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Bogoliubov inequality and Bose-Einstein condensates with repulsive and attractive interactions
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The Hohenberg theorem on the absence of Bose-Einstein condensation~BEC! in homogeneous systems of
space dimensionsD<2 is based on a well-known Bogoliubov inequality. Applied to an assembly trapped in a
harmonic potential we show that the Bogoliubov inequality rules out BEC in all dimensions at finite tempera-
tures. However, this conflicting result with both theory and experiment disappears when the effect of the order
parameter is properly taken into account in the boson-field commutation relations. For a hard-sphere Bose gas
the theory is consistent with the expansion of the condensate when a positive scattering length is increased, as
well as the collapse of the condensate when the sign of the scattering length is reversed and it reaches a
minimum critical value.
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I. INTRODUCTION

The observation of Bose-Einstein condensation~BEC! in
magnetically trapped atomic gases@1–3# has caused renewe
theoretical investigations into this unique phenomenon@4#.
Questions of a more general nature concern the space di
sionality, the confining potential, the repulsive or attract
character of the atomic forces, the finite particle assembl
it relates to the thermodynamic limit, and the continuo
spectrum approximation. A rigorous analysis of BEC dep
dence upon the space dimension was first carried out by
henberg@5#. This work applies to both noninteracting an
interacting uniform systems enclosed in a D-dimensional
with periodic boundary conditions. The Hohenberg theor
states that in the thermodynamic limit BEC can occur only
three dimensions~3D!. It is based on an exact Bogoliubo
inequality@6#. If, given the existence of BEC’s order param
eter, the inequality is violated, then BEC is ruled out.
other words, the Bogoliubov inequality provides a sufficie
condition for the absence of BEC and a necessary cond
for its presence.

In the present work we apply the Bogoliubov inequality
an assembly of bosons confined in a harmonic trap~HAT!.
The Bose-Einstein phase transition strictly takes place in
thermodynamic limit. Since the experiments are perform
with finite assemblies ofN particles, we shall refer to BEC a
the macroscopic occupation of the lowest state such tha
condensate fraction remains finite in the limit of largeN. We
show that if the boson field satisfies the canonical comm
tion relations the Bogoliubov inequality rules out BEC
every dimension at finite temperatures. However, this c
flicting result with experiment and theory disappears if t
order parameter is properly taken into account in the co
mutation relation. In this fashion, the results found for t
ideal Bose gas~IBG! are consistent with current prediction
whetherN is finite or infinite. The formalism explicitly re-
veals the role of the interparticle interaction in BEC. In p
ticular, it will be shown that the results are consistent with
recent experiment by Cornishet al. on condensates with
widely tunable interactions@7#. The outline of the paper is a
follows. The basic formalism is presented in Sec. II. In S
III we work out the IBG. Section IV deals with interactin
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systems. Finally, in Sec. V alternative symmetry-break
methods, other than the Bogoliubov prescription, are d
cussed in regard to the Bogoliubov inequality.

II. BASIC FORMALISM

We consider an assembly ofN bosons at temperatureT
below the BEC transition temperatureTc . The number of
particles in the ground state,N0 , is then a finite fraction of
N. The system occupies aD-dimensional volumeV. In
space-dependent confining potentials the condensation
takes place in coordinate space. For potentials whose
mains are infinite we assume that this condensation all
the definition of an effectiveV such thatN/V is kept constant
in the thermodynamic limit. In the next section this volum
is specifically defined for the case of an isotropic HAT.

The BEC order parameter stems from the observation
made by Dirac that the macroscopic occupation of the low
state allows one to interpret the zero-mode annihilation
creation operators asc numbers wheneverN011;N0 @8#. In
fact, the Dirac ansatz was shown to be asymptotically ex
in the thermodynamic limit@9#. Bogoliubov made use of the
Dirac ansatz in his pioneering work on the microscop
theory of superfluidity@10#. This procedure became know
as the Bogoliubov prescription and has since underlain m
of the field-theoretic treatments of BEC. The Bogoliub
prescription breaks the gauge symmetry and leads to the
der parameter that characterizes the long-range order o
BEC transition.

