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Coherent control of atom dynamics in an optical lattice

H. L. Haroutyunyan and G. Nienhuis*
Huygens Laborotarium, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

~Received 5 March 2001; published 20 August 2001!

On the basis of a simple exactly solvable model we discuss the possibilities for state preparation and state
control of atoms in a periodic optical potential. In addition to the periodic potential a uniform force with an
arbitrary time dependence is applied. The method is based on a formal expression for the full evolution
operator in the tight-binding limit. This allows us to describe the dynamics in terms of operator algebra, rather
than in analytical expansions.
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I. INTRODUCTION

The energy eigenvalues of a quantum particle moving
periodic potential form energy bands~the Bloch bands! that
are separated by band gaps. The eigenstate within a ba
characterized by the quasimomentum, which determines
phase difference between two points separated by a pe
An initially localized wave packet typically propagate
through space, leading to unbounded motion. When an a
tional uniform force is applied, the Bloch bands break
into a ladder of equally spaced energy levels, called
Wannier-Stark ladder. In this case, a wave packet of the
ticle extending over several periods can exhibit bounded
cillatory motion, termed Bloch oscillation, at a frequen
determined by the level separation in the ladder. These e
results of the quantum theory of electrons in solid cryst
@1–4# have regained interest recently due to the adven
optical lattices for atoms. These lattices are formed wh
cold atoms are trapped in the periodic potential created
the superposition of a number of traveling light waves@5–8#.
In contrast to the case of electrons in crystal lattices, th
optical lattice fields have virtually no defects, they can
switched on and off at will, and dissipative effects can
largely controlled. The phenomenon of Bloch oscillatio
was first observed for cesium atoms in optical lattices@9#.
The uniform external force is mimicked by a linear variati
of the frequency of one of the counterpropagating travel
waves, thereby creating an accelerated standing wave
applying a modulation on the standing-wave position, R
oscillations between Bloch bands as well as the level st
ture of the Wannier-Stark ladder have been observed for
dium atoms in an optical lattice@10#. Theoretical studies o
transitions between ladders have also been presented@11#.
Bloch oscillations have also been demonstrated for a l
beam propagating in an array of waveguides, with a lin
variation of the refractive index imposed by a temperat
gradient@12#.

When the applied uniform force is oscillating in time, th
motion of a particle in a periodic potential is usually u
bounded. However, it has been predicted that the mo
remains bounded for specific values of the ratio of the mo
lation frequency and the strength of the force@13#. Similar

*Email address: nienhuis@malphys.leidenuniv.nl
1050-2947/2001/64~3!/033424~9!/$20.00 64 0334
a

is
he
d.

i-

e
r-
s-

rly
s
f
n
y

se
e
e

g
By
i

c-
o-

t
r

e

n
-

effects of dynamical localization, including routes to cha
have been studied experimentally for optical lattices, inclu
ing both amplitude and phase modulation of the unifo
force@14#. Phase transitions have been predicted for atom
two incompatible periodic optical potentials imposed
bichromatic standing light waves@15#.

In the present paper we discuss the Wannier-Stark sys
with a time-dependent force, as a means of preparing
state of particles in a periodic potential. We derive an ex
expression for the evolution operator of the particle, with
arbitrary time-dependent force. This allows one to apply
combination of delocalizing dynamics in the absence of
uniform force with the periodic dynamics induced by a un
form force for coherent control of the state of the particle
Exact solutions in the case of a constant uniform force h
been obtained before by analytical techniques@17,18#. The
operator method allows phenomena induced by an oscilla
force to be described exactly in a unified scheme. Examp
are dynamical localization and fractional Wannier-Sta
ladders.

The model is described in one dimension~1D!. However,
this is no real restriction. Under the assumption of neare
neighbor interaction, the corresponding 2D or 3D proble
exactly factorizes into a product of 1D solutions.

II. MODEL SYSTEM

A. Periodic potential

The quantum-mechanical motion of atoms in a perio
optical potentialV(x) with period a is described by the
Hamiltonian

H05
P2

2M
1V~x!. ~1!

