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Enhancement of quantum tunneling oscillations due to nonlinear interactions
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We show that atomic-tunneling oscillations between two Bose-Einstein condensates can be increased as well
as decreased by preparing the appropriate initial conditions and the nonlinear self-interaction. There is a
trade-off relation between the oscillation amplitudes and the frequencies: smaller the oscillation amplitudes,
higher the oscillation frequencies. The trajectory of the state vector on the Bloch sphere gives us an intuitive
understanding of the increase of the tunneling oscillations. Similar effect predicted in this paper is expected for
other nonlinear systems such as in the coupled quantum dots and waveguide coupling, in which the on-site
energy and the self-phase-modulation, respectively, give rise to the nonlinear interactions.
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The problem of tunneling through the barrier of a doub
well has received a considerable amount of attention a
fundamental problem in physics@1#. Considering a double
well potential with well-separated minima, if an atom is in
tially localized in one well, it can oscillate between the we
by quantum tunneling with the tunneling periodtT5p/k,
wherek is the tunneling coefficient. An attempt to enhan
the tunneling oscillations by external fields has appeare
Ref. @2#. Guerin and Jauslin have theoretically shown that
enhancement of tunneling oscillations of the atom for a qu
tic double-well potential model of the NH3 molecule could
be realized by a pulse-shaped laser field. The mechanis
the enhancement is based on the photon-mediated tunn
through an excited state that has a larger tunneling co
cient than the ground states@2,3#.

In this paper, we will show that the enhancement of
tunneling oscillations between two wells can be achieved
nonlinear systems without the external fields. Recently,
closely related topics have been reported by Wu and Nlu@4#
and Zobay and Garraway@5#. The authors have investigate
the influence of the nonlinearities~atomic self-interactions!
on time-dependent tunneling~Landau-Zener tunneling! pro-
cesses of Bose-Einstein condensates~BEC’s!. The authors
discussed how the interactions modify the tunneling pr
ability by a nonlinear Landau-Zener equation and claim
that the interactions can cause significant increase as we
decrease of tunneling probabilities.

Here, one interesting question arises: Can we enhance
the ultimate tunneling probabilities in nonlinear Landa
Zener tunneling, but the frequency of the tunneling osci
tions itself? It seems apparently impossible in linear syste
but in the nonlinear systems it may be possible. As one of
nonlinear systems, we consider the tunneling of the neu
atoms between two BEC states in a double-well trap
show that the enhancement of the tunneling oscillation
really obtained for appropriate conditions of the initial pop
lations in the double wells and of the magnitudes of
nonlinearities. In order to give the intuitive physical unde
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standing of the enhancement, we will also show the vis
trajectories of the state vector on the Bloch sphere.

Consider a condensate withN atoms in a trap potentia
V(rW). In the Hartree approximation, the state of the cond
sate is described by the Gross-Pitaevskii equation~GPE!. It
accurately describes the condensate wave functionfN(rW,t)
in the presence of particle interactions in thermal equilibriu
at temperatures well below the critical temperature,

i\
]fN

]t
5F2

\2

2m
¹21V~rW !1NU0ufNu2GfN , ~1!

whereU05(4p\2a/m) is the interatomic-scattering pseud
potential, a and m are atomic scattering length and mas
respectively.

We study the atomic tunneling at zero temperature
tween two weekly linked BEC’s in a symmetric double-we
trap shown in Fig. 1. The dynamics of this system can
governed by two Gross-Pitaevskii equations for the BEC a
plitudes. That is, in the two-mode approximation we wr
fN(rW,t)5b1(t)u1(rW)1b2(t)u2(rW), satisfying the simple
normalization ub1(t)u21ub2(t)u251. Substituting this into
GPE ~1!, we can obtain nonlinear coupled-mode equatio
@6–9#

FIG. 1. Symmetric double-well trap for two Bose-Einstei
condensate statesu1& and u2&, which are coupled by the tunnelin
through the potential barrier, and statesu1& and u3& are coupled by
laser field, which prepares the initial phasef1 of stateu1&. The Rabi
frequency of the laser field and the detuning are represented byVL

andD, respectively.
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db1

dt
52 i ~v1

01Vub1u2!b12 ikb2 , ~2a!

db2

dt
52 l ~v2

01Vub2u2!b22 ikb1 , ~2b!

whereV5U0N/\ is proportional to the nonlinearity andk is
the coupling~tunneling! matrix element between the trap
~see Fig. 1! given by k5*@(\2/2m)(¹u1¹u2)1u1Vu2#dr
@10#. For a symmetric double-well trap, the zero-point en
gies in two traps are equal, i.e.,v1

05v2
05v0, and the tun-

neling coefficientk can be determined from appropria
overlap integrals of the time-independent GPE eigenfu
tions of the isolated traps. The total number of atomsN
5N11N25N(ub1u21ub2u2) is conserved. In Fig. 1, the ex
citation process by a laser pulse from level 1 to an exc
level 3 is employed for the preparation of the initial phas~
f1 , see below!, which is controllable by the detuningD and
the area of the laser pulse@11#.