Now, according to the Bogoliubov prescription the ann
hilation and creation operators in momentum space sat
the commutation relations

@b0 ,b0
†#50, ~2.1!

@bp ,bq
†#5dp,q ~pÞ0!, ~2.2!

@bp ,bq#5@bp
† ,bq

†#50. ~2.3!

Underlying Eq.~2.1! is the Dirac ansatz,

b05b0
†5N0

1/2, ~2.4!
©2001 The American Physical Society06-1
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The boson fieldc can be expanded in a complete orthon
mal set of single-particle wave functionswp that satisfy the
boundary conditions on the surface ofV,

c~x!5(
p

bpwp~x!, c†~x!5(
p

bp
†wp* ~x!. ~2.5!

From Eqs.~2.1!–~2.3! there follow the commutation rela
tions

@c~x!,c†~y!#5d~x2y!2h~x,y!, h~x,y![w0~x!w0* ~y!,
~2.6!

@c~x!,c~y!#5@c†~x!,c†~y!#50, ~2.7!

wherew0 denotes the single-particle ground-state wave fu
tion. Equation~2.6! has been used previously in connecti
with the homogeneous superfluid4He @11#.

The total particle number operator

N̂5E dDx c†c5(
p

bp
†bp ~2.8!

satisfies the commutation relations

@N̂,c#52c1c052c8, @N̂,c†#5c†2c0
†5c8†,

~2.9!

where we have split the field operator as

c5c01c8, c05b0w0 , c85 (
pÞ0

bpwp . ~2.10!

The counterpart of Eq.~2.4! is the condensate wave functio
defined by the anomalous average

^c~x!&5^c0~x!&5N0
1/2w0~x!. ~2.11!

The broken gauge symmetry is exhibited by the transform
tion

eiaN̂ce2 iaN̂5c01c8e2 ia, ~2.12!

wherea is an arbitrary real parameter. Since Eq.~2.12! is a
consequence of Eq.~2.6!, h(x,y) plays the role of a
symmetry-breaking function.

We next consider the Bogoliubov inequality. It relates e
semble averages at temperatureT as follows:

^$A†,A%&^†B†,@Ĥ,B#‡&>2kBTu^@A†,B#&u2, ~2.13!

where the curly brackets represent the anticommutator,Ĥ is
the system’s Hamiltonian, and the operatorsA and B are
arbitrary provided the ensemble averages exist. This rigor
inequality stems from the Schwarz inequality and t
fluctuation-dissipation theorem@5,12#. Hence, it has a gen
eral character, the thermal averages applying to both can
cal and grand canonical ensembles of either boson or
mion systems. It has been used to prove the absence of l
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range order in 1D and 2D superfluids and superconduc
@5# as well as in various kinds of magnetic and crystalli
ordering@13,14#.

Following Chester, Fisher, and Mermin@15# in their refor-
mulation of Hohenberg’s work, we choose forA and B the
respective Fourier transforms

ak5V21/2E dDx e2 ikxc~x!, ~2.14!

rk5E dDx e2 ikxc†~x!c~x!. ~2.15!

As pointed out by these authors, the wave vectork(Þ0) may
be thought of as an auxiliary mathematical variable that n
not label physical momentum states. Hence, it is not
stricted by the boundary conditions imposed by the confin
potential. The boundary conditions must be satisfied by
single-particle wave functionswp(x). From Eqs. ~2.13!–
~2.15! one obtains the usual expression for the Bogoliub
inequality, i.e.,

~^ak
†ak&1 1

2 !^†rk
† ,@Ĥ,rk#‡&>u^@ak

† ,rk#&u2kBT.
~2.16!