We assume that the atoms are sufficiently cooled so that
the lowest energy band is populated. The ground state in
n located atx5na is indicated asun&. These states play th
role of the basis of localized Wannier states. For simplic
we take the tight-binding limit, where only the ground leve
in neighboring wells are coupled. When we choose the z
of energy at the ground level in a well, the Hamiltonian~1!
projected on these ground levels is defined by

H05
1

2
\V~B11B2!, B6un&5un61&. ~2!
©2001 The American Physical Society24-1
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The raising and lowering operatorsB1 and B2 are each
other’s Hermitian conjugates, and each one of them is u
tary. The frequencyV measures the coupling between neig
boring wells, due to tunneling through the barriers. We sh
allow the coupling to depend on time. The eigenstates ofH0
are directly found by diagonalizing the corresponding m
trix. These states are the Bloch statesuk&, with energy
E(k)5\V cos(ka). Their expansion in the Wannier state
and the inverse relations can be expressed as

uk&5A a

2p(
n

einkaun&, un&5A a

2pE dk e2 inkauk&.

~3!

Obviously, the statesuk& are periodic with period 2p/a, and
the quasimomentumk can be chosen from the Brillouin zon
@2p/a,p/a#. The integration in Eq.~3! extends over this
Brillouin zone. From the translation propertŷxun&
5^x1aun11& of the Wannier wave functions it follows
that the states~3! do indeed obey the Bloch conditio
^x1auk&5exp(ika)^xua&. When the statesun& are normalized
as ^num&5dnm , the Bloch states obey the continuous n
malization relation̂ kuk8&5d(k2k8).

B. Uniform force

An additional uniform force is described by adding to t
Hamiltonian the term

H15
\xD

a
, ~4!

where the~possibly time-dependent! force of size\D(t)/a is
in the negative direction. On the basis of the Wannier sta
this term is diagonal, and it is represented as

H15\DB0 , B0un&5nun&. ~5!

Hence the evolution of a particle occurs under the influe
of the total Hamiltonian

H5H01H1 , ~6!

with H0 andH1 defined by Eqs.~2! and~5!, in terms of the
operatorsB6 andB0. We shall also need expressions for t
operatorsB6 andB0 acting on a Bloch state. These can
found from the definition of the operators and the expansi
~3!. One easily finds that

B6uk&5e7 ikauk&, e2 ibB0uk&5Uk2
b

a L . ~7!

In Bloch representation the operators have the significa
B65exp(7ika), B05( i /a)(d/dk), which is confirmed by
the commutation rules~8!. The Wannier states may b
viewed as discrete position eigenstates, withB0 the corre-
sponding position operator. The Bloch states play the role
momentum eigenstates, and the finite range of their eigen
ues within the Brillouin zone reflects the discreteness of
position eigenvalues.
03342
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C. Operator algebra

The basic operatorsB6 and B0 obey the commutation
rules

@B0 ,B6#56B6 , @B1 ,B2#50. ~8!

In order to derive exact expressions for the evolution ope
tor corresponding to the Hamiltonian~6!, we need severa
operator identities involving these operatorsB0 andB6 . The
identities

eibB0B6e2 ibB05e6 ibB6 ~9!

directly follow from the commutation rules~8!, and they lead
to the transformation rules

eibB0 expS 2 i
1

2
a~B11B2! De2 ibB0

5expS 2 i
1

2
a~eibB11e2 ibB2! D ~10!

for arbitrary values ofa and b. We shall also need the
equalities

expS i

2
aB6DB0 expS 2

i

2
aB6D5B07

i

2
aB6 , ~11!

which are verified after differentiation with respect toa,
while using the commutation rules~8!.

III. OPERATOR DESCRIPTION OF EVOLUTION

A. Evolution operator

In this section we derive expressions for the evoluti
operatorU(t,0), which transforms an arbitrary initial stat
uC(0)& as uC(t)&5U(t,0)uC(0)&. The results are valid for
any time dependence of the uniform force and the coup
between neighboring wells as specified byD(t) andV(t). A
time-dependent coupling represents the case that the in
sity of the lattice beams is varied. We express the evolut
operator in the factorized form

U~ t,0!5U1~ t,0!U0~ t,0!, ~12!

where U1(t,0)5exp@2if(t)B0# gives the evolution corre-
sponding to the HamiltonianH1 alone, in terms of the phas
shift

f~ t !5E
0

t

dt8D~ t8!. ~13!

From the evolution equation forU with the Hamiltonian~6!
while using the transformation~9! we find the evolution
equation

dU0

dt
52

iV~ t !

