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Optical microlinear accelerator for molecules and atoms
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The traveling periodic dipole potential of an accelerated optical lattice, created by high-intensity short-pulse
lasers, can accelerate polarizable atoms and molecules that are initially at room temperature to hyperthermal
velocities(10—100 km/g We study the acceleration of trapped and untrapped ensembles of particles and show
that a significant fractiori30%) of uniformly distributed particles can be accelerated to high velocities over
micron-size distances, within nanosecond and subnanosecond time scales.
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[. INTRODUCTION [12,13. A one-dimensional optical lattice is created by two
counterpropagating laser beams, and acceleration of the lat-
Synchronous acceleration of charged particles to energigice is achieved by changing the frequency of the counter
in excess of 100 GeV can be achieved using electrostatic arefopagating fieldschirping with respect to time.
Lorentz forces, and accelerated neutral atomic beams can be In contrast to acceleration of ultracold atoms in weak lat-
created from ion beams by charge captiitk Gas dynamic tices [12,13, we study the acceleration of polarizable gas
methods that accelerate molecules to greater than 10 kmparticles, such as molecules and atoms at much higher tem-
(14.5 eV for N) [2] have been demonstrated, but to our peratureg5-300 K), to velocities in the 10—100 km/s range
knowledge no method has been demonstrated that can acc8y application of large lattice potentials created by pulsed
erate neutral molecules above this energy range without &sers. Our work follows on from the original work of Ka-
large fraction of the gas being thermally ionized and dissoZantsev[7,8], and investigates the motion of trapped and
ciated[3]. untrapped particles in the velocity phase space of the accel-
Recently, synchronous deceleration of dipolar molecule§rated dipole potential. We study the dynamics of the accel-
using time-dependent stark forces has been demonstrat&gating ensemble of polarizable particles under the influence
[4—6]. In this technique, polar molecules are trapped and?f large dipole or stark forces, and predict the velocity dis-
decelerated in a stark potential created by an electrostatiibution function of both trapped and untrapped particles.
traveling wave produced by up to 68 electrode stages. This
scheme was used to decelerate jet-cooled molecules moving Il. DIPOLE FORCE IN A LATTICE

at supersonic speeds to near zero velocity. For the case of . . )
NDs, a density of 16 cm™3 was decelerated to zero velocity The force that can be applied to a polarizable particle

in the laboratory frame and trapped electrostatically. A<l€Pends on its mass, polarizability «, and the strength of
pointed out by the authors, this concept could also be used € applied external electric fiel(x,t). For a polarizable
accelerate dipolar molecules to high energy and velocity, irpartlcle, far_frc_>m resonance, the dipole forge or ellectrostrlc-
analogy to the synchronous acceleration of charged particidve force within a standing or slowly traveling optical wave

accelerators. in one dimension is given bjl4]:

Linear acceleration within the time-varying electric field
of an accelerated optical traveling wave has been proposed F(x,t)= laVE(X £)2 (1)
as a means to accelerate atoms to high velddtg] and ' 2 T

more recently molecular acceleration has been proposed

[9,10. Rotational acceleration of trapped molecules using The polarizability of a molecule that is not aligned within
chirped fields has already been demonstrated, and centrifugtile field is given bye=(a+2«,)/3, whereq anda, are
dissociation has been achievgd]. Linear acceleration us- the parallel and perpendicular components of the static po-
ing optical fields is attractive because extremely large dipoldarizability with respect to the molecular axi5]. This ex-
forces can be produced by the high electric field gradientpression is a lower limit to the force because, in an intense
that can be created within an optical traveling wave. Thefield, molecular alignment of the molecule with the field has
electrodeless electric field gradient produced by a focusetleen shown to occur when the pulse duration is greater than
laser beam can be orders of magnitude greater than electrmverse of the rotational rate. This process increases the ef-
static gradients, allowing acceleration of not only polar, butfective polarizability, and therefore the available force
also polarizable molecules and atoms. This concept has d116,17. We consider an accelerating optical lattice that is
ready been demonstrated with acceleration of ultracold attormed by two almost counterpropagating fields denoted by
oms up to the velocities in the m/s range using very wealsubscripts 1 and 2, as shown in Fig. 1. The slowly varying
optical periodic potentials, which are called optical latticessquare of the electric field that will lead to acceleration is
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FIG. 1. The creation of an optical lattice by two counterpropa-
gating optical fields for acceleration of molecules and atoms.

