energy of symmetrical vortex arrays o
2, 3, and 4 singly quantized vortices~from bottom curve to top
curve, respectively! in a trap rotating with frequencyV/2p540 Hz,
as a function of the rescaled distance of the vortex lines from thz
axis. The condensate hasN52.53105 atoms of 87Rb with R'

53.8 mm, which correspond to the experimental parameters
Ref. @3#.
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Let us remark here that, in the absence of dissipat
vortices created experimentally in rotating traps, in gene
need not correspond to minima of Eq.~25!. A dissipative
mechanism must be active on the scale of the time-inte
during which the rotation-frequency is switched on for th
positions to be able to relax to an energy minimum. After
rotation is switched off, the same mechanism will tend
lead to a relaxation ofr'0 towards the minimum at the
boundaryr'05R' of the energy~13!, which increases the
observed value ofr'0. In the experiments on vortices in trap
reported so far, dissipation seems to play a negligible role
the absence of such a mechanism, however, the vortices
distancesr'0 outside the energy minimum cannot relax b
experience a force and a corresponding Magnus deflec
already in the rotating trap which leads to a rotation of
array of equidistant vortices around thez axis, even in the
frame rotating with the trap. Vortices that are created at
boundary and have not yet reached their equilibrium dista
from the z axis, will then be observed to have an angu
momentum, which is smaller than the equilibrium val
shown in Fig. 3. From this point of view, the fact that the fir
vortex, which is formed, isalways observed to be in the
center, seems to indicate that the first vortex is, in fact,
created by the motion of a vortex line from the boundary
the center, but by a different mechanism, like, e.g., the c
densation of collective excitations withl 51 into a vortex
state withl 51.

Let us now turn to a discussion of some related exp
mental results, which have been obtained in Refs.@2,3#.
From the transverse absorption images of Ref.@2#, we esti-
mate the angular momentum corresponding to the exp
mental configurations of the condensate with 1 up to 4 v
tices. We proceed as in Ref.@3#, first we obtain a qualitative
measure of the ratio between the distance of each vo
from the center and the average radius of the expanding
densate, by measuring them in the portrayed images of
condensate after the time-of-flight. During the expansion

FIG. 3. Average angular momentum per particle of symmetr
arrays of 1, 2, 3, and 4 vortices~from bottom curve to top curve
respectively! in relative equilibrium in a trap rotating with fre
quencyV/2p as a function ofV. The values ofM andR' are the
same as in Figs. 1 and 2.
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transverse lengths scale by the same factor@2,3#, therefore
the relation between the distance of a vortex from the ce
and the average radius of the condensate (r'0 /R') will be
the same as before the expansion. From the transverse
sorption images it can also be seen, that vortex arrays h
uniform spatial distribution and thus, vortices are equidist
from the center, as has been assumed in Figs. 2 and 3. T
with the values ofr'0 /R' extracted from Ref.@2# by using
Eq. ~24!, the following estimates for the angular momentu
per particle are obtained:^ l z&/\51,1.33,1.36, and 1.38, cor
responding to the experimental configurations with 1, 2,
and 4 vortices, respectively. These values of^ l z&/\ are
smaller than the equilibrium values given in Fig. 3, whi
seems to indicate that the relative radii of the vortex arr
measured in Ref.@2# are larger than their calculated equilib
rium values in the rotating trap. It would be nice to compa
in detail the values of̂l z&/\ we calculate from the images i
Ref. @2# with those measured directly in@3#. Unfortunately,
however, the experimental parameters are slightly differ
in Refs.@2# and@3#, which makes a comparison difficult. Bu
it is worth stressing that the calculated result for the angu
momentum qualitatively agrees with the experimental data
Ref. @3#, after the first jump of\ corresponding to the nucle
ation of a singly quantized vortex centered in the trap,
angular momentum increases continuously when the num
of vortices in the array increases@18# ~which is equivalent to
having increased the stirring frequency! without presenting
other jumps of order\.