2
~eif(t)B11e2 if(t)B2!U0~ t !. ~14!
4-2
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COHERENT CONTROL OF ATOM DYNAMICS IN AN . . . PHYSICAL REVIEW A64 033424
Since this equation contains only the commuting opera
B1 andB2 , it can easily be integrated. In fact, the solutio
is given by Eq.~10! with the time-dependent values of th
real parametersa andb defined by the relations

a~ t !eib(t)5E
0

t

dt8 V~ t8!eif(t8). ~15!

Combining this solution with the definition ofU1 leads to a
closed expression for the evolution operatorU(t,0) for an
arbitrary time dependence of the uniform force, in terms
the parametersa, b, and f defined in Eqs.~13! and ~15!.
The result isU(t,0)[R(a,b,f), with R defined by

R~a,b,f!5ei (b2f)B0 exp@2 i 1
2 a~B11B2!#e2 ibB0.

~16!

This defines the unitary operatorR as a function of the three
parametersa, b, andf. The result is valid for an arbitrary
time dependence of the force and the coupling, describe
D(t) and V(t). The characteristics of the evolution of a
arbitrary initial state are determined by the properties of
operatorsR as a function ofa, b, and f. Mathematically,
these operators form a three-parameter group, which is
erated by the three operatorsB6 andB0.

On the basis of the Wannier states, the contribution of
operatorB0 in Eq. ~16! is trivial, whereas the effect of the
exponent containingB6 can be evaluated by first expandin
a Wannier state in Bloch states, for which the action of t
exponent is simple. Then, re-expressing the Bloch state
Wannier states, we find

exp[2 i 1
2 a~B11B2!] um&5(

n
i 2n1mJn2m~a!un&,

~17!

where we used the defining expansion exp(ij sinf)
5(n exp(inf)Jn(j) of the ordinary Bessel functions. Henc
the matrix elements of the operator~16! between Wannier
states are

^nuR~a,b,f!um&5~ ie2 ib!2n1me2 infJn2m~a!. ~18!

For the evolution operator~16! in Bloch representation we
can just use the form of the operatorsB6 andB0, as given in
Sec. II B. This leads to the result

R~a,b,f!uk&5e2 ia cos(ka2b)uk2f/a&. ~19!

This shows that the quasimomentum as a function of t
varies ask(t)5k(0)2f(t)/a, with f(t) given in Eq.~13!.
The parameterf determines the shift of the quasimomentu
during the evolution. The expressions~18! and ~19! clarify
the significance of the three parametersa, b, and f that
specify the evolution operator.

B. Heisenberg picture

The transport properties of any initial state are con
niently described by the evolution of the operators in
Heisenberg picture. Since any evolution operator can
03342
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written in the form ofR(a,b,f) for the appropriate values
of the parameters, we can viewR†BR as the Heisenberg
operator corresponding to any operatorB. The Heisenberg
operators corresponding toB6 can be expressed as

R†~a,b,f!B6R~a,b,f!5e6 ifB6 , ~20!

which is directly shown by using Eq.~9!. Since B6

5exp(7ika) in Bloch representation, this confirms the si
nificance of f as the shift of the value of the quas
momentum.

After using the transformation property~11!, one finds the
Heisenberg operator corresponding to the position oper
B0 as

R†~a,b,f!B0R~a,b,f!5B01
ia

2
~e2 ibB22eibB1!.

~21!

This implies that the expectation value of the position af
evolution is determined by

^n&5^B0&1
ia

2
~e2 ib^B2&2eib^B1&!, ~22!

where the averages in the right-hand side should be ta
with respect to the inital state. Hence no displacement o
wave packet can occur whenever^B1&5^B2&* 50. This is
true whenever the initial state is diagonal in the Wann
statesun&. Conversely, average motion of a wave packet c
occur only in the presence of initial phase coherence betw
neighboring Wannier states. The width of a wave packe
determined by the expectation value of the square of
Heisenberg position operator~21!. This gives the expression

^n2&5^B0
2&1

a2

4
~22e22ib^B2

2 &2e2ib^B1
2 &!

1
ia

2
~e2 ib^B0B21B2B0&2eib^B0B11B1B0&!.

~23!