1 (rel. units)

given by E(x,t)?=E(t)E,(t)cosgx—pBt), where q=|k;
+ k| is the wave number; anfl=dw(t)/dt is the frequency

chirp due to the time-dependent frequency difference be- ] y=2p/aq=0.59

tween each of the fields whetg(t) = w,(t) — w,(t). We re- -8 . - T - . - T

quire thatw(t)<w4(t),w,(t), and thereforeq is approxi- 1 0 ! 2

mately constant over the chirped frequency range. In Fig. 1, 0 (units of r)

the instantaneous phase velocity is indicated for a positive

chirp. The phase velocity(t) of the lattice is given by FIG. 2. The velocity phase-space diagram for trapped particles
for the case/=0.59. The trajectories of three particles at the same

28t initial velocity, but with different phases with respect to the equil-
{(t)y=—. (2 brium point at[ 8, 7]=[5.70,0.0Q are shown. The horizontal axis
q corresponds to the phase in the accelerated frénaed the vertical

o . . ._axis to 5, which is proportional to velocity given bg*%qz.
This will also be the average velocity of a particle that is g Prop g Blan

e e e, e Conet SCCe1f paricles i the veloiy phase spdn, ), derved fom
Lo P y .. Eg. (3). These system of equations is given by

mal equilibrium near room temperature, and do not consider

the quantized motion of the particles. The equation of motion

for a particle that is perturbed by the periodic potential of the d_” =_ ﬂsin 6—2, (4)
optical lattice is derived from Eq(1), and is given by dT B

d?x/dt?= — [ aqE; (t) E,(t)/m]sin(gx— Bt?), wheremis the

mass of the accelerated particle. In a reference frame that de

accelerates with the optical lattice, this equation in nondi- at 7 ®

mensional units, is now given by

We find the critical points of this system, as usual, by
dz@_ aq . setting Eqgs.(4) and (5) equal to zero. The critical points
ﬁ__Fsma_z’ 3 correspond to sif=—2g@/aq, and »=0. A linear stability

analysis of Egs(4) and(5) around the critical points indicate
where §=X—T2 is the phase of the particle with respect to that the family of point§ 6, ]=[2n—sin"*y,0] are stable
the accelerated frame, afit= yBt and X=gqx are the non- €quilibrium points, where is an Iinteger ang/=2p/aq. The
dimensional temporal and spatial variables, respectively. ThBOINtS [0, 7]=[(2n—1)7+sin""4,0] are unstable equilib-
maximum force per unit mass supplied by the optical latticgium or saddle points. , _
is given by a= L[ «qE,(t)E,(t)/m], and for most of this The yeloqty phase-space diagram for EGB..and(S) is
paper we assume that the electric field amplitudes are equ@’oWn in Fig. 2 for the cas¢=0.59. The horizontal axis
and constant in timeE,(t),E,(t)=E;,E,. We have as- corrgsponds to the pha;e in the gccelerated fr.ameg]d the
sumed that the optical fields are sufficiently far detuned fron¥€rtical axis toz, which is proportional to velocity given by

resonance so that the force is harmdiig]. Equation(3) is ~ V8/d7%. The contours in the diagram correspond to the time-
also the equation of motion for a pendulum under constanfldependent trajectory of particles in thg ¢ phase-space
torque. diagram. A stationary particle that is not perturbed by the