Now, from Eqs.~2.5! and ~2.14! one has

^ak
†ak&5

1

V (
p,q

^bp
†bq&E E dDx dDy eik~x2y!wp* ~x!wq~y!,

~2.17!

and from the completeness relation ofwp(x) it follows im-
mediately that

E dDk

~2p!D ^ak
†ak&5

1

V (
p

^bp
†bp&5

N

V
[n, ~2.18!

where N5^N̂&. This is a subtle result because the~con-
tinuum! k integration is related to the possibly discrete su
mation overp states. Indeed, as stressed in@15#, the wave
vector k can assume a continuum of values even when
confining potential is finite. Combining Eqs.~2.16! and
~2.18! we arrive at the inequality

n>E dDk

~2p!D S u^@ak
† ,rk#&u2kBT

^†rk
† ,@Ĥ,rk#‡&

2
1

2D . ~2.19!

From the above remarks it is important to realize that E
~2.19! implies neither the thermodynamic limit nor the co
tinuous spectrum approximation of the actual physical s
tem. Hence, it can be applied to finite-(N,V) systems. The
Bogoliubov inequality is then satisfied if the following inte
gral is finite:

I D[
kBT

~2p!D E dDk
u^@ak

† ,rk#&u2

^†rk
† ,@Ĥ,rk#‡&

,`. ~2.20!

The denominator of the integrand depends on the syste
Hamiltonian. On the other hand, the numerator has a gen
6-2
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expression in terms of the single-particle ground-state w
function. From Eqs.~2.5!–~2.7! and~2.11! we readily obtain

u^@ak
† ,rk#&u25

N0

V S E dDx w0* ~x!

2E E dDx dDy eik~x2y!w0* ~x!uw0* ~y!u2D 2

,

~2.21!

where the double integral comes fromh(x,y) in Eq. ~2.6!.
Thus, the numerator in Eq.~2.20! depends linearly onN0 . If
the integral~2.20! diverges one must then assume thatN0
50, which means that BEC is ruled out.

It is clear from Eq.~2.16! that

^†rk
† ,@Ĥ,rk#‡&>0. ~2.22!

This thermal average plays a key role because it underlies
convergence or divergence of Eq.~2.20!. In homogeneous
systems Eq.~2.22! is, in general, identical to thef-sum rule.
It will be shown that the inequality~2.22!, by itself, furnishes
additional information on BEC of inhomogeneous systems
a HAT.

III. IDEAL BOSE GAS

We consider an assembly ofN bosons of massm confined
in a D-dimensional isotropic HAT with angular frequencyv
at temperatureT,Tc . The Hamiltonian then equals

Ĥ05N̂\v. ~3.1!

The zero-point energy is irrelevant becauseĤ0 enters the
calculations only through commutators. The single-parti
ground-state wave function is given by

w0~x!5~p l 2!2D/4e2x2/2l 2, ~3.2!

where the average width of the Gaussian is

l 5S \

mv D 1/2

. ~3.3!

The symmetry-breaking function in Eq.~2.6! is now real,
i.e., h(x,y)5w0(x)w0(y)5h(y,x), and the fundamenta
commutation relation of the condensed system becomes

@c~x!,c†~y!#5d~x2y!2S mv

p\ D D/2

e2mv~x21y2!/2\.

~3.4!

Given the Bogoliubov prescription this result is exact. In
homogeneous system confined in a box of volumeL2D, with
periodic boundary conditions, the symmetry-breaking fu
tion equalsh5L2D. The periodic boundary conditions a
low an arbitrarily large box so thatL2D is usually neglected
as in the case of the Hohenberg work. In Eq.~3.4!, however,
h cannot be neglected. In fact,h will be necessary in obtain
ing results in agreement with current predictions.
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As advanced in the beginning of Sec. II, a finite volumeV
can be defined by virtue of the condensation in coordin
space. For the isotropic HAT the condensate is symmetric
distributed within aD-dimensional sphere centered at t
origin. The noncondensate behaves as a saturated vapo
rounding the condensate@16,17#. Hence, one can define
spherical volumeV that contains an average ofN0 con-
densed particles andN2N0 excited ones. This can be ac
complished by introducing a range parameterR associated
with the harmonic potential in the form@18#

V~x!5
1

2
mv2x25

1

2
V0S x

RD 2

. ~3.5!

The energyV0 is constant andR equals

R5
1

v S V0

m D 1/2

. ~3.6!

