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Coherent control of atom dynamics in an optical lattice
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On the basis of a simple exactly solvable model we discuss the possibilities for state preparation and state
control of atoms in a periodic optical potential. In addition to the periodic potential a uniform force with an
arbitrary time dependence is applied. The method is based on a formal expression for the full evolution
operator in the tight-binding limit. This allows us to describe the dynamics in terms of operator algebra, rather
than in analytical expansions.
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[. INTRODUCTION effects of dynamical localization, including routes to chaos,
have been studied experimentally for optical lattices, includ-
The energy eigenvalues of a quantum particle moving in 4ng both amplitude and phase modulation of the uniform
periodic potential form energy bandthe Bloch bandsthat ~ force[14]. Phase transitions have been predicted for atoms in
are separated by band gaps. The eigenstate within a band¥0 incompatible periodic optical potentials imposed by
characterized by the quasimomentum, which determines tH¥chromatic standing light wave45]. _
phase difference between two points separated by a period. N the present paper we discuss the Wannier-Stark system
An initially localized wave packet typically propagates With @ time-dependent force, as a means of preparing the
through space, leading to unbounded motion. When an adgptate of.partlcles ina perlod|c potential. We der!ve an exact
tional uniform force is applied, the Bloch bands break up&XPression for the evolution operator of the particle, with an
into a ladder of equally spaced energy levels, called th@rPitrary time-dependent force. This allows one to apply the
Wannier-Stark ladder. In this case, a wave packet of the pafPmbination of delocalizing dynamics in the absence of the
ticle extending over several periods can exhibit bounded osZniform force with the periodic dynamics induced by a uni-
cillatory motion, termed Bloch oscillation, at a frequency form force _for cgherent control of the state pf the particles.
determined by the level separation in the ladder. These earfy*act solutions in the case of a constant uniform force have
results of the quantum theory of electrons in solid crystald€en obtained before by analytical techniq{ie?,18. The
[1-4] have regained interest recently due to the advent ofPerator method allows phenomena induced by an oscillating
optical lattices for atoms. These lattices are formed wherfOrce o be described exactly in a unified scheme. Examples
cold atoms are trapped in the periodic potential created b@e dynamical localization and fractional Wannier-Stark
the superposition of a number of traveling light waygsg).  ladders. _ o _ _
In contrast to the case of electrons in crystal lattices, these 1he model is described in one dimensidiD). However,
optical lattice fields have virtually no defects, they can bethiS is no real restriction. Under the assumption of nearest-
switched on and off at will, and dissipative effects can beN€ighbor interaction, the corresponding 2D or 3D problem
largely controlled. The phenomenon of Bloch oscillations€*@ctly factorizes into a product of 1D solutions.
was first observed for cesium atoms in optical lattit@k
The uniform external force is mimicked by a linear variation
of the frequency of one of the counterpropagating traveling A. Periodic potential
waves, thereby creating an accelerated standing wave. By

applying a modulation on the standing-wave position, Rabloptical potential V(x) with period a is described by the

Il. MODEL SYSTEM

The guantum-mechanical motion of atoms in a periodic

oscillations between Bloch bands as well as the level StrucHamiltonian

ture of the Wannier-Stark ladder have been observed for so-

dium atoms in an optical latticgl0]. Theoretical studies of p2

transitions between ladders have also been presémfdd HO=N+V(X). D

Bloch oscillations have also been demonstrated for a light
beam propagating in an array of waveguides, with a lineave assume that the atoms are sufficiently cooled so that only
variation of the refractive index imposed by a temperaturehe lowest energy band is populated. The ground state in well
gradient[12]. n located atx=na is indicated agn). These states play the
When the applied uniform force is oscillating in time, the role of the basis of localized Wannier states. For simplicity
motion of a particle in a periodic potential is usually un- we take the tight-binding limit, where only the ground levels
bounded. However, it has been predicted that the motiofh neighboring wells are coupled. When we choose the zero
remains bounded for specific values of the ratio of the moduof energy at the ground level in a well, the Hamiltonien
lation frequency and the strength of the fofds]. Similar projected on these ground levels is defined by

