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Transition between extended and localized states in a one-dimensional
incommensurate optical lattice

Roberto B. Diener, Georgios A. Georgakis, Jianxin Zhong, Mark Raizen, and Qian Niu
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~Received 7 March 2001; revised manuscript received 15 May 2001; published 16 August 2001!

We study the localization properties of a one-dimensional incommensurate potential in the full quantum
regime. In the system under consideration, and for amplitudes of the potential that are not too weak, the
spectrum contains both localized and extended states, with one or more mobility edges. We show how these
properties can be experimentally studied through the diffusion of wave packets in a one-dimensional incom-
mensurate optical lattice.
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I. INTRODUCTION

The quantum transport properties of a system are i
mately related to the underlying symmetries of the Ham
tonian. In a perfectly periodic system all the eigenfunctio
are extended Bloch waves@1#, while for a random potentia
in a quasi-one-dimensional system all the eigenfunctions
localized@2#. These properties can be experimentally stud
through the dispersion of an initially localized wave pack
in the former case it grows ballistically, while in the latter th
dispersion remains constant.

In between these two extreme cases lie incommensu
and quasiperiodic systems. In these, the spectrum can r
from having all extended states to all localized states or e
to mixed behavior, as the parameters describing the sys
~incommensurability, potential amplitude, etc.! are varied.
For instance, in the Fibonacci lattice@3# all states are critica
~neither localized nor extended!, leading to anomalous dis
persion. Another known example is the Harper model@4#,
which models electrons in a two-dimensional lattice in t
presence of a transverse magnetic field. The eigenfunct
for this model undergo a transition from localized to e
tended behavior as the amplitude of the potential of the
tice is decreased. These quantum properties could be re
to the quite anomalous transport properties of quasicrys
@5#. These materials show large resistivity and a decrea
temperature dependence; this behavior is enhanced in cle
samples, thus showing that impurities improve the transp
instead of degrading it. A study of transport in a defect-fr
incommensurate system can then shed some light on
physics underlying quasicrystals.

Such a system can be produced using ultracold atoms
laser-generated incommensurate optical lattice. Optical
tices have been extensively used to study fundame
quantum-mechanical effects, including Bloch oscillatio
@6#, the existence of Wannier-Stark ladders@7#, and nonex-
ponential decay@8#. Two-dimensional quasiperiodic optica
lattices have been studied both experimentally and num
cally in the incoherent and dissipative regime, in which th
is no localization@9#. In one dimension, there have bee
proposals for using an incommensurate optical lattice a
diffraction grating~with the atoms interacting with the lase
fields for a short time! @10# as well as for a study of the
1050-2947/2001/64~3!/033416~7!/$20.00 64 0334
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dispersion properties in the tight-binding regime@11#. In this
last model, the atoms are restricted to the bottom of poten
wells and thus the energies allowed belong to a narrow
ergy interval; the system was shown to be analogous t
generalized Harper model.

We study the motion of atoms in a continuous incomme
surate lattice, without anya priori restriction on the allowed
energies of the particles. Thus, effects in which several
ergy levels in the wells as well as levels outside of the we
are relevant are automatically included. These energy le
bring into the problem, as we shall show, a richer set
phenomena. For large enough amplitudes of the potentia
spectrum contains extended and localized states at high
low energies, respectively. Our study shows that the tra
tion between these two extrema can be nontrivial, with
presence of more than one mobility edges for certain val
of the amplitude. We also show how these mobility edg
can be experimentally seen using optical lattices.

The paper is organized so as to acquaint the reader
the main ideas used to study incommensurate systems~Secs.
I–III !, as well as to show the new results obtained and th
possible experimental study~in Secs. IV and V!. In Sec. II
we outline the experimental setup that allows for the co
struction of an incommensurate optical lattice. The spectr
of the system is studied in Sec. III. In Sec. IV we study t
localization properties of the wave functions, and the tran
tion~s! between the localized and extended states in the s
trum. In Sec. V we show how these results can be exhib
experimentally.

