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Optical microlinear accelerator for molecules and atoms
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The traveling periodic dipole potential of an accelerated optical lattice, created by high-intensity short-pulse
lasers, can accelerate polarizable atoms and molecules that are initially at room temperature to hyperthermal
velocities~10–100 km/s!. We study the acceleration of trapped and untrapped ensembles of particles and show
that a significant fraction~30%! of uniformly distributed particles can be accelerated to high velocities over
micron-size distances, within nanosecond and subnanosecond time scales.
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I. INTRODUCTION

Synchronous acceleration of charged particles to ener
in excess of 100 GeV can be achieved using electrostatic
Lorentz forces, and accelerated neutral atomic beams ca
created from ion beams by charge capture@1#. Gas dynamic
methods that accelerate molecules to greater than 10
~14.5 eV for N2) @2# have been demonstrated, but to o
knowledge no method has been demonstrated that can a
erate neutral molecules above this energy range witho
large fraction of the gas being thermally ionized and dis
ciated@3#.

Recently, synchronous deceleration of dipolar molecu
using time-dependent stark forces has been demonst
@4–6#. In this technique, polar molecules are trapped a
decelerated in a stark potential created by an electros
traveling wave produced by up to 68 electrode stages. T
scheme was used to decelerate jet-cooled molecules mo
at supersonic speeds to near zero velocity. For the cas
ND3, a density of 106 cm23 was decelerated to zero veloci
in the laboratory frame and trapped electrostatically.
pointed out by the authors, this concept could also be use
accelerate dipolar molecules to high energy and velocity
analogy to the synchronous acceleration of charged par
accelerators.

Linear acceleration within the time-varying electric fie
of an accelerated optical traveling wave has been propo
as a means to accelerate atoms to high velocity@7,8# and
more recently molecular acceleration has been propo
@9,10#. Rotational acceleration of trapped molecules us
chirped fields has already been demonstrated, and centrif
dissociation has been achieved@11#. Linear acceleration us
ing optical fields is attractive because extremely large dip
forces can be produced by the high electric field gradie
that can be created within an optical traveling wave. T
electrodeless electric field gradient produced by a focu
laser beam can be orders of magnitude greater than ele
static gradients, allowing acceleration of not only polar, b
also polarizable molecules and atoms. This concept has
ready been demonstrated with acceleration of ultracold
oms up to the velocities in the m/s range using very we
optical periodic potentials, which are called optical lattic
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@12,13#. A one-dimensional optical lattice is created by tw
counterpropagating laser beams, and acceleration of the
tice is achieved by changing the frequency of the coun
propagating fields~chirping! with respect to time.

In contrast to acceleration of ultracold atoms in weak l
tices @12,13#, we study the acceleration of polarizable g
particles, such as molecules and atoms at much higher
peratures~5–300 K!, to velocities in the 10–100 km/s rang
by application of large lattice potentials created by puls
lasers. Our work follows on from the original work of Ka
zantsev@7,8#, and investigates the motion of trapped a
untrapped particles in the velocity phase space of the ac
erated dipole potential. We study the dynamics of the ac
erating ensemble of polarizable particles under the influe
of large dipole or stark forces, and predict the velocity d
tribution function of both trapped and untrapped particles

II. DIPOLE FORCE IN A LATTICE

The force that can be applied to a polarizable parti
depends on its massm, polarizability a, and the strength of
the applied external electric fieldE(x,t). For a polarizable
particle, far from resonance, the dipole force or electrost
tive force within a standing or slowly traveling optical wav
in one dimension is given by@14#:

F~x,t !5
1

2
a¹E~x,t !2. ~1!

The polarizability of a molecule that is not aligned with
the field is given bya5(a i12a')/3, wherea i anda' are
the parallel and perpendicular components of the static
larizability with respect to the molecular axis@15#. This ex-
pression is a lower limit to the force because, in an inte
field, molecular alignment of the molecule with the field h
been shown to occur when the pulse duration is greater
inverse of the rotational rate. This process increases the
fective polarizability, and therefore the available for
@16,17#. We consider an accelerating optical lattice that
formed by two almost counterpropagating fields denoted
subscripts 1 and 2, as shown in Fig. 1. The slowly vary
square of the electric field that will lead to acceleration
©2001 The American Physical Society08-1
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P. F. BARKER AND M. N. SHNEIDER PHYSICAL REVIEW A64 033408
given by E(x,t)25E1(t)E2(t)cos(qx2bt2), where q5uk1
1k2u is the wave number; andb5dv(t)/dt is the frequency
chirp due to the time-dependent frequency difference
tween each of the fields wherev(t)5v1(t)2v2(t). We re-
quire that v(t)!v1(t),v2(t), and thereforeq is approxi-
mately constant over the chirped frequency range. In Fig
the instantaneous phase velocity is indicated for a posi
chirp. The phase velocityz(t) of the lattice is given by

z~ t !5
2bt

q
. ~2!

