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Transition between extended and localized states in a one-dimensional
incommensurate optical lattice
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We study the localization properties of a one-dimensional incommensurate potential in the full quantum
regime. In the system under consideration, and for amplitudes of the potential that are not too weak, the
spectrum contains both localized and extended states, with one or more mobility edges. We show how these
properties can be experimentally studied through the diffusion of wave packets in a one-dimensional incom-
mensurate optical lattice.
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[. INTRODUCTION dispersion properties in the tight-binding regifdd]. In this
last model, the atoms are restricted to the bottom of potential
The quantum transport properties of a system are intiwells and thus the energies allowed belong to a narrow en-
mately related to the underlying symmetries of the Hamil-ergy interval; the system was shown to be analogous to a
tonian. In a perfectly periodic system all the eigenfunctionsgeneralized Harper model.
are extended Bloch wavé4], while for a random potential ~ We study the motion of atoms in & continuous incommen-
in a quasi-one-dimensional system all the eigenfunctions aréurate lattice, without ang priori restriction on the allowed
localized[2]. These properties can be experimentally studienergies of the particles. Thus, effects in which several en-

through the dispersion of an initially localized wave packet;€"9 IGIVEIS in the wells as Wﬁ’” _aslle(;/e(ljs OlrJ]tSide of the \INe”SI

in the former case it grows ballistically, while in the latter the &€ rélevant are automatically included. These energy levels

dispersion remains constant bring into the problem, as we shall show, a richer set of
i henomena. For large enough amplitudes of the potential the

In between these two extreme cases lie incommensuraf® . ) .
spectrum contains extended and localized states at high and

and quasiperiodic systems. In these, the spectrum can range energies, respectively. Our study shows that the transi-
from having all extended states to all localized states or eve on between7 these two extrema can be nontrivial. with the
to mixed behavior, as the parameters describing the systeff}esence of more than one mobility edges for certain values

(incommensurability, potential amplitude, gtare varied.  of the amplitude. We also show how these mobility edges
For instance, in the Fibonacci latti€8] all states are critical -5 pe experimentally seen using optical lattices.

(neither localized nor extendgdeading to anomalous dis-  The paper is organized so as to acquaint the reader with
persion. Another known example is the Harper moddl  the main ideas used to study incommensurate systSecs.
which models electrons in a two-dimensional lattice in the|—|||), as well as to show the new results obtained and their
presence of a transverse magnetic field. The eigenfunctionsossible experimental studjn Secs. IV and V. In Sec. Il

for this model undergo a transition from localized to ex-we outline the experimental setup that allows for the con-
tended behavior as the amplitude of the potential of the latstruction of an incommensurate optical lattice. The spectrum
tice is decreased. These quantum properties could be relatefl the system is studied in Sec. Ill. In Sec. IV we study the
to the quite anomalous transport properties of quasicrystal®calization properties of the wave functions, and the transi-
[5]. These materials show large resistivity and a decreasintion(s) between the localized and extended states in the spec-
temperature dependence; this behavior is enhanced in clearteum. In Sec. V we show how these results can be exhibited
samples, thus showing that impurities improve the transporéxperimentally.
instead of degrading it. A study of transport in a defect-free
incommensurate system can then shed some light on the

physics underlying quasicrystals.

Such a system can be produced using ultracold atoms in a Optical lattices are produced by the interaction(loéu-
laser-generated incommensurate optical lattice. Optical latiral) alkali-metal atoms with laser beams operating at a fre-
tices have been extensively used to study fundamentajuency far-detuned from an internal transition. This interac-
guantum-mechanical effects, including Bloch oscillationstion acts on the external degrees of freedom as a force
[6], the existence of Wannier-Stark ladd¢r, and nonex- proportional to the intensity of the laser light2], while
ponential decay8]. Two-dimensional quasiperiodic optical leaving the atoms themselves in tfigterna) ground state. A
lattices have been studied both experimentally and numerperiodic optical lattice is obtained by setting up a standing
cally in the incoherent and dissipative regime, in which therevave with counterpropagating laser bealgpically, the
is no localization[9]. In one dimension, there have been same beam reflected with optic§he motion of the atoms
proposals for using an incommensurate optical lattice as aan be restricted to one dimension by applying high-intensity
diffraction grating(with the atoms interacting with the laser standing waves in the two perpendicular directions, which
fields for a short time[10] as well as for a study of the localize the atoms to single potential wells in those direc-