The Gross-Pitaevskli equation describing the mean-fi
dynamics of a BEC is formally identical to the nonline
Schrodinger equation that has appeared earlier in other fie
such as a model of polaron hopping in semiclassical appr
mation@12#, nonlinear directional coupler of nonlinear optic
@13#, and Coulomb blockade of coherent electron oscillatio
in the coupled quantum dots@9#, although they describe quit
different physics. Therefore, many of the results, metho
and insights can be fruitfully applied from these other fie
to the study of BEC dynamics and vice versa.

In what follows, we show some numerical results of E
~2! for the various initial conditions. The general form of th
probability amplitudes of Eq.~2! is given by b1(0)
5AN1(0)eif1 and b2(0)5AN2(0)eif2, whereN1,2(0) and
f1,2 are the initial number of atoms and phases of the c
densates in traps 1 and 2, respectively. We begin with
merical results for initial condition, all atoms being in one
two traps, i.e., b1(0)5AN @N1(0)5N# and b2(0)50
@N2(0)50#. In Fig. 2, we show the time evolution of th
number of atoms in trap 1 and 2 with solid and dash
curves, respectively. The calculations were performed fo
wide range of the nonlinear parameter, i.e.,V/k50, 3, 3.9,
4, 4.1, and 5. As long as the nonlinearity does not exceed
threshold value (V/k%4), atoms initially localized on one
trap can be completely transferred to the other well, a
oscillate back and forth between the traps. If the nonlinea
exceeds the threshold, i.e., forV/k.4, this oscillation be-
comes abruptly incomplete. We refer this to the quant
self-trapping transition in BEC@6,7,9#, which is accompa-
nied by the critical slowing down@7,9#. The oscillation fre-
quency gradually decreases as the nonlinearity is incre
and the oscillation period becomes very long atV/k54.
Above this value, the oscillation mode changes abruptly
shows the quantum self-trapping oscillations with high f
quency, larger than the bare tunneling frequency@Figs. 2~e!
and 2~f!#.

Here we are, however, interested in the symme
population-exchange oscillations between two traps
have the time-averaged populations of 0.5N. We now con-
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sider the initial conditions ofN150.7N, N250.3N, andf1
5f250. The time evolution of the populations is shown
Fig. 3 for V/k5250, 245, 225, 210, 0, 2, 2.3, and 5. In
the range24.5%V/k%2, we can see symmetrical oscilla
tions between two traps with a constant modulation am
tude 0.4. ForV/k5250 @Fig. 3~a!# and V/k^2.3 @Figs.
3~a! and 3~h!#, the population dynamics exhibit two kinds o
the macroscopic quantum self-trapping. In Fig. 3~a!, the sys-
tem is in the first type of trapped state~first type ofp-phase

FIG. 2. Atomic-tunneling oscillations between two traps as
function of dimensionless timeki with the initial conditions
b1(0)5AN and b2(0)50. The value of the nonlinear self
interactionV/k takes the values~a! 0, ~b! 3, ~c! 3.9, ~d! 4, ~e! 4.1,
and ~f! 5.

FIG. 3. Atomic-tunneling oscillations between two traps as
function of dimensionless timeki with the initial conditions
b1(0)5A0.7N andf5f12f250. The value of the nonlinear self
interactionV/k takes the values~a! 250, ~b! 245, ~c! 225, ~d!
210, ~e! 0, ~f! 2, ~g! 2.3, and~h! 5.
1-2
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trapped state@7#! and in Figs. 3~g! and 3~h!, the system
shows the second type ofp-phase trapped state@7#. Again,
we are not interested in the self-tapping oscillations. In F
3~b!–3~f!, the atomic tunneling shows symmetric oscill
tions. The oscillation frequencies in Figs. 3~b!–3~d! become
faster than those for the bare tunneling oscillations@Fig.
3~a!#. The oscillation frequency forV/k5225 is about
three times higher than the bare oscillation frequencyf 0
5k/p). For these initial conditions the enhancement of
tunneling is realized only for negative nonlinearity~or for
attractive atom-atom interactions!. As we can see below
however, the enhancement of the tunneling could also r
ized for positive nonlinearity by choosing the appropria
values of the phasef5f12f2 . This is the main results in
this paper.