lattice potential would move in a parabolic trajectory cen-
tered on thed axis. Shown on this diagram as open circles
are the trajectories of three particles perturbed by the lattice.
The periodicity of an optical lattice is on the order of The trajectories are denoted By B, andC, and correspond
hundreds of nanometers, so it is necessary to consider the the motion of the particle for a time periddt = 2.37A/8.
effect of the lattice potential on particles at all phases and alEach particle is initially at a different phase, but at the same
initial velocities because, unlike the macroscopic acceleravelocity with »=1.0. TrajectoryA corresponds to a particle
tion in electrostatic traveling potentials, particles cannot behat is initially 0.08 rad behind the equilibrium poih#, 7]
injected into an optical lattice at the correct phase. To under=[5.70,0.0Q. Its trajectory indicates that it is trapped by the
stand the motion of both trapped and untrapped particlekattice and will orbit around the tear-drop-shaped equilibrium
within the lattice, it is instructive to investigate the trajectory region infinitely, with a final velocity limited only by the

Ill. VELOCITY PHASE SPACE
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duration that the optical field can be maintained at the same
intensity. The phase diagram demonstrates that, under colli-
sionless conditions, a particle that is not initially trapped will
never be trapped even though its motion can be strongly
perturbed by the potential. Partic is such an untrapped
particle; it is initially 2.84 rad behind the same equilibrium
point. Its motion is strongly perturbed by the potential, as
evidenced by its trajectory in the phase plane around the
tear-drop-shaped region of closed orbits. This particle ini-
tially moves towards the saddle point @&t 3.74, but is de-
flected around the trapped region, briefly increasing its ve-
locity with respect to the lattice velocity. For the short time
period shown, the velocity of particlB is greater than the
lattice velocity. However, because particle B is not trapped,
its velocity would eventually decrease below that of the ac-
celerated lattice, and thereafter its motion would not be
strongly perturbed by the I"fm'ce' For short time per'OdS' Fhe FIG. 3. The optical lattice potential, in the accelerated frame for
acceleration of a distribution of untrapped particles Wlth¢:0.39,0'59,0_79_

similar initial velocity and phase with respect to the lattice

may consiitute a significant proportion of an accelerated paarigies, The maximum well depth is given bYU e,
ICle distripution. IS type ot acceleration Is only signitican —2maq when =0 that corresponds to the case with no

on short time scales where the rate of acceleration and th(?hirp or acceleration. In the accelerated frame, any particle

po‘e.”“"z‘j' ar? "'?‘trgeb e;cnougl? to aclctilera_ie th%fart'dedtoththﬁlat is initially trapped in the potential well will remain in the
required veloclty betore T completes 1S orbit aroun Cwell and oscillate about the stable critical point, 7]

tear-drop-shaped region of stability shown in Fig. 2. Particle_ R . gy i
C is initially 2.81 rad ahead of the equilibrium point &t [2nm—sin" 4,0], with a characteristic frequency that de

~0.58. It is not strongly perturbed by the lattice and follows pends on its initial phase and velocity. Acceleration without

| ¢ bolic traiect 4 thexis that is Simi oscillation occurs only for particles initially at this critical
an almost parabolic trajectory around h@xis that 1S simi- point. The maximum velocity spread of the trapped and ac-
lar to an unperturbed trajectory.

celerated particles is given by

U(6) (rel. units)

0 (units of «)

IV. ACCELERATION OF TRAPPED PARTICLES 2AU
Av=2\/—,
m

For a lattice with a stable equilibrium point, sis—¢
and therefore,

®

which determines the maximum velocity deviation that a

28 trapped particle can attain in its oscillation around the stable
a_q <1 (6) equilibrium point. Figure 4 is a graph of particle velocity

: . . 5000

is the condition for a particle to be trapped and acceleratec —

by the lattice. This condition implies that the chjgomust be 1 EAViE-AV

less tharag/2, and confirms the intuitive result that the ac- 4999 W(0)=0; 8(0)=0 .