For D>2 the thermodynamic limit is achieved whenN
→` andv→0 such thatNvD is kept constant@19#. In this
caseN/RD can be interpreted as an average density that
mains fixed in the thermodynamic limit. Accordingly, w
take for V the D-dimensional spherical volume with radiu
R,

V5
2pD/2

DG~D/2!
RD, ~3.7!

whereG is the gamma function. The probability of finding
particle in the exterior ofV must be negligible. SinceI D will
depend only onw0(x), it is thus required thatuw0(x)u2;0,
x>R. The ratio between Eqs.~3.3! and ~3.6! is

l

R
5S \v

V0
D 1/2

}N21/~2D !. ~3.8!

The proportionality sign stems from constantNvD. For large
N then R@ l . As an illustration we takeR55l ~e.g., N
;106 and l /R;2N21/6 in 3D!, so that uw0(5l )/w0(0)u2
5e225;10211. Therefore the probability of finding a par
ticle on the surface ofV is 10211 smaller than that at its
center@20#.

Hereafter we assume thatw0 is vanishingly small on the
surface ofV. In this fashion the integration of the Gaussia
functions can be performed over their entire range. Acco
ingly, substitution of Eq.~3.2! in Eq. ~2.21! leads to the
Fourier transform of Gaussian functions. For convenience
the reader we quote the specific transform:

E dDx eikxw0
n~x!5@2n21~p l 2!12~n/2!#D/2e2 l 2k2/2n.

~3.9!

The integrals in Eq.~2.21! then yield

u^@ak ,rk#&u252D21G~D/2!N0S \v

V0
D D/2

~12e23l 2k2/4!2.

~3.10!
6-3
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In the evaluation of̂ †rk
† ,@N̂,rk#‡& it is convenient to con-

sider the general commutation relation~2.6! instead of Eq.
~3.4!. From Eqs.~2.6!, ~2.8!, and~2.15!, we have

@N̂,rk#5E E dDx dDy e2 iky@h* ~x,y!c†~y!c~x!2H.c.#,

~3.11!

where H.c. denotes Hermitian conjugation. By making use
the orthonormal property ofwp(x), thex integration yields

@N̂,rk#5AN0E dDy e2 iky~w0c†2w0* c!. ~3.12!

Equation~3.11! is crucial: if h(x,y) were absent from Eq
~2.6!, the commutator@N̂,rk# would vanish identically.
Hence, Eq.~2.16! would be only satisfied atT50, namely,
BEC could occur only at absolute zero. This shows that
last term in Eq.~3.4! plays a key role.

Now, the second commutator is readily obtained fro
Eqs.~2.15! and ~3.12!, i.e.,

†rk
† ,@N̂,rk#‡52N02AN0E E dDx dDy eik~x2y!

3@h~x,y!w0~y!c†~x!1H.c.#. ~3.13!

By taking the ensemble average only the zero-mode am
tudes do not vanish and we obtain

^†rk
† ,@N̂,rk#‡&52N0S 12E E dDx dDy eik~x2y!uh~x,y!u2D ,

~3.14!

and from Eqs.~3.1! and ~3.14! there follows the general ex
pression

^†rk
† ,@Ĥ0 ,rk#‡&52N0\vS 12U E dDx eikxuw0~x!u2U2D .

~3.15!

Now, making use of the specific function~3.2! one has, from
Eq. ~3.9!,

^†rk
† ,@Ĥ0 ,rk#‡&52N0\v~12e2 l 2k2/2!. ~3.16!

Finally, combining Eqs.~3.10! and ~3.16!, and performing
the angle-variable integration, Eq.~2.20! yields

I D5
DkBT~\v!~D/2!21

2pD/2V0
D/2 E

0

L

dk kD21
~12e3l 2k2/4!2

12e2 l 2k2/2
,

~3.17!

whereL is the ultraviolet cutoff. This cutoff is justified by
the following argument. Ultraviolet divergences do not occ
in condensed matter physics due to the intrinsic upper cu
which is the inverse of a typical interparticle distanc
Hence, an ultraviolet cutoff can be introduced in thep sum-
mation of the physicalp states in Eq.~2.18!. Since thek
integration of the auxiliary wave vector is connected to thp
summation by Eq.~2.18!, it is then natural to extend th
03360
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cutoff to thek integral. In fact, thek integral first introduced
by Chester, Fisher, and Mermin displays such an upper cu
@15#.