Il. OPTICAL LATTICES
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FIG. 1. Diagram of the setup used to obtain a one-dimensional —Fth.hi. iri)\(/)(:,?::é(‘)lfetﬂzrg)(;lzser?rzj:z:rt:on of position, +1 and
incommensurate optical lattice. An additional pair of counterpropa—a_ v 9 )

gating laser beams with frequeney is positioned along the axis,

perpendicular to the diagram. Both these beams and the ones op@rt-)SOIUter Con_?nuous’ r\]Nlth _extendeq wave functif I'ﬂ. IE:]
ating atw; have an intensity large enough to restrict the motion of!S knovyn that ifVo<1 t e_re is no point spectrufiocalize
the atoms to the: direction. state$ in the system, while for large enough values\4f

there are localized states at low enerdi#4,15. For these

tions. All the standing waves work at slightly different de- Values of Vo we have a transition between localized and
tunings to prevent cross-interaction between the atoms arfiténded states at the two extremes of the spectrum. In
the beams. physical terms, if the potential wells are deep enough, then
An incommensurate potential in one dimension can béhe low-lying levels are localized as in a random potential;
obtained as shown in Fig.[10]. The atoms are able to move &nd for very large energies, the energy eigenstates are weakly
in the x direction, but are localized in thgz plane. The Perturbed plane waves. As we shall see, this transition can
beams working aw, and w, generate periodic potentials €xhibit one or several mobility edges, i.e., band gaps across
alongx with different wave numbersk,; and & ,. Notice ~ Which the localization properties change character.
that 2K, can be varied with the angl®, since K,

=K a5e/c0S6. The Hamiltonian for the atoms is then Ill. ENERGY SPECTRA
2 Whene is a rational numberd=p/q) the potential2.2)
H= p_+V1 cog 2K X+ ) +V,Ccog 2K ,x), (2.1) is periodic in space, with a period ofn2). Using Bloch’s
2m theorem[1], the energy eigenvectors can be found in the

) ) ) form W, £(x) =€'**uy £(x), whereu conserves the periodic-
wherem is the mass of the atoms anflis a rgzlatlve phase ity of the Hamiltonianu, g(x+2mq) =uj (X), SO we can
between the two standing waves. The amplitidesndV,  \yrite ' '

can be adjusted by varying the intensity of the laser beams.

The localization properties of the quantum states of the sys- K imx/g

tem are independent of the value@fbut it is important that Vie=e % Cm& CHY

this phase remains constant throughout an experimental run.

This can be achieved by phase locking the laser beams work-is called the quasimomentum, which can be restricted to

ing atw; and w,. the first Brillouin zone, in our case the interval
We will, in what follows, use a system of units in which (—1/2q,1/2q]. We can find the energy eigenfunctions of the

m=%=2K_;=1. In an experiment with sodium atoms, this Hamiltonian as the solutions of the equation

corresponds to a unit of time of the order of a microsecond

and a unit of energy equal to eight photon recoils. We define Vo ig i
a=K,/K_; and takea<1 without loss of generality. The 5 (Cmiq® "+ Cm—q€F Cmipt Cmop)
potential energy of the system is then of the form
(k+m/q)? B
V(x) =V, cogx+ ¢)+V, coq ax). (2.2 T 2 —E(k)|cm=0.