The oscillation frequency and the modulation amplitu
against the nonlinear self-interactions~V/k! are shown in
Fig. 4 for the initial phasef5f12f250, p/3, and p/2.
Other parameters used are the same as in Fig. 2. As se
Fig. 4~a!, the enhancement of the tunneling oscillations c
be observed only for negative values of the nonlinear s
interactions. Forf50, the maximum enhancement of th
tunneling frequency is obtained atV/k5232, where the
tunneling oscillations are over three times faster than

FIG. 4. The frequency~a! and the modulation amplitude~b! of
the tunneling oscillations as a function of the nonlinear se
interaction V/k for the initial phasef50, p/3, and p/2 with
b1(0)5A0.7N.
03360
.

e

l-

in
n
f-

e

bare tunneling oscillations forV/k50, whereas the modula
tion amplitude maintains a constant value of 0.4. Forf
5p/2, the enhancement becomes symmetric for nega
and positive nonlinearities. In contrast to the case off50,
the modulation amplitude also varies as a function ofV/k.
Comparing Figs. 4~a! and 4~b!, we can see that the increa
ing of the oscillation frequency is accompanied by the d
creasing of the modulation amplitude up to a point at wh
the oscillation frequency becomes maximum.

Figure 5 shows the oscillation frequencies against
negative and positive nonlinearity for various values of t
initial populationsN1 /N51.0, 0.95, 0.9, 0.8, 0.7, 0.6, an
0.55 with f5p. Comparing both curves forN1 /N50.7 in
Figs. 4~a! and 5~a!, we recognize that both the curves a
symmetric about negative and positive nonlinearity. Acco
ingly, if we can preparef5p as the initial phase, the en
hancement of the tunneling oscillations is also realized
the positive nonlinearity. This initial condition is easily rea
ized by introducing an excitation process to the system. T
initial phasef of the condensate in trap 1 can be arbitrar
changed by applying a laser pulse that has appropriate p
area and the detuningD @11#. In Fig. 5, we can see that as th
initial population „N1(0)/N… in trap 1 is reduced, the en

-
FIG. 5. The modulation amplitude of the tunneling oscillatio

as a function of the nonlinear self-interactionV/k with f5p. ~a!
shows the results for the initial conditionb1(0)5AN, A0.95N,
A0.9N, A0.8N, A0.7N and ~b! shows the results forb1(0)
5A0.6N andA0.55N together withb1(0)5A0.8N andA0.7N.
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N. TSUKADA PHYSICAL REVIEW A 64 033601
hancement of the tunneling oscillations is increased. For
ample, if we chooseN1(0)/N50.55 andf5p as the initial
conditions, we get extremely high tunneling oscillations th
are 13 times higher than the bare tunneling oscillations.
far as the symmetric oscillations are observed, the mod
tion amplitude maintains a constant value, which is de
mined only by the value ofN1(0)/N; the oscillation ampli-
tude is given by 2N1(0)/N21.

In order to obtain an intuitive understanding for the e
hancement of the atomic tunneling appearing in the non
ear coupled systems, we rewriteb1(t) andb2(t) in Eqs.~2!
by using the relationsu5b1b2* 1b2b1* , v52 i (b1b2*
2b2b1* ), and w5b1b1* 2b2b2* . The componentw is di-
rectly related to the occupation probabilities of the traps
and 2, i.e.,ub1u2 andub2u2. After some simple procedures, w
obtain a vector equation of the motion,

drW /dt5rW 3TW , ~3!

in which rW 5(u,v,w) is a vector characterizing the state
the coupled system on the unit sphere, i.e.,u21v21w251.
The state vectorrW rotates about the effective torque vect
TW 5(2k,0,2Vw). Equation~3! is similar to the Bloch-vector
model, which has been widely used for quantum coher
optics in order to understand the interaction between ato
systems and resonant or near-resonant light, but contain
additional nonlinear term (2Vw) arising from nonlinear self-
interaction. Note that in our BEC system, the north polew
51) and south pole (w521) represent the states corr
sponding to all atoms localized in trap 1 and 2, respectiv
The state vectors lying on the equator represent an e
division of atoms between the traps with different phases
the condensates.