The integral in Eq.~3.17! is discussed in the Appendix. I
does not exhibit any infrared divergence and is independ
of N. The behavior ofI D is then dictated byv (D/2)21. For a
constant potentialI D is convergent whetherN is finite or
infinite. Thus the Bogoliubov inequality is satisfied in a
dimensions. Only the standard thermodynamic limit~N
→`, v→0, andNvD constant! rules out BEC in 1D. But
this criterion applies only in 2D and 3D, wherebyTc remains
constant in this limit. These results are consistent with
work of Ketterle and van Druten@21#.

IV. INTERACTING BOSE GAS

In this section the Bose gas in the isotropic HAT is e
dowed with a two-particle interactionU(ux2yu). It is
straightforward to verify that the general expression for
associated second quantized operatorÛ contributes to Eq.
~2.22! only if hÞ0. Thush makes the Bogoliubov inequality
interaction dependent. We shall assume a contact interac
defined by the pseudopotentialU(x,y)5U0d(x2y). In 3D
this corresponds to the first order of a hard-sphere Bose
~HSBG! in the limit of low densities and temperatures@22#.
In 2D and 1D the respective hard-disk and hard-rod inter
tions are more complex and may not be physically realis
By contrast, the HSBG model is simple and yet useful in
analysis of most experimental data. Nevertheless, we s
work out the general formalism inD dimensions but appli-
cations will be performed in 3D only. Accordingly, th
pseudopotential leads to the interaction operator

Û5 1
2 U0E dDx c†c†cc. ~4.1!

In 3D the interaction constant equals

U05
4pa\2

m
, ~4.2!

where the hard-sphere diameter equals thes-wave scattering
length a. If a.0 (a,0) the interaction corresponds to a
effective repulsion~attraction!.

We next determine the contribution of Eq.~4.1! to Eq.
~2.22!. In the evaluation of@Û,rk# the d-function contribu-
tion of Eq. ~2.6! vanishes identically, as expected in the no
mal phase. Using the notation

E dDx[E
x
, ~4.3!

the h function in Eq.~2.6! yields

@Û,rk#5U0E
x
E

y
e2 iky@c†~y!h~y,x!uc~x!u2c~x!2H.c.#.

~4.4!

After lengthy but straightforward algebra Eq.~2.22! becomes
6-4
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^†rk
† ,@Û,rk#‡&5U0E

x
E

y
^c†~x!uc~x!u2h~x,y!c~y!1H.c.&

~4.5a!

2U0E
x
E

y
eik~x2y!

3^c†~x!uc~x!u2h~x,y!c~y!1H.c.& ~4.5b!

12U0E
x
E

y
E

z
eik~z2y!^c†~y!h~y,x!

3uc~x!~x!u2h~x,z!c~z!1H.c.& ~4.5c!

2U0E
x
E

y
E

z
eik~z2y!

3^c†~x!c†~x!h~x,y!c~y!h~x,z!c~z!

1H.c.& ~4.5d!

2U0E
x
E

y
E

z
eik~z2y!

3^c†~x!uc†~x!u2h~x,y!h~y,z!c~z!

1H.c.&. ~4.5e!

The Hermitian conjugate terms simply have the effect
multiplying the thermal averages of the integrals in Eq.~4.5!
by a factor of 2. Substituting the field operators by the e
pansion~2.5! and denoting the~4.5a!–~4.5e! terms, respec-
tively, by

^†rk
† ,@Û,rk#‡&5Qa1Qb1Qc1Qd1Qe , ~4.6!

we finally obtain

Qa52U0(
pqr

^bp
†bq

†brb0&E
x
wp* wq* w rw0 , ~4.7a!

Qb522U0(
pqrs

^bp
†bq

†brbs&E
x
eikxwp* wq* w rw0E

y
e2 ikyw0* ws ,

~4.7b!