1
== =|n=+
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The raising and lowering operato®&, and B_ are each C. Operator algebra

other’s Hermitian conjugates, and each one of them is_ Uni- The pasic operator8. and B, obey the commutation

tary. The frequency) measures the coupling between neigh-;jes

boring wells, due to tunneling through the barriers. We shall

allow the coupling to depend on time. The eigenstated pf [By,B+]=*=B., [B,,B_]=0. (8

are directly found by diagonalizing the corresponding ma-

trix. These states are the Bloch statgs, with energy In order to derive exact expressions for the evolution opera-

E(k)=%( coska). Their expansion in the Wannier states tor corresponding to the Hamiltoniai®), we need several

and the inverse relations can be expressed as operator identities involving these operat8gsandB.. . The
identities

a inka a —inka . . .
|k>= Ezn: e |n), |n)= ﬁ dk e |k> e'BBOBieilﬁB():et"BBt 9
()

directly follow from the commutation rulg@®), and they lead
Obviously, the statefk) are periodic with period #/a, and  to the transformation rules
the quasimomenturk can be chosen from the Brillouin zone
[ —m/a,w/a]. The integration in Eq(3) extends over this
Brillouin zone. From the translation propertyx|n)

. 1 .
e'BBOexp(—iza(B++B_))e"BBO
=(x+a|n+1) of the Wannier wave functions it follows

that the stateg3) do indeed obey the Bloch condition B 1 i8 _ip
(x+alk)=exp(ka)(x|a). When the statej1) are normalized =exf ~iya(e’B. e B (10
as(n|my=§,,, the Bloch states obey the continuous nor-
malization relationk|k’)= 8(k—k’). for arbitrary values ofa and 8. We shall also need the
equalities
B. Uniform force ) ) )
An additional uniform force is described by adding to the ex;(l—a&) Bo exr{ — I—aBi = |30:L|—04|3i . (11
Hamiltonian the term 2 2 2
AXA which are verified after differentiation with respect g
Hi=——, (4 while using the commutation rules).
where the(possibly time-dependenfiorce of sizei A(t)/a is Ill. OPERATOR DESCRIPTION OF EVOLUTION

in the negative direction. On the basis of the Wannier states, )
this term is diagonal, and it is represented as A. Evolution aperator
In this section we derive expressions for the evolution
Hi=%ABg, Boln)=n|n). (5 operatorU(t,0), which transforms an arbitrary initial state
W(0)) as|W(t))=U(t,0)|W¥(0)). The results are valid for

ny time dependence of the uniform force and the coupling
between neighboring wells as specifieddft) andQ(t). A
time-dependent coupling represents the case that the inten-

sity of the lattice beams is varied. We express the evolution

with Hy andH 4 defined by Eqgs(2) and(5), in terms of the operator in the factorized form

operatorB.. andB,. We shall also need expressions for the U(t,0)=U4(t,0)Uq(t,0), (12)
operatorsB.. and B, acting on a Bloch state. These can be

found from the definition of the operators and the expansiongpqre U4(t,0)=exd
(3). One easily finds that '

Hence the evolution of a particle occurs under the influenc
of the total Hamiltonian

H=Hy+Hq, (6)

—i@(t)By] gives the evolution corre-
sponding to the HamiltoniaH ; alone, in terms of the phase
shift

B.|ky=e" k), e '#Bolk)=|k— §> 7 t
¢(t)=fodt'A(t’). (13)

In Bloch representation the operators have the significance
B, =exp(rika), Bo=(i/a)(d/dk), which is confirmed by . . ) o
the commutation rules8). The Wannier states may be From the evolution equation fds with the Hamiltonian(6)

viewed as discrete position eigenstates, vBthe corre- wh|Ie_usmg the transformatio®) we find the evolution
sponding position operator. The Bloch states play the role ofduation

momentum eigenstates, and the finite range of their eigenval- dU 0
ues.\{wthm_ the Brillouin zone reflects the discreteness of the o_ _ (e"”(t)B++e"¢(‘)B,)UO(t). (14)
position eigenvalues. dt 2
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Since this equation contains only the commuting operatorsvritten in the form ofR(«, 8, ¢) for the appropriate values
B, andB_, it can easily be integrated. In fact, the solution of the parameters, we can vieR'BR as the Heisenberg
is given by Eq.(10) with the time-dependent values of the operator corresponding to any operafrThe Heisenberg
real parameterg and 8 defined by the relations operators corresponding 8. can be expressed as

. t - R'(a,8,¢4)B-R(a,B8,¢)=€""¢B. , 20
a(t)elﬁ(t):f dt’ Q(t/)eld)(t ) (15) (a ﬁ ¢) + (CL/ IB ¢)) + ( )
0 which is directly shown by using Eq(9). Since B.