V. ENERGY SPLITTING

The presence of a quantized vortex in a confined cond
sate breaks time-reversal symmetry, this produces a
quency shift of the modes with azimuthal quantum num
6umu, which in the absence of vortices, are degenerated.
want to calculate the frequency splitting of the low-lyin
modes in large systems due to an off-center vortex.

Theoretical calculations of the frequency shift produc
by a centered vortex have been performed within differ
approaches: a sum-rule approach@5#, a semiclassical ap
proach based on a largeN expansion@6#, a hydrodynamic
approach@7#, and a full numerical solution of the linearize
equations of motion@19#.

Current experiments in ENS@3# have excited the two
transverse quadrupole modesm562 of a quasicylindrically
symmetric condensate. Due to the presence of a vortex, t
exists a lift of degeneracy between the frequencies of th
two quadrupole modes that causes a procession of the
tem. Measuring the frequency of procession, and from
analytical expressions of the frequency shift@5#, the angular
momentum of the system is inferred.

For simplicity, we will assume a large condensate trapp
in a cylindrically symmetric trap~3!, and we will study the
energy splitting for the low-lying modes due to an off-cen
vortex at a distancer 0 from the symmetry axis. In the fol-
lowing, we shall use the perturbative approach@7,16#. ~The
perturbative result for the frequency splitting of them5
62 modes, induced by an off-centered vortex in a trap w
different symmetry from the one considered here, was

l
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ported in Ref.@20#.! Linearizing the Gross-Pitaevskii equa
tion around the condensate, using the decomposition~1! of
C in condensate density and phase, and assuming
Thomas-Fermi approximation and the long-wavelength lim
it follows in the coupled equations,

ivdr5“•~v0dr!1
\

M
“•~r0“dS!, ~26!

ivdS5v0•“dS1
g

\
dr, ~27!

wheredr anddS are small deviations from the equilibrium
values of the density and phase, respectively. Solving
~27! for dS to first order inv0 and inserting it in Eq.~26! to
eliminatedS, yields the perturbed wave equation

S v21
g

M
“•r0“ D dr52 iv“•~v0dr!

1
ig

vM
“•@r0“~v0•“dr!#.

~28!

In first-order perturbation theory, the shift of the eigenva
v2 is obtained from the expectation value of the pertur
tion, taken with the unperturbed solution of Eq.~28!, v0

2,
with v050:

v22v0
252 iv0^v0•“&1

ig

v0M
^~“•r0“ !~v0•“ !&.

~29!

The expectation value can be evaluated using the un
turbed Thomas-Fermi density~4!, if care is taken to interpre
the radial part of the space integral as a principal-value in
gral at r'5r 0, because the actual condensate density, at
position of the vortex, strictly vanishes.

Let us evaluate the expectation value for a single o
centered vortex~10! in the particular case of surface mode
for which @21#

dr5Am11

p

r'
m

R'
m11

eimw, v05Amv' , ~30!

where we takem first as positive. We obtain after some ca
culation ~and using to considerable advantage the techni
referred to in the first footnote! the following result for the
frequency shift, due to the off-centered vortex, exhibited
the surface mode with positivem

v2v05
~m11!

MR'
2 S 12

r 0
2m22

R'
2m22D . ~31!

It turns out during the calculation that the mirror-vortex a
tually makes no contribution to the frequency shift. Becau
the velocity field enters linearly, the frequency shift induc
by several vortices is additive. Replacingm by 2m is
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equivalent to invertingv0, i.e., v2v0 simply changes sign
The frequency splitting between the two frequencies~with m
and2m) is then

v12v25
2m

MR'
2 S 12

r 0
2m22

R'
2m22D . ~32!

It can be seen from Eq.~31! that there is no frequency shif
for the dipole modem51, at least not to first order inv0, i.e.,
the Kohn theorem, which predictsv(m51)5v' , is duely
respected.