leration of the latticea, =28/ tbe less tham, the [ ¥(0)=292 ms; 6(0)=0 £
celeration of the latticea, =2/3/q, must be less thaa, the |- v(0)=292.25 mys; 6(0)=0
maximum force per unit mass supplied by the gradient of thew e {0)=2000 m/s; 6(0)=0

lattice potential. This requirement can be seen clearly from aE 3000
diagram of the potential) () = — fm/q®d?6/dt?d@, in the 3 | Py
accelerated frame, as shown in Fig. 3. The location of the‘;{‘ TN TN
saddle point and equilibrium points, as determined from Eqs.§ 2000 . /7

(4) and(5) for »=0.39, 0.59, and 0.79 are shown. The depth x S
of the potential well in each case is determined by the dif- > | P/ VNN A A A e S
ference in potential height between a saddle point and its s

closest equilibrium point. The potential well depthlJ is ’
given by 0-

ma 0 I 1x1lo‘9 ' 2x1IO'9 ' 3x1IO'9 I 4x10°
AU=F[2cos{sin‘lw)—w(w—zsin‘lw)]. (7) t(s)

FIG. 4. A graph of velocity versus time faf=0.59. Each par-
It can be seen from E(7) that no potential well exists for ticle is initially at the same phase with respect to the lattice, but they
casey=1, because either the chirp is too high, or the forcehave different initial velocities. The trapped particle velocity spread
per unit mass supplied by the lattice is not sufficient to traps indicated by the two parallel lines.
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versus time in the laboratory frame that shows the evolution Figure 5 shows the evolution in time of an ensemble of
of the velocity of a number of particles perturbed by thethermally distributed ChHmolecules, that are initially at tem-
lattice for the case ofy=0.59 over a 4-ns time period. The perature ofT;=300 K, and are perturbed by an accelerating
particles are initially at different velocities, but at the sameoptical lattice. The top hat temporal intensity profile is cho-
phase with respect to the initial lattice velocity at sen so that the results can be compared with the velocity
=0 km/s. The particles with initial velocities of 0 and 292 phase diagram of Fig. 2. The evolution of the initial
m/s are trapped and can be accelerated indefinitely, with eadflaxwell-Boltzmann distribution function is calculated by in-
particle oscillating at a different frequency around the latticetegration of Eq.(9), as discussed above. The distribution
velocity. The velocity spreadv of trapped and accelerated function is averaged over the spatial period of the lattice at
particles is indicated by the two parallel lines that bound theeach time. The top hat profile has the ra#ie- 0.59, which
trajectories of the trapped particles. For a lattice with corresponds to a total laser intensityoth beamp of 6.5
=0.59,a=2.14x 102 m/¥, q=1.57<10’ m ! wherethe Xx10' W/m? (6.5x10'> W/cn?), and a chirp of 1
electric field for each beam iE;=E,=5x10° V/m, the  x10'° rad/$. We use the static polarizability of GHwhich
potential well depth oAU~133 K corresponds to a veloc- is a=2.9x10 %0 Cn?/V [22]. Figure 5 shows the evolution

ity spread of 735 m/s. The particle shown with an initial of the perturbed distribution, for each temporal profile, as the
velocity of 292.25 m/s is accelerated by the potential forlattice is accelerated from an initial zero velocity. Approxi-
approximately 2 ns before being lost out of the lattice. Thismately 30% of the particles are trapped and accelerated at the
particle has a similar trajectory to partidiein Fig. 2, which  phase velocity, reaching 10.2 km/s in the 8 ns duration of the
only has one incomplete orbit around the equilibrium pointcalculation. The long tail between the largely unperturbed
before being lost from the lattice even though its initial ve-distribution atv =0 m/s and the accelerated distribution is
locity is less tharfAv/2]. Its final velocity is approximately caused by molecules that are undergoing incomplete unstable
2.29 km/s that corresponds to an increase of almost 2 km/arbits around the stable region in the phase space. After 2 ns,
within the 2-ns acceleration period. No particles with an ini-the number of particles in the accelerated distribution is ap-
tial velocity higher tharfAv/2| are trapped and accelerated. proximately constant, indicating that the integration scheme
Note that some particles are decelerated. The particle that is working correctly and that no particles are being numeri-
initially at 2 km/s is decelerated to 1.18 km/s, with most of cally lost from the accelerated distribution. The velocity
this deceleration occurring over a 1-ns time period when thepread of the accelerated distribution after 2 ns is approxi-