Combining this solution with the definition df, leads to a =exp(+ika) in Bloch representation, this confirms the sig-
closed expression for the evolution operatdft,0) for an  Nificance of ¢ as the shift of the value of the quasi-
arbitrary time dependence of the uniform force, in terms ofomentum.

the parametersr, 8, and ¢ defined in Eqs(13) and (15). After using the transformation property1), one finds the
The result isU(t,0)=R(a, 8,$), with R defined by Heisenberg operator corresponding to the position operator
By as
R(ay[[—}’(b):ei(ﬁ*‘b)BOexq:_i%a,(BJr_i_Bi)]e*iﬂBo. .
(16) t — '@ igp _.iB
R'(a,B,4)BoR(a,B,$)=Bo+—(e”"B_—€’B,).
This defines the unitary operatBras a function of the three (21)

parametersy, B, and ¢. The result is valid for an arbitrary

time dependence of the force and the coupling, described bhis implies that the expectation value of the position after
A(t) and Q(t). The characteristics of the evolution of an evolution is determined by

arbitrary initial state are determined by the properties of the
operatorsR as a function ofa, B, and ¢. Mathematically,
these operators form a three-parameter group, which is gen-
erated by the three operatdds. andBy,.

On the basis of the Wannier states, the contribution of thavhere the averages in the right-hand side should be taken
operatorB, in Eq. (16) is trivial, whereas the effect of the Wwith respect to the inital state. Hence no displacement of a
exponent containing.. can be evaluated by first expanding wave packet can occur whenev@,)=(B_)*=0. This is
a Wannier state in Bloch states, for which the action of thistrue whenever the initial state is diagonal in the Wannier
exponent is simple. Then, re-expressing the Bloch states igtatesn). Conversely, average motion of a wave packet can
Wannier states, we find occur only in the presence of initial phase coherence between
neighboring Wannier states. The width of a wave packet is
determined by the expectation value of the square of the
Heisenberg position operat@@1). This gives the expression

(M= (Bo)+ (e (B~ SHBLY), (22

exp[—i%a(B++B,)]|m>=§n: i~"my - (a)ny,
(17)

. . L 2_2a_2_72i,82_2i,82
where we used the defining expansion e&pihd) (n%)=(By)+ 4 (2—e"“(BZ)—e"(B))
=>,expin®)J, (& of the ordinary Bessel functions. Hence
the matrix elements of the operat@6) between Wannier
states are

(n|R(a,B,¢)|m)y=(ie A" "tme=inty _ (a). (18) (23

e : .
+ ?(e*'B<BOB,+B,BO>—e'ﬁ<BOB++ B.Boy)).

For the evolution operatdf.6) in Bloch representation we
can just use the form of the operat@s andBg, as given in
Sec. Il B. This leads to the result A. Arbitrary wave packets

IV. LOCALIZED INITIAL STATES

_ a—iacoska—fB)||_ A fairly localized initial state|¥(0))=2,c,/n) with a

Rla.p.d)lk)=e [k=g/a). (19 reasonably well-defined quasimomentum can be modeled by
This shows that the quasimomentum as a function of tim@ssuming that neighboring states have a fixed phase differ-
varies ak(t) =k(0)— ¢(t)/a, with ¢(t) given in Eq.(13).  enced, so that
The parametes determines the shift of the quasimomentum
during the evolution. The expressiofitd) and (19) clarify
the significance of the three parameters 8, and ¢ that
specify the evolution operator.