IV. LOCALIZED INITIAL STATES

A. Arbitrary wave packets

A fairly localized initial stateuC(0)&5(ncnun& with a
reasonably well-defined quasimomentum can be modeled
assuming that neighboring states have a fixed phase di
enceu, so that

cn* cn115ucncn11ueiu. ~24!

Thus the quasimomentum is initially centered around
valuek05u/a. For simplicity, we assume moreover that th
distribution over Wannier states is even inn, so that ucnu
5uc2nu. The initial average position of the particle is locate
at n50. In order to evaluate the time-dependent avera
position and spreading of the packet, we can apply Eqs.~22!
and ~23!. The symmetry of the distribution implies tha
4-3
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^B0&50, while ^B0
2&5s0

2 is the initial variance of the posi
tion. When we introduce the quantities

(
n

ucn11cnu[b1 , (
n

ucn12cnu[b2 , ~25!

we obtain the simple identities

^B1&5b1e2 iu, ^B1
2 &5b2e22iu,

^B0B1&52^B1B0&5
1

2
b1e2 iu. ~26!

The last identity is proved by using the fact that the quan
f 2n11[ucn11cnu is even in its index~which takes only odd
values!. Therefore,( l l f l50, which is equivalent to the state
ment that 2̂B1B0&1^B1&50. The other expectation value
occurring in Eqs.~22! and~23! are found by taking the com
plex conjugates of the identities~26!. This leads to the
simple exact results

^n&5ab1 sin~b2u!,

^n2&5s0
21

a2

2
@12b2 cos 2~b2u!#, ~27!

so that the variance of the position is found as

s2[^n2&2^n&25s0
21

a2

2
@12b1

22~b22b1
2!cos 2~b2u!#.

~28!

Notice that the parametersb1 and b2 are real numbers
between 0 and 1. In the limit of a wide initial wave pack
determined by coefficientscn whose absolute values var
slowly with n, the parametersb1 andb2 will both approach
1, and the widths will not vary during the evolution. In the
opposite special case that the initial state is the single W
nier stateu0&, one finds thatb15b250, so that the width
s5a/A2.

In the special case that the particle is initially localized
the single Wannier state atx50, so thatuC(0)&5u0&, the
parametersb1 , b2, ands0 vanish, so that

^n&50, s25^n2&5a2/2. ~29!

This shows that the average position of the wave packet d
not change, and that its width is determined by the param
a alone. This is in line with the fact that the populatio
distribution over the Wannier states after the evolution
pn5 z^nuRu0& z25Jn

2(a), as follows from Eq.~18!. Hence the
~time-dependent! value ofa determines the spreading of a
initially localized particle.

B. Gaussian wave packet

When the initial distribution over the sites is Gaussi
with a large width, we can evaluate the full wave packet a
evolution. Suppose that the initial state is specified by
coefficients
03342
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cn5
1

As0A2p
einu expS 2

n2

4s0
2D , ~30!

which obey the condition~24!. This state is properly normal
ized provided thats0@1. When the evolution operator i
expressed as in Eq.~16!, the time-dependent state is e
panded asuC(t)&5RuC(0)&5(nf n exp@in(u2f)#un&. Sum-
mation expressions for the coefficientsf n are directly ob-
tained by using the expression~18! of R in Wannier
representation. We use similar techniques to those applie
Ref. @16# in the context of the diffraction of a Gaussian m
mentum distribution of atoms by a standing light wave. T
technique is based on differentiation of the expression fof n
with respect ton, while using the propertya@Jn11(a)
1Jn21(a)#52nJn(a) of Bessel functions. When the widt
is sufficiently large, so that the differencef n112 f n can be
approximated by the derivative, this leads to the differen
equation

2s0
2 d fn

dn
'@a sin~b2u!2n# f n1 ia cos~b2u!

d fn

dn
.

~31!

By solving this equation, we arrive at the closed express

f n5
1

N expS 2n2/21an sin~b2u!

2s0
22 ia cos~b2u!

D , ~32!

with the normalization constant determined by

N 45pS 2s0
21

a2 cos2~b2u!

2s0
2 D . ~33!

We find that the distribution is Gaussian at all times, w
a time-varying average position and variance. These
given by the expressions

^n&5a sin~b2u!, s25s0
21

a2

8s0
2 @11cos 2~b2u!#.

~34!

