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Enhancement of quantum tunneling oscillations due to nonlinear interactions
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We show that atomic-tunneling oscillations between two Bose-Einstein condensates can be increased as well
as decreased by preparing the appropriate initial conditions and the nonlinear self-interaction. There is a
trade-off relation between the oscillation amplitudes and the frequencies: smaller the oscillation amplitudes,
higher the oscillation frequencies. The trajectory of the state vector on the Bloch sphere gives us an intuitive
understanding of the increase of the tunneling oscillations. Similar effect predicted in this paper is expected for
other nonlinear systems such as in the coupled quantum dots and waveguide coupling, in which the on-site
energy and the self-phase-modulation, respectively, give rise to the nonlinear interactions.
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The problem of tunneling through the barrier of a double-standing of the enhancement, we will also show the visual
well has received a considerable amount of attention as tiajectories of the state vector on the Bloch sphere.
fundamental problem in physidd]. Considering a double- Consider a condensate withh atoms in a trap potential
well potential with well-separated minima, if an atom is ini- V(F). In the Hartree approximation, the state of the conden-
tially localized in one well, it can oscillate between the wells sate is described by the Gross-Pitaevskii equat®RE). It
by quantum tunneling with the tunneling periog= 7/«, accurately describes the condensate wave funcfigr,t)
where k is the tunneling coefficient. An attempt to enhancein the presence of particle interactions in thermal equilibrium
the tunneling oscillations by external fields has appeared it temperatures well below the critical temperature,

Ref.[2]. Guerin and Jauslin have theoretically shown that an

enhancement of tunneling oscillations of the atom for a quar- . doy 2 ) R )

tic double-well potential model of the NHmolecule could i — === 5= VSHV(O) +NUg ol én, (D)
be realized by a pulse-shaped laser field. The mechanism of

the enhancement is based on the photon-mediated tun”EIiR}ﬂwereU0=(4wﬁ2a/m) i the interatomic-scattering pseudo-
through an excited state that has a larger tunneling Coeff'potential,a and m are atomic scattering length and mass,
cient than the ground statg,3]. respectively.

In this paper, we will show that the enhancement of the /o study the atomic tunneling at zero temperature be-
tunneling oscillations between two wells can be achieved "iween two weekly linked BEC's in a symmetric double-well
nonlinear systems without the external fields. Recently, th‘?rap shown in Fig. 1. The dynamics of this system can be
closely related topics have been reported by Wu and[Mlu  46yemed by two Gross-Pitaevskii equations for the BEC am-
and Zobay and Garrawd$]. The authors have investigated iy des. That is, in the two-mode approximation we write
the influence of the nonlinearitiggatomic self-interactions Sn(F, 1) =by()us(F) +by(t)u,(F), satisfying the simple
on tlme-dependenF tunnellr(gandau—Zem?r tunnelingopro- normalization |b; (t)|2+ |b,(t)[2=1. Substituting this into
cesses of Bose-Einstein condensatBEC’s). The authors  Gpg (1) we can obtain nonlinear coupled-mode equations
discussed how the interactions modify the tunneling prob(}6_9]

ability by a nonlinear Landau-Zener equation and claime

that the interactions can cause significant increase as well as

decrease of tunneling probabilites.

Here, one interesting question arises: Can we enhance not §

the ultimate tunneling probabilities in nonlinear Landau-

Zener tunneling, but the frequency of the tunneling oscilla- P(t)

tions itself? It seems apparently impossible in linear systems,

but in the nonlinear systems it may be possible. As one of the

nonlinear systems, we consider the tunneling of the neutral

atoms between two BEC states in a double-well trap and [1) -_— |2)

show that the enhancement of the tunneling oscillations is Kk

really obtained for appropriate conditions of the initial pOpU-  FiG. 1. Symmetric double-well trap for two Bose-Einstein-

lations in the double wells and of the magnitudes of thegondensate statds) and |2), which are coupled by the tunneling

nonlinearities. In order to give the intuitive physical under-through the potential barrier, and statésand|3) are coupled by
laser field, which prepares the initial phage of state|1). The Rabi
frequency of the laser field and the detuning are representédj by

*Electronic address: tsukada@aomori-u.ac.jp and A, respectively.

