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Bogoliubov inequality and Bose-Einstein condensates with repulsive and attractive interactions
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The Hohenberg theorem on the absence of Bose-Einstein conden&6Ghin homogeneous systems of
space dimensionB =<2 is based on a well-known Bogoliubov inequality. Applied to an assembly trapped in a
harmonic potential we show that the Bogoliubov inequality rules out BEC in all dimensions at finite tempera-
tures. However, this conflicting result with both theory and experiment disappears when the effect of the order
parameter is properly taken into account in the boson-field commutation relations. For a hard-sphere Bose gas
the theory is consistent with the expansion of the condensate when a positive scattering length is increased, as
well as the collapse of the condensate when the sign of the scattering length is reversed and it reaches a
minimum critical value.
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[. INTRODUCTION systems. Finally, in Sec. V alternative symmetry-breaking
methods, other than the Bogoliubov prescription, are dis-
The observation of Bose-Einstein condensatiBEC) in ~ cussed in regard to the Bogoliubov inequality.
magnetically trapped atomic gadds-3| has caused renewed
theoretical investigations into this unique phenomepdh Il. BASIC FORMALISM

uestions of a more general nature concern the space dimen- .
Q g P We consider an assembly &f bosons at temperature

sionality, the confining potential, the repulsive or attractive -
character of the atomic forces, the finite particle assembly agelqw th? BEC transition tempgratu?l’q. Th,e ”“mt?er of
it relates to the thermodynamic limit, and the continuousP@rticles in the ground statél,, is then a finite fraction of

spectrum approximation. A rigorous analysis of BEC depen]\: The system occupies B-dimensional volumeV. In
ace-dependent confining potentials the condensation also

dence upon the space dimension was first carried out by Ho*P ) , )
henberg[5]. This work applies to both noninteracting and {@kes place in coordinate space. For potentials whose do-
interacting uniform systems enclosed in a D-dimensional bon@ins are infinite we assume that this condensation allows
with periodic boundary conditions. The Hohenberg theorent€ definition of an effectivé/ such thatN/V is kept constant
states that in the thermodynamic limit BEC can occur only inl the thermodynamic limit. In the next section this volume
three dimensiong3D). It is based on an exact Bogoliubov 'S specifically defined for the case of an isotropic HAT. .
inequality[6]. If, given the existence of BEC's order param- The BEQ order parameter stems from the_observatlon first
eter, the inequality is violated, then BEC is ruled out. InMade by Dirac that the macroscopic occupation of the lowest
other words, the Bogoliubov inequality provides a Sufﬁck_:,mstate.allows one to interpret the zero-mode annihilation and
condition for the absence of BEC and a necessary conditioff€ation operators asnumbers whenevey+1~N, [8]. In
for its presence. fact, the Dirac ansatz was shown to be asymptotically exact
In the present work we apply the Bogoliubov inequality to " the thermod_ynar_nlc I!m|E9]._BogoI|ubov made use of the_
an assembly of bosons confined in a harmonic trAAT). Dirac ansatz in hls_ pioneering work on the microscopic
The Bose-Einstein phase transition strictly takes place in thi€ory of superfluidity{10]. This procedure became known
thermodynamic limit. Since the experiments are performedS the Bogoliubov prescription and has since underlain most
with finite assemblies dfl particles, we shall refer to BEC as ©f the field-theoretic treatments of BEC. The Bogoliubov

the macroscopic occupation of the lowest state such that tH¥€Scription breaks the gauge symmetry and leads to the or-
condensate fraction remains finite in the limit of lafgewe der parameter that characterizes the long-range order of the

show that if the boson field satisfies the canonical commutaBEC transition. , . .
tion relations the Bogoliubov inequality rules out BEC in _ NOw, according to the Bogoliubov prescription the anni-

every dimension at finite temperatures. However, this conlifation and creation operators in momentum space satisfy

flicting result with experiment and theory disappears if theth® commutation relations
order parameter is properly taken into account in the com-

mutation relation. In this fashion, the results found for the [bo,bg]=0, 2.2)
ideal Bose ga$lBG) are consistent with current predictions, +

whetherN is finite or infinite. The formalism explicitly re- [0p,bg]=8pq (P#0), (22
veals the role of the interparticle interaction in BEC. In par-

ticular, it will be shown that the results are consistent with a [by.bg]=[b}.bi1=0. (2.3

recent experiment by Cornisht al. on condensates with

widely tunable interaction]. The outline of the paper is as Underlying Eq.(2.1) is the Dirac ansatz,

follows. The basic formalism is presented in Sec. Il. In Sec. f

Il we work out the IBG. Section IV deals with interacting bo=bo=Ng ", (2.9
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The boson field/ can be expanded in a complete orthonor-range order in 1D and 2D superfluids and superconductors
mal set of single-particle wave functiors, that satisfy the [5] as well as in various kinds of magnetic and crystalline
boundary conditions on the surface \6f ordering[13,14.