Qc54U0(
pqrs

^bp
†bq

†brbs&E
x
uw0u2wq* w r

3E
y
e2 ikywp* w0E

z
eikzw0* ws , ~4.7c!

Qd522U0(
pqrs

^bp
†bq

†brbs&E
x
wp* wq* w0

2

3E
y
e2 ikyw0* w rE

z
eikzw0* ws , ~4.7d!
03360
f

-

Qe522U0(
pqrs

^bp
†bq

†brbs&E
x
wp* wq* w rw0

3E
y
e2 ikyuw0u2E

z
eikzw0* ws . ~4.7e!

These equations allow one to separate Eq.~4.6! into pow-
ers ofN0 in the form

^†rk
† ,@Û,rk#‡&5U0l 2D~N0

2W01N0W11W2!, ~4.8!

where Wi ( i 50,1,2) are dimensionless quantities indepe
dent ofN0 . TheN0

2W0 term corresponds to the ground-sta
contribution. In this case Eq.~4.7! shows thatQc1Qd1Qd
vanishes identically andQa1Qb gives

W052l DS E
x
uw0u42E

x
eikxuw0u4E

y
e2 ikyuw0u2D . ~4.9!

N0W1 results from the interaction between the conden
and uncondensed particles. After some algebra it follo
from Eq. ~4.7! that

W154l D (
pÞ0

^bp
†bp&S E

x
uw0u2uwpu2

2E
x
eikxuw0u2uwpu2E

y
e2 ikyuw0u2

2E
x
eikxwp* uw0u2w0E

y
e2 ikyw0* wp

1E
x
uw0u4u E

y
eikyw0* wpu2

2E
x
wp* uw0u2w0E

y
e2 ikyuw0u2E

z
eikzw0* wpD .

~4.10!

TheW2 contribution comes from interactions among excit
particles, where none of the summation indices in Eq.~4.7!
represents the lowest state.

The ground state is nondegenerate andw0 is presumably
an even and positive function. On the other hand, exc
states are degenerate wherewp corresponds to a set of quan
tum numbersp5$p1 , ¯ ,pD%. Hence, wp can be repre-
sented by a linear combination of even and odd functio
wp5wp

(1)1wp
(2) . By expanding the exponential functions

Eq. ~4.10! the imaginary part vanishes and the only cont
bution comes from the real part that corresponds to the
sine expansion. Due to the orthonormal property ofwp the
k-independent term cancels out and the leading termW18 be-
comes
6-5
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W1854l D
k2

2! (
pÞ0

^bp
†bp&S E

x
x2uw0u2uwpu2

1E
x
uw0u2uwpu2E

y
y2uw0u21E

x
uw0u2U E

y
yw0* wp

~2 !U2

1E
x
wp

~1 !* uw0u2w0E
y
y2w0* wp

~1 !

2E
x
xwp

~2 !* uw0u2w0E
y
yw0* wp

~2 !D . ~4.11!

Now, sincewp is normalized, they integral in Eq.~4.9! can-
not be greater than unity. In addition, the secondx integral in
Eq. ~4.9! cannot be greater than the firstx integral. Therefore,
W0.0. Clearly,W18.0, and one might expect thatW1.0,
too. In any event,N0

2W0.N0W11W2 , so that the sign of
Eq. ~4.8! is dictated byU0 . This is ensured by the following
argument. Previous results show that the density distribu
of the condensate appears as a sharp peak superimpos
the broad distribution of the thermal cloud. AsT decreases
the height of the condensate peak increases while the tai
the thermal component diminish and eventually disappea
very low temperatures@4,23#. Therefore,N2N0!N0 in the
region occupied by the condensate.

We next apply the above results to the 3D case. The
merator of theI 3 integral is given by Eq.~2.21! and the
denominator by Eqs.~3.15! and ~4.8!. The last then reads

\vK1
4pa\2

ml3
~N0W01W11N0

21W2!>0, ~4.12!

where the inequality comes from Eq.~2.22! and K denotes
twice the expression within the parentheses in Eq.~3.15!.
Taking into account Eq.~3.3! and neglectingN0

21W2 we re-
write Eq. ~4.12! as

x[
4pa

lK
~N0W01W1!>21. ~4.13!