II. OPTICAL LATTICES

Optical lattices are produced by the interaction of~neu-
tral! alkali-metal atoms with laser beams operating at a f
quency far-detuned from an internal transition. This inter
tion acts on the external degrees of freedom as a fo
proportional to the intensity of the laser light@12#, while
leaving the atoms themselves in the~internal! ground state. A
periodic optical lattice is obtained by setting up a stand
wave with counterpropagating laser beams~typically, the
same beam reflected with optics!. The motion of the atoms
can be restricted to one dimension by applying high-inten
standing waves in the two perpendicular directions, wh
localize the atoms to single potential wells in those dire
©2001 The American Physical Society16-1
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tions. All the standing waves work at slightly different d
tunings to prevent cross-interaction between the atoms
the beams.

An incommensurate potential in one dimension can
obtained as shown in Fig. 1@10#. The atoms are able to mov
in the x direction, but are localized in theyz plane. The
beams working atv1 and v2 generate periodic potential
alongx with different wave numbers 2KL1 and 2KL2. Notice
that 2KL2 can be varied with the angleu, since KL2
5KLasercosu. The Hamiltonian for the atoms is then

H5
p2

2m
1V1 cos~2KL1x1f!1V2 cos~2KL2x!, ~2.1!

wherem is the mass of the atoms andf is a relative phase
between the two standing waves. The amplitudesV1 andV2
can be adjusted by varying the intensity of the laser bea
The localization properties of the quantum states of the s
tem are independent of the value off, but it is important that
this phase remains constant throughout an experimental
This can be achieved by phase locking the laser beams w
ing at v1 andv2.

We will, in what follows, use a system of units in whic
m5\52KL151. In an experiment with sodium atoms, th
corresponds to a unit of time of the order of a microseco
and a unit of energy equal to eight photon recoils. We de
a5KL2 /KL1 and takea,1 without loss of generality. The
potential energy of the system is then of the form

V~x!5V1 cos~x1f!1V2 cos~ax!. ~2.2!

For simplicity, we will concentrate on the case in which bo
cosines have the same amplitude,V15V25V0.

When a is an irrational number, this potential is an in
commensurate function of position. In Fig. 2 we show a p
of this function for a particular value ofa. Although the
potential might look somewhat random, there is a great d
of correlation between the location and height of the wel

Analytical studies of the spectral properties of continuo
incommensurate Hamiltonian systems have shown that
all values ofV0 and at very high energies the spectrum

FIG. 1. Diagram of the setup used to obtain a one-dimensio
incommensurate optical lattice. An additional pair of counterpro
gating laser beams with frequencyv4 is positioned along thez axis,
perpendicular to the diagram. Both these beams and the ones
ating atv3 have an intensity large enough to restrict the motion
the atoms to thex direction.
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absolutely continuous, with extended wave functions@13#. It
is known that ifV0!1 there is no point spectrum~localized
states! in the system, while for large enough values ofV0
there are localized states at low energies@14,15#. For these
values of V0 we have a transition between localized a
extended states at the two extremes of the spectrum
physical terms, if the potential wells are deep enough, t
the low-lying levels are localized as in a random potent
and for very large energies, the energy eigenstates are we
perturbed plane waves. As we shall see, this transition
exhibit one or several mobility edges, i.e., band gaps ac
which the localization properties change character.

III. ENERGY SPECTRA

Whena is a rational number (a5p/q) the potential~2.2!
is periodic in space, with a period of 2pq. Using Bloch’s
theorem@1#, the energy eigenvectors can be found in t
form Ck,E(x)5eikxuk,E(x), whereu conserves the periodic
ity of the Hamiltonianuk,E(x12pq)5uk,E(x), so we can
write

Ck,E5eikx(
m

cmeimx/q. ~3.1!

k is called the quasimomentum, which can be restricted
the first Brillouin zone, in our case the interva
(21/2q,1/2q#. We can find the energy eigenfunctions of th
Hamiltonian as the solutions of the equation

V0

2
~cm1qe2 if1cm2qeif1cm1p1cm2p!