1050-2947/2001/68)/0336015)/$20.00 64 033601-1 ©2001 The American Physical Society



N. TSUKADA PHYSICAL REVIEW A 64 033601

d
= (a0 +Qlby|2)by i by e A ANAAAAL
e (w0t Qb2 ib 2b AVATAVATATAY ;
at (wa+ | 2| )b —ikby, (2b) (b)o 2 & 6 8 10 12 14 (&)
g 1 's 1
where() =UyN/% is proportional to the nonlinearity andis _§ 22 / :—‘g 22
the coupling(tunneling matrix element between the traps & ©°-4/ 2 0.4,
(see Fig. 1 given by k= [[(A22m)(Vu,Vu,) +u,Vu,Jdr & 2V YV YV YL & o
[10]. For a symmetric double-well trap, the zero-point ener- (¢)® * ¢ ¢ ® 121 ®°
gies in two traps are equal, i.a0=w5= ", and the tun- o .
neling coefficientk can be determined from appropriate 0.6 \/ 6
overlap integrals of the time-independent GPE eigenfunc- g;‘ ‘;
tions of the isolated traps. The total number of atols i O

‘10 12 14

=N;+N,=N(|b,|?+|b,|?) is conserved. In Fig. 1, the ex- cr ey

citation process by a laser pulse from level 1 to an excited
level 3 is employed for the preparation of the initial phése FIG. 2. Atomic-tunneling oscillations between two traps as a
&1, see beloy which is controllable by the detuniny and function of dimensionless time<. with the initial conditions
the area of the laser pul$&1]. b,(0)=yN and b,(0)=0. The value of the nonlinear self-
The Gross-Pitaevskli equation describing the mean-fieldnteractionl/« takes the valueg) 0, (b) 3, (c) 3.9, (d) 4, (¢) 4.1,
dynamics of a BEC is formally identical to the nonlinear @1d(®) S.
Schrodinger equation that has appeared earlier in other fields,
such as a model of polaron hopping in semiclassical approxisider the initial conditions oN;=0.7N, N,=0.3N, and ¢,
mation[12], nonlinear directional coupler of nonlinear optics = ¢,=0. The time evolution of the populations is shown in
[13], and Coulomb blockade of coherent electron oscillationg=ig. 3 for O/x=—50, —45, —25, —10, 0, 2, 2.3, and 5. In
in the coupled quantum dof8], although they describe quite the range—4.5=0/xk=2, we can see symmetrical oscilla-
different physics. Therefore, many of the results, methodstions between two traps with a constant modulation ampli-
and insights can be fruitfully applied from these other fieldstude 0.4. For{)/x=—50 [Fig. 3@)] and (}/x=2.3 [Figs.
to the study of BEC dynamics and vice versa. 3(a) and 3h)], the population dynamics exhibit two kinds of
In what follows, we show some numerical results of Eq.the macroscopic quantum self-trapping. In Figa)3the sys-
(2) for the various initial conditions. The general form of the tem is in the first type of trapped stéfiirst type of m-phase
probability amplitudes of Eq.(2) is given by b4(0)
=N,(0)e'?1 and b,(0)=\/N,(0)e'*2, whereN, 0) and
¢, are the initial number of atoms and phases of the con-
densates in traps 1 and 2, respectively. We begin with nu-
merical results for initial condition, all atoms being in one of )
two traps, i.e., by(0)=+yN [N;(0)=N] and b,(0)=0 P TETTE e T I
[N,(0)=0]. In Fig. 2, we show the time evolution of the
number of atoms in trap 1 and 2 with solid and dashed
curves, respectively. The calculations were performed for a
wide range of the nonlinear parameter, i@/x=0, 3, 3.9,
4, 4.1, and 5. As long as the nonlinearity does not exceed the
threshold value @/xk=4), atoms initially localized on one
trap can be completely transferred to the other well, and&
oscillate back and forth between the traps. If the nonlinearity
exceeds the threshold, i.e., fO¥/«>4, this oscillation be-
comes abruptly incomplete. We refer this to the quantum
self-trapping transition in BEC6,7,9], which is accompa-
nied by the critical slowing dowh7,9]. The oscillation fre-
qguency gradually decreases as the nonlinearity is increase
and the oscillation period becomes very long{(atx=4.
Above this value, the oscillation mode changes abruptly and 0 2 4 6 81012 14 0 8 1031z 14
shows the quantum self-trapping oscillations with high fre- Kt Kt
quency, larger than the bare tunneling frequeffeigs. 2e) FIG. 3. Atomic-tunneling oscillations between two traps as a
and 2f)]. function of dimensionless time<. with the initial conditions
Here we are, however, interested in the symmetridy,(0)=+0.7N and¢=¢,— ¢,=0. The value of the nonlinear self-
population-exchange oscillations between two traps thaihteraction/« takes the value$a) —50, (b) —45, (c) —25, (d)
have the time-averaged populations ofN..BAe now con- —10, (e) 0O, (f) 2, (g) 2.3, and(h) 5.
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FIG. 4. The frequencya) and the modulation amplitud) of FIG. 5. The modulation amplitude of the tunneling oscillations