C: Cn+1:|cncn+1|e|0- (24

Thus the quasimomentum is initially centered around the
valueky= 6#/a. For simplicity, we assume moreover that the
distribution over Wannier states is even mn so that|c,|
=|c_,|. The initial average position of the particle is located
The transport properties of any initial state are conve-at n=0. In order to evaluate the time-dependent average
niently described by the evolution of the operators in theposition and spreading of the packet, we can apply E283.
Heisenberg picture. Since any evolution operator can band (23). The symmetry of the distribution implies that

B. Heisenberg picture
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(Bo)=0, while (B3)= 07 is the initial variance of the posi- 1 n2
tion. When we introduce the quantities chn=——=-=e"exp ———|, (30
NVog\2m 40(?)
; |Cn+aCal=by, ; [Cn+2Cnl=b2, @9 hich obey the conditioi24). This state is properly normal-
ized provided thatry>1. When the evolution operator is
we obtain the simple identities expressed as in Ed16), the time-dependent state is ex-
i 5 i panded agW¥(t))=R|¥(0))==,f, exdin(6—¢)]n). Sum-
(Bi)=bie ", (BY)=hye 7 mation expressions for the coefficienits are directly ob-
. tained by using the expressiofl8) of R in Wannier
_ T anio representation. We use similar techniques to those applied in
(BoB.+)=—(B.Bo) 2 bye™". (26) Ref.[16] in the context of the diffraction of a Gaussian mo-

mentum distribution of atoms by a standing light wave. The
The last identity is proved by using the fact that the quantitytechnique is based on differentiation of the expressiorf for
fan+1=|Cn+1Cq| is even in its indexwhich takes only odd  with respect ton, while using the propertya[J, ()
values. Therefore 2If,=0, which is equivalent to the state- +J,__,(a)]=2nJ,(a) of Bessel functions. When the width
ment that 2B, Bg) +(B..)=0. The other expectation values s sufficiently large, so that the differende, ,—f,, can be

occurring in Eqs(22) and(23) are found by taking the com-  approximated by the derivative, this leads to the differential
plex conjugates of the identitie€6). This leads to the equation

simple exact results

) ,df, ) ) df,
(n)=ab, sin(B— ), 200ﬁ~[asm(,8—0)—n]fn+|acos(,8— a)m.
o? (31
(n?)=05+ - [1-b,cos 28— 0)], (27 N _ . .
2 By solving this equation, we arrive at the closed expression
so that the variance of the position is found as 1 /24 an sin( B— )
a,2 fn:NeX 2 2 . _ 9 ) (32)
0?=(n%)—(n)’=of+ —[1-bf- (b,~b})cos A8 0)]. ool cotp=6)
(280  with the normalization constant determined by
Notice that the parametets; and b, are real numbers @? cod(B— 0)
between 0 and 1. In the limit of a wide initial wave packet, N4= 77( 205+ —2> (33
determined by coefficients, whose absolute values vary 20%

slowly with n, the parameterb; andb, will both approach

1, and the widthr will not vary during the evolution. In the We find that the distribution is Gaussian at all times, with
opposite special case that the initial state is the single Warg time-varying average position and variance. These are
nier state|0), one finds thab,;=b,=0, so that the width given by the expressions

o=al 2.

In the special case that the particle is initially localized in o , o @
the single Wannier state at=0, so that|W(0))=|0), the (n=asin(p=6), o*=op+ Q[HCOSZ'B_G)]'
parameter®,, b,, ando vanish, so that 0 (34)

— 2_ 2\ 2
(M=0, o°=(n%)=a"2. (29 These results are in accordance with E@Y) and (28), as

. . hecks by using the approximate expressitns
This shows that the average position of the wave packet doeo_sne © A 2 . .
not change, and that its width is determined by the parameter exp(4—| /80%)714 806, while neglecting terms of order
« alone. This is in line with the fact that the population (1/o0)” and higher. The width of the packet never gets

distribution over the Wannier states after the evolution isSmaller than its initial value. The phase difference between
pn=|<n|R|0)|2=J§(a), as follows from Eq(18). Hence the neighboring sites is mainly determined By ¢. This shows