Following Chester, Fisher, and Mernih5] in their refor-

_ toon tox mulation of Hohenberg's work, we choose farand B the
‘/’(X)_Ep bpep(X), ¥ (X)_Zp bpep (). (2.9 regpective Fourier transforms

From Egs.(2.1)—(2.3) there follow the commutation rela- ak=V_1/2J dPx e kxy(x), (2.14

ions

L), (y)]= 8(x—y) = 7(x.y), ﬂ(X:y)EQDo(X)SDS((Zy.)G’) k= f dPx e "y (x) (). 2.19
[(x), p(y)1=[ ¢ (x), 4" (y)]=0, 2.7 As pointed out by these authors, the wave vek{et 0) may

be thought of as an auxiliary mathematical variable that need

whereg, denotes the single-particle ground-state wave funchot label physical momentum states. Hence, it is not re-
tion. Equation(2.6) has been used previously in connection Stricted by the boundary conditions imposed by the confining

with the homogeneous superfluttie [11]. potential. The boundary conditions must be satisfied by the
The total particle number operator single-particle wave functiong;,(x). From Egs.(2.13-
(2.15 one obtains the usual expression for the Bogoliubov
. inequality, i.e.,
N:J dPx ¢t y=2 bib, (2.8 anety A
’ ((afa +3)([pi [H.pd D=2k pid) ke T.
satisfies the commutation relations 2.19

(Rod= — it o — g, [N g W_l//'T Now, from Egs.(2.5) and(2.14) one has
’ - 0o— 3 ’ - —Yo— ]
2.9 1 )
29 (aca =y 2 (bghq) f f d®x d°y XYk () ¢q(y),

where we have split the field operator as 2.17

S —byog, r_ boo . (2.1 and from the completeness relation @f(x) it follows im-
V=vot U o=bogo, ¥'=20 by (210 SE R

. . D
The counterpart of Eq2.4) is the condensate wave function d~k o 1 oo ﬂz
defined by the anomalous average (2m)P (a0 =y % (bpbp)=3=n, (2.18
()= (Po(x)) =Ng%o(X). (21D where N=(N). This is a subtle result because theon-

) . tinuum) k integration is related to the possibly discrete sum-
The broken gauge symmetry is exhibited by the transformag,5tion overp states. Indeed, as stressed 18], the wave

tion vectork can assume a continuum of values even when the
L oa L oa , confining potential is finite. Combining Eq$2.16 and
e Nye ' N=yo+y'e'e, (212 (2.18 we arrive at the inequality
wherea is an arbitrary real parameter. Since E2.12 is a dPk |<[al1pk]>|2kBT 1
consequence of EQq(2.6), n(x,y) plays the role of a Zf 5 = -—. (2.19
symmetry-breaking function. @Cm=\ ([pf [Apd) 2

We next consider the Bogoliubov inequality. It relates en- S )
semble averages at temperatiiras follows: From the above remarks it is important to realize that Eq.

(2.19 implies neither the thermodynamic limit nor the con-
AT AWIBT [AH. B =2kaTI([AT,BT)2, (2.1 tinuous spectrum approximation of the actual physical sys-
{ B 1D Al Dl 213 tem. Hence, it can be applied to finitd(V) systems. The
Bogoliubov inequality is then satisfied if the following inte-

where the curly brackets represent the anticommutétds gral is finite:

the system’s Hamiltonian, and the operatérsand B are
arbitrary provided the ensemble averages exist. This rigorous KT |<[aT NE
inequality stems from the Schwarz inequality and the b= B J dek’—pk<oo
fluctuation-dissipation theorei5,12]. Hence, it has a gen- (2m)P <[PI ,[ﬂ,pkm
eral character, the thermal averages applying to both canoni-

cal and grand canonical ensembles of either boson or feffhe denominator of the integrand depends on the system'’s
mion systems. It has been used to prove the absence of longtamiltonian. On the other hand, the numerator has a general