the tunneling oscillations as a function of the nonlinear self-;¢ 4 function of the nonlinear self-interactié¥ix with b= (a
interaction O/« for the initial phase¢=0, #/3, and #/2 with shows the results for the initial conditidml(0)=\/ﬁ, 0.9,
b,(0)=O.7N. JO.ON, 0.8\, JO.7N and (b) shows the results foi,(0)

. . =+/0.6N and y0.55N together withb,;(0)=+/0.8N and 0.7N.
trapped statd7]) and in Figs. &) and 3h), the system g +(0)

shows the second type ai-phase trapped staf&]. Again,  bare tunneling oscillations fd2/«x=0, whereas the modula-
we are not interested in the self-tapping oscillations. In Figstion amplitude maintains a constant value of 0.4. Hor
3(b)—3(f), the atomic tunneling shows symmetric oscilla- =7/2, the enhancement becomes symmetric for negative
tions. The oscillation frequencies in FiggbB-3(d) become  and positive nonlinearities. In contrast to the casepef0,
faster than those for the bare tunneling oscillati¢Rgy. the modulation amplitude also varies as a functior{}k.
3(@]. The oscillation frequency fo)/x=—25 is about Comparing Figs. &) and 4b), we can see that the increas-
three times higher than the bare oscillation frequentyy ( ing of the oscillation frequency is accompanied by the de-
=/ ). For these initial conditions the enhancement of thecreasing of the modulation amplitude up to a point at which
tunneling is realized only for negative nonlinearityr for  the oscillation frequency becomes maximum.
attractive atom-atom interactionsAs we can see below, Figure 5 shows the oscillation frequencies against the
however, the enhancement of the tunneling could also reahegative and positive nonlinearity for various values of the
ized for positive nonlinearity by choosing the appropriateinitial populationsN;/N=1.0, 0.95, 0.9, 0.8, 0.7, 0.6, and
values of the phaseé= ¢,— ¢,. This is the main results in 0.55 with ¢= 7. Comparing both curves fd¥;/N=0.7 in
this paper. Figs. 4a) and Ha), we recognize that both the curves are
The oscillation frequency and the modulation amplitudesymmetric about negative and positive nonlinearity. Accord-
against the nonlinear self-interactioi®/«) are shown in ingly, if we can preparep= as the initial phase, the en-
Fig. 4 for the initial phasep=¢,— ¢,=0, #/3, and 7/2.  hancement of the tunneling oscillations is also realized for
Other parameters used are the same as in Fig. 2. As seenthre positive nonlinearity. This initial condition is easily real-
Fig. 4(a), the enhancement of the tunneling oscillations canzed by introducing an excitation process to the system. The
be observed only for negative values of the nonlinear selfinitial phase¢ of the condensate in trap 1 can be arbitrarily
interactions. For¢=0, the maximum enhancement of the changed by applying a laser pulse that has appropriate pulse
tunneling frequency is obtained &/x= —32, where the area and the detuninfy[11]. In Fig. 5, we can see that as the
tunneling oscillations are over three times faster than thénitial population (N;(0)/N) in trap 1 is reduced, the en-
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hancement of the tunneling oscillations is increased. For ex-
ample, if we choos®&;(0)/N=0.55 and¢= 7 as the initial
conditions, we get extremely high tunneling oscillations that
are 13 times higher than the bare tunneling oscillations. As
far as the symmetric oscillations are observed, the modula-
tion amplitude maintains a constant value, which is deter-
mined only by the value oN(0)/N; the oscillation ampli-
tude is given by Rl;(0)/N—1.

