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Experimental study of the quantum driven pendulum and its classical analog in atom optics
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We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated
optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution
containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the
atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory,
which we have developed and refined. We show experimental proof that the size and the position of the
resonances in phase space can be controlled by varying several parameters, such as the modulation frequency,
the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found
a surprising stability against amplitude noise. We present methods to accurately control the momentum of an
ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state
preparation.
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I. INTRODUCTION propagation. In these experiments the time-independent
wave equation, the Helmholtz equation, is mathematically
The field of “quantum chaos” was born in 1917 when equivalent to the time-independent Sattirger equation for
Albert Einstein tried to unravel which mechanical systemsa billiard system. In billiard-shaped cavities eigenfrequencies
could be subjected to the Bohr-Sommerfeld-Epstein quantiand eigenfunctions can be measured by microwave absorp-
zation ruleqg1]. He concluded that in the absence of invari- tion. In 1991 quantum scars, which are concentrations of
ant tori in phase space these quantization rules cannot h@obability along periodic orbits, were experimentally ob-
used and that, moreover, this absence applies to most syserved by Sridhaf7]. Experiments to study the quantum
tems. Chaos is associated with a rapid divergence of arbdynamics of classically chaotic systems have been carried
trarily close points in phase spald. Strictly speaking there out on Rydberg atoms, measuring microwave ionization of
can be no such thing as quantum chaos as an infinitely finkighly excited hydrogen atoni8,9]. One result of these ex-
level of detall is needed to describe the trajectories of a clagperiments is the recognition of different regimes determined
sical chaotic system. In reality a system is bound by Heisenby how well classical and quantum mechanics agree with
berg’s uncertainty principle restricting the amount of detaileach other. These regimes are characterized by the scaled
of position and momentum needed for classical chaos. Clagnicrowave frequency given bf2o=nyQ, wheren, is the
sical chaos can be described as the emergence of complexjyincipal quantum number of the initial state aidthe mi-
on infinitely fine scales in classical phase space. In contrastrowave frequency.
in quantum mechanics structure is smoothed away in an area It was first proposed by Graham, Schlautmann, and Zoller
below the size ofi [2,3]. [10] to use atom manipulation experiments to test predictions
During the years since the birth of quantum chaos, signifi-of quantum chaos. Cold atoms provide new grounds for ex-
cant amounts of theory have been created to give a bettgreriments in quantum chaos which have some advantages
description of chaotic physical systems in a quantum dycompared to Rydberg atom experiments. First, the potentials
namical context. The key question is, what happens to claghat are used are extremely well approximated as one-
sical chaos in the quantum world? One approach is to seeftimensional potentials. In contrast, the potentials involved in
generic features of quantum dynamics for a system whosthe Rydberg-atom ionization experiments are much harder to
classical description exhibits chaotic dynamics. One examplapproximate by one-dimensional potentials. At present the
of such features is dynamical localization, a quantum supthree-dimensional quantum simulations needed for these
pression of classical diffusion, which was discovered byhighly excited atoms are not feasible without severe approxi-
Fishmanet al. [4] in numerical studies of the periodically mations[9]. Second, in atom optics there is considerable
kicked quantum rotor. Conductance fluctuations in ballisticcontrol over the potentials. In the Rydberg-atom case the
microstructures associated with complex electron trajectorie€oulomb potential dictates the dynamics and the system is
constitute another example of the occurrence of quanturaomplicated due to electron-electron interacti¢the chaotic
chaos [5]. Finally, molecular excitation experiments can trajectory of the outer electron in a Rydberg atom can closely
show interesting quantum featurésg., Anderson localiza- approach the shell of inner electronk atom optics one can
tion, an effect related to dynamical localizatiohthe scaled tailor the potentials to match the theoretical description and
Planck’s constant is kept finite but exhibits chaotic dynamicdndeed achieve simple nonlinear potentials such as the non-
in the classical limit £ =0) [6]. To gain a different perspec- linear pendulum which we consider in this study. We can
tive on the quantum nature of classical chaos some experalso achieve a considerable variety of modulation dynamics.
ments look at the manifestations of classical chaos in wav€&inally, atom-optical systems are far less dissipative and
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noisy than Rydberg-atom experiments due to laser coolinfeatures while a quantum simulation can. This constitutes the
and the ability to operate far off resonance. Hence atomimportance of the system for quantum chaos studies. We also
optical systems can be well approximated by Hamiltoniananalyze here the observed second-order phase-space reso-
dynamics. nances in detail. We present experimental findings showing
Moore et al. [11] and Ammannet al. [12] showed that how they can be manipulated and how to momentum control
cold atoms can be used to simulate the quantum delta kickeflém. We give an overview of the resonance dynamics for
rotor (Q-DKR). Raizen’s group also reported the experimen-different parameter regimes to characterize the atomic dy-
tal observation of dynamic localization in cold atofig] ~ namics quah;atwely and quantitatively. A surprising range of.
which is the quantum suppression of chaotic diffusion. It carflynamics arises. Furthermore, we present methods for effi-
be roughly understood by considering that classical chaoti€l€Nt momentum phase-space state preparation utilizing the
paths can interfere destructively. Decoherence will tend tdlUantum chaotic phase space of the QDP. This could have a

suppress this quantum behavior and leads to classical-lik&" €ty of applications in atom optics, for example beam
dynamics. splitters and atomic interferometry. Furthermore, we will

