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Hydrodynamic excitations in a spin-polarized Fermi gas under harmonic confinement
in one dimension
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We consider a time-dependent nonlinear Sdimger equation in one dimensiddD) with a fifth-order
interaction term and external harmonic confinement, as a model for(h@tBose gas with hard-core contact
interactions in the local-density approximation, &figl a spin-polarized Fermi gas in the collisional regime.

We evaluate analytically in the Thomas-Fermi limit the density fluctuation profiles and the collective excitation
frequencies, and compare the results for the low-lying modes with those obtained from numerical solution of
the Schrdinger equation. We find that the excitation frequencies are multiples of the harmonic-trap frequency
even in the strong-coupling Thomas-Fermi regime. This result shows that the hydrodynamic and the collision-
less collective spectra coincide in the harmonically confined 1D Fermi gas, as they do for sound waves in its
homogeneous analog. It also shows that in this case the local-density theory reproduces the exact collective
spectrum of the hard-core Bose gas under harmonic confinement.
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I. INTRODUCTION Fermi-Bose mapping theorem implies that the dynamic
structure factor of the Tonks gas is the same as that of the
The study of atomic gases in condensed quantum state®rresponding ideal Fermi gas, although their momentum
inside magnetic or optical traps has received an enormoudistributions are very different. In particular, in the same
impulse from the achievement of Bose-Einstein condensawork Girardeau[10] also showed that long-wavelength
tion in vapors of bosonic alkali-metal atoms and of atomicSound waves propagate in the homogeneous Tonks gas with
hydrogen[1]. Similar techniques of trapping and cooling are Velocity v=m%n/m equal to the Fermi velocityg in the
being used to bring gases of fermionic alkali-metal atomd'0mogeneous ideal Fermi gas at the same densityd atom
into the quantum degeneracy regifi. The observation of Massm. This is, in fact, the speed of propagation for both
small-amplitude shape-deformation modes in Bose-Einsteii®™© (COH'S'OHI?SS‘ sound and hydrodynamic sound in the
condensates inside three-dimensiofgD) anisotropic traps ideal 1D Ferm! gas. . .
at extremely low temperaturg¢8] has proved to be an im- Thg dynamic structurg faCtOT of the spin-polarized 1D
. : : . Eermi gas under harmonic confinement has been evaluated
portant method of diagnostics and has provided a crucial tesetxactly in the collisionless regime and related to that of the

of the mean-field theory based on the time-dependent Grosa— ;
-~ . . omogeneous gas by means of a local-density forrifith
Pitaevskii equatior{4]. No such experiments have as yet 9 us g y y

) , o =" The collective excitation frequencies in this regime are inte-
been o_bserved in Fermi gases, but predlcthns are avallabtf-er multiples of the harmonic-trap frequency and this spec-
for their dynamical spectra in both the collisional and thegm, js, therefore, also that of the corresponding Tonks gas.
collisionless regimé5]. For both bosons and fermions in 3D | the present work we evaluate the dynamics of the same
the strong-coupling Thomas-Fermi limit is characterized by g-ermi system in the collisional regime described by linear-
different spectrum from the weak-coupling limit. ized hydrodynamic equations. We show how these equations
Attention has also been moving toward atomic gases ifor the Fermi gas can be derived from the nonlinear $chro
restricted geometries, where new frontiers are met in the redinger equation proposed by Kolomeiskyal. [13] for the
alization of atom laser§6,7] and of thin atom waveguides dynamics of the mesoscopic wave function of the corre-
[8]. The rich phase diagram of a quasi-1D Bose gas magponding Tonks gas and how the equality of the spectra of
become accessible to observation through tuning of the inthe two fluids remains valid within the dynamical regime of
teractiond9]. Essential modifications to the Gross-Pitaevskiipresent interest.
equation are needed D=2, since theT matrix already After a presentation of the model in Sec. Il, we evaluate
vanishes irD=2. The dilute gas limit can still imply strong its dynamical density fluctuations and collective frequency
coupling in 1D, since collisions are unavoidable in this re-spectrum in the following sections. We give in Sec. Il an
duced dimensionality. analytical solution of the equations of motion for the density
At low temperature and density the dynamics of a Boseluctuations, using the Thomas-Fermi approximatiofA),
gas with repulsive interactions inside a very thin waveguideextended, however, to consider solutions external to the clas-
approaches that of a 1D fluid of impenetrable pointlikesical radius. In Sec. IV we treat the same problem by means
bosons[8]. As demonstrated by GirardeddO], this so- of a numerical simulation mimicking an experimentally real-
called Tonks gakl1] has the same spatial profiles as those ofizable method for measuring the frequencies of the gas. That
a spin-polarized Fermi gas, since the exact many-boson wavs, we excite a collective mode of the atomic cloud by ap-
function is related to that of noninteracting spinless fermionglying an external time-dependent potential of chosen sym-
by Wg(Xq, ... Xn)=|We(Xq, ... Xy)|. More generally, the metry and probe it by observing the evolution in time of the