(time-dependentvalue of @ determines the spreading of an that a phase difference can be created or modified in a con-
initially localized particle trolled way, simply by imposing a time-dependent force that

gives rise to the right value ab. Notice that in these expres-
sions(34) # and B enter in an equivalent fashion. The posi-
tion and the width of the Gaussian distribution can be con-
When the initial distribution over the sites is Gaussiantrolled at will by adapting the force to the desired valugsof
with a large width, we can evaluate the full wave packet after We recall that the results of this section are valid for an
evolution. Suppose that the initial state is specified by therbitrary time-dependent forc&(t), which determines the
coefficients time-dependent values of the parameters3, and ¢ as

B. Gaussian wave packet
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specified in Egqs(13) and (15). In the subsequent sections, stated ) are the Wannier-Stark ladder of stafé§]. They

we specialize these expressions for constant or oscillatinfprm a discrete orthonormal basis of the first energy band,

values of the uniform force. and they are intermediate between the Wannier and the Bloch
bases of states.

V. CONSTANT UNIFORM FORCE

AND BLOCH OSCILLATIONS B. Oscillations of localized states
A. Wannier-Stark ladder of states The definitions(13) and (15) show that
The case of a constant force is the standard situation a=(2Q/A)sin(At/2), B=At/2, ¢=At. (40)

where Bloch oscillations occur. Whenand() are constant,

the Hamiltonian is time independent, and then it is convedn the Wannier representation, the matrix elementt) afre
nient to introduce the normalized eigenstates,) of H.  found from Eq.(16) as

When we expand these eigenstates in the Wannier states as

|,r/{m>=2n|n>c§1m)’ the eigenvalue relatiofl| /)= Ep| i) (NU(t,0)|m)=i "+ mg-iatn+mizy - (gsing)
with E,=#%wy, leads to the recurrence relations for the co- ' TmUA 2)
efficients (41)
1 - ) - " which represents the transition amplitude from an initial state
S Q(Cn=1+Criy) HANCTT = wnCy . (35  |m) to the final state|n). For the initial Wannier state
| (0))=|0), the time-dependent state is|W(t))
We introduce the generating function =Zpfn(t)|n) with
: 20 At
a i —j—Nna—iAtn/2 T ein—
Z.(k)= IE; Cgm)eflnka, (36) fa(t)y=1i""e Jn( A sin 5 ) (42

This is in accordance with Eq50) of Ref.[17], which was
obtained by a rather elaborate analytical method, rather than
an algebraic one. Equatioi29) shows that the time-

to the Bloch representation of the eigenstatg). The rela- dependent average positign) of the wave pack_et remains
tions (35 are found to be equivalent to the differential zero at aII.tlmes, whereas.the mean-square displacement
equation =|a|/\/§ displays a breathing behavior, and returns to zero
after the Bloch period 2/A. Moreover, according to Eg.
A d (42), the phase difference between neighboring sites varies
Q cogka)Z,(k)— o &Zm( K)=wnZn(k), (37  continuously with time.
This is already quite different when only two Wannier

which is normalized for integration over the first Brillouin
zone. In fact, from the expressi@8) of the Bloch state, one
notices that the generating functidp,(k) = (k| ¢, is equal

with the obvious normalized solution states are populated initially. Consider the initial state
Z(K)= \/iexp<i—m sin(ka) — ake] (39) |W(0))= i(|0>+e”’|1>)- (43
m 27 P2 m ) V2

Since the functionZ,,(k) as defined by Eq(36) are periodic  Then the average position can be evaluated from (E2),
in k with period 2m/a, the same must be true for the expres-for the values ofa and 8 given in Eq.(40). The result is
sions(38). Hence, the frequency eigenvalues must be an in-

teger multiple ofA, so that we can choose,=mA, with 1 0
int%germ. Ifor these values of the eigenfrecTuencies, the co- ()= §+ ﬂ[cose—cos{m— 0] (44)
efficients cE,m) follow from the Fourier expansion oZ,,,
with the result which shows that the packet displays a harmonically oscil-
lating behavior. The amplitude of the oscillation is governed
cM=(n|gm)=Im_n(Q/A). (39) by the ratio)/A, which is one-half the maximum amplitude