These results are in accordance with Eqs.~27! and ~28!, as
one checks by using the approximate expressionsbl

5exp(2l2/8s0
2)'12l2/8s0

2, while neglecting terms of orde
(1/s0)4 and higher. The width of the packet never ge
smaller than its initial value. The phase difference betwe
neighboring sites is mainly determined byu2f. This shows
that a phase difference can be created or modified in a c
trolled way, simply by imposing a time-dependent force th
gives rise to the right value off. Notice that in these expres
sions~34! u andb enter in an equivalent fashion. The pos
tion and the width of the Gaussian distribution can be c
trolled at will by adapting the force to the desired value ofb.

We recall that the results of this section are valid for
arbitrary time-dependent forceD(t), which determines the
time-dependent values of the parametersa, b, and f as
4-4
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COHERENT CONTROL OF ATOM DYNAMICS IN AN . . . PHYSICAL REVIEW A64 033424
specified in Eqs.~13! and ~15!. In the subsequent section
we specialize these expressions for constant or oscilla
values of the uniform force.

V. CONSTANT UNIFORM FORCE
AND BLOCH OSCILLATIONS

A. Wannier-Stark ladder of states

The case of a constant force is the standard situa
where Bloch oscillations occur. WhenD andV are constant,
the Hamiltonian is time independent, and then it is con
nient to introduce the normalized eigenstatesucm& of H.
When we expand these eigenstates in the Wannier state
ucm&5(nun&cn

(m) , the eigenvalue relationHucm&5Emucm&
with Em5\vm leads to the recurrence relations for the c
efficients

1

2
V~cn21

(m) 1cn11
(m) !1Dncn

(m)5vmcn
m. ~35!

We introduce the generating function

Zm~k!5A a

2p(
n

cn
(m)e2 inka, ~36!

which is normalized for integration over the first Brilloui
zone. In fact, from the expression~3! of the Bloch state, one
notices that the generating functionZm(k)5^kucm& is equal
to the Bloch representation of the eigenstateucm&. The rela-
tions ~35! are found to be equivalent to the differenti
equation

V cos~ka!Zm~k!2
D

ia

d

dk
Zm~k!5vmZm~k!, ~37!

with the obvious normalized solution

Zm~k!5A a

2p
expS i

D
@V sin~ka!2akvm# D . ~38!

Since the functionsZm(k) as defined by Eq.~36! are periodic
in k with period 2p/a, the same must be true for the expre
sions~38!. Hence, the frequency eigenvalues must be an
teger multiple ofD, so that we can choosevm5mD, with
integerm. For these values of the eigenfrequencies, the
efficients cn

(m) follow from the Fourier expansion ofZm ,
with the result

cn
(m)[^nucm&5Jm2n~V/D!. ~39!

We find that the total HamiltonianH has the same eigen
values asH1. Apparently, the energy shifts due to the co
pling between the Wannier states as expressed byH0 cancel
each other. Since the energy eigenvalues are integer
tiples of D, each solution of the Schro¨dinger equation is pe
riodic in time with period 2p/D, and the same is true for th
evolution operatorU(t) given in Eq.~16!. This also implies
that an initial localized state remains localized at all tim
due to the addition of the uniform external force. The eige
03342
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statesucm& are the Wannier-Stark ladder of states@10#. They
form a discrete orthonormal basis of the first energy ba
and they are intermediate between the Wannier and the B
bases of states.

B. Oscillations of localized states

The definitions~13! and ~15! show that

a5~2V/D!sin~Dt/2!, b5Dt/2, f5Dt. ~40!

In the Wannier representation, the matrix elements ofU are
found from Eq.~16! as

^nuU~ t,0!um&5 i 2n1me2 iDt(n1m)/2Jn2mS 2V

D
sin

Dt

2 D ,

~41!

which represents the transition amplitude from an initial st
um& to the final stateun&. For the initial Wannier state
uC(0)&5u0&, the time-dependent state isuC(t)&
5(nf n(t)un& with

f n~ t !5 i 2ne2 iDtn/2JnS 2V

D
sin

Dt

2 D . ~42!

This is in accordance with Eq.~50! of Ref. @17#, which was
obtained by a rather elaborate analytical method, rather t
an algebraic one. Equation~29! shows that the time-
dependent average position^n& of the wave packet remain
zero at all times, whereas the mean-square displacemes
5uau/A2 displays a breathing behavior, and returns to z
after the Bloch period 2p/D. Moreover, according to Eq
~42!, the phase difference between neighboring sites va
continuously with time.