1050-2947/2001/68)/033605%5)/$20.00 64 033605-1 ©2001 The American Physical Society



MINGUZZI, VIGNOLO, CHIOFALO, AND TOSI PHYSICAL REVIEW A64 033605

density profile once the perturbation is turned off. Finally, neglecting the kinetic energy term po,.(x,t) Egs.(2) and

Sec. V gives a brief summary of our main results and somé&3) yield the equation of motion for the density fluctuations

concluding remarks. of the Fermi gas in the hydrodynamic regime. This is given

by [15]

Il. THE MODEL 5 )

marn(x,t) =g I1(X,t) + d, [ n(X,t) V(X 1)], (5)

According to Kolomeiskyet al. [13], a long-wavelength
approach to the hard-core 1D Bose gas with repulsive pointwhere the momentum flux densif(x,t) depends locally on
like interactions in the dilute regime can be based on thdhe particle density through the relation

nonlinear Schrdinger equation
gereq TI(x,t) = 27203 (x,0)/3m+ mn(x,0)o2(x,0/2.  (6)
ﬁZ 2ﬁ2
; 2
ihdP(x,t)= —E&X+V(x,t)+

| (x,t)[*|D(x,1). Equationg5) and(6) are obtained quite straightforwardly by
) combining Eqgs(2)—(4) in the TFA.

Having established that E¢l) describes in the TFA limit
nal potential, which includes the harmonic confinementcoupling regime and noninteracting spinless fermions in the
Vext(X)meﬁoXZ/Z and a periodic perturbatiot ,(,t). hydrodynamic regime, we turn to its equilibrium solution,
The wave functiond(x,t) is normalized to the numbei of whig:h is a necessary preliminary step for obtaining the col-
particles in the trap. Equatidii) takes account of the correct '€Ctive modes. _ _ _
density dependence of the ground-state energy density for 1€ ground-state densityo(x) is obtained from Eq(3)
the 1D Bose gas in the strong-coupling limit within a local- PY S€ttingztioc(X) = p with v=0 andU,=0. This yields the
density approximation. following differential equation for the equilibrium density:

It was shown by Girardeau and Wright4] that Eq.(1) 52 7252
describgs appro>_<imately the dynamigs qf the Bose gas, al— 2_,93( No(X) + 5 NS2(X) + [ Vexd( X) — £ ]vNo(x) =0.
though it overestimates its coherence in interference patterns <M m

2m

at small numbers of particles. Equati@l) can be cast in the )
form 01_‘ Landau's hydrodynarr_uc equatpns _for a superﬂwdlt is important to remark that E¢3) does not yield the exact
by setting®(x,t) = yn(x,t)exflig(x,0)]. This yields equilibrium density profile of the gas even if one includes the

) kinetic energy term#2/2m) af(\/no(x). The exact profile sat-

an(x,H=—dnx.Hox.b)] isfies instead the third-order differential equat[di6]

and 52 1
1 ~ g AxM0(X¥) = 5N0(X)xVext(X) + [ Vexi(X) ~ 11 ax0(X)
Mdw (X,t) = — dy| Mioe(X, 1)+ Emvz(x,t) ) 3
=0. ®)

where the velocity field is defined asv(x,t)

) oY\ In the case oN=100 particles an accurate comparison be-
=(h/m)dy,¢p(x,t) and the local chemical potential is given P P

tween the solutions of Eq.7) (obtained by the numerical

by method described in Sec. IV belpand of Eq.(8) (using the
42 results of Ref[17]) is given in Fig. 1. It is seen that, al-
X t)=— ————a2Jn(x,t)+ V(x,t though the overall shape of the two curves is quite similar,
H1oo(X.) 2m+y/n(x,t) OGO FVOGY Eq. (7) misses the shell structure of the exact profile and has
2,2 an incorrect behavior in the tailsee the insets in Fig,) 1see
I n2(x.1). 4) also Ref.[13]).
2m ' The above comparison illustrates the limits of validity of

) ) . i ) . Eq.(1). We shall see in the following that the spillout of the
The TFA is obtained by neglecting the first term in the right-particle density beyond the classical radius plays a crucial
hand side of Eq(4). Notice that the ratio of the kinetic qle in determining the dynamics of the atomic cloud. We
energy to the interaction energy is proportionaNo®. The  may also remark that, whereas Efj) is constructed from an
fact that in the TFA the local chemical potential scales withapproximation for the kinetic energy density functional, the
density asw*%°n?/2m, as for a noninteracting spin-polarized exact functional is in fact explicitly known for this system

Fermi gas in the local-density approximation, reflects thg16]. However, it involves a complicated nonlocal function
property that the hard-core Bose gas has the same spat@ the particle density.

profiles as those of the Fermi gas.