This will also be the average velocity of a particle that
trapped and accelerated by the lattice. We consider acce
tion of ensembles of ‘‘hot’’ particles that are initially at the
mal equilibrium near room temperature, and do not cons
the quantized motion of the particles. The equation of mot
for a particle that is perturbed by the periodic potential of
optical lattice is derived from Eq.~1!, and is given by
d2x/dt252 1

2 @aqE1(t)E2(t)/m#sin(qx2bt2), wherem is the
mass of the accelerated particle. In a reference frame
accelerates with the optical lattice, this equation in non
mensional units, is now given by

d2u

dT2
52

aq

b
sinu22, ~3!

whereu5X2T2 is the phase of the particle with respect
the accelerated frame, andT5Abt andX5qx are the non-
dimensional temporal and spatial variables, respectively.
maximum force per unit mass supplied by the optical latt
is given by a5 1

2 @aqE1(t)E2(t)/m#, and for most of this
paper we assume that the electric field amplitudes are e
and constant in time,E1(t),E2(t)5E1 ,E2. We have as-
sumed that the optical fields are sufficiently far detuned fr
resonance so that the force is harmonic@18#. Equation~3! is
also the equation of motion for a pendulum under cons
torque.

III. VELOCITY PHASE SPACE

The periodicity of an optical lattice is on the order
hundreds of nanometers, so it is necessary to conside
effect of the lattice potential on particles at all phases and
initial velocities because, unlike the macroscopic accele
tion in electrostatic traveling potentials, particles cannot
injected into an optical lattice at the correct phase. To und
stand the motion of both trapped and untrapped parti
within the lattice, it is instructive to investigate the trajecto

FIG. 1. The creation of an optical lattice by two counterprop
gating optical fields for acceleration of molecules and atoms.
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of particles in the velocity phase space@h,u#, derived from
Eq. ~3!. These system of equations is given by

dh

dT
52

aq

b
sinu22, ~4!

du

dT
5h. ~5!

We find the critical points of this system, as usual,
setting Eqs.~4! and ~5! equal to zero. The critical points
correspond to sinu522b/aq, and h50. A linear stability
analysis of Eqs.~4! and~5! around the critical points indicate
that the family of points@u,h#5@2np2sin21c,0# are stable
equilibrium points, wheren is an integer andc52b/aq. The
points @u,h#5@(2n21)p1sin21c,0# are unstable equilib-
rium or saddle points.

The velocity phase-space diagram for Eqs.~4! and ~5! is
shown in Fig. 2 for the casec50.59. The horizontal axis
corresponds to the phase in the accelerated frameu, and the
vertical axis toh, which is proportional to velocity given by
Ab/qh. The contours in the diagram correspond to the tim
independent trajectory of particles in theh, u phase-space
diagram. A stationary particle that is not perturbed by t
lattice potential would move in a parabolic trajectory ce
tered on theu axis. Shown on this diagram as open circl
are the trajectories of three particles perturbed by the latt
The trajectories are denoted byA, B, andC, and correspond
to the motion of the particle for a time periodDt52.37/Ab.
Each particle is initially at a different phase, but at the sa
velocity with h51.0. TrajectoryA corresponds to a particle
that is initially 0.08 rad behind the equilibrium point@u,h#
5@5.70,0.00#. Its trajectory indicates that it is trapped by th
lattice and will orbit around the tear-drop-shaped equilibriu
region infinitely, with a final velocity limited only by the