(2.20
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expression in terms of the single-particle ground-state wave As advanced in the beginning of Sec. Il, a finite voluvhe
function. From Eqgs(2.5—(2.7) and(2.11 we readily obtain  can be defined by virtue of the condensation in coordinate
space. For the isotropic HAT the condensate is symmetrically
|([aT ]>|2:M(f dPx o (x) distributed within aD-dimensional sphere centered at the
k+Pk \% o origin. The noncondensate behaves as a saturated vapor sur-
) rounding the condensafd6,17. Hence, one can define a
_ Dy AD\, aik(x—y) % * 2 spherical volumeV that contains an average of, con-
f f dxdlye s (eI densed particles and— N, excited ones. This can be ac-
(2.20) complished by introducing a range parame®massociated
with the harmonic potential in the forfi8]
where the double integral comes fronfx,y) in Eq. (2.6).

. . 2
Thus, the numerator in E¢2.20 depends linearly oiNg. If _ E 2,2y, [ X
the integral(2.20 diverges one must then assume thit V)= oM _2V° R 3.9
=0, which means that BEC is ruled out.
It is clear from Eq.(2.16) that The energyV, is constant andR equals
trp = 1 (Vo2
([pk:[H.pdD=0. (2.22 R-— HO) _ 36

This thermal average plays a key role because it underlies the

convergence or divergence of E@.20. In homogeneous For D=2 the thermodynamic limit is achieved whe
systems Eq(2.22) is, in general, identical to thesum rule. % andw—0 such thalNwP is kept constanf19]. In this

It will be shown that the inequalit{2.22), by itself, furnishes  caseN/RP can be interpreted as an average density that re-
additional information on BEC of inhomogeneous systems ifnains fixed in the thermodynamic limit. Accordingly, we

a HAT. take forV the D-dimensional spherical volume with radius
Rl
I1l. IDEAL BOSE GAS
27TD/2
We consider an assembly Nfbosons of mass confined =———RP .
y V=brio)R 3.7

in a D-dimensional isotropic HAT with angular frequenay

at temperaturd <T.. The Hamiltonian then equals wherel is the gamma function. The probability of finding a

3.1) particle in the exterior o must be negligible. Sincl, will
' depend only onpy(x), it is thus required thalteq(x)|2~0,

The zero-point energy is irrelevant becau?.@ enters the x=R. The ratio between Eq¢3.3) and(3.6) is
calculations only through commutators. The single-particle I

ground-state wave function is given by 5=

F'O: Nhﬁ)

1/2
fi/—w) N~ U2 3.9
0

Po(X) = (r|2)~DlAg—x12% 3.2

The proportionality sign stems from constahw®. For large
where the average width of the Gaussian is N then R>I. As an illustration we takeR=5l (e.g., N
~10° and I/R~2N"Y6 in 3D), so that|@o(51)/@e(0)|?

ho\2 =e 25~10 ! Therefore the probability of finding a par-
=l el (33 ficle on the surface oW is 10 ! smaller than that at its
center[20].
The symmetry-breaking function in E@42.6) is now real, Hereafter we assume that, is vanishingly small on the

i.e., 7(X,Y)=eo(X)eo(y)=n(y,x), and the fundamental surface ofV. In this fashion the integration of the Gaussian
commutation relation of the condensed system becomes functions can be performed over their entire range. Accord-
ingly, substitution of Eq.(3.2) in Eq. (2.21) leads to the

D/2 . . . .
+ e L Mo (x@+y2)i2h Fourier transform of Gaussian functions. For convenience to
LX), 47 (y)]= 8(x=y) ( Wﬁ) € ’ the reader we quote the specific transform:
(3.9
ik —on— —(n/2)1D/25—1%K?
Given the Bogoliubov prescription this result is exact. In a d®x & %pg(x)=[2n~*(ar| 21~ (M2 PlAg I,
homogeneous system confined in a box of volumé&, with (3.9

periodic boundary conditions, the symmetry-breaking func-

tion equalsy=L"P. The periodic boundary conditions al- The integrals in Eq(2.21) then yield
low an arbitrarily large box so that™ P is usually neglected, b D2
as in the case of the Hohenberg work. In E}4), however, 2 oD-1 ho 3142