For simplicity, we will concentrate on the case in which bothThe energy spectrum is composed of energy bands; a typical

cosines have the same amplitudlg=V,=V,. plot of these bands for different rational valuesaois shown
When « is an irrational number, this potential is an in- in Fig. 3; in it, each point corresponds to a singfarrow

commensurate function of position. In Fig. 2 we show a plotband.

of this function for a particular value od. Although the The spectrum for a given value of shows three distinct

potential might look somewhat random, there is a great deakgions. States buried deep in the potential wells belong to

of correlation between the location and height of the wells. energy bands with very narrow widths. High-energy states
Analytical studies of the spectral properties of continuouglocated above the top of the potential barriease slightly

incommensurate Hamiltonian systems have shown that foperturbed free particle statéplane waves On the other

all values ofV, and at very high energies the spectrum ishand, the spectrum in the intermediate region shows a rich
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FIG. 3. Energy bands foVO: 0.5 and¢:0 as a function of FIG. 4. Integrated bandwidth fN0:0.068, showing the labels

rational «= p/q; values withp<q<30 are shown. Each point in for the main gaps in the spectrum.
this plot corresponds to a fu(harrow) energy band.
mants quickly converge to a curve in the region supporting

structure with large energy gaps, reminiscent of the Hofs€xtended states; the main gaps are displayed as horizontal
tadter butterfly{16]. This occurs at energies of the order of Segments. In Fig. 4 we show the result #5=0.068, for
V. which the whole spectrum supports extended states. The

When « is an irrational number Bloch's theorem is no largest gaps correspond to combinations of small integgers
longer applicable and the calculation of the spectrum is non@ndny. If we think of the potential as a perturbation of the
trivial. This incommensurate case can be studied by taking §ee-particle Hamiltonian, thefn,|+[n,| is the order of the
sequence of rational numbers,=p,/q, such that it con- correction that give_s rise to the gap. Thus, integers with
verges tor asn—c. The potential withe,, is called a peri- larger magnitudes give smaller gaps.
odic approximant to the incommensurate potential. One im-
portant irrational value forr is the inverse of the golden B. Quasimomentum space distributions

megn,y=(\/§—1)/2, which characterizes the quasiperiodic-  For  periodic potential we can calculate the energy as a
ity in some quasicrystal§17] and possesses interesting fynction of the quasimomentum for the different energy
number-theoretical properties. The sequence of approximanisyngs. In the quasiperiodic case the quasimomentum is not a
used is obtained by truncating the expansioryaf terms of  \ye|| defined quantity, so there is no dispersion relation. In
a continued fraction, resulting in the recursiop,  order to study a closely related concept, we plot the eigen-

=0n-1,0n=Pn-110Qn-1 With initial valuespo=qgo=1. In  fynctions of the Hamiltonian as both a function of momen-
the rest of the paper we will study this particular case, alyym p and energyE.

though the results are similar for other irrational values of Let us consider first the periodic potential,

A. Labeling the gaps V(x)=Vy[cogx+1)+cogx/2)]. (3.3

As we increase the order of the approximationg,, in-
creases and thus the size of the Brillouin zone shrinks, conn the top panel of Fig. 5 we have plotted the enefggs a
verging to zero. With gaps opening up at both the center an¢linction of the momenturp for V,=0.1. The gray scale and
the edges of the Brillouin zone, as—> gaps open up al- size of the point represents the probability of measuring a
most everywhere in the spectrum; the spectrum becomes\alue ofp for a given eigenvector of the Hamiltonian with
Cantor set, which is a fractall8]. It is of interest to find energyE. In the absence of a potential, the plot would just be
properties of the system that remain continuous in this limitthe free-particle dispersion relation,
As shown by Fig. 3, one such property is the location of the
main gaps in the spectrum. 1,
The total number of gaps in the spectrum is infinite, but E= P 3.4
countable. They can be indexed using the gap-labelling theo-
rem[19]. Given the density of statgger unit length p(E),  shown as the thick parabola in the lower panel. In the pres-
let us define the integrated density of statééE) ence of the weak periodic potentié8.3), Bragg scattering
=E_p(E)dE. When evaluated at an energy lying on anwith Ap==+%,+1 becomes possible. Considering multiple-
energy gafEy,, there exists a unique pair of integersand  scattering events the momentum can change by integer mul-
n, such that tiples of 3. We include in the lower panel the free-particle
parabola displaced in momentum by such amounts.
|(Egap) =Na(1/2m) + ny(1/27cr). (3.2 We can clearly see in the top panel of Fig 5 the remnants
of the free particle parabola, as well as some of the second-
ary ones. The gaps in the spectrum open up where the energy
This pair (n,,n,) identifies the gap. eigenstates are degenerate, which occurs where two of the
It is instructive to plot the integrated bandwidth as a func-parabolas meet. Interpreting the secondary parabolas as
tion of the energy. The plots for different rational approxi- Bragg scattered states, the gray scale of the point signals the
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' ' linear combinations with integer coefficients of 1 apdare
possible. Since these numbers form a dense set on the real
line, Ap can take(almos} any value. Thus, without the gray-
scale-coding scheme there would be a parabola centered at
almost every point and the figure would appear featureless.
We can see that the most important parabolas correspond to
combinations with small integer values, associated with low-
order Bragg scattering. The main gaps open up at the points
where these parabolas meet the primary one. The integers
used to label the gaps are the same as the ones used to label
the center of symmetry of the parabola which gives rise to
them.