This parameter is proportional to the ratio between the in
action and kinetic-energy averages. It is then a useful qu
tity in modeling the experiments. For instance, ifx@1 the
Thomas-Fermi approximation greatly simplifies the me
field predictions@24–26#.

For a.0, the condition~4.13! is obviously satisfied. Re
pulsive interactions decreaseI 3 and hence favor the occur
rence of BEC.

For attractive interactions (a,0) Eq. ~4.13! leads to a
maximum number of condensed particles determined bx
521. Beyond this critical number the condensate becom
unstable against collapse. Thus, fora,0, Eq. ~4.13! gives

N0uau
l

<
K

4pW0
2

uauW1

lW0
. ~4.14!

We now carry out an estimate of the Eq.~4.14! upper bound.
Sinceuau! l , we neglect the second term in the right side
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Eq. ~4.14!. The first term depends only on the single-partic
ground-state wave function. We take for the latter the non
teracting function~3.2!. Accordingly,K is obtained from Eq.
~3.16! while the integrals in Eq.~4.9! are of the form~3.9!.
The result is

K

W0
5~2p!3/2

12e2 l 2k2/2

12e23l 2k2/8
. ~4.15!

The fraction lies in the interval@1,4
3# andNc must correspond

to the lower limit. Thus, to lowest order, one has

Ncuau
l

5Ap/251.25. ~4.16!

This is about twice the values obtained by the numeri
solution of the Gross-Pitaevskii equation@27,28#, as well as
by variational estimates@4,25,29–31# and the use of an ef
fective potential@32#. Considering the approximations in
volved, especially the neglect ofW1 /W0 , which is expected
to decreaseNc , the ~4.16! estimate is not unreasonable. Th
Nc barrier is by now well established. For7Li atoms ~a5
21.46 nm andl 53 mm @2#! one hasNc;1300@33–35#. Al-
though this represents few particles in comparison with
a.0 condensates, the Bogoliubov prescription still holds
cause the conditionN011;N0 is valid even in this case.

We finally conclude this section by showing that the B
goliubov inequality is consistent with previous theoretic
and experimental results.

To first order in scattering length the HSBG leads to t
mean-field theory described by the Gross-Pitaevskii eq
tion. Numerical solution of this equation for repulsive inte
actions (a.0) reveals a broadening of the condensate p
with a consequent reduction of the density asa increases. For
attractive interactions (a,0) the behavior is the opposite
the peak narrows and the density increases@4#. For a.0
excellent agreement has been found between the nume
solution and the experimental results@36#. Such a density
variation is consistent with the lower bound ofn given by the
Bogoliubov inequality, Eq.~2.19!. For a.0(a,0) the de-
nominator~4.12! decreases~increases! I 3 , thereby decreas
ing ~increasing! the lower bound of Eq.~2.19!.

In a recent experiment Cornishet al. were able to reverse
the sign of the scattering length in condensed85Rb @7#. When
a was switched from repulsive to attractive there was a cr
cal point where the condensate first collapsed and su
quently emitted a burst of high-energy atoms, leaving
smaller condensate at the core. On again reversinga up to
the repulsive regime the core reexpanded with increasina.
Now, let N0 be fixed in a 3D isotropic HAT. Asa decreases
so doesx}aN0 and I 3 increases. The collapse of the co
densate takes place at a critical scattering lengthac,0, such
that acN0 reaches its minimum value determined byx5
21. At this pointI 3 diverges and thereby Eq.~2.19! implies
an infinite density~the collapse!. The stability condition (x
.21,I 3,`) can be restored by a sudden decrease of
condensed particles~the burst!. A subsequent increase ofa
6-6
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allows an increase of the condensate~core!. When the scat-
tering length becomes positive the number of condensed
ticles is no longer limited by Eq.~4.13!. As a increases fur-
ther toward the Feshbach resonance the density lower bo
diminishes with decreasingI 3 . Hence, the condensate ca
expand by an increase ofN0 and/or by a decrease in densit