In Fig. 6, we show the trajectories of the state vectorrW on
the unit sphere corresponding to the evolution of the po
lations shown in Fig. 3. In this representation, the init
conditions used in Fig. 3 correspond tow(0)50.4 and
v(0)50 together withu(0)5A12w(0)2. For these condi-
tions, the state vector and the torque vector are, respecti
given by rW 5„u(0),0,w(0)… and TW 5„2k,0,2Vw(0)… with
u(0)5@12w(0)2#21/2. In the absence of the nonlinear se
interactionV/k50, the torque vectorTW directs along theu
axis and then the trajectory ofrW traces a circle with its cente
at the u axis @Figs. 3~e! and 6~a!#. For the small positive
nonlinearity, i.e.,w(0)/u(0).Vw(0)/k, the deviation angle
of TW from thew axis is smaller than that of therW . Therefore,
the vectorrW precessing aboutTW rotates toward the equator s
as to decrease the componentw(t) more and more. As a
result, the state vectorrW rotates about theu axis making an
elliptic trajectory, which corresponds to the symmetr
tunneling oscillations of the atoms between the two tra
@Figs. 3~f! and 6~f!#. When the positive nonlinearity become
large, i.e., w(0)/u(0),Vw(0)/k, the torque vectorTW
makes a larger angle with theu axis than that of the vectorrW .
Therefore, the vectorrW rotates toward the north pole so as
increasew(t) more and more. This positive feedback caus
the self-trapping of the atomic distribution, resulting in t
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periodic localization of the condensate in one of the tra
@see Figs. 3~g! and 6~g!, Figs. 3~h! and 6~h!#. For the positive
nonlinearity, there is the condition that both the vectorrW and
the torque vectorTW become parallel and hence the vectorrW is
locked in the torque vectorTW , leading to the stationary stat
of the vectorrW @the medium state between Figs. 3~f! and
3~g!#. This phenomenon is similar to spin locking we
known in nuclear magnetic resonance@14# and called the
self-trapped stationary state or thez -symmetry-breaking
state in Refs. @7,15#. This condition is obtained for
w(0)/u(0)5Vw(0)/k or V/k5@12w(0)2#21/2. For very
small w(0), the condition is satisfied atV/k51, which
gives the exact threshold of the spontaneous symm
breaking@9~b!#.

For the negative self-interactions~say, Li atoms!, the
torque vectorTW is always in the lower hemisphere and th
vector rW is in the upper hemisphere. Therefore,rW always
rotates toward the equator and the self-trapping oscillati
never occur@Figs. 3~b!–3~d! and Figs. 6~b!–6~d!#. As the
nonlinearity increases, the trajectory shows oval orb
which are squeezed along the longitude. The trajectoriesrW
for the negative nonlinearity are easily envisaged in follo
ing way. The torque vectorTW deviates more and more from
theu axis and approaches the2w axis as the nonlinearity is
increased. Therefore, the initial trajectory traces nearly al

FIG. 6. Time evolution of the trajectories of the state vectorrW
for the initial conditions w(0)50.4 and v(0)50 @u(0)
5A12w(0)2#, which correspond tob1(0)5A0.7N andf50 and
the same initial conditions as in Fig. 3. The nonlinear se
interactionV/k takes values~a! 250, ~b! 245, ~c! 225, ~d! 210,
~e! 0, ~f! 2, ~g! 2.3, and~h! 5.
1-4
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a latitude with a very large Rabi frequenc
A(2k)21(2Vw)22w. As noted above,rW always rotates to-
ward the equator. Accordingly, the vectorrW reaches the equa
tor sooner or later. At the equator, the population differen
w becomes zero and the nonlinear part of the torque ve
TW , i.e., a term ofVw, vanishes and the two condensate sta
are in resonance, resulting in the torque vectorTv being
along theu axis and the Rabi frequency 2k. The oval trajec-
tories have very large precession frequencies along the e
tor and have the bare tunneling frequency when the traje
ries cross the equator. This is the reason why we co
realize the enhancement of the atomic-tunneling oscillati
in the nonlinear systems. The maximum enhancement of
oscillation frequency is obtained when the both edges of
trajectory on the equator align on thev axis.

Further increasing the nonlinear self-interaction to
negative side, the oscillation frequency decreases a
@Figs. 3~b! and 6~b!# and then the both edges of the trajecto
on the equator converge into one point. At this point,
second kind of self-trapping transition appears and the
jectory forms a circle in the upper hemisphere@Figs. 3~a! and
6~a!#. For the infinite nonlinearity, the torque vectorTW is
A.

o

s.

oy
,

i,

. B
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directed along the2w axis, resulting in the precessio
around thew axis. This means the vanishing of the tunneli
oscillations, because the infinite nonlinearity causes infin
detuning between the two condensates.

In conclusion, the enhancement of tunneling oscillatio
due to nonlinear self-interactions in BEC’s was predicte
sacrificing the oscillation amplitude, we can obtain a sign
cant increase in the frequency of the tunneling oscillatio
For instance, the frequency of the tunneling oscillations c
be enhanced by factors 2, 3, and 13 compared with the
tunneling oscillations for the modulation amplitudes of 0
0.4, and 0.1, respectively. The trajectory of the state vec
on the Bloch sphere gave us an intuitive understanding of
enhancement of the tunneling frequency. An effect similar
that predicted in this paper is expected for other nonlin
systems such as in coupled quantum dots and waveg
coupling in which the on-site energy and the self-pha
modulation, respectively, give rise to the nonlinear inter
tions.
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