-

FIG. 2. The velocity phase-space diagram for trapped parti
for the casec50.59. The trajectories of three particles at the sa
initial velocity, but with different phases with respect to the equ
brium point at@u,h#5@5.70,0.00# are shown. The horizontal axi
corresponds to the phase in the accelerated frameu, and the vertical
axis toh, which is proportional to velocity given byb1/2/qh.
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OPTICAL MICROLINEAR ACCELERATOR FOR . . . PHYSICAL REVIEW A 64 033408
duration that the optical field can be maintained at the sa
intensity. The phase diagram demonstrates that, under c
sionless conditions, a particle that is not initially trapped w
never be trapped even though its motion can be stron
perturbed by the potential. ParticleB is such an untrapped
particle; it is initially 2.84 rad behind the same equilibriu
point. Its motion is strongly perturbed by the potential,
evidenced by its trajectory in the phase plane around
tear-drop-shaped region of closed orbits. This particle
tially moves towards the saddle point atu53.74, but is de-
flected around the trapped region, briefly increasing its
locity with respect to the lattice velocity. For the short tim
period shown, the velocity of particleB is greater than the
lattice velocity. However, because particle B is not trapp
its velocity would eventually decrease below that of the
celerated lattice, and thereafter its motion would not
strongly perturbed by the lattice. For short time periods,
acceleration of a distribution of untrapped particles w
similar initial velocity and phase with respect to the latti
may constitute a significant proportion of an accelerated p
ticle distribution. This type of acceleration is only significa
on short time scales where the rate of acceleration and
potential are large enough to accelerate the particle to
required velocity before it completes its orbit around t
tear-drop-shaped region of stability shown in Fig. 2. Parti
C is initially 2.81 rad ahead of the equilibrium point atu5
20.58. It is not strongly perturbed by the lattice and follow
an almost parabolic trajectory around theu axis that is simi-
lar to an unperturbed trajectory.

IV. ACCELERATION OF TRAPPED PARTICLES

For a lattice with a stable equilibrium point, sinu52c
and therefore,

U2b

aqU,1 ~6!

is the condition for a particle to be trapped and accelera
by the lattice. This condition implies that the chirpb must be
less thanaq/2, and confirms the intuitive result that the a
celeration of the lattice,aL52b/q, must be less thana, the
maximum force per unit mass supplied by the gradient of
lattice potential. This requirement can be seen clearly fro
diagram of the potential,U(u)52*m/q2d2u/dt2du, in the
accelerated frame, as shown in Fig. 3. The location of
saddle point and equilibrium points, as determined from E
~4! and~5! for c50.39, 0.59, and 0.79 are shown. The dep
of the potential well in each case is determined by the
ference in potential height between a saddle point and
closest equilibrium point. The potential well depth,DU is
given by

DU5
ma

q
@2 cos~sin21c!2c~p22 sin21c!#. ~7!

It can be seen from Eq.~7! that no potential well exists fo
casec>1, because either the chirp is too high, or the fo
per unit mass supplied by the lattice is not sufficient to t
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particles. The maximum well depth is given byDUmax
52ma/q when c50 that corresponds to the case with n
chirp or acceleration. In the accelerated frame, any part
that is initially trapped in the potential well will remain in th
well and oscillate about the stable critical point,@u,h#
5@2np2sin21c,0#, with a characteristic frequency that de
pends on its initial phase and velocity. Acceleration witho
oscillation occurs only for particles initially at this critica
point. The maximum velocity spread of the trapped and
celerated particles is given by

Dv52A2DU

m
, ~8!

which determines the maximum velocity deviation that
trapped particle can attain in its oscillation around the sta
equilibrium point. Figure 4 is a graph of particle veloci

FIG. 3. The optical lattice potential, in the accelerated frame
c50.39,0.59,0.79.

FIG. 4. A graph of velocity versus time forc50.59. Each par-
ticle is initially at the same phase with respect to the lattice, but t
have different initial velocities. The trapped particle velocity spre
is indicated by the two parallel lines.
8-3
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P. F. BARKER AND M. N. SHNEIDER PHYSICAL REVIEW A64 033408
versus time in the laboratory frame that shows the evolu
of the velocity of a number of particles perturbed by t
lattice for the case ofc50.59 over a 4-ns time period. Th
particles are initially at different velocities, but at the sam
phase with respect to the initial lattice velocity atv
50 km/s. The particles with initial velocities of 0 and 29
m/s are trapped and can be accelerated indefinitely, with e
particle oscillating at a different frequency around the latt
velocity. The velocity spreadDv of trapped and accelerate
particles is indicated by the two parallel lines that bound
trajectories of the trapped particles. For a lattice withc
50.59,a52.1431012 m/s2, q51.573107 m21, where the
electric field for each beam isE15E2553109 V/m, the
potential well depth ofDU'133 K corresponds to a veloc
ity spread of 735 m/s. The particle shown with an init
velocity of 292.25 m/s is accelerated by the potential
approximately 2 ns before being lost out of the lattice. T
particle has a similar trajectory to particleB in Fig. 2, which
only has one incomplete orbit around the equilibrium po
before being lost from the lattice even though its initial v
locity is less thanuDv/2u. Its final velocity is approximately
2.29 km/s that corresponds to an increase of almost 2 k
within the 2-ns acceleration period. No particles with an i
tial velocity higher thanuDv/2u are trapped and accelerate
Note that some particles are decelerated. The particle th
initially at 2 km/s is decelerated to 1.18 km/s, with most
this deceleration occurring over a 1-ns time period when
lattice velocity is close to the particle’s initial velocity.