Our group has recently demonstrated the existence gthow introductory results on how noise affects the system.

phase space resonances for the quantum driven pendulum
(QDP) in cold atoms that we report on in this paper. Al- Il. DESCRIPTION OF THE QUANTUM DRIVEN
though it is probably the first time that such phase-space PENDULUM AND ITS CLASSICAL ANALOG

resonances have been observed for the QDP, Raizen and CoO-our QDP experiments have been carried out using cold

) : . @ave leads to an effective Hamiltonian for the center-of-
wave [14]. This particular first-order resonance c:orrespond§ﬂass motion(as shown in the Appendixgiven by
to the central elliptic fixed point at the origin of phase space.

In contrast we are investigating second-order resonances for pi
the QDP, which are distinct features in the momentum dis- H= m
tribution of cold atoms traveling with a nonzero mean veloc-

ity on top of a background of atoms moving chaotically in where the effective Rabi frequency iQ.=0Q%38, Q

phase space. =I"l/l¢,;is the resonant Rabi frequenay,is the modula-

hps?gjle-ssz?:risreégpaeigﬁ |2a\$ealigvze§2erﬁzn olrr':egtngh parameterw is the modulation angular frequendy,is
PNy y i pie, they P Whe inverse spontaneous lifetimé,is the detuning of the

plasma physics. Sinclair, Hosea, and Sheffiéls] mapped a tanding wavet is the time, andp, the momentum compo-

toroidal magnetic field in a stellarator using phase stabilize ent of the atom along the standing wave. Heris the

elect.rons. Islands of stability e”.‘erged in the phase-spaqe d3§'|:>atial mean of the intensity of the unmodulated standing
namics of the electrons. In fluid flow experiments particle

S . . wave (which is half of the peak intensity so)
motion in the fluid was shown to have chaotic and regular:FW dlis th turation intensitv. Usi
phase-space regioh$6]. In experiments on microwave ion- peal2lsa) and s, is the saturation intensity. Using
ization of Rydberg atoms strong classical resonance effecl%caled variablegl1] the Hamiltonian is given by
in the final-bound-state quantum number distribution were —n2 _ ; ;
found by Bayfield and Sokd|17]. These peaks cannot be H=pi12+ 2x(1=2¢ sinn)sin'(a/2), @
associated with any quantum-mechanical resonance transithere H=(4k?mew?)H, q=2kx, p=(2k/mw)p, andk is

J’_

70
4"’“(1—28 sinwt)sir?(kx), (1)

tion [9]. the wave number. The driving amplitude is given by
Atom-optics experiments provide a good opportunity to

examine the transition between classical and quantum me- hk2Q ot

chanics. Dyrting and co-workergl8] made a theoretical k=0 Qe 0?= 2a?m (3

study of cold atoms which are subjected to a single-
frequency amplitude-modulated standing wave. They pre
dicted quantum tunneling between phase-space resonan
for this system. Hug and Milburfi9] showed that quantum-
mechanical velocity predictions for second-order phase- .
space resonances disagree by up to 20% with classical pre- [p.al=ik, (4)
dictions in the quantum driven pendulyr@0]. i )

We analyze in this study the phase-space resonances th¥fere the scaled Planck’s constarit#s8w, /w. This system
we found in the dynamics of the experimental realization of¢an be seen to be equivalent to a driven pendulum, because
the quantum driven pendulum and its classical analog witfihe Hamiltonian is equivalent to that of an amplitude-driven
cold atoms and test theoretical predictions. The systerR€ndulum(18]. _ _
shows either classical or quantum behavior, depending on the The system exhibits classical and quantum-mechanical re-
parameters chosen for the system. In the context of this stucd§/mes determined by the value of the scaled Planck’s con-
we mean by quantum behavior a situation where a classicatantk [10]. To understand the nature of the resonances it is
simulation cannot predict some of the observed experimentdiest to estimate first when they can be treated classically and

C\'/vherewrzhk2/2m is the recoil frequency and=tw is the
&Caled time variable. The commutator is given by
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when one has to use a full quantum simulation to predict the The superoperatof describes the incoherent evolution
dynamics of the system. The scaled Planck’s constant can lgkie to the coupling to the vacuum field modes at fai@nd

rewritten as is given by
Ahk? 472 1 Ahim®  h J I
- — 4 —— = Af 2 - =— L£,=| d?n ¢(n)D[e*"s]. 8
St et L Py Pt T . $(n)Dle*"o] ®
2l2t™
5) Here k is the wave number of the spontaneously emitted

light, n is a unit vector describing the direction of the spon-
whereT is the modulation periody is Planck’s constand is  taneously emitted photon, angi(n) is the dipole radiation
the wavelength, anty, is the action of a free particle over the djstribution for this direction

distance\/2 in the timeT. Our one-dimensional system can

be described in the corresponding two-dimensional phase R 3 (d-n)?
space which is spanned by momentum and position coordi- $(n)= B 1-———|, 9
nates. The position coordinate axis is orientated along the & d-d

standing wave. The action of the system, multiplied by, 2 . o _
is given by the area in phase space, which is encircled by thethered is the atomic dipole vector. The superoperafors

trajectory of a particlek can be interpreted as the ratio of defined for arbitrary operatos andB by