7 cannot be neglected. In fac,will be necessary in obtain- Klax.pD)[*=2°""T(DI2)No Vo (1-e )%
ing results in agreement with current predictions. (3.10
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In the evaluation of[p;,[N,p,]]) it is convenient to con- cutoff to thek integral. In fact, thek integral first introduced
sider the general commutation relatié6) instead of Eq. by Chester, Fisher, and Mermin displays such an upper cutoff

(3.4). From Egs.(2.6), (2.8), and(2.15), we have [15]. , o , ,
The integral in Eq(3.17) is discussed in the Appendix. It

. Dy 4D amikyl + does not exhibit any infrared divergence and is independent
[N’pk]_J J d™xd7y e LT ()i (y)b(x) =H.Cl. o N The behavior of , is then dictated bys®2 L. For a
(3.11 constant potential , is convergent whetheN is finite or
. . i . infinite. Thus the Bogoliubov inequality is satisfied in all
where H.c. denotes Hermitian conjugation. By making use ofjjmensions. Only the standard thermodynamic lirti¢
the orthonormal property ap,(x), thex integration yields — o, @w—0, andNw® constant rules out BEC in 1D. But
this criterion applies only in 2D and 3D, whereby remains
[N,p]= ‘/N—OJ dPy e Y(poy'— g ). (3.12  constant in this limit. These results are consistent with the
work of Ketterle and van Drutef21].

Equation(3.1]) is crucial: if »(x,y) were absent from Eqg.

(2.6), the commutator[N,p,] would vanish identically. IV. INTERACTING BOSE GAS

Hence, Eq(2.16 would be only satisfied af =0, namely, In this section the Bose gas in the isotropic HAT is en-
BEC could occur only at absolute zero. This shows that thejowed with a two-particle interactiotd (|x—y|). It is
last term in Eq(3.4) plays a key role. straightforward to verify that the general expression for the

Now, the second commutator is readily obtained from

Eqgs.(2.15 and(3.12, ie., associated second quantized operafocontributes to Eq.

(2.22 only if »# 0. Thusn makes the Bogoliubov inequality
interaction dependent. We shall assume a contact interaction
ot [N, p]]1=2No— \/N_oJ J dPx dPy ek(x-v) defined by the pseudopotentidi(x,y)=Uy8(x—y). In 3D
this corresponds to the first order of a hard-sphere Bose gas
X[n(x,¥)eo(V) ¥ (x)+H.c]. (3.13  (HSBG) in the limit of low densities and temperaturf2?].
In 2D and 1D the respective hard-disk and hard-rod interac-
By taking the ensemble average only the zero-mode amplitions are more complex and may not be physically realistic.
tudes do not vanish and we obtain By contrast, the HSBG model is simple and yet useful in the
analysis of most experimental data. Nevertheless, we shall
+ R _ _ Dy 4D\, aik(X—Y) 2 work out the general formalism iD dimensions but appli-
([pk ,[N,Pk]]>—2No( 1 f J dPx by e (xy)| ) cations will be performed in 3D only. Accordingly, the
(3.149  pseudopotential leads to the interaction operator

and from Eqs(3.1) and(3.14) there follows the general ex- R
pression U= %Uof dPx Tyt gy (4.1)
2
{p} '[ﬂo,pk]DZZNoﬁw( 1— j dPx €| po(X)|? ) In 3D the interaction constant equals
(3.19 Amah?
. o . Uo= , (4.2)
Now, making use of the specific functi@8.2) one has, from m

Eq. (3.
a. (3.9, where the hard-sphere diameter equalsstheave scattering

T _ _ a2 lengtha. If a>0 (a<0) the interaction corresponds to an
J[Ho, =2Npghw(l—e . 3.1 . - .
{[pic.[Ho.pulD oft ) (3.19 effective repulsiorattraction).

Finally, combining Eqs(3.10 and (3.16, and performing We next determine the contribution of E(.1) to Eq.

the angle-variable integration, E(.20 yields (2.22. In the evaluation of U,p,] the &function contribu-
- tion of Eq.(2.6) vanishes identically, as expected in the nor-
_ DKgT(fiw) P21 A kDﬂ(l_eSl k%42 mal phase. Using the notation
D™ 27TD/2V8/2 fo dk 1_e_—|2k2/2 ’
(3.17 f dezf : 4.3
X

where A is the ultraviolet cutoff. This cutoff is justified by

the following argument. Ultraviolet divergences do not occurthe # function in Eq.(2.6) yields

in condensed matter physics due to the intrinsic upper cutoff,

which is the inverse of a typical interparticle distance. _~ _ ik 2

Hence, an ultraviolet cutoff can be introduced in theum- [U,pk]—Uofxfye T ) nly 01010~ Heel.
mation of the physicap states in Eq.2.18. Since thek (4.4
integration of the auxiliary wave vector is connected tojgthe

summation by Eq(2.18), it is then natural to extend the After lengthy but straightforward algebra BEQ.22) becomes
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([pt [0,pdD=U, f Jyw*(x)lw(x)lzn(x,y)¢<y>+H-c->