V. ACCELERATION OF AN ENSEMBLE OF PARTICLES

The evolution of particles that are distributed over a ran
of velocities, and over all phases, can be conveniently ca
lated from the collisionless Boltzmann equation given
@19,20#:

] f

]t
1v

] f

]x
1

F~x,t !

m

] f

]v
5S ] f

]t D
c

50, ~9!

wheref 5 f (x,v,t) is the distribution function due to the op
tical perturbation, (] f /]t)c is the collision integral, andF is
the external force defined earlier. For short acceleration
riods, acceleration without collisions between particles
comes possible at pressures in the 100 torr range, and
collision integral can be set to zero. The maximum press
for collisionless acceleration can be estimated fromp
,2l m0T0/300at2, wherep is the pressure in torr,l m0 is the
free-collision length at 1 torr and 300 K, andt is the time of
acceleration. To calculate the velocity distribution we a
sume, for simplicity, a periodic potential with infinite lengt
This condition elucidates the essential physics and allows
use of the cyclic boundary conditionf (2L/2,v,t)
5 f (L/2,v,t), whereL52l, and wherel54p/q for coun-
terpropagating beams. Equation~9! is also subject to the
boundary conditionsf (x,v→6`,t)50. Equation~9! was
numerically integrated using a McCormack second-or
finite-difference scheme@21#, with an initial condition
f (x,v,t50)5 f 0(v,T0), and wheref 0(v,T0) is the equilib-
rium Maxwell-Boltzmann distribution at gas temperatureT0.
03340
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Figure 5 shows the evolution in time of an ensemble
thermally distributed CH4 molecules, that are initially at tem
perature ofT05300 K, and are perturbed by an accelerati
optical lattice. The top hat temporal intensity profile is ch
sen so that the results can be compared with the velo
phase diagram of Fig. 2. The evolution of the initi
Maxwell-Boltzmann distribution function is calculated by in
tegration of Eq.~9!, as discussed above. The distributio
function is averaged over the spatial period of the lattice
each time. The top hat profile has the ratioc50.59, which
corresponds to a total laser intensity~both beams! of 6.5
31016 W/m2 (6.531012 W/cm2), and a chirp of 1
31019 rad/s2. We use the static polarizability of CH4, which
is a52.9310240 Cm2/V @22#. Figure 5 shows the evolution
of the perturbed distribution, for each temporal profile, as
lattice is accelerated from an initial zero velocity. Approx
mately 30% of the particles are trapped and accelerated a
phase velocity, reaching 10.2 km/s in the 8 ns duration of
calculation. The long tail between the largely unperturb
distribution atv50 m/s and the accelerated distribution
caused by molecules that are undergoing incomplete unst
orbits around the stable region in the phase space. After 2
the number of particles in the accelerated distribution is
proximately constant, indicating that the integration sche
is working correctly and that no particles are being nume
cally lost from the accelerated distribution. The veloc
spread of the accelerated distribution after 2 ns is appr
mately 840 m/s, which is in good agreement with 735 m
calculated from Eqs.~7! and~8!. The larger velocity width of
the calculated distribution can most probably be attributed
discretization error, and the tail of untrapped particles. T
accelerated distribution is almost Gaussian with a full-wid
half-maximum velocity spread that corresponds to a te
perature in the accelerated frame of 41 K. It is emphasi
that the initial temperature of the ensemble does not de
mine the energy spread of the accelerated distribution, o
the fraction that will be accelerated.