1F ~k1m/q!2

2
2E~k!Gcm50.

The energy spectrum is composed of energy bands; a typ
plot of these bands for different rational values ofa is shown
in Fig. 3; in it, each point corresponds to a single~narrow!
band.

The spectrum for a given value ofa shows three distinct
regions. States buried deep in the potential wells belong
energy bands with very narrow widths. High-energy sta
~located above the top of the potential barriers! are slightly
perturbed free particle states~plane waves!. On the other
hand, the spectrum in the intermediate region shows a

al
-

er-
f

FIG. 2. Potential energy as a function of position, forf51 and
a5g, the inverse of the golden mean.
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TRANSITION BETWEEN EXTENDED AND LOCALIZED . . . PHYSICAL REVIEW A64 033416
structure with large energy gaps, reminiscent of the Ho
tadter butterfly@16#. This occurs at energies of the order
V0.

When a is an irrational number Bloch’s theorem is n
longer applicable and the calculation of the spectrum is n
trivial. This incommensurate case can be studied by takin
sequence of rational numbersan5pn /qn such that it con-
verges toa asn→`. The potential withan is called a peri-
odic approximant to the incommensurate potential. One
portant irrational value fora is the inverse of the golden
mean,g5(A521)/2, which characterizes the quasiperiod
ity in some quasicrystals@17# and possesses interestin
number-theoretical properties. The sequence of approxim
used is obtained by truncating the expansion ofg in terms of
a continued fraction, resulting in the recursionpn
5qn21 ,qn5pn211qn21 with initial values p05q051. In
the rest of the paper we will study this particular case,
though the results are similar for other irrational values ofa.

A. Labeling the gaps

As we increase the ordern of the approximation,qn in-
creases and thus the size of the Brillouin zone shrinks, c
verging to zero. With gaps opening up at both the center
the edges of the Brillouin zone, asn→` gaps open up al-
most everywhere in the spectrum; the spectrum becom
Cantor set, which is a fractal@18#. It is of interest to find
properties of the system that remain continuous in this lim
As shown by Fig. 3, one such property is the location of
main gaps in the spectrum.

The total number of gaps in the spectrum is infinite, b
countable. They can be indexed using the gap-labelling th
rem @19#. Given the density of states~per unit length! r(E),
let us define the integrated density of statesI (E)
5*2`

E r(E)dE. When evaluated at an energy lying on
energy gapEgap there exists a unique pair of integersn1 and
n2 such that

I ~Egap!5n1~1/2p!1n2~1/2pa!. ~3.2!

This pair (n1 ,n2) identifies the gap.
It is instructive to plot the integrated bandwidth as a fun

tion of the energy. The plots for different rational approx

FIG. 3. Energy bands forV050.5 andf50 as a function of
rational a5p/q; values withp,q,30 are shown. Each point in
this plot corresponds to a full~narrow! energy band.
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mants quickly converge to a curve in the region support
extended states; the main gaps are displayed as horiz
segments. In Fig. 4 we show the result forV050.068, for
which the whole spectrum supports extended states.
largest gaps correspond to combinations of small integern1
andn2. If we think of the potential as a perturbation of th
free-particle Hamiltonian, thenun1u1un2u is the order of the
correction that gives rise to the gap. Thus, integers w
larger magnitudes give smaller gaps.

B. Quasimomentum space distributions

For a periodic potential we can calculate the energy a
function of the quasimomentum for the different ener
bands. In the quasiperiodic case the quasimomentum is n
well defined quantity, so there is no dispersion relation.
order to study a closely related concept, we plot the eig
functions of the Hamiltonian as both a function of mome
tum p and energyE.

Let us consider first the periodic potential,

V~x!5V0@cos~x11!1cos~x/2!#. ~3.3!