The splitting of the quadrupole excitations (m52) has
been measured in the ENS experiment@3#. For this case it
follows from Eq.~32!,

v12v25
6

MR'
2 F12S r 0

R'
D 2G . ~33!

From Eq.~33!, one can see that there is a term in the f
quency shift that depends on the distance of the off-ce
vortex from the center. It means that the procession of
eigenaxis of the quadrupole mode,u̇5(v12v2)/2umu that
is measured in the ENS experiment@3#, will be slightly dif-
ferent for an off-center than for a centered vortex. And th
from this difference, the distance of the off-centered vor
can be inferred.

It is worth noting that Eq.~33! in the particular case of a
centered vortex (r 0 /R'50) does not give the same depe
dence on the trap and condensate parameters as the
obtained in Refs.@5,16# because the symmetry of the tra
considered in both calculations is different.

The preceding calculation can be extended to axial vor
modes@22# traveling along the axis of the trap with wav
numberk. For smallk, the unperturbed modes without vo
tex, to leading order in (kR')2, take the form

dr~r' ,w,z!5Am11

p F11
k2

4~m12! S r'
2 2

m11

m12
R'

2 D G
3

r'
m

R'
m11

eimwe6 ikz ~34!

with frequencies

v05Amv'S 11
k2R'

2

4m~m12!
D . ~35!

Using Eqs.~34! and ~35! in Eq. ~29!, we obtain, after the
evaluation of the expectation values to leading order
(kR')2,
7-7



a

ing
fo

le
at

e
th

s

a
tu
e
il

no

p-
de

xc
n
lto

te
n

se
g

uc-
ate

tex.
ged

ff-

di-

r-
rtex

of

nts

e

the

MONTSERRAT GUILLEUMAS AND ROBERT GRAHAM PHYSICAL REVIEW A64 033607
v12v25~v12v2!01
\k2

2Mm~m12!2 Fm21m12

14mS r 0

R'
D 2m12

22~m11!2~m12!S r 0

R'
D 2m

1~m11!~2m213m12!S r 0

R'
D 2m22G , ~36!

where (v12v2)0 is the result following from Eq.~29! to
which Eq. ~36! reduces fork50. For the special case of
centered vortexr 050, and takingm51, the result~36! re-
duces to a result derived previously in Ref.@7#.

Let us now compare these results with those follow
from an application of the sum-rule approach, developed
this problem in Ref.@5#. As is explained there, the sum-ru
approach is based on the assumption that the expect
values of the commutators of certain adequately chosen
citation operators, taken in the ground state containing
vortex, will be exhausted by the two modesv1 , v2 , whose
splitting is to be calculated. As has been shown in Ref.@5#,
this approach works very well~i.e., its basic assumption i
satisfied to the required accuracy! for the axially symmetric
case of a centered vortex, where in the Thomas-Fermi
long-wavelength limit, the result can be checked by per
bation theory@16#. However, we shall now see that, for th
case of off-centered vortices, the sum-rule approach fa
because the result of first-order perturbation theory is
reproduced.

First, we briefly recall the sum-rule approach. LetF6

5( j 51
N f 6(r j ) be the mutually adjoint operators, carrying o

posite angular momentum, which excite the collective mo
6umu, respectively. Letmp

6 be thep-energy weighted mo-
ments of the dynamic structure factor associated to the e
tation operatorsF6 , which can be written as expectatio
values of commutators between the many-body Hami
nians of the system~H! andF6 :

m1
15^0u@F2 ,@H,F1##u0&5

N\2

M
^0uu“ f 1u2u0& ~37!

m2
25^0u@@F2 ,H#,@H,F1##u0&5N^0u@ j 2 , j 1#u0&,

~38!

where u0& may be a vortex free or a vortex state, andj 6

5(\/m)“ f 6•p. Assuming that the moments are exhaus
by the modes6umu, the shift of the collective frequencies i
the TF limit can be calculated as

\~v12v2!5m2
2/m1

1 . ~39!