' The boson-fermion mapping has also been extended 10 |1l COLLECTIVE MODES IN THE THOMAS-FERMI
time-dependent phenomerjd0,14. Therefore, using the LIMIT

mappingin the inverse directiomwe expect that Eq(l) de-

scribes approximately a noninteracting Fermi gas within a The linearized equation of motion for small-amplitude
local-density approach. Indeed, it is easily shown that upomensity fluctuations is
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5_l||l|| LELELELE BLBLEL L B LIBLELEL |||||_ (1_22)a§5n(z'w)_3za26n(zlw)
4 :_ _: +[(wl whe)?—1]6n(Z,0)
T . =0, (12
g 3r - where z=x/Xr is a rescaled position variable. It can be
= I ] checked by direct substitution that f(g|<1 two indepen-
2L ] dent solutions of this second-order differential equation are
= L ]
For 1 cog (w/ wp,)arcco
L b sni(z,w)= i _1“") . ] (13)
[ 4 - —Z7
L | ]
O L IIII_|1I5I I_I1|4I I_I1I3| Ll | 1111 | 1111 N and
-15 -10 -5 0 5 10 15
x/ay, sin (w/ whe)arccos
5ni(§)(z,w)= I’[( ho) . ] (14)
FIG. 1. Equilibrium density profile foN=100 fermions, in V1-2z

units of the harmonic oscillator leng#,,= V%/mwy, The exact . .
profile (solid line) is compared with that obtained from the nonlin- for any value of the ratiow/wp,. In the domain/z|>1 we
ear Schrdinger equatioril) (dashed ling The insets show enlarge- instead have

ments of the region around=0 and of the tail region, in the same
units. (2| = Vz#—1)*/eno
Moy Z,0) = ’—22— 1 ) (15

maZén(x,t)=a28T1(X,t) + a,[ N(X,1) I Vex(X)], (9
tONOD=GATO)+ AL NG oVe( )], (9 having imposed the condition that the density fluctuations

where sn(x,t) =n(x,t) —ne(x) and we have assumed reso- vanish for|z|—o. Finally, the dispersion relation and the
nance conditions, i.el),(x,t)=0. In the homogeneous gas shape of the density fluctuation modes inside the classical
Vey(X)=0 and Eq(9) yields an acoustic dispersion relation radius are obtained by imposing continuity of
with the propagation velocity of hydrodynamic sound. It J[1—27%[6n(z,w) across the Fermi radius. This condition se-
is a peculiarity of the ideal 1D Fermi gas that this coincideslects the integer values of the frequency ratio
with the velocity of collisionless sound.

In the strict TFA limit the equilibrium density profile has wlwpe=n (16)

finite extension, as is given by and the form(13) of the inner solution. This can also be

written as
V2
NF(X) =~ 02 =X = Vo] (10

7k

Tn(2)

o (znwp) = == (17)
where the chemical potential=% wp,N is obtained from —Z
normalization of Eq(10) to the numbeN of particles in the

trap. We define the classical turning point as the Fermi radiu
Xg=+V2Na,, with a,,= Vh/mw,, Correspondingly, the

where the functiond ,(z) are Chebyshev orthogonal poly-
Romials of the first kind18]. The (integrable divergence in

. f _ Eqg. (17) at the Fermi radius is a consequence of the linear-
TFA expression for the fluctuations in the momentum ﬂuxized TFA in low dimensionality and is evidently inconsistent

. . _ 2 2
density is Sllrea(X,t) =20(Xg—=xT)[ = Vex(X)16N(X,1). \yith the linearization of the hydrodynamic equations. We
As will be apparent from the arguments given below, thegna) return on this point in the next section.

spectrum of collective excitations is obtained asatinuum In the casen=1 we correctly recover from Eq16) the

if this expression is used in E(®). , frequency of the sloshing mode, in agreement with the gen-
A discretespectrum is instead obtained if the spillout out- o 4jized Kohn theorerfL9]. More generally, we find that the
side the classical radius is taken into account. To do this, wgpa spectrum coincides with the spectrum of the Fermi gas
adopt the approximate relation in the collisionless regime, as evaluated in Raf2]. Al-
St though this result for the trapped gas has been reached by an
STI(X,1)=2— n(x,t) =2[ u— Ver(X)]oN(x,t), (11)  approximate and to some extead hocargument, it will be

on verified immediately below by direct numerical solution of
Eq. (D).
where t(n) is the kinetic energy density and the second a
equality follows from using the Euler equation for density IV NUMERICAL SIMULATION

functional theory.