lattice velocity is close to the particle’s initial velocity. mately 840 m/s, which is in good agreement with 735 m/s
calculated from Eqg7) and(8). The larger velocity width of
V. ACCELERATION OF AN ENSEMBLE OF PARTICLES the calculated distribution can most probably be attributed to

discretization error, and the tail of untrapped particles. This
The evolution of particles that are distributed over a rangeaccelerated distribution is almost Gaussian with a full-width
of velocities, and over all phases, can be conveniently calcuhalf-maximum velocity spread that corresponds to a tem-
lated from the collisionless Boltzmann equation given byperature in the accelerated frame of 41 K. It is emphasized
(19,20 that the initial temperature of the ensemble does not deter-
mine the energy spread of the accelerated distribution, only
ﬁJr ﬂ F(x,t) ﬁ_(a_f) _ the fraction that will be accelerated.
v—+ = (9
at dx m Jv ot c

VI. ACCELERATION OF UNTRAPPED PARTICLES
wheref=f(x,v,t) is the distribution function due to the op-

tical perturbation, {f/dt). is the collision integral, ané is
the external force defined earlier. For short acceleration pe- Individual particles within an ensemble are distributed
riods, acceleration without collisions between particles beover all phases with respect to the initial lattice, but, as
comes possible at pressures in the 100 torr range, and tl#own above, not all particles can be trapped by the poten-
collision integral can be set to zero. The maximum pressuréal, even if their kinetic energy is less than the potential well
for collisionless acceleration can be estimated frgm depth. Figure 6 is a time series that shows the temporal evo-
<2l 0To/300a72, wherep is the pressure in tortg is the  lution of an ensemble of untrapped ¢hholecules, like par-
free-collision length at 1 torr and 300 K, ands the time of  ticle B in Fig. 2, that can be accelerated to velocities in km/s
acceleration. To calculate the velocity distribution we as-—ange. The Cl ensemble, initially at a temperature of 300
sume, for simplicity, a periodic potential with infinite length. K, is perturbed by an optical lattice witJi=0.59. As in Fig.
This condition elucidates the essential physics and allows thg, the velocity distribution at each time is calculated by nu-
use of the cyclic boundary conditionf(—L/2p,t) merical integration of Eq(9). The constaniy=0.59, is the
=f(L/2p,t), whereL=2\, and wherex=4/q for coun- same as for Fig. 5, but an initial lattice velocity 6f0)=
terpropagating beams. Equati@) is also subject to the —5 km/s was chosen to be much greater thaw/2|
boundary conditiond (x,v— *,t)=0. Equation(9) was =368 m/s, the velocity range for particles to be trapped.
numerically integrated using a McCormack second-ordefFigure 6 shows clearly that an accelerated distribution of
finite-difference schemg?21], with an initial condition untrapped molecules is produced at 4, 5, and 6 ns. At 4 ns,
f(x,v,t=0)="1y(v,To), and wherefy(v,Ty) is the equilib- the peak of the accelerated distribution is centered at a ve-
rium Maxwell-Boltzmann distribution at gas temperatlige  locity of approximately 600 m/s, which is much higher than

A. <1l
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FIG. 5. The instantaneous velocity distribution function of Qhlolecules within an accelerating optical lattice in 2-ns time increments
after the lattice is created. The distribution function was averaged over the spatial period of the lattice @58.