At low energies the potential completely reshapes the mo-
mentum distribution of the energy eigenvectors; as a matter
of fact the states deep in the wells become localized in po-
Momentum p sition in the quasiperiodic case. This result is true even at
S!arge amplitudes of the potential, with the parabolas being
momentum for the energy eigenstates of a particle moving in thdnore prominent ‘Fj_‘t energies above the p(_)tentlal barriers.
periodic potential3.3). The points are gray-scale coded, with the We can now plgture how the energy eigenvectors behave
gray scale describing the probability of measuring a value of thé2S the potential/g is increased adiabatically from zero to a
momentum for an eigenstate of the given energy. In the bottonfiX€d value. Each of the gaps in the spectrum is borne out of
panel, we have plotted the free-particle parabiicker line to-  the point where the free-particle parabola meets one of the
gether with the same parabola shifted by integer multiples of 1/2. secondary ones. Initially the states are nearly plane waves,

but as the potential is increased they become more and more
probability of a particular Bragg scattering, with the gray distorted, due to a large number of Bragg scattering events.
scale fading as a higher number of scatterings are needebvery gap can still be uniquely associated with the parabola
Notice that if the points were not gray-scale coded in thewhich in the absence of the potential brings forth a gap at
figure, we would simply obtain the band structure of thethat value of the momentum. Notice that a gap with label
system in the repeated-zone scheie (n1,ny) opens up at a momentum

In the case of the quasiperiodic potential

FIG. 5. In the top panel we have plotted the energy versu

n1+ nz’y
pnl,nzz T (3.6)
V(x)=0.] cogx+1)+cog yx)], (3.5
IV. LOCALIZATION PROPERTIES

the same plotting method renders Fig. 6. The main difference
with the periodic case is in the location of the secondary The localization properties of the wave functions of the
parabolas; these are not periodically centered in momentunidamiltonian can be numerically studied through the scaling
On the contrary, since we have two incommensurate basigroperties of the bandwidths. As we increase the value, of
wave vectors, 1 and, Bragg scattering occurs withp= the width of each of the bands decreases. The way in which
+1,+v. In general, accounting for multiple scattering, all this decrease scales with the size of the Brillouin zomg (
indicates whether the wave functions show extended or lo-
calized behaviof20].
For a band with extended states, the bandwili{tscales
as the inverse of the size of the Brillouin zogg?, or as
q;z if the band derives from the bottom or the top of a
previous approximanfwhere van Hove singularities arise
On the other hand, localized states belong to bands with the
bandwidth decreasing faster than a poweqggf
Figure 7 shows the scaled bandwid®hq,, as a function
of the approximation ordem (n is proportional to Irg,) for
1 different situations. In the top panel, we plot the results for
- 8 the bands between the (1,1) and the (2,0) gaps with an am-
0.5- _ plitude V,=0.5. These display the behavior typical of bands
with extended statesB,q, is roughly constant, although
some of the bands eventually show a linear decrease in the
0 1 5 1 logarithmic-linear plot, related to the aforementioned van
Momentum p Hove singularities. The middle panel shows the result for a
set of bands with localized statfisetween the (0,2) and the
FIG. 6. Same as Fig. 5, but using the potent&b). (1,1) gaps for the same amplitud&@hese scaled bandwidths
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R EEE N ' ' | that the energy of the states .is an increasing functioln. of
N Pn,n, but this latter parameter is better adapted for devising

" an experiment.