This is already quite different when only two Wanni
states are populated initially. Consider the initial state

uC~0!&5
1

A2
~ u0&1eiuu1&). ~43!

Then the average position can be evaluated from Eq.~22!,
for the values ofa andb given in Eq.~40!. The result is

^n&5
1

2
1

V

2D
@cosu2cos~Dt2u!#, ~44!

which shows that the packet displays a harmonically os
lating behavior. The amplitude of the oscillation is govern
by the ratioV/D, which is one-half the maximum amplitud
for Bloch oscillations of a wave packet with a large wid
~see Sec. V C!. This amplitude must be appreciable in ord
that interband coupling induced by the uniform force r
mains negligible, as we have assumed throughout this pa
The distributionpn5u f nu2 after one-half a Bloch period, both
for the initial single Wannier state and for the inital sta
~43!, is illustrated in Fig. 1. This demonstrates that a stro
displacement can already be induced by evolution of a
perposition state of just two neighboring Wannier states, w
a specific phase difference. This displacement arises from
4-5
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H. L. HAROUTYUNYAN AND G. NIENHUIS PHYSICAL REVIEW A 64 033424
interference between the transition amplitudes from the
initial states to the same final stateun&.

C. Bloch oscillations and breathing of a Gaussian wave packe

The evolution of a Gaussian wave packet as discusse
Sec. IV B is specialized to the present case of a cons
force after substituting the expressions~40! in Eqs. ~32!–
~34!. We find for the average position̂n& the identity

^n~ t !&5
V

D
@cosu2cos~u2Dt !#. ~45!

This demonstrates that the wave packet oscillates harm
cally in position with frequencyD and with amplitudeV/D
in units of the lattice distancea. The velocity of the wave
packet is found from the time derivative of Eq.~45!, with the
result

v~ t !52aV sin~u2Dt !. ~46!

It is noteworthy that this expression~46! coincides exactly
with the expression for the group velocitydE/\dk, with the

FIG. 1. ~a! Plot of the breathing population distribution for a
initial Wannier stateu0&. ~b! Plot of the oscillating population dis
tribution, for two initial superpositions of Wannier statesu0& and
u1&, and two different values of the relative phaseu. Both plots are
evaluated forV/D56. Shaded distributions hold after one-half
Bloch periodt5p/D.
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derivative evaluated at the time-dependent value of the q
simomentum (u2Dt)/a, with E5\V cos(ka) the dispersion
relation between energy and quasimomentum in the abs
of the uniform force, as given in Sec. II A. Apparently, th
expression for the group velocity retains its validity in th
presence of the uniform force also. Of course, the concep
Bloch oscillations of the wave packet as a whole has sign
cance only when the amplitudeV/D of the oscillation is
large compared with the widths of the packet, which in turn
must extend over many lattice sites.

The time-dependent widths of the Gaussian packet i
found from Eq.~34! in the form

s25s0
21

V2

4s0
2D2

~12cosDt !@11cos~Dt22u!#. ~47!

Hence the variance of the position deviates from its init
value by an oscillating term. The amplitude of this oscillati
is governed by the ratio (V/2Ds0)2. The initial width is
restored whenever one of the terms in brackets vanis
This happens twice during every Bloch period, except wh
u5p/2, when these two instants coincide. This combin
breathing and oscillating behavior is illustrated in Figs. 2 a
3, for various values of the relative phaseu. Notice that the
oscillation is always harmonic with the Bloch frequencyD.
This is due to the simple form of the dispersion relation
the case of nearest-neighbor interaction. The time dep
dence of the variance is a superposition of terms with f
quenciesD and 2D.

D. Zero external force

In the absence of an external force, we can take the li
D→0 in the results of the previous subsections. In particu
this gives f5b50, a(t)5Vt. Then the evolution of an
initial Wannier stateuC(0)&5u0& is given by

uC~ t !&5Ruc~0!&5(
n

i 2nJn~Vt !un&, ~48!

which shows that the free spreading of an initial Wann
state after a timet gives Wannier populations equal topn
5uJn(Vt)u2 @19#. The mean-square displacement increa
linearly in time, ass5Vt/A2. This shows that the spreadin
is unbounded in the absence of an external force. The s
propagatorp0(t) decays to zero for large times. The pha
difference between neighboring sites is6p/2 at all times.
For only two coupled wells, the coupling would give rise
Rabi oscillations with frequencyV. Equation~48! can be
viewed as the generalization to the case of an infinite ch
of wells.