for Bloch oscillations of a wave packet with a large width
We find that the total Hamiltoniakl has the same eigen- (see Sec. V € This amplitude must be appreciable in order
values asH,. Apparently, the energy shifts due to the cou-that interband coupling induced by the uniform force re-
pling between the Wannier states as expressed pgancel mains negligible, as we have assumed throughout this paper.
each other. Since the energy eigenvalues are integer muthe distributionp,=|f,|? after one-half a Bloch period, both
tiples of A, each solution of the Schdnger equation is pe- for the initial single Wannier state and for the inital state
riodic in time with period 2r/A, and the same is true for the (43), is illustrated in Fig. 1. This demonstrates that a strong
evolution operatotJ (t) given in Eq.(16). This also implies displacement can already be induced by evolution of a su-
that an initial localized state remains localized at all timesperposition state of just two neighboring Wannier states, with
due to the addition of the uniform external force. The eigen-a specific phase difference. This displacement arises from the

033424-5



H. L. HAROUTYUNYAN AND G. NIENHUIS PHYSICAL REVIEW A 64 033424

0.3 - derivative evaluated at the time-dependent value of the qua-
o J/ 1 t=0 simomentum @— At)/a, with E=#() coska) the dispersion
] — = t=n/A relation between energy and quasimomentum in the absence
(a) of the uniform force, as given in Sec. Il A. Apparently, the
02 expression for the group velocity retains its validity in the

presence of the uniform force also. Of course, the concept of
Bloch oscillations of the wave packet as a whole has signifi-
cance only when the amplitud@/A of the oscillation is
large compared with the widttr of the packet, which in turn
must extend over many lattice sites.

The time-dependent widtlr of the Gaussian packet is
found from Eq.(34) in the form

2

Q
0?= 0+ —5—(1—cosAt)[1+cogAt—26)]. (47)
4giA?

0

p, | t= A 6= Hence the variance of the position deviates from its initial

value by an oscillating term. The amplitude of this oscillation
7 (b) is governed by the ratio(}/2Aco)?. The initial width is
restored whenever one of the terms in brackets vanishes.
03 4 This happens twice during every Bloch period, except when

0= /2, when these two instants coincide. This combined
breathing and oscillating behavior is illustrated in Figs. 2 and
3, for various values of the relative phageNotice that the
oscillation is always harmonic with the Bloch frequenty
This is due to the simple form of the dispersion relation for
the case of nearest-neighbor interaction. The time depen-
dence of the variance is a superposition of terms with fre-
quenciesA and 2A.

FIG. 1. (a) Plot of the breathing population distribution for an
initial Wannier statg0). (b) Plot of the oscillating population dis- D. Zero external force
tribution, for two initial superpositions of Wannier statgy and In the absence of an external force, we can take the limit
1), and two different values of the relative pha&eBoth plots are A . in the results of the previous subsections. In particular,
evaluated_ for2/A=6. Shaded distributions hold after one-half a y,:5 gives = B=0, a(t)=Qt. Then the evolution of an
Bloch periodt= /4. initial Wannier statd ¥ (0))=10) is given by

interference between the transition amplitudes from the two o
initial states to the same final stgte). W ()= R|¢(0)>:; i~"3,(Q0)[n), (48)

C. Bloch oscillations and breathing of a Gaussian wave packet \yhich shows that the free spreading of an initial Wannier

The evolution of a Gaussian wave packet as discussed igfate after a time gives Wannier populations equal fm,
Sec. IV B is specialized to the present case of a constarit|J,(Qt)|? [19]. The mean-square displacement increases
force after substituting the expressio@) in Egs. (32)— linearly in time, asr=Qt/+/2. This shows that the spreading
(34). We find for the average positigm) the identity is unbounded in the absence of an external force. The self-
propagatom,(t) decays to zero for large times. The phase
difference between neighboring sites-isr/2 at all times.
For only two coupled wells, the coupling would give rise to
Rabi oscillations with frequency). Equation(48) can be
This demonstrates that the wave packet oscillates harmoniiewed as the generalization to the case of an infinite chain
cally in position with frequencyA and with amplitude()/A of wells.