In order to obtain an intuitive understanding for the en-
hancement of the atomic tunneling appearing in the nonlin-
ear coupled systems, we rewrlig(t) andb,(t) in Egs.(2)
by using the relationsu=b;b3+b,b}, v=—i(b;b3
—b,bY), and w=b,b} —b,b3 . The componenw is di-
rectly related to the occupation probabilities of the traps 1
and 2, i.e.|b;|? and|b,|2. After some simple procedures, we
obtain a vector equation of the motion,

dp/dt=pxT, 3

in which p=(u,v,w) is a vector characterizing the state of
the coupled system on the unit sphere, 8+ v?+w?=1.
The state vectop rotates about the effective torque vector

T=(2«,0,20w). Equation(3) is similar to the Bloch-vector
model, which has been widely used for quantum coherent
optics in order to understand the interaction between atomic
systems and resonant or near-resonant light, but contains an
additional nonlinear term (@w) arising from nonlinear self- FIG. 6. Time evolution of the trajectories of the state vegtor
interaction. Note that in our BEC system, the north pate ( for _the initial conditions w(0)=0.4 and v(0)=0 [u(0)
—1) and south polevy=—1) represent the states corre- = V1—W(0)’], which correspond tb;(0)=0.7N and¢=0 and
sponding to all atoms localized in trap 1 and 2, respectively}he same initial conditions as in Fig. 3. The nonlinear self-
The state vectors lying on the equator represent an equ%ﬂteracnonm" takes valuega) —50, (b) —45, (c) —25, (d) 10,
division of atoms between the traps with different phases of® @ () 2. (9 2.3, and(h) 5.
the cor_ldensates. i ) periodic localization of the condensate in one of the traps
In F_lg. 6, we show the trajectories of the state vegan [see Figs. &) and 6g), Figs. 3h) and &h)]. For the positive
the unit sphere corresponding to the evolution of the popupqniinearity, there is the condition that both the vegiand

lations shown in Fig. 3. In this representation, the initial - .
conditions used in Fig. 3 correspond to(0)=0.4 and the torque vectof become parallel and hence the vegias

v(0)=0 together withu(0)=1—w(0)2. For these condi- locked in the Eorque vectgf, leading to the statjonary state
tions, the state vector and the torque vector are, respectivel {g;?e 'I\'/ﬁi(s:tog;ﬁe[r;[gre;\gi?:uirg ifra:i?arbetg/vesf)?n ﬁlgglfi)r?gn\?vell
8'(\83)1 F i’ _p v;(%J)(z?)_'Séw Eg)tLeaggszgc(ez’;}Ofr?gywvégﬁ%eglrﬂs]elf- known in nuclear magnetic resonanik4] and called the

_ ) ' S self-trapped stationary state or the-symmetry-breaking
interaction{}/ k=0, the torque vectoll directs along theu state in Refs.[7,15]. This condition is obtained for
axis and then the trajectory gftraces a circle with its center w(0)/u(0)=Qw(0)/x or Q/k=[1—w(0)2]"Y2 For very

at theu axis [Figs. 3e) and Ga)]. For the small positive gmg|| w(0), the condition is satisfied af)/x=1, which
nonlinearity, i.e.w(0)/u(0)>Qw(0)/«, the deviation angle gives the exact threshold of the spontaneous symmetry
of T from thew axis is smaller than that of th& Therefore, breaking[9(b)].