VI. ACCELERATION OF UNTRAPPED PARTICLES

A. cË1

Individual particles within an ensemble are distribut
over all phases with respect to the initial lattice, but,
shown above, not all particles can be trapped by the po
tial, even if their kinetic energy is less than the potential w
depth. Figure 6 is a time series that shows the temporal e
lution of an ensemble of untrapped CH4 molecules, like par-
ticle B in Fig. 2, that can be accelerated to velocities in km
range. The CH4 ensemble, initially at a temperature of 30
K, is perturbed by an optical lattice withc50.59. As in Fig.
5, the velocity distribution at each time is calculated by n
merical integration of Eq.~9!. The constantc50.59, is the
same as for Fig. 5, but an initial lattice velocity ofz(0)5
25 km/s was chosen to be much greater thanuDv/2u
5368 m/s, the velocity range for particles to be trapp
Figure 6 shows clearly that an accelerated distribution
untrapped molecules is produced at 4, 5, and 6 ns. At 4
the peak of the accelerated distribution is centered at a
locity of approximately 600 m/s, which is much higher tha
8-4
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FIG. 5. The instantaneous velocity distribution function of CH4 molecules within an accelerating optical lattice in 2-ns time increme
after the lattice is created. The distribution function was averaged over the spatial period of the lattice andc50.59.
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the lattice velocity at 95 m/s. However, at 5 ns, the peak
the accelerated distribution is at lower velocity~1.1 km/s!
than the lattice velocity of 1.36 km/s. At 6 ns the accelera
distribution is less well defined, but the velocity is appro
mately equal to the lattice velocity at 2.64 km/s. Unlike t
accelerated distribution of trapped particles in Fig. 5, t
accelerated distribution is not well defined because parti
are no longer significantly accelerated after they comp
their single orbit around the stable region shown in Fig.

B. cÐ1

Thus far we have concentrated on acceleration of b
trapped and untrapped particles in an optical potential wh
a stable equilibrium exists. If the lattice acceleration or f
quency chirp is too rapid, or the force of the lattice is n
sufficient to trap particles,c52b/aq.1, and a stable equi
librium no longer exists. Although particles can no longer
trapped or accelerated in a well-defined distribution, they
still be accelerated and decelerated in the lattice becaus
potential is periodically modulated. The velocity phase-sp
diagram for the casec52 is shown in Fig. 7, as are th
trajectories of three particles for a durationDt51.88/Ab.
Each particle is initially at the same velocity, which is high
than that of the lattice, and each particle isp/2 out of phase
with respect to each other. The final velocities of the th
trajectories are not equal, and thus we expect that for
ensemble of particles that are distributed over a range
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velocities, the distribution will be smeared in velocity b
cause some will be accelerated, while others will be dece
ated. If particles could be introduced into the lattice a
single phase, they could be accelerated or decelerated w
out velocity dispersion. We have calculated the velocity d
tribution function for the casec.1. The ensemble was ini
tially in thermal equilibrium, and we have integrated th
collisionless Boltzmann equation as described above. Fig
8 is a time series that shows the evolution of a CH4 distri-
bution function at a temperature of 5 K for the casec52
with the initial lattice velocity at22.0 km/s. All other pa-
rameters are the same as in Figs. 5 and 6 except that the
is now b53.3831019 rad/s2. The initially Gaussian distri-
bution function is observed to spread into two componen
as some of the distribution is accelerated and some is de
erated. AtDt50.61 ns, the perturbed distribution is almo
symmetric, and almost equal numbers of particles are de
erated and accelerated. At this time, the peak of the acce
ated distribution is approximately equal to the lattice velo
ity.

VII. EXPERIMENTAL CONSIDERATIONS

Using Eqs.~1! and~6!, and relating the electric field to th
intensity of the optical lattice byE1E25Z0I /n, we can esti-
mate the maximum average velocity that can be achieved
the trapped ensemble. For a given intensity, the maxim
8-5
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FIG. 6. The instantaneous velocity distribution function of CH4 molecules perturbed by the lattice, for the case ofc50.59. The
distribution at 0 ns, 3 ns, 4 ns, 5 ns, and 6 ns is shown. The distribution function was averaged over a spatial period of the lattice. No
are trapped because the initial lattice velocity was25 km/s. Although no particles are trapped, a significant number can be accelera
near the lattice velocity over a short time period (t,6 ns).
ab

-
er

le
ble

iz

1
t

a
e,

-
-ns
pli-

irp
1.3

f
xi-
nd
up
s.
ll
the
at-

er,
of

ing
ns

tant
te
chirp that can be applied to accelerate a trapped, polariz
molecule is given by

b,
aq2Z0

4nm
I , ~10!

whereZ05(m0 /«0)1/2, I is the available laser intensity de
rived from equal electric field amplitudes from each count
propagating field, andn is the refractive index. From Eq.~2!,
and assuming a linear chirp with a top hat temporal profi
the maximum average velocity of a particular polariza
species is determined simply by the available fluenceF and
is given by

zmax,
aqZ0

2nm
F. ~11!