<n(t)>=%[cos¢9—cos{ 6—At)]. (45

in units of the lattice distanca. The velocity of the wave For a Gaussian wave packet with initial width, and
packet is found from the time derivative of E¢5), with the  inijtial quasimomentum determined b, expressiong45)
result and (47) take the form
v(t)=—a sin(6—At). (46) 0242
_ _ _ o (n())=—Qtsind, o?=ocj+ —(1+cos2).
It is noteworthy that this expressidd6) coincides exactly 80y
with the expression for the group velocitye/z dk, with the (49
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FIG. 2. Periodic behavior of the width and the average position FIG. 3. Bloch oscillation and corresponding breathing behavior
of a Gaussian wave packet for various initial values of the phasef a Gaussian wave packet in a constant uniform force. Values of
differenced between neighboring states. Initial value of the width is og, £, andA as in Fig. 2. Upper party=0. Lower part:0= /2.

oo=4 andQ/A=50.
so that¢ = (6/ w)sin(wt). Then according to Eq15) the pa-
As one would expect in the absence of a uniform force, théametersa and B are specified by the equalities
group velocity takes the constant value=—a() sing, s s\ 1
which leads to unbounded motion of the paclestcept for aef=0tJ, - +Qr§0 Jn(5> m(einwt_l), (51)

0=0 or *= 7). Usually, the width increases indefinitely dur-

ing the propagation. However, for the special values ) o _
+ /2 the width is constant, and the packet propagates as'4here we used the expansion defining the ordinary Bessel

solitary wave. Notice that such a phase difference betweeftnctions, given in Sec. Ill A. _ -
neighboring Wannier states arises spontaneously when a The first term in Eq.(51) increases linearly with time,

single Wannier state spreads in the absence of a uniforiyhereas the summation is bounded and periodic in time with
periodT=2x/w. The behavior otr and B as defined by Eg.

force.
(51) is quite complicated in general. However, for large
times the value ofr, and thereby the spreading of an initial
VI. OSCILLATING FORCE Wannier state, is the same as in the absence of the uniform
Other situations of practical interest arise when the uniforce, with € replaced by the reduced effective coupling

form force has an oscillating component. Examples are théJo(d/@). After one periodT, the values of the parameters

coupling between the states in the Wannier-Stark lafitigy ~ 0ecome simple, and we finéi=¢=0, a=Q0TJ,(d/w). The
and dynamical localization for special values of the€volution operatot(T) during one period is simply given

amplitude-frequency ratio of the oscillatiofi3,14. The DY the operatoR defined in Eq/(16), at these values of the
situation of an oscillating force is also decribed by the op-Parameters. The eigenstates of the evolution opergtor

erator description of Sec. Il A. We give some results below.= U(T) are simply the Bloch statgk). The eigenvalues can
be expressed as gxpiE(K)T/A], with

A. ac force only 5)
The situation of a harmonically oscillating uniform force 5(")‘““0(5 (52)
can be expressed as ) ) )
the corresponding values of the quasienergy, which are
A(t)= 6 coq wt), (50 strictly speaking defined only modufow. The quasienergy
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bandwidth is reduced by the factdg( 8/ w), compared with  with the expansion coefficient{™=J,,_(£). Here the ar-

the energy bandwidth in the absence of the uniform force. gument? of the Bessel functions must be chosen as the sum
When the ratiod/ o of the amplitude and the frequency of

the oscillating force coincide with a zero of the Bessel func- _ o

tion Jo, no unbounded spreading occurs, and an initially lo- 5_92 Jn ®

calized state remains localized at all times, with a periodi-

cally varying mean-square displacement. The quasienergyhich replaces the simple argumeftA in Eq. (39). The

bandwidth is reduced to zero in this case. This effect of dyeigenvalues oR=U(T) are expti&,T/#), with the dis-

namical localization has been discussed before for electronsrete quasienergy valu€s,=%mA, (modulof ).

in crystals[13]. The related effect of an effective switch-off In the resonant case thai,+ny,w=0 for some integer

of atom-field coupling occurs for a two-level atom in a n,, one summand in the expression ferand 3 is modified,

frequency-modulated field when the ratio of the amplitude-as indicated above. Whéh=t, only this modified summand

frequency ratio of the modulation equals a zero of the Bessgk nonzero, and the evolution operatd¢T) = R for one time

function Jo. This effect, which leads to population trapping period is characterized by the values

in a two-level atom, has recently been discussed by Agarwal

and Harshawardhdi20]. a=QTJn0, B=0, ¢=—2mn,. (57)