For a Gaussian wave packet with initial widths0 and
initial quasimomentum determined byu, expressions~45!
and ~47! take the form

^n~ t !&52Vt sinu, s25s0
21

V2t2

8s0
2 ~11cos 2u!.

~49!
4-6
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As one would expect in the absence of a uniform force,
group velocity takes the constant valuev52aV sinu,
which leads to unbounded motion of the packet~except for
u50 or 6p). Usually, the width increases indefinitely du
ing the propagation. However, for the special valuesu5
6p/2 the width is constant, and the packet propagates
solitary wave. Notice that such a phase difference betw
neighboring Wannier states arises spontaneously whe
single Wannier state spreads in the absence of a unif
force.

VI. OSCILLATING FORCE

Other situations of practical interest arise when the u
form force has an oscillating component. Examples are
coupling between the states in the Wannier-Stark ladder@10#,
and dynamical localization for special values of t
amplitude-frequency ratio of the oscillation@13,14#. The
situation of an oscillating force is also decribed by the o
erator description of Sec. III A. We give some results belo

A. ac force only

The situation of a harmonically oscillating uniform forc
can be expressed as

D~ t !5d cos~vt !, ~50!

FIG. 2. Periodic behavior of the width and the average posit
of a Gaussian wave packet for various initial values of the ph
differenceu between neighboring states. Initial value of the width
s054 andV/D550.
03342
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so thatf5(d/v)sin(vt). Then according to Eq.~15! the pa-
rametersa andb are specified by the equalities

aeib5VtJ0S d

v D1V (
nÞ0

JnS d

v D 1

inv
~einvt21!, ~51!

where we used the expansion defining the ordinary Be
functions, given in Sec. III A.

The first term in Eq.~51! increases linearly with time
whereas the summation is bounded and periodic in time w
periodT52p/v. The behavior ofa andb as defined by Eq.
~51! is quite complicated in general. However, for larg
times the value ofa, and thereby the spreading of an initi
Wannier state, is the same as in the absence of the unif
force, with V replaced by the reduced effective couplin
VJ0(d/v). After one periodT, the values of the parameter
become simple, and we findb5f50, a5VTJ0(d/v). The
evolution operatorU(T) during one periodT is simply given
by the operatorR defined in Eq.~16!, at these values of the
parameters. The eigenstates of the evolution operatoR
5U(T) are simply the Bloch statesuk&. The eigenvalues can
be expressed as exp@2iE(k)T/\#, with

E~k!5\VJ0S d

v D ~52!

the corresponding values of the quasienergy, which
strictly speaking defined only modulo\v. The quasienergy

n
e

FIG. 3. Bloch oscillation and corresponding breathing behav
of a Gaussian wave packet in a constant uniform force. Value
s0 , V, andD as in Fig. 2. Upper part:u50. Lower part:u5p/2.
4-7
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bandwidth is reduced by the factorJ0(d/v), compared with
the energy bandwidth in the absence of the uniform forc

When the ratiod/v of the amplitude and the frequency o
the oscillating force coincide with a zero of the Bessel fun
tion J0, no unbounded spreading occurs, and an initially
calized state remains localized at all times, with a perio
cally varying mean-square displacement. The quasien
bandwidth is reduced to zero in this case. This effect of
namical localization has been discussed before for elect
in crystals@13#. The related effect of an effective switch-o
of atom-field coupling occurs for a two-level atom in
frequency-modulated field when the ratio of the amplitud
frequency ratio of the modulation equals a zero of the Be
function J0. This effect, which leads to population trappin
in a two-level atom, has recently been discussed by Agar
and Harshawardhan@20#.

B. ac and dc force

A constant uniform force creates Wannier-Stark sta
with equidistant energy values. An additional oscillati
force can induce transitions between these states. There
we consider the force specified by

D~ t !5D01d cos~vt !. ~53!