For example, CH4 has a mass of 16 amu, and a polar
ability of 2.9310240 Cm2/V. If the lattice is formed by two
800 nm beams focused to 5mm spot size (10mm diameter!,
a maximum velocity of 20 km/s~33 eV! can be attained
for 100 mJ beams, and 200 km/s~3.3 keV! for 1 J beams. A
100 mJ, 10-ns pulse corresponds to an intensity of
31017 W/m2 (1.331013 W/cm2) and thus the chirp mus
03340
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be less than 3.231019 rad/s2. The laser must sweep over
frequency of 25 GHz within the 10 ns duration of the puls
and acceleration occurs over a 100mm distance. The produc
tion of chirped pulses over this spectral range on a 10
time scale is not routine, and therefore it appears that ap
cation of shorter, higher-intensity pulses with larger ch
may be more attractive. For example, an intensity of
31019 W/m2 (1.331015 W/cm2) from a 100 mJ, 100 ps
laser pulse focused to 10mm defines a maximum chirp o
3.231021 rad/s2, and an acceleration distance of appro
mately 1 mm. This chirp may be produced by a picoseco
transform-limited pulse that is stretched in time by gro
velocity dispersion within a Bragg fiber or by grating pair
However, at this intensity, CH4 and most other species, wi
be ionized. Therefore, to accelerate neutral particles,
maximum intensity that can be applied to molecules and
oms is, in practice, limited by ionization@23#. We note here
that for all the numerical simulations performed in this pap
the intensity is below the ionization saturation intensity
the organic molecules measured in Ref.@23#.

In Sec. V, we calculated the accelerated distribution us
a top hat temporal profile so that the numerical calculatio
could be compared with the phase diagram for a cons
value ofc. For an experiment, it is instructive to investiga
8-6
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how a more realistic temporal profile can be used to ac
erate an ensemble. For a Gaussian temporal profile,c and
DU, the potential well depth, vary with time. Thus, for ea
lier times in the pulse when the intensity is low, few particl
can be trapped when the initial velocity of the lattice is eq
to zero. To accelerate particles using a Gaussian inten
profile, the initial velocity of the lattice must initially be
negative so that, by the time the lattice has reached z
velocity, the potential is high enough to trap a larger num
of particles that occupy this region of the velocity space.
have performed simulations with a Gaussian temporal pro
with the same chirp as in Fig. 5, but starting with both ze
and negative initial velocities. No appreciable accelera
distribution was produced for the zero initial veolcity cas
Figure 9 shows the evolution of the ensemble of CH4 mol-
ecules that are perturbed by a Gaussian temporal inten
profile with an initial lattice velocity of25 km/s and chirp
of b5131019 rad/s2. The full-width half-maximum inten-
sity of this Gaussian profile is 6.531015 W/m2, which is the
same as the top hat profile intensity in Fig. 5. As expect
the fraction of accelerated particles varies during the pu
because bothc and the potential well depthDU vary during
the acceleration period. In this case, at most 11% of
particles are trapped and accelerated compared to 30%
the top hat profile. The width of the accelerated distribut
decreases as particles are lost from the lattice because
intensity rolls off in the latter part of the pulse. The numb
of particles in the long tail behind the accelerated distribut
increases as these particles are lost from the lattice. Bec
we must start at a negative velocity, the final velocity th
can be reached by starting at25 km/s is approximately hal
that achieved by the top hat profile. These results indic
that in an experiment, higher performance will be achiev
for fields that can be rapidly switched on and off. The spa
variation of beam intensity must also be taken into accou
since this will determine the number and spatial extent of
accelerated particles, as well as the variation in veloc
across the beam. The spatial and temporal variation of

FIG. 7. The trajectories of three untrapped particles in the
locity phase space of an accelerating lattice, for the casec52. The
trajectories are for a duration of 1.88b21/2. Each particle is initially
at the same velocity, which is higher than the lattice velocity.
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laser field will not change the essential physics of the ac
eration process, but as shown above for the Gaussian tem
ral profile, they both must be considered to correctly mo
an experiment.