(4.59
_Uof feik(xflo
xJy

X(PT )| ()2 (X, y) (y) + H.c) (4.5D

+2UkoJZe‘k(z‘y)<¢*(y) 7(y,X)

X[y () n(x,2)p(z)+H.c) (450

_Uofjfeik(Fy)
xJyJz

X(PT ) T (x) p(x,y) (y) 7(x,2) ¥(2)
+H.c) (4.50

_Uojffen«z—y)
xJyJz

X(PTOO () [2n(x,y) n(y,2) ¥(2)
+H.c). (4.50

PHYSICAL REVIEW A64 033606
Qe=—205, (bibipba) | et ehonco
pars X
Xfe_ikyl%lzjeikché%- (4.79
y z

These equations allow one to separate () into pow-
ers of N in the form

([ps LU, pid D) =Uol “"P(N3Wo+NoW; +W,),  (4.8)

whereW, (i=0,1,2) are dimensionless quantities indepen-
dent ofNy. The NSWO term corresponds to the ground-state
contribution. In this case Ed4.7) shows thaiQ.+ Qg4+ Qq
vanishes identically an®,+ Qy, gives

Wo=2° [ Jod*= [ ent [ e ool @9
X X y

NoW; results from the interaction between the condensed
and uncondensed particles. After some algebra it follows
from Eq. (4.7) that

— 21D T 2 2
The Hermitian conjugate terms simply have the effect of Wy =4l p;o <bpbp>( JX|‘P0| | @l

multiplying the thermal averages of the integrals in EQ5)

by a factor of 2. Substituting the field operators by the ex- A _
- eIkX|<Po|2|<Pp|2 € Iky|<Po|2

pansion(2.5 and denoting th€4.59—(4.56 terms, respec-
tively, by

(lpf [0,pd)=Qa+ Qp+Qc+Qu+Qe, (4.6

we finally obtain

Qa=2U0%r (blblb;bo) L@; eqereo. (479

Qp=— 2U0pqErs (biblb,bg) Leikxsoﬁ oM %@ofyeiky@S Ps.

(4.7b
Qc=4U >, (bjbibbs) f | eol®@5 ¢r
pars X
XfG‘“‘"@E @oJeikzwé Ps. (4.79
y z
Qu=-2U03, (bjbipiba | epeth
pqrs X
XJe*iky#’S @rjei"zwé s, (4.7d
y z

—Jxe‘kx<p§|¢o|2¢ojyeikycpé%
+ [ leol' [ ool
X y

[ stlod?eo | & lel? [ oty
X y z

(4.10

The W, contribution comes from interactions among excited
particles, where none of the summation indices in @q7)
represents the lowest state.

The ground state is nondegenerate agds presumably
an even and positive function. On the other hand, excited
states are degenerate whergcorresponds to a set of quan-
tum numbersp={p,,---,pp}. Hence, ¢, can be repre-
sented by a linear combination of even and odd functions,
op=0¢'"+¢{ ). By expanding the exponential functions in
Eq. (4.10 the imaginary part vanishes and the only contri-
bution comes from the real part that corresponds to the co-
sine expansion. Due to the orthonormal propertypgfthe
k-independent term cancels out and the leading té&trbe-
comes
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5 k2 ; o 1o Eq. (4.14. The first term depends only on the single-particle
Wy=41"5+ 20 <bpbp>< f x“| @0l ? @yl ground-state wave function. We take for the latter the nonin-
"7 X teracting function(3.2). Accordingly,K is obtained from Eg.