the vectorp precessing abo rotates toward the equator so ~ For the negative self-interactionsay, Li atomy, the

as to decrease the componemft) more and more. As a torque vectorT is always in the lower hemisphere and the
result, the state vectqgs rotates about the axis making an  vector p is in the upper hemisphere. Therefoge,always
elliptic trajectory, which corresponds to the symmetric-rotates toward the equator and the self-trapping oscillations
tunneling oscillations of the atoms between the two trapsever occur[Figs. 3b)—3(d) and Figs. 6b)—6(d)]. As the
[Figs. 3f) and &f)]. When the positive nonlinearity becomes nonlinearity increases, the trajectory shows oval orbits,
large, i.e., w(0)/u(0)<Qw(0)/«, the torque vectorT  Which are squeezed along the longitude. The trajectori@s of
makes a larger angle with theaxis than that of the vectgr.  for the negative nonlinearity are easily envisaged in follow-
Therefore, the vectqs rotates toward the north pole so as to ing way. The torque vectdf deviates more and more from
increasew(t) more and more. This positive feedback causeghe u axis and approaches thew axis as the nonlinearity is
the self-trapping of the atomic distribution, resulting in theincreased. Therefore, the initial trajectory traces nearly along
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a latitude with a very large Rabi frequency directed along the—w axis, resulting in the precession
J(2k)Z+ (2Qw)%2—w. As noted abovej always rotates to- around thew axis. This means the vanishing of the tunneling
ward the equator. Accordingly, the vecireaches the equa- Oscillations, because the infinite nonlinearity causes infinite
tor sooner or later. At the equator, the population differencedetuning between the two condensates. _ o

w becomes zero and the nonlinear part of the torque vector !N conclusion, the enhancement of tunneling oscillations

T ie. aterm oflw. vanishes and the two condensate stateéjue to nonlinear self-interactions in BEC's was predicted;
are in resonance, resulting in the torque vecTsrbeing sacrificing the oscillation amplitude, we can obtain a signifi-

along theu axis and the Rabi frequency2The oval trajec- cant increase in the frequency of the tunneling oscillations.

tories have very large precession frequencies along the eqlégPV '”rsltanced’ Lheffretquer;c%of tr:jeltgnnellng Ozcm_‘i‘mﬂs Ea”
tor and have the bare tunneling frequency when the traject )€ enhanced by factors 2, 3, an compared wi € bare

ries cross the equator. This is the reason why we Coulgmneling oscillations for the modulation amplitudes of 0.6,
realize the enhancement of the atomic-tunneling oscillation -4, and 0.1, respectively. The t_raje_c_tory of the staf[e vector
in the nonlinear systems. The maximum enhancement of th n the Bloch sphere gave us an intuitive understanding of the

oscillation frequency is obtained when the both edges of th nhancer_nent Qf thg tunnelmg frequency. An effect S|m|lgr to
trajectory on the equator align on theaxis at predicted in this paper is expected for other nonlinear

Further increasing the nonlinear self-interaction to theSyStemS such as in coupled quantum dots and waveguide

negative side, the oscillation frequency decreases agafﬁOUpl'ng in which t_he on-site_energy and the sel_f-phase
[Figs. 3b) and &b)] and then the both edges of the trajectorymOdUIat'on' respectively, give rise to the nonlinear interac-

on the equator converge into one point. At this point, the'ONS:

second kind of self-trapping transition appears and the tra- Thjs work is partially supported by a Grant-in-Aid from
jectory forms a circle in the upper hemisphgfegs. 3a)f;1nd the Ministry of Education, Science, Sports and Culture
6(a)]. For the infinite nonlinearity, the torque vectdris  (Grants Nos. 08217216 and 20275514
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