In the top panel of Fig. 5 we have plotted the energyE as a
function of the momentump for V050.1. The gray scale and
size of the point represents the probability of measurin
value of p for a given eigenvector of the Hamiltonian wit
energyE. In the absence of a potential, the plot would just
the free-particle dispersion relation,

E5
1

2
p2, ~3.4!

shown as the thick parabola in the lower panel. In the pr
ence of the weak periodic potential~3.3!, Bragg scattering
with Dp56 1

2 ,61 becomes possible. Considering multipl
scattering events the momentum can change by integer
tiples of 1

2 . We include in the lower panel the free-partic
parabola displaced in momentum by such amounts.

We can clearly see in the top panel of Fig 5 the remna
of the free particle parabola, as well as some of the seco
ary ones. The gaps in the spectrum open up where the en
eigenstates are degenerate, which occurs where two o
parabolas meet. Interpreting the secondary parabolas
Bragg scattered states, the gray scale of the point signals

FIG. 4. Integrated bandwidth forV050.068, showing the labels
for the main gaps in the spectrum.
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DIENER, GEORGAKIS, ZHONG, RAIZEN, AND NIU PHYSICAL REVIEW A64 033416
probability of a particular Bragg scattering, with the gr
scale fading as a higher number of scatterings are nee
Notice that if the points were not gray-scale coded in
figure, we would simply obtain the band structure of t
system in the repeated-zone scheme@1#.

In the case of the quasiperiodic potential

V~x!50.1@cos~x11!1cos~gx!#, ~3.5!

the same plotting method renders Fig. 6. The main differe
with the periodic case is in the location of the second
parabolas; these are not periodically centered in momen
On the contrary, since we have two incommensurate b
wave vectors, 1 andg, Bragg scattering occurs withDp5
61,6g. In general, accounting for multiple scattering, a

FIG. 5. In the top panel we have plotted the energy ver
momentum for the energy eigenstates of a particle moving in
periodic potential~3.3!. The points are gray-scale coded, with t
gray scale describing the probability of measuring a value of
momentum for an eigenstate of the given energy. In the bot
panel, we have plotted the free-particle parabola~thicker line! to-
gether with the same parabola shifted by integer multiples of 1

FIG. 6. Same as Fig. 5, but using the potential~3.5!.
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linear combinations with integer coefficients of 1 andg are
possible. Since these numbers form a dense set on the
line, Dp can take~almost! any value. Thus, without the gray
scale-coding scheme there would be a parabola centere
almost every point and the figure would appear featurele
We can see that the most important parabolas correspon
combinations with small integer values, associated with lo
order Bragg scattering. The main gaps open up at the po
where these parabolas meet the primary one. The inte
used to label the gaps are the same as the ones used to
the center of symmetry of the parabola which gives rise
them.

At low energies the potential completely reshapes the m
mentum distribution of the energy eigenvectors; as a ma
of fact the states deep in the wells become localized in
sition in the quasiperiodic case. This result is true even
large amplitudes of the potential, with the parabolas be
more prominent at energies above the potential barriers.

We can now picture how the energy eigenvectors beh
as the potentialV0 is increased adiabatically from zero to
fixed value. Each of the gaps in the spectrum is borne ou
the point where the free-particle parabola meets one of
secondary ones. Initially the states are nearly plane wa
but as the potential is increased they become more and m
distorted, due to a large number of Bragg scattering eve
Every gap can still be uniquely associated with the parab
which in the absence of the potential brings forth a gap
that value of the momentum. Notice that a gap with lab
(n1 ,n2) opens up at a momentum

pn1 ,n2
5

n11n2g

2
. ~3.6!

IV. LOCALIZATION PROPERTIES

The localization properties of the wave functions of t
Hamiltonian can be numerically studied through the scal
properties of the bandwidths. As we increase the value on,
the width of each of the bands decreases. The way in wh
this decrease scales with the size of the Brillouin zone (qn)
indicates whether the wave functions show extended or
calized behavior@20#.

For a band with extended states, the bandwidthBn scales
as the inverse of the size of the Brillouin zoneqn

21 , or as
qn

22 if the band derives from the bottom or the top of
previous approximant~where van Hove singularities arise!.
On the other hand, localized states belong to bands with
bandwidth decreasing faster than a power ofqn .