S P ) ol (3.16 while the integrals in Eq(4.9) are of the form(3.9).
+JX|<P0| | @pl fyy | @0l +L|‘0°| Lygoésoﬁj ) The result is
—12k2/2
n (+)% 2 J 2 % (+) i_ gpl—e
chpp |00l “@0 Y @0 WO_(ZW) s (4.15
_ () 2 () . . .
JXX‘Pp *[ ol @onWPS ®p ) (411 The fraction lies in the intervdll,2] andN, must correspond
to the lower limit. Thus, to lowest order, one has
Now, sinceg, is normalized, they integral in Eq.(4.9) can-
not be greater than unity. In addition, the secarndtegral in N¢ a]
Eq. (4.9 cannot be greater than the fissintegral. Therefore, oV wl2=1.25. (4.1

Wy>0. Clearly, W;>0, and one might expect thay,>0,

2 .
t0. In any eventNoWo>NoW; +W,, so that the sign of This is about twice the values obtained by the numerical

Eq.(4.8)is dicta_ted byJ,. This is ensured by th_e foI.Iovx_/ing_ solution of the Gross-Pitaevskii equatifi2i7,28, as well as
argument. Previous results show that the density distributiopy

. variational estimatep4,25,29—-37 and the use of an ef-
of the condensate appears as a sharp peak superlmposedfélgtive potential[32]. Considering the approximations in-
the broad distribution of the thermal cloud. Asdecreases v
the height of the condensate peak increases while the tails ?(f
the thermal component diminish and eventually disappear a4
very low temperatureE4,23]. Therefore N—Ng<Ng in the 1.46 nm and =3 zm [2]) one hasN_~ 1300[33-35. Al-
region occupied by the condensate. though this represents few particles in comparison with the

We next apply the above results to the 3D case. The nu; . o . i
merator of thel, integral is given by Eq(2.21) and the a>0 condensates, the Bogoliubov prescription still holds be

) cause the conditiohy+1~Ng is valid even in this case.
denominator by Eqg(3.15 and(4.8). The last then reads We finally conclude this section by showing that the Bo-

Ived, especially the neglect &¥, /W,, which is expected
decreasé&\., the(4.16 estimate is not unreasonable. The
. barrier is by now well established. FdLi atoms (a=

Amrah? goliubov inequality is consistent with previous theoretical
hwK+ —=— (NoWo+W;+ Ny *W,)=0, (4.12  and experimental results.
ml To first order in scattering length the HSBG leads to the

i ) mean-field theory described by the Gross-Pitaevskii equa-
where the inequality comes from E(2.22) andK denotes {jon Numerical solution of this equation for repulsive inter-

twice the expression within the parentheses in B195.  actions @>0) reveals a broadening of the condensate peak
Taking into account E¢(3.3) and neglectindN, "W, we re-  ith a consequent reduction of the densityadscreases. For

write Eq.(4.12 as attractive interactionsa<0) the behavior is the opposite:
the peak narrows and the density increagls For a>0
x= 47Ta(N Wo+ W)= —1 4.13 excellent agreement has been found between the numerical
IK 070 ! ' ' solution and the experimental resu[36]. Such a density

variation is consistent with the lower boundrogiven by the
This parameter is proportional to the ratio between the interBogoliubov inequality, Eq(2.19. For a>0(a<0) the de-
action and kinetic-energy averages. It is then a useful quarominator(4.12 decreasesincreases|, thereby decreas-
tity in modeling the experiments. For instancexi>1 the ing (increasing the lower bound of Eq(2.19.
Thomas-Fermi approximation greatly simplifies the mean- In a recent experiment Cornigt al. were able to reverse
field predictiong24-2§. the sign of the scattering length in conden§&b [7]. When
Fora>0, the condition(4.13 is obviously satisfied. Re- a was switched from repulsive to attractive there was a criti-
pulsive interactions decrease and hence favor the occur- cal point where the condensate first collapsed and subse-
rence of BEC. quently emitted a burst of high-energy atoms, leaving a
For attractive interactionsa(<0) Eq. (4.13 leads to a smaller condensate at the core. On again reveraing to
maximum number of condensed particles determinedyby the repulsive regime the core reexpanded with increaaing
=—1. Beyond this critical number the condensate becomeBlow, let N, be fixed in a 3D isotropic HAT. A decreases
unstable against collapse. Thus, 0, Eq.(4.13 gives so doesyxaN, and |5 increases. The collapse of the con-
densate takes place at a critical scattering lelagthO, such
Nolal __ K ENUA 41 that a_N, reaches its minimum value determined Ry
I 4mW,  IW, (4.14 —1. At this pointl ; diverges and thereby Eq.19 implies
an infinite density(the collapsg The stability condition g
We now carry out an estimate of the E4.14) upper bound. >-—1];<®) can be restored by a sudden decrease of the
Since|a|<I, we neglect the second term in the right side ofcondensed particle@he burst. A subsequent increase af
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allows an increase of the condenséatere. When the scat- We are thus led to conclude that only through the Bogo-
tering length becomes positive the number of condensed paliubov prescription, and when it is properly accounted for by
ticles is no longer limited by Eq4.13. As a increases fur- the field commutation relationi2.6), does the Bogoliubov
ther toward the Feshbach resonance the density lower bounidequality become consistent with current theoretical and ex-
diminishes with decreasint;. Hence, the condensate can perimental results. On one hand, this conclusion singles out
expand by an increase bf, and/or by a decrease in density. the Bogoliubov prescription among other symmetry-breaking