We have used exactly counterpropagating fields to mo
acceleration, but in practice, the two laser beams cannot
actly counterpropagate because the accelerated particles
impinge on one of the focusing optics. The angle betwe
the beams must be less than 180°, but it should be m
tained as close as possible to 180° to maximize both
lattice trapping force and the interaction region. We estim
that for a 5mm Gaussian beam spot size~radius!, a full angle
of less than 174° will allow the accelerated beam of partic
to pass the edge of the focusing optics. The change in
force per unit mass caused by this reduction in angle is
than 0.2%, and justifies our analysis using exactly coun
propagating beams. The Rayleigh range of the focu
beams determines the upper limit to the acceleration
tance, as well as the spatial extent of the accelerated grou
particles. For a 5mm spot size, this distance is approximate
200 mm, which is sufficient for the 100 ps, 100 mJ ca
discussed above. The maximum laser intensity that can
used will be limited by the probability of ionization with
increasing intensity. These values have been tabulated f
number of molecules for an ionization rate of 106 s21 @9#.

We have used the static polarizability to describe the fo
on polarizable particles because, for many molecules,
laser sources available are far from resonance. However
many atoms and some molecules, the laser sources ca
tuned closer to resonance, and the force per unit mass
vided by the optical field can be increased by at least
order of magnitude over the static case@7#. In these cases
the number of particles that can be trapped and acceler
can be increased, or the number of particles can be held fi
while increasing the final velocity of the accelerated dis
bution by increasing the chirp.

VIII. CONCLUSIONS

Optical potentials in the 10-100 meV range can be read
produced by high-intensity pulsed fields, and optical latt

- FIG. 8. The instantaneous velocity distribution function of CH4

molecules in an optical lattice withc52. The distribution at 0, 350,
and 610 ps is shown, and each was averaged over the lattice pe
8-7
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FIG. 9. The instantaneous velocity distribution function of CH4 molecules within an accelerating optical lattice with a Gaussian temp
profile, in 2-ns time increments. The velocity distribution function was averaged over the spatial period of the lattice at each time
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trapping forces per unit mass greater than 1012 m/s2 can be
achieved. Such large lattice forces are capable of trappin
large ensemble of particles so that high fluxes can be
duced over nanosecond and subnanosecond time scales
allows acceleration of a relatively dense ensemble of p
ticles in the near absence of collisions. We have descri
the motion and acceleration of ensembles of polarizable
ticles, such as atoms and molecules, within these rap
accelerating optical lattices. In particular, we have de
mined the conditions for collisionless acceleration of trapp
and untrapped particles for the cases ofc,1, and c>1,
which correspond to acceleration with and without a pot
tial well, respectively. Forc,1, we have derived expres
sions for the velocity of the trapped and accelerated distr
tion, as well as the velocity spread in terms of laser inten
and wavelength, and particle polarizability and mass. For
case ofc>1 we have predicted that both acceleration a
deceleration can be produced in a potential for short t
periods even though no potential well exists. Such acce
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ated distributions, which relax requirements on chirp, or
force per unit mass, may be more easily produced, and
be of use when a beam with a well-defined velocity~energy!
is not required. Using CH4 molecules as an example, w
have predicted the temporal evolution of an ensemble of p
ticles that are initially thermally distributed for bothc,1
andc>1 cases. We have discussed how the acceleration
be achieved in an experiment, and showed that for a part
lar species the maximum velocity is determined by the av
able laser fluence and pulse shape. Microlinear accelera
up to velocities in the 100-km/s range, over distances of l
than 1 mm, may be used to produce neutral atomic and
lecular beams with both higher velocities and densities t
can be produced by pulsed molecular beams or other
dynamic means. Our calculations have used the static po
izablility to determine the dipole force and therefore the p
dicted final velocities in this paper can be regarded as lo
limits, since alignment of molecules within the field will re
sult in larger optical forces. The final energy, and the spr
8-8
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in energy, of the beam can be tailored by laser fluence,
quency chirp, and pulse duration. Such a configurable,
tense, and compact source of high-energy neutral parti
may find application to collision studies, lithography, a
atomic and molecular implantation or etching.
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