the lattice velocity at 95 m/s. However, at 5 ns, the peak ofvelocities, the distribution will be smeared in velocity be-
the accelerated distribution is at lower velocitl.1 km/9 cause some will be accelerated, while others will be deceler-
than the lattice velocity of 1.36 km/s. At 6 ns the acceleratedhted. If particles could be introduced into the lattice at a
distribution is less well defined, but the velocity is approxi- single phase, they could be accelerated or decelerated with-
mately equal to the lattice velocity at 2.64 km/s. Unlike theout velocity dispersion. We have calculated the velocity dis-
accelerated distribution of trapped particles in Fig. 5, thisyipution function for the case/>1. The ensemble was ini-
accelerated distr_ibu_ti_on is not well defined because particleﬁa"y in thermal equilibrium, and we have integrated the
are no longer significantly accelerated after they completgjisionless Boltzmann equation as described above. Figure
their single orbit around the stable region shown in Fig. 2. g is 4 time series that shows the evolution of a,GHistri-
bution function at a temperaturd & K for the casey=2
B.y=1 with the initial lattice velocity at—2.0 km/s. All other pa-
Thus far we have concentrated on acceleration of bothliameters are the same as in Figs. 5 and 6 except that the chirp
trapped and untrapped particles in an optical potential whers now g=3.38x 10'° rad/¢. The initially Gaussian distri-
a stable equilibrium exists. If the lattice acceleration or fre-bution function is observed to spread into two components,
quency chirp is too rapid, or the force of the lattice is notas some of the distribution is accelerated and some is decel-
sufficient to trap particlesj=2p/aq>1, and a stable equi- erated. AtAt=0.61 ns, the perturbed distribution is almost
librium no longer exists. Although particles can no longer besymmetric, and almost equal numbers of particles are decel-
trapped or accelerated in a well-defined distribution, they cayated and accelerated. At this time, the peak of the acceler-

still be accelerated and decelerated in the lattice because thgag distribution is approximately equal to the lattice veloc-
potential is periodically modulated. The velocity phase-spacg,,

diagram for the cas@=2 is shown in Fig. 7, as are the

trajectories of three particles for a duratiart=1.88A/8. VIl. EXPERIMENTAL CONSIDERATIONS
Each particle is initially at the same velocity, which is higher '
than that of the lattice, and each particleri& out of phase Using Egs(1) and(6), and relating the electric field to the

with respect to each other. The final velocities of the threentensity of the optical lattice b¥,E,=Zyl/n, we can esti-
trajectories are not equal, and thus we expect that for amate the maximum average velocity that can be achieved by
ensemble of particles that are distributed over a range dhe trapped ensemble. For a given intensity, the maximum
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FIG. 6. The instantaneous velocity distribution function of Ciolecules perturbed by the lattice, for the caseyef0.59. The
distribution at 0 ns, 3 ns, 4 ns, 5 ns, and 6 ns is shown. The distribution function was averaged over a spatial period of the lattice. No particles
are trapped because the initial lattice velocity was km/s. Although no particles are trapped, a significant number can be accelerated to
near the lattice velocity over a short time peride<@ ns).

chirp that can be applied to accelerate a trapped, polarizablge less than 3:210*° rad/$. The laser must sweep over a
molecule is given by frequency of 25 GHz within the 10 ns duration of the pulse,
) and acceleration occurs over a 106 distance. The produc-
aq Zol (10) tion of chirped pulses over this spectral range on a 10-ns
4nm ' time scale is not routine, and therefore it appears that appli-
cation of shorter, higher-intensity pulses with larger chirp
whereZ,=(uo/s0)"% | is the available laser intensity de- may be more attractive. For example, an intensity of 1.3
rived from equal electric field amplitudes from each counter-x 10" w/m? (1.3x 10" W/cn?) from a 100 mJ, 100 ps
propagating field, and is the refractive index. From E€?),  |aser pulse focused to 1@m defines a maximum chirp of
and assuming a linear chirp with a top hat temporal profileg 2x 102! rad/€, and an acceleration distance of approxi-
the maximum average velocity of a particular polarizablerm‘tmy 1 wm. This chirp may be produced by a picosecond
species is determined simply by the available flueR@nd  transform-limited pulse that is stretched in time by group