Figure 7 shows the scaled bandwidthBnqn as a function
of the approximation ordern (n is proportional to lnqn) for
different situations. In the top panel, we plot the results
the bands between the (1,1) and the (2,0) gaps with an
plitudeV050.5. These display the behavior typical of ban
with extended states;Bnqn is roughly constant, although
some of the bands eventually show a linear decrease in
logarithmic-linear plot, related to the aforementioned v
Hove singularities. The middle panel shows the result fo
set of bands with localized states@between the (0,2) and th
(1,1) gaps for the same amplitude#. These scaled bandwidth
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TRANSITION BETWEEN EXTENDED AND LOCALIZED . . . PHYSICAL REVIEW A64 033416
decrease rapidly to the numerical error of the calculatio
thus there is no scaling withqn . In the bottom panel we
show the scaled bandwidths for the same set of bands us
the top panel but with a larger amplitude,V050.55. Some of
the bands have undergone a transition to localized beha
while others still show extended behavior.

From our numerical calculations we see that if a set
labeled bands is localized for a certain value ofV0, then it
remains localized for larger values of it. We can then defi
the value V0

tr for which a set of bands undergoes t
extended-localized transition. We have studied the dep
dence of this value for different bands; the results are plo
in Fig. 8. In order to parametrize the bands we have cho
the momentumpn1n2

defined by Eq.~3.6!. We emphasize

FIG. 7. Scaled bandwidth for a set of extended bands@between
the (1,1) and the (2,0) gaps forV050.5, top panel#, a set of local-
ized bands@between the (0,2) and the (1,1) gaps forV050.5,
middle panel#, and a set undergoing the transition from localized
extended~same bands as in the top panel, withV050.55).

FIG. 8. AmplitudeV0 of the potential at which the extended
localized transition takes place, as a function of the momen
pn1n2

corresponding to the (n1 ,n2) gap. The horizontal line corre
sponds to a value ofV0 for which there are three mobility edges
03341
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that the energy of the states is an increasing function
pn1n2

, but this latter parameter is better adapted for devis
an experiment.

We want to stress two points from our results. The fi
one is a calculation of the lowest value of the amplitude
which there are any localized states in the system,V0

min

50.07. This can be calculated as the lowest value for wh
a perturbative expansion of the solution in powers ofV0
diverges. We can also see that there can be more than
mobility edge in the system, sinceV0

tr is not an increasing
function of pn1n2

. For example, whenV050.305 ~marked

with a horizontal line in Fig. 8! the states below the (1,0) ga
are localized, those between the (1,0) and (0,2) gaps
extended, the ones between the (0,2) and (2,21) are local-
ized, while higher energy states are ones again extende

V. WAVE-PACKET DISPERSION

The localization properties can be experimentally stud
through the dispersion of wave packets. Numerical studie
wave packet dispersion have been performed in discrete
siperiodic systems, such as the Fibonacci lattice@21# and the
Harper model@22#. In our case, we consider the diffusion o
an initially localized wave packet in a quasiperiodic optic
lattice. Because of the presence of both types of states in
spectrum for high enough values ofV0, state preparation
becomes a crucial step in the design of the experiment.

A. State preparation

The energy resolution of the initial wave packet must
restricted to an interval in which the diffusion properties a
approximately uniform; this can be obtained with an ad
batic turn-on of the potential. In general, we want to confi
the energy resolution to the interval between two ga
(n1 ,n2) and (m1 ,m2) ~with the former located at a highe
energy than the latter!. In the absence of the potential, the
states correspond to momenta betweenpn1n2

and pm1m2
, as

argued in Sec. III B. If we prepare a Gaussian wave pac

FIG. 9. Overlap probability with the states in the desired ene
bands as a function of the turn-on timeT0. The amplitude of the
potential in all three cases isV050.5 and the initial dispersion in
position issx530. The circles correspond to an initial momentu
p050.7 and the desired bands are between the (0,2) and the (
gaps. The squares correspond top050.9 and the bands are betwee
the (1,1) and the (2,0) gaps. Finally, the diamonds correspon
p051.05 and the bands are between the (2,0) and the (1,2) g

m

6-5
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DIENER, GEORGAKIS, ZHONG, RAIZEN, AND NIU PHYSICAL REVIEW A64 033416
with minimum uncertainty, having an initial momentump0
5(pn1n2