Applying this prescription, let us start with the transver
quadrupole modesm562. The excitation operators carryin
angular momentumm562, are

f 65~x6 iy !2. ~40!
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Evaluating the moments Eqs.~37! and ~38!, and from Eq.
~39!, the following result for the frequency shift for them
562 modes, is obtained@5#:

v12v25
2

M

^ l z&

^r'
2 &

. ~41!

Neglecting the microscopic details of the vortex core str
ture in the density profile, the square radii of the condens
can be evaluated using the TF approximation@11#. This pre-
scription can be applied to a centered- or noncentered vor
What changes in each of these configurations is the avera
value of the axial component of the angular momentum^ l z&.
Using the results obtained in the previous section, Eq.~23!,
the sum-rule result for the frequency splitting due to an o
center vortex at a distancer 0 from the symmetry axis, is

v12v25
6

MR'
2 F12S r 0

R'
D 2G2

, ~42!

where we recall that the square radius in the transverse
rection of a cylindrical condensate in the TF limit is

^r'
2 &5

R'
2

3
5

4

3
~aN'!1/2a'

2 . ~43!

The splitting~42! differs from the perturbative result~33! by
the factor@12(r 0 /R')2# and therefore systematically unde
estimates the frequency shift, except for a centered vo
r 050.

Let us try the sum-rule approach also on the calculation
the splitting of axial helical vortex modes@22# with low mul-
tipolarity and small wave numberk. The excitation operators
of the axial helical vortex modes with wave numberk and
angular distortionm561 andm562 are

f 65~x6 iy !e6 ikz, ~44!

f 65~x6 iy !2e6 ikz, ~45!

respectively. The calculation of the corresponding mome
leads to the following frequency shifts. For them561 he-
lical vortex mode,

v12v25
k2

M
^ l z&, ~46!

and form562

v12v25
2^ l z&

M ^r'
2 &

F11
k2

16
^r'

2 &G , ~47!

where we have used̂r'
4 &53/2̂ r'

2 &2. Both expressions agre
with the perturbative result for centered vorticesr 050, but
fail again to reproduce the correct first-order results for
off-center vortices.
7-8
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VI. SUMMARY

We have calculated the angular momentum of a large
lindrical condensate in the presence of an off-axis vortex
and also vortex arrays, within the Thomas-Fermi approxim
tion. In addition, the interaction energy of vortex lines in t
spatially inhomogeneous condensate has been derived fo
same case, including the effects of the image vortices cre
by the boundary condition of vanishing normal velocity. It
interesting that the image vortices do not contribute to
angular momentum even though they strongly modify
velocity field around any off-center vortex line. The kinet
energy, on the other hand, is influenced by the presenc
the image vortices.

We have seen that the contribution of a given vortex to
angular momentum per particle, decreases as it moves a
from the center of the system, which leads to a smooth
crease of the angular momentum as a new vortex appea
a large distance from the axis of rotation. We have obtai
an estimate of the angular momentum corresponding to
ferent experimentally observed vortex configurations@2#,
that qualitatively agree with the continuous behavior m
sured from experimental data@3#. Finally, we have studied
the frequency splitting of low-lying collective modes due
E

d,

64

v.
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the presence of an off-centered vortex, including axial vor
waves, using the perturbative approach@16# and also the
sum-rule approach@5#. A comparison of the results show
that the simple extension of the sum-rule approach to
axis vortices, does actually not work, i.e., the sum rules
in this case, not exhausted by the two nearly degene
modes of interest.
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Note added:Recently, we have received a copy of a r
lated work @23# reporting numerical calculations of critica
frequencies and angular momentum of vortex configurati
with different vorticity in an elongated trap. The vortice
numerically obtained in Ref.@23# are not rectilinear but with
deformed shape, and the longitudinal deformation of th
vortices is responsible for the almost continuous increas
the angular momentum with respect to the angular freque
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