Then the values of the parametersf, a, andb are

f~ t !5D0t1~d/v!sin~vt !,

aeib5V(
n

JnS d

v D 1

i ~D01nv!
~ei (D01nv)t21!. ~54!

In general, each term in the summation is bounded and
riodic, but the different periods can be incompatible. Mo
over, wheneverD01nv50, the corresponding summand a
tains the unbounded formVtJn(d/v). At such a resonan
value ofD0, the spreading of an initially localized state b
comes unbounded, and the particle becomes delocal
This delocalization is suppressed again when the ratiod/v is
equal to a zero of the corresponding Bessel functionJn . This
is a simplified version of the phenomenon of fraction
Wannier-Stark ladders, which has recently been obser
and discussed@21,22#.

The quasienergy values are again determined by
eigenstates of the evolution operatorU(T) for one period of
the oscillating force. This operator is equal to the gene
operatorR defined in Eq.~16!, with the parameters

a52V sin~D0T/2!(
n

JnS d

v D 1

D01nv
,

b~T!5D0T/2, f~T!5D0T. ~55!

These expressions are correct wheneverD01nv is nonzero
for all values ofn. Since these values of the parameters c
be directly mapped onto the values~40! specifying the evo-
lution with a constant uniform force, the eigenvectors a
corresponding quasienergies are also immediately found.
eigenvectors ofR can be expressed asucm&5(nun&cn

(m) ,
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with the expansion coefficientscn
(m)5Jm2n(z). Here the ar-

gumentz of the Bessel functions must be chosen as the s

z5V(
n

JnS d

v D 1

D01nv
, ~56!

which replaces the simple argumentV/D in Eq. ~39!. The
eigenvalues ofR5U(T) are exp(2iEmT/\), with the dis-
crete quasienergy valuesEm5\mD0 ~modulo\v).

In the resonant case thatD01n0v50 for some integer
n0, one summand in the expression fora andb is modified,
as indicated above. WhenT5t, only this modified summand
is nonzero, and the evolution operatorU(T)5R for one time
period is characterized by the values

a5VTJn0
, b50, f522pn0 . ~57!

The eigenvectors ofR are the Bloch statesuk&, and the cor-
responding quasienergy values are

E~k!5\VJn0S d

v D cos~ka!. ~58!

VII. DISCUSSION AND CONCLUSIONS

We have analyzed the Wannier-Stark system, which
characterized by the Hamiltonian~6!, in terms of the opera-
tors B6 and B0. The present interest in this model aris
from the dynamics of atoms in a periodic optical potenti
with an additionally applied uniform external force. W
adopted the tight-binding limit, which implied neares
neighbor interaction only. This gives rise to an explic
simple dispersion relation between energy and quasimom
tum, which makes the model exactly solvable. From
commutation properties of the basic operators we obtain
~16! for the evolution operator for an arbitrary time depe
dence of the uniform force, where the three parameters
defined in Eqs.~13! and~15!. As shown in Secs. III B and IV,
the parameterf determines the shift in the value of the qu
simomentum, whereasa and b determine the evolution o
the average position and the width of a wave packet. A p
ticle starting in a single Wannier state has a uniform dis
bution over the quasimomentum, and cannot change its
erage position, whereas the width of its wave packet
simply measured bya. On the other hand, even when on
two neighboring states are populated initially, the wa
packet can display an appreciable motion. In Sec. IV B i
demonstrated that an initially Gaussian packet rema
Gaussian at all times. This remains true when the initial s
has a nonzero expectation value of the quasimoment
which is described as an initial phase difference betw
neighboring Wannier states.

These results, which are valid for a uniform force with
arbitrary time dependence, unify and extend earlier res
obtained for a constant or an oscillating uniform force.
constant force induces Bloch oscillations of a wave pack
and we obtain a simple expression for the amplitude of
oscillation and for the time dependence of the width of t
wave packet. For an oscillating force, the operator meth
4-8
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shows that the quasienergy bands can be evaluated dir
in terms of the value of the parametera after one oscillation
period. This produces an exactly solvable model for dyna
cal localization and fractional Wannier-Stark ladders. In g
eral, by selecting a proper time dependence of the force o
the coupling between wells, thereby realizing the desired
ues of the parametersa, b, andf, we can coherently contro
-Y

on

on

d

.

.
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the width and the position of a wave packet, as well as
phase difference between neighboring sites.
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