1
A0+ nw'

(56)

B. ac and dc force The eigenvectors oR are the Bloch statelk), and the cor-

A constant uniform force creates Wannier-Stark Statesrespondmg quasienergy values are

with equidistant energy values. An additional oscillating

S
force can induce transitions between these states. Therefore, €(k)=ﬁQJn0(;) cogka). (58

we consider the force specified by
A(t)=Ao+ dcogwt). (53 VII. DISCUSSION AND CONCLUSIONS
Then the values of the parametefs «, and 3 are We have analyzed the Wannier-Stark system, which is
_ characterized by the Hamiltonid6), in terms of the opera-
d()=Agt+ (5l w)sin(wt), tors B.. and B,. The present interest in this model arises

from the dynamics of atoms in a periodic optical potential,
with an additionally applied uniform external force. We
adopted the tight-binding limit, which implied nearest-
neighbor interaction only. This gives rise to an explicit
In general, each term in the summation is bounded and peimple dispersion relation between energy and quasimomen-
riodic, but the different periods can be incompatible. More-tum, which makes the model exactly solvable. From the
over, wheneved ,+nw=0, the corresponding summand at- commutation properties of the basic operators we obtain Eq.
tains the unbounded forftJ,(8/w). At such a resonant (16) for the evolution operator for an arbitrary time depen-
value of A, the spreading of an initially localized state be- dence of the uniform force, where the three parameters are
comes unbounded, and the particle becomes delocalizedefined in Eqs(13) and(15). As shown in Secs. Ill B and IV,
This delocalization is suppressed again when the &tapis  the paramete determines the shift in the value of the qua-
equal to a zero of the corresponding Bessel funclipnThis ~ Simomentum, whereas and 8 determine the evolution of
is a simplified version of the phenomenon of fractionalthe average position and the width of a wave packet. A par-
Wannier-Stark ladders, which has recently been observeticle starting in a single Wannier state has a uniform distri-
and discussef1,27. bution over the quasimomentum, and cannot change its av-
The quasienergy values are again determined by therage position, whereas the width of its wave packet is
eigenstates of the evolution operatd¢T) for one period of ~Simply measured byr. On the other hand, even when only
the oscillating force. This operator is equal to the generafwo neighboring states are populated initially, the wave

. ) :
aef=02, Jn(z)i (eldotnelt_1) (54
n

(Agtnw)

operatorR defined in Eq(16), with the parameters packet can display an appreciable motion. In Sec. IVB it is
demonstrated that an initially Gaussian packet remains
) 1) 1 Gaussian at all times. This remains true when the initial state
a=20 S'”(AOT/Z); Jn(; Agtne’ has a nonzero expectation value of the quasimomentum,
which is described as an initial phase difference between
B(T)=AgTI2, ¢(T)=A,T. (55 neighboring Wannier states.

These results, which are valid for a uniform force with an
These expressions are correct wheneVgt nw is nonzero  arbitrary time dependence, unify and extend earlier results
for all values ofn. Since these values of the parameters carobtained for a constant or an oscillating uniform force. A
be directly mapped onto the valué0) specifying the evo- constant force induces Bloch oscillations of a wave packet,
lution with a constant uniform force, the eigenvectors andand we obtain a simple expression for the amplitude of the
corresponding quasienergies are also immediately found. Thescillation and for the time dependence of the width of the
eigenvectors ofR can be expressed dg,)=3,n)c{™, wave packet. For an oscillating force, the operator method
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shows that the quasienergy bands can be evaluated directliye width and the position of a wave packet, as well as the
in terms of the value of the parameterafter one oscillation phase difference between neighboring sites.

period. This produces an exactly solvable model for dynami-

cal Iocallzat|or_1 and fractlonf'il Wannier-Stark ladders. In gen- ACKNOWLEDGMENT

eral, by selecting a proper time dependence of the force or of

the coupling between wells, thereby realizing the desired val- This work is part of the research program of the “Stich-
ues of the parameters, 8, and¢, we can coherently control ting voor Fundamenteel Onderzoek der Mate(EOM).
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