We want to stress two points from our results. The first

1071~ 7 one is a calculation of the lowest value of the amplitude for

1 which there are any localized states in the syst&fgl)"

S L AL A B A B =0.07. This can be calculated as the lowest value for which

=) e o . . . .
T 0 . . a perturbative expansion of the solution in powers\gf
2 . HE diverges. We can also see that there can be more than one
g o L I mobility edge in the system, sindé; is not an increasing
o 00k HE - function of . For example, when/y=0.305 (marked
b5 pnln2 p 0
g L o ® | with a horizontal line in Fig. Bthe states below the (1,0) gap
10 P l — are localized, those between the (1,0) and (0,2) gaps are
L LI B 4 extended, the ones between the (0,2) ane-(, are local-
10 .
. : 3 | ized, while higher energy states are ones again extended.
10° o ¢ : * .

- V. WAVE-PACKET DISPERSION

L The localization properties can be experimentally studied
0 5 through the dispersion of wave packets. Numerical studies of
Approximation Order wave packet dispersion have been performed in discrete qua-
siperiodic systems, such as the Fibonacci lafttd and the
FIG. 7. Scaled bandwidth for a set of extended beibeésween  Harper mode[22]. In our case, we consider the diffusion of
the (1,1) and the (2,0) gaps fv%=0.5, top pand| a set of local-  an initially localized wave packet in a quasiperiodic optical
ized bands[between the (0,2) and the (1,1) gaps #§=0.5, |attice. Because of the presence of both types of states in the
middle pane], and a set uqdergoing the transition from localized tospectrum for high enough values bf,, state preparation
extendedsame bands as in the top panel, wit=0.55). becomes a crucial step in the design of the experiment.

,ﬁ
)
I~
T
—
Sfeme eee
fm—
1

decrease rgpidly to the numerical error of the calculations, A. State preparation

thus there is no scaling with,. In the bottom panel we h luti £ the initial K b
show the scaled bandwidths for the same set of bands used in | "€ €nergy resolution of the initial wave packet must be
the top panel but with a larger amplitudé,=0.55. Some of restricted to an interval in which the diffusion properties are

the bands have undergone a transition to localized behavio"f‘,pp.rOXim""te'y uniform; th?s can be obtained with an ad'ia—
while others still show extended behavior. batic turn-on of the potential. In general, we want to confine

From our numerical calculations we see that if a set oiIhe energy resolution to the interval between two gaps,

labeled bands is localized for a certain valuevgf then it ~ ("1:N2) and My, m,) (with the former located at a higher
remains localized for larger values of it. We can then definé"€rgy than the latterin the absence of the potential, these
the value V! for which a set of bands undergoes the St3€S correspond to momenta betwegth, and pm,m,, as
extended-localized transition. We have studied the deperfrgued in Sec. Il B. If we prepare a Gaussian wave packet
dence of this value for different bands; the results are plotted

in Fig. 8. In order to parametrize the bands we have chosen ' LRSS LA
the momentump, ,, defined by Eq.3.6). We emphasize oor e o?
08| °°
o o ©
08 T T 8o o
g — S .
- B 06l R
06 4 o
&g e 05F o
> 04| ©
041 -
i %3 50 100 0 200
TO
02 4
L 1 FIG. 9. Overlap probability with the states in the desired energy
0 ; o ; L ; o bands as a function of the turn-on tinig. The amplitude of the
Pun, potential in all three cases ¥,=0.5 and the initial dispersion in