B<

is given by velocity dispersion within a Bragg fiber or by grating pairs.
p . .
However, at this intensity, CHand most other species, will
aqZo be ionized. Therefore, to accelerate neutral particles, the
Lmax< F. (12) _ . . )
2nm maximum intensity that can be applied to molecules and at-

oms is, in practice, limited by ionizatidr23]. We note here

For example, Cl has a mass of 16 amu, and a polariz- that for all the numerical simulations performed in this paper,
ability of 2.9x 10 4% Cn?/V. If the lattice is formed by two the intensity is below the ionization saturation intensity of
800 nm beams focused tobn spot size (10um diametey,  the organic molecules measured in H&3].
a maximum velocity of 20 km/433 eV) can be attained In Sec. V, we calculated the accelerated distribution using
for 100 mJ beams, and 200 kni&3 keV) for 1 J beams. A a top hat temporal profile so that the numerical calculations
100 mJ, 10-ns pulse corresponds to an intensity of 1.8ould be compared with the phase diagram for a constant
X 101 W/m? (1.3x 10" Wicn?) and thus the chirp must value of . For an experiment, it is instructive to investigate
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FIG. 7. The trajectories of three untrapped particles in the ve- FIG. 8. The instantaneous velocity distribution function of CH
locity phase space of an accelerating lattice, for the gas@. The  molecules in an optical lattice wit#i=2. The distribution at 0, 350,
trajectories are for a duration of 1,882 Each particle is initially ~ and 610 ps is shown, and each was averaged over the lattice period.

at the same velocity, which is higher than the lattice velocity. laser field will not change the essential physics of the accel-

eration process, but as shown above for the Gaussian tempo-
how a more realistic temporal profile can be used to accelral profile, they both must be considered to correctly model
erate an ensemble. For a Gaussian temporal prafiland  an experiment.
AU, the potential well depth, vary with time. Thus, for ear- We have used exactly counterpropagating fields to model
lier times in the pulse when the intensity is low, few particlesacceleration, but in practice, the two laser beams cannot ex-
can be trapped when the initial velocity of the lattice is equaf@ctly counterpropagate because the accelerated particles will
to zero. To accelerate particles using a Gaussian intensit§Pinge on one of the focusing optics. The angle between
profile, the initial velocity of the lattice must initially be the beams must be less than 180°, but it should be main-

negative so that, by the time the lattice has reached zer@ined as close as possible to 180° to maximize both the
velocity, the potential is high enough to trap a larger numbefattice trapping force _and the interaction region. We estimate
of particles that occupy this region of the velocity space. Wehat for a 5um Gaussian beam spot si@adius, a full angle
have performed simulations with a Gaussian temporal profil@f |€ss than 174° will allow the accelerated beam of particles
with the same chirp as in Fig. 5, but starting with both zero© Pass the edge of the focusing optics. The change in the
and negative initial velocities. No appreciable accelerated’C€ PEr unit mass caused by this reduction in angle is less
distribution was produced for the zero initial veolcity case.than 0.2%, and justifies our analysis using exactly counter-
Figure 9 shows the evolution of the ensemble of,GRpl- ~ Propagating beams. The Rayleigh range of the focused
ecules that are perturbed by a Gaussian temporal intensiffg@ms determines the upper limit to the acceleration dis-
profile with an initial lattice velocity of~5 km/s and chirp tange, as well as the Spatlal extent qf the aqcelerateq group of
of B=1X10Y rad/€. The full-width half-maximum inten- particles. For a lum spot size, this distance is approximately