By substituting Eq.(11) into Eq. (9) and performing a The divergence of the density fluctuations at the classical
Fourier transform with respect to time, we rewrite E8).as  boundary of the cloud that results from the extended TFA is
the eigenvalue equation incompatible with a linearization of the equations of motion.
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FIG. 2. Spectra of density fluctuations obtained from the numerical simulation by applying a perturbing potential of drive frequency
w=2wy, (left pane) andw = 3wy, (right pane] and of the appropriate symmetry as described in the text. The insets show the corresponding
time evolution of the density profila(;,t) (in units of agol, with t in units ofwgol) taken at a given poin?in the trap. The spectra are
obtained from the Fourier transform n(;,t), extended over several periods for a better definition of the mode frequencies.

We have therefore carried out a numerical solution of Eqgmode frequency with varyindy, finding only very small de-
(1), which reproduces an experimental procedure employediations within the error bars from the value=2w,, at low

to excite collective models3]. That is, we first apply a time- N; and(ii) used noninteger values for the driving frequency,
dependent perturbing field of given symmetry for variablefinding again only spectral lines at integer frequencies.
amounts of time corresponding to several periods of the ex- Finally, in the regime of weak drive amplitude we have
pected excitation, and then monitor the evolution of thecompared the density fluctuation profiles in E¢s3) and
cloud by recording a series of “pictures” once the perturba-(15) with the output of the simulation. The comparison is
tion is turned off. From the evolution of the density profiles illustrated in Fig. 3. The TFA density fluctuations, in addition
we obtain the frequency and the shape of the density flucto suffering from divergencies at the classical radius, do not

tuation modes. integrate to zero for the modes withan even integer.
The numerical simulations use an explicit time-marching -
algorithm[20] for propagating the state of the cloud in both 0.001 ' oy '.

imaginary and real time, yielding the ground-state profile
ng(x) and the subsequent dynamical behavigx,t). Due to
the size of the nonlinear term in E(.), special attention has —~—0.001
been given to the stability of the algorithm. The perturbing
potential has the forr ,(x,t) = U ,(x)cost) and the drive
frequencyw; is tuned around the expected resonances. As to
the spatial variation of the perturbation, we have adopted the
TFA form U,(x) = V1= (xIXg)28nP(x,w;) in order to ex- TR T BN N R
cite well defined modes. This is approximately equivalent to 0.001 s ——————
imposing orthogonality between the drive field and the other C ' n=3
density fluctuations, in view of the orthogonality of the C B
Chebyshev polynomials in the domdirj<1. 0 ‘k/ﬁ[’i
Figure 2 shows the spectra of quadrupole and hexapole
collective modes folN=100 particles as obtained from the —0.001 ) o ’
Fourier transform of the time evolution of the density profile /X,
taken at a given point in the harmonic trap. The results agree
with the TFA prediction that the main frequencies of these FIG. 3. Density fluctuation profile$n(x) for the low-lying
modes araw=2 wy, and w=3 wy,, respectively. Nonlin- modes(indicated by the mode numbens=1, 2, and 3 from top to
earity is apparent through the presence of several other resbettom atN= 100 particles, in units af,4 as functions of position
nances in each spectrum. We have checked that the spectraxoi units of the Thomas-Fermi radius: . The resuilts from the
theith moments(x')= (1/N) fdx Xn(x,t) are peaked at the numerical simulation(solid lineg, where sn(x)=n(x,t) —ny(X)
fundamental excitation frequency of each mode. In furthelandt is a given time, are compared with the analytic solutions in
tests we havdi) examined the behavior of the quadrupole the Thomas-Fermi limitdashed lines
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V. SUMMARY AND CONCLUSIONS accurate treatment of the collisional regime beyond the TFA

In summary, we have shown by analytical and numerical"® usefully be de\_/eloped in the future.
arguments that the hydrodynamic frequency spectrum of the A further conplusmn can be drawn f_rom the p_rgsent solu-
1D ideal Fermi gas under harmonic confinement is given b lon of the nonlinear SchFi)nger equatlon_descrlbmg a 1D_
integer multiples of the trap frequency. This result extends t ard-core Bose gas. By virtue of the fermlon—bo§on mapping
the trapped Fermi gas a property of the homogeneous ideg?eor.em, the frequency spectrum associated with this local-
Fermi gas, in which the speed of sound is the same in thaensity theory reproduces the exactly known spectrum of the
hydrodynamic regime as in the collisionless regime. A moreBose gas under harmonic confinement.
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