position isa,=30. The circles correspond to an initial momentum
FIG. 8. AmplitudeV, of the potential at which the extended- p,=0.7 and the desired bands are between the (0,2) and the (1,1)
localized transition takes place, as a function of the momentungaps. The squares correspongpe=0.9 and the bands are between
Pn,n, COrresponding to then,n;) gap. The horizontal line corre- the (1,1) and the (2,0) gaps. Finally, the diamonds correspond to
sponds to a value df, for which there are three mobility edges. p,=1.05 and the bands are between the (2,0) and the (1,2) gaps.
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FIG. 10. Dispersion of the wave packets as a function of time  FIG. 11. Dispersion of the wave packets as a function of time
for po=0. The dark curve corresponds to a potential amplitude offor V,=0.305. The full line corresponds to an initial momentum
V(=0.069, for which there are no localized states. The secongy=0.53, showing extended behavior. The dotted line corresponds
curve corresponds t¥,=0.072, for which the states arounm to pp=0.65, for which the underlying states are localized.
=0 are already localized, leading to a localized wave packet. The

initial linear increase in both cases is due to the adiabatic turn on O{—hiS estimate seems to be more accurate for the extended
the potential, which occurs during a turn-on time of 2000. . .

bands than for the localized ones. However, it is seen that the
adiabatic turn-on of the potential has the desired effect of

with minimum uncertainty, having an initial momentupg ) : )
rendering a wave-packet localized in energy space.

:(pn1n2+ pmlmz)/z and a momentum dispersionr,
<(pn1n2_pm1mz)/4 and we turn the potential on slowly

enough, then the energy of the wave-packet lies in the de- B. Spreading of the wave packet

sired interval. Notice that the initial dispersion in real space . . .
is 0,=1/(20,), since the initial wave-packet is a Gaussian _Or a wave packet prepared in the fashion mentioned, we

with minimum uncertainty. The minimum turn-on timg,  ¢an numerically integrate the equations of motion to study
required to obtain adiabaticity can be estimatedTas, the quantum diffusion of the wave packet in the lattice. The
~h/AE,=2m/AE,, whereAE, is the smallest energy gap dispersion is calculated ag(t) = y(x°) —(x)*. The evolution
separating our set of bands to all other bands in the spectrurfif the wave packets exhibits the transition from localized to
To confirm these results numerically, we assume that thextended behavior. In Fig. 10 we show the results for a wave
initial wave packet is of the form packet initially at rest o= 0) for different values o¥,. For
V,=0.069 the wave packet spreads ballistically, with its
width increasing linearly with time. On the other hand, at
expl — (X—Xo) 21202 +ipox}, V,=0.072 the wave packet does not spread, thus the energy
V2may states making up the wave function are localized. This is
(5.2 confirmed in Fig. 8, which shows that the states aropgpd
=0 undergo the transition atg =0.07.

where we have taken the initial position of the center of the Another interesting case we show is one in which there
packet ab(o. We numerica”y integrate Sc'hﬂmger’s equa_ are several m0b|||ty edges. FV{):O?)OS there are localized
tion with the amplitude of the potential increasing at a con-States at an energy higher than some extended states. The

stant rate to its final valu¥, for a timeT,. Using the eigen- results are shown in Fig. 11. For an initial momentpg
functions of the Hamiltonian, we expand =0.53[corresponding to energy states between the (1,0) and

(0,2) gap$ the wave packet spreads ballistically, while for
po=0.65 [between the (0.2) and (21) gapg the wave
— packet remains localized.
P (x.To) ; 3e(To) Ye(x). ®2 Our work shows that the transition between extended and
localized states in an incommensurate optical lattice can ex-
hibit more than one mobility edges. These localization prop-
erties can be studied experimentally using an atom optical
system with parameters that are currently available. A study
in a clean, defect-free system will improve the understanding
B 2 of the intrinsic transport properties of quasicrystals, which
P(&To)—EEEg lag(To)|*. 53 are strongly affected by impurities in condensed matter
samples.

T (x,t=0)=

The probability that the final state is in the desired Seif
energy states is

The overlap probability with the states in the desired en-
ergy bands as a function of the turn-on tifigis shown in
Fig. 9 for three different situations. In all three cases, the This work was supported by the NSF and the R. A. Welch
minimum energy gapAE,~0.1, which impliesT,;,~60.  Foundation.
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