sity of this Gaussian profile is 6:510° W/m?, which is the 200 #m, which is sufficient for the 100 ps, 100 mJ case
same as the top hat profile intensity in Fig. 5. As expected‘,j'scussed above. The maximum laser intensity that can be

the fraction of accelerated particles varies during the puls&S€d will be limited by the probability of ionization with
because botl and the potential well depthU vary during  ncreasing intensity. These values have been tabkllated for a
the acceleration period. In this case, at most 11% of th&umber of molecules for an ionization rate of’16* [9].
particles are trapped and accelerated compared to 30% for We ha_ve used thg static polarizability to describe the force
the top hat profile. The width of the accelerated distribution®"” polarizable pa_rtlcles because, for many molecules, the
decreases as particles are lost from the lattice because Sl Sources available are far from resonance. However, for
intensity rolls off in the latter part of the pulse. The numberMany atoms and some molecules, the laser sources can be
of particles in the long tail behind the accelerated distributiorfun€d closer to resonance, and the force per unit mass pro-

increases as these particles are lost from the lattice. Becau¥i/®d by the optical field can be increased by at least an
we must start at a negative velocity, the final velocity thato"der of magnitude over the static cdsd. In these cases,

can be reached by starting-a6 km/s is approximately half the number of particles that can be trapped and accelerated
that achieved by the top hat profile. These results indicateca b€ increased, or the number of particles can be held fixed
that in an experiment, higher performance will be achievecz;/h'.le increasing Fhe final V?IOC'W of the accelerated distri-
for fields that can be rapidly switched on and off. The spatiaPution by increasing the chirp.

variation of beam intensity must also be taken into account,
since this will determine the number and spatial extent of the
accelerated particles, as well as the variation in velocity Optical potentials in the 10-100 meV range can be readily
across the beam. The spatial and temporal variation of thproduced by high-intensity pulsed fields, and optical lattice

VIIl. CONCLUSIONS
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FIG. 9. The instantaneous velocity distribution function of Ghblecules within an accelerating optical lattice with a Gaussian temporal
profile, in 2-ns time increments. The velocity distribution function was averaged over the spatial period of the lattice at each time period.

trapping forces per unit mass greater tham?1M/< can be  ated distributions, which relax requirements on chirp, or the
achieved. Such large lattice forces are capable of trapping f@rce per unit mass, may be more easily produced, and may
large ensemble of particles so that high fluxes can be prdse of use when a beam with a well-defined velocégergy
duced over nanosecond and subnanosecond time scales. Thisnot required. Using CHmolecules as an example, we
allows acceleration of a relatively dense ensemble of parhave predicted the temporal evolution of an ensemble of par-
ticles in the near absence of collisions. We have describeticles that are initially thermally distributed for both<1

the motion and acceleration of ensembles of polarizable paandy=1 cases. We have discussed how the acceleration can
ticles, such as atoms and molecules, within these rapidlpe achieved in an experiment, and showed that for a particu-
accelerating optical lattices. In particular, we have deteriar species the maximum velocity is determined by the avail-
mined the conditions for collisionless acceleration of trappedable laser fluence and pulse shape. Microlinear acceleration
and untrapped particles for the casesyof1l, and¢=1, up to velocities in the 100-km/s range, over distances of less
which correspond to acceleration with and without a potenthan 1 mm, may be used to produce neutral atomic and mo-
tial well, respectively. Fory<1, we have derived expres- lecular beams with both higher velocities and densities than
sions for the velocity of the trapped and accelerated distribuean be produced by pulsed molecular beams or other gas
tion, as well as the velocity spread in terms of laser intensitydynamic means. Our calculations have used the static polar-
and wavelength, and particle polarizability and mass. For thézablility to determine the dipole force and therefore the pre-
case ofyy=1 we have predicted that both acceleration anddicted final velocities in this paper can be regarded as lower
deceleration can be produced in a potential for short timdimits, since alignment of molecules within the field will re-
periods even though no potential well exists. Such accelersult in larger optical forces. The final energy, and the spread
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