1pm1m2
)/2 and a momentum dispersionsp

,(pn1n2
2pm1m2

)/4 and we turn the potential on slowl
enough, then the energy of the wave-packet lies in the
sired interval. Notice that the initial dispersion in real spa
is sx51/(2sp), since the initial wave-packet is a Gaussi
with minimum uncertainty. The minimum turn-on timeT0
required to obtain adiabaticity can be estimated asTmin
'h/DEg52p/DEg , whereDEg is the smallest energy ga
separating our set of bands to all other bands in the spect

To confirm these results numerically, we assume that
initial wave packet is of the form

C~x,t50!5
1

A2psx

exp$2~x2x0!2/2sx
21 ip0x%,

~5.1!

where we have taken the initial position of the center of
packet atx0. We numerically integrate Schro¨dinger’s equa-
tion with the amplitude of the potential increasing at a co
stant rate to its final valueV0 for a timeT0. Using the eigen-
functions of the Hamiltonian, we expand

C~x,T0!5(
E

aE~T0!cE~x!. ~5.2!

The probability that the final state is in the desired setE of
energy states is

P~E,T0!5 (
EPE

uaE~T0!u2. ~5.3!

The overlap probability with the states in the desired
ergy bands as a function of the turn-on timeT0 is shown in
Fig. 9 for three different situations. In all three cases,
minimum energy gapDEg'0.1, which impliesTmin'60.

FIG. 10. Dispersion of the wave packets as a function of ti
for p050. The dark curve corresponds to a potential amplitude
V050.069, for which there are no localized states. The sec
curve corresponds toV050.072, for which the states aroundp0

50 are already localized, leading to a localized wave packet.
initial linear increase in both cases is due to the adiabatic turn o
the potential, which occurs during a turn-on time of 2000.
03341
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This estimate seems to be more accurate for the exten
bands than for the localized ones. However, it is seen that
adiabatic turn-on of the potential has the desired effect
rendering a wave-packet localized in energy space.

B. Spreading of the wave packet

For a wave packet prepared in the fashion mentioned,
can numerically integrate the equations of motion to stu
the quantum diffusion of the wave packet in the lattice. T
dispersion is calculated ass(t)5A^x2&2^x&2. The evolution
of the wave packets exhibits the transition from localized
extended behavior. In Fig. 10 we show the results for a w
packet initially at rest (p050) for different values ofV0. For
V050.069 the wave packet spreads ballistically, with
width increasing linearly with time. On the other hand,
V050.072 the wave packet does not spread, thus the en
states making up the wave function are localized. This
confirmed in Fig. 8, which shows that the states aroundp0

50 undergo the transition atV0
tr50.07.

Another interesting case we show is one in which th
are several mobility edges. ForV050.305 there are localized
states at an energy higher than some extended states
results are shown in Fig. 11. For an initial momentump0
50.53@corresponding to energy states between the (1,0)
(0,2) gaps# the wave packet spreads ballistically, while f
p050.65 @between the (0.2) and (2,21) gaps# the wave
packet remains localized.

Our work shows that the transition between extended
localized states in an incommensurate optical lattice can
hibit more than one mobility edges. These localization pro
erties can be studied experimentally using an atom opt
system with parameters that are currently available. A st
in a clean, defect-free system will improve the understand
of the intrinsic transport properties of quasicrystals, wh
are strongly affected by impurities in condensed ma
samples.
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FIG. 11. Dispersion of the wave packets as a function of ti
for V050.305. The full line corresponds to an initial momentu
p050.53, showing extended behavior. The dotted line correspo
to p050.65, for which the underlying states are localized.
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