V. DISCUSSION

The foregoing theory is based on the Bogoliubov p
scription and its effect on the field commutation relatio
Given the Bogliubov prescription the general formalism
Sec. II is exact. The functionh in Eq. ~2.6! plays a key role.
If h50, the Bogoliubov inequality rules out BEC in nonin
teracting and interacting systems at finite temperatures in
HAT dimensions. An important and unique consequence
hÞ0 consists in the dependence of the Bogoliubov inequ
ity on the interparticle interaction. In particular, it reveals t
drastically distinct behavior when the sign of thes-wave
scattering length is reversed.

In addition to the Bogoliubov prescription there are tw
alternative methods that also break the gauge symmetr
Bose assemblies. One may then inquire into the effec
these procedures upon the Bogoliubov inequality.

One such method is the shift transformation@37#. Denot-
ing by ck ,ck

† the standard Bose amplitudes the transform
tion acts on the zero modec0→b01AN0, such that^c0&
50 and^b0&5AN0. Since this transformation preserves t
canonical commutation relations the Bogoliubov inequa
implies the absence of BEC in HATs forT.0.

The other method consists in removing the gauge gr
by adding to the Hamiltonian a small perturbation of t
form @38#

ĤSB52E dDx~zc†1z* c!, ~5.1!

wherez is a fictitious field. The total Hamiltonian then read
Ĥ5Ĥ01Û1ĤSB, whereĤSB stabilizes the anomalous av
erages ~2.11!. In analogy with magnetic systems, th
symmetry-breaking fieldz is allowed to vanish at the end o
the calculations. As in the shift transformation, neitherĤ0

nor Û contributes to Eq.~2.22! on account of the canonica
commutation relations. On the other hand, one can rea
show thatĤSB leads to

^†rk
† ,@Ĥ,rk#‡&5E dDx~z^c†&1z* ^c&!. ~5.2!

Therefore, the denominator in Eq.~2.20! becomesk indepen-
dent as well as the numerator, for the double integral in
~2.21! is absent whenh50. The integral in Eq.~2.20! then
equals aD-dimensional spherical volume whose radius is
ultraviolet cutoff. Clearly,I D diverges withz→0, and the
Bogoliubov inequality rules out BEC forT.0.
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We are thus led to conclude that only through the Bog
liubov prescription, and when it is properly accounted for
the field commutation relation~2.6!, does the Bogoliubov
inequality become consistent with current theoretical and
perimental results. On one hand, this conclusion singles
the Bogoliubov prescription among other symmetry-break
procedures. On the other hand, it strengthens the comm
tion relation~2.6! that underlies the present work.

APPENDIX: THE INTEGRAL IN EQ. „3.17…

In this Appendix we find a close estimate for the integ
in Eq. ~3.17!, i.e.,

JD[E
0

L

dk kD21
~12e23l 2k2/4!z

12e2 l 2k2/2
. ~A1!

In terms of the variable

u[e2 l 2k2/4, ~A2!

the fraction in Eq.~A1! becomes

~12u3!2

12u2 52u42u212u111
2

11u

512u22u412u2~12u1u22u31¯ !.

~A3!

We see from Eq.~A3! that the cutoff is only needed fo
the integration of theu-independent term. In regard to th
termskD21un we let L→`, so that

E
0

`

dk kD21un5
2D21G~D/2!

l DnD/2 . ~A4!

From Eqs.~A1!–~A4! and after a slight rearrangement w
finally obtain

JD5
LD

D
1

2DG~D/2!

l D S 12
1

2~D/2!112
1

2D112SDD ,

~A5!

whereSD stands for the convergent series

SD512
1

2D/21
1

3D/22
1

4D/21¯ . ~A6!

The values in each dimension are

S15~1221/2!z~1/2!50.605, ~A7!

S25 ln 250.693, ~A8!

S35~12221/2!z~3/2!50.765, ~A9!

wherez is the Riemann zeta function.
6-7
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