procedures. On the other hand, it strengthens the commuta-

V. DISCUSSION tion relation(2.6) that underlies the present work.

'_I'h_e foregoi_ng theory is base_d on the Bog_oliubov pre- APPENDIX: THE INTEGRAL IN EQ. (3.17)
scription and its effect on the field commutation relation.

Given the Bogliubov prescription the general formalism in  In this Appendix we find a close estimate for the integral
Sec. Il is exact. The functiow in Eq. (2.6) plays a key role. in Eq.(3.17), i.e.,
If =0, the Bogoliubov inequality rules out BEC in nonin-
teracting and interacting systems at finite temperatures in all
HAT dimensions. An important and unique consequence of
n# 0 consists in the dependence of the Bogoliubov inequal-
ity on the interparticle interaction. In particular, it reveals the|n terms of the variable
drastically distinct behavior when the sign of tkevave
scattering length is reversed. u=e ¥ (A2)
In addition to the Bogoliubov prescription there are two
alternative methods that also break the gauge symmetry dhe fraction in Eq(Al) becomes
Bose assemblies. One may then inquire into the effect of a2
these procedures upon the Bogoliubov inequality. (1-u%) — U= U2+ 2u+1+ i
L . 2
One such method is the shift transformat[&T]. Denot- 1-u 1+u
ing by ck,cl the standard Bose amplitudes the transforma-
tion acts on the zero mode,—by+ Ny, such that(cy)
=0 and(by)=Ng. Since this transformation preserves the (A3)
canonical commutation relations the Bogoliubov inequality
implies the absence of BEC in HATs far>0.
The other method consists in removing the gauge grou
by adding to the Hamiltonian a small perturbation of the
form [38]

(1_e73I2k2/4)z

A
JDEL dk 01 (A1)

1— e—|2k2/2 :

=1-u?—u*+2u3(1-u+u?—ud+--).

We see from Eq(A3) that the cutoff is only needed for
the integration of theu-independent term. In regard to the
RermskP~1u" we let A -, so that

o 2P-11(D/2)
fo dkkD_l n:WQ_' (A4)

Ase=— [ doxcu'+20), 5.0
From Egs.(A1)—(A4) and after a slight rearrangement we

where( is a fictitious field. The total Hamiltonian then reads finally obtain

H=Hy+U+Hgg, whereHg;g stabilizes the anomalous av- AP 2°T(D/2) 1 1
erages (2.11). In analogy with magnet@c systems, the ‘]D:F+ I ( ~ ST 2D+l_SD ,
symmetry-breaking field is allowed to vanish at the end of (A5)
the calculations. As in the shift transformation, neitfiy
nor U contributes to Eq(2.22 on account of the canonical WhereSp stands for the convergent series
commutation relations. On the other hand, one can readily 1 1
show thatH g leads to Sp=1— 2_D,7+ 307~ o7 4o (AB)
<[pl,[|3|,pk]]>=f dx(L(y"+*(y)). (5.2  The values in each dimension are

=(1-2Y =
Therefore, the denominator in E@.20 becomek indepen- $1=(1-2")¢(1/2)=0.605, (A7)
dent as well as the numerator, for the double integral in Eq. —In2=0.693 A8
(2.21) is absent whem=0. The integral in Eq(2.20 then 2 U (A8)
equals eD-dimensional spherical volume whose radius is the Sy=(1-2"Y2)£(3/2)=0.765 (A9)
ultraviolet cutoff. Clearly,l diverges with{—0, and the ’
Bogoliubov inequality rules out BEC for>0. where( is the Riemann zeta function.
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