Planc_ks constant to the action of a particle in the system D[A]B=ABA'— (ATAB+BA'A)/2. (10)
described. Now if the phase-space area of a resonance is on

the same order a we know that Heisenberg’s uncertainty oy thex componenn, appears in the superoperator in
relgtlon forblds 'S|mulat|on of' the dynamics using cIaSS|caIEq. (8) because we are only interested in motion in the
trajectories but it rather requires the atoms to be treated a§ection. This is the direction of propagation of the light
wave packets. Thug will indicate in which regime the ex- beams, so the dipole vectwhich is parallel to the polar-
periment is carried out. Therefore we know there is somézation vector of the lightis perpendicular to the direction.

minimum order of magnitude & which must be exceeded This enables the integral in E(B) to be simplified to
before we expect to see differences between quantum and
classical dynamics on a given time scale. :J ikux

Quantum effects can be observed only if the decoherence £ duWwpre™e], @)
is kept to a minimum. The magnitude of the detuning will
determine the amount of decoherence introduced into th&/here
system because the less the standing wave is detuned the

more incoherent transition(g.g., spontaneous emissjosmill §(1+ W) for |ul=1
occur. We now describe the full quantum dynamics, includ- W(u)=1 8 (12
ing spontaneous emission. 0 for |u[>1.

A. The quantum master equation Note thatu can be interpreted as the component of the

momentum kick to the atom, in units ék.
The evolution described by the master equati®nis not
(E_bviously related to that generated by the Hamiltonian

Quantum mechanically, the state of the system is de
scribed by a density operatpr In order to describe sponta-
neous emission as well as the motion induced by the stan
ing wave it is necessary to use a quantum master equatio
Considering only motion in the direction of the standing
wave, and working in the interaction picture, this is

or a start, the real particle is an atom with two internal
states whereas the ideal particle has no internal states. To see
the relation between the two models it is necessary to adia-
batically eliminate the upper level of the atom. This proce-
, i dure is outlined in the Appendix where we also quantify
p=—z[Hpl+I'Lsp. (6)  some of the approximations involved. It is valid only if the
detuning é is much greater than the maximum of the Rabi
HereH is the Hamiltonian for the center-of-mass and inter-frequency Q(x,t). In the experiment the modulated
nal state of the atom, given by standing-wave Rabi frequency has the form

Q(x,1)=Q+1-2¢ sinwt sinkx, (13

which gives the master equation
Here Q(x,t) is the position and time-dependent Rabi-
frequency operator for the atom in the standing wave &nd

2
P o h T tot
H= ot —hooTo— Z[0x Do+ 0Tkl ()

. i
is the detuning of the standing wave. The atomic operators p=—7[H.pl+ N Lop. (14
are defined in terms of =|a)(b|, where|a) and|b) corre-
spond to ground and excited states, respectively. Here the Hamiltonian is
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2
hQ
H= 2%+ 4eﬁ(1—28 sinwt)sin?(kx), (15) f W(u) du=1=V(-1)+V(0)+V(1), (19
which is the same as in E(L), with Q4= Q?/ 5. The effec- f e
tive damping rate ia. =T'(Q/25)? and the superoperatdt, W(uudu=0=-V(=1)+V(1), (20
is
f W(uu?du=2=V(—1)+V(1). (22)

mzzxf du Wu)D [e*¥*{1—2¢ sinwt sinkx]

(16) The first condition here is just that is normalized. The
second is thatv reproduces the correct mean momentum

T Qg . i+ kick (Ap) in spontaneous emissidne., zerg. The third is
=57 (1-2¢ smwt)J duWu)Dle thatV reproduces the correct mean squared momentum kick
, ((Ap)?)=(2/5)(#Kk)?. The three conditions imply
_elk(u—l)X]. (17) ) , )
V(=1)=35, V(0)=35, V(1)=s. (22)
B. Simulation methods Under this approximation, we can write the master equa-

To obtain reliable theoretical data we have utilized twotion in the momentum basis as
different methods to obtain our quantum simulations. The i
dynamics are modeled using either the master equation or p=——[H,p]+\Lap, (23
guantum trajectories. These methods are inherently different. h
Both have been tested and found to give essentially identical
results, strengthening the validity of the presented theory. Tgvhere
allow a comparison with classical physics we also present a 1
method to obtain classical simulations. This will be of im- H=>— > (po+7ikn)2[n)(n|
n

portance for future decoherence and quantum chaos studies.
AQ s
16

1. Simulations using the master equation (1-2e sinwt)(R?+L2-21), (24)

Since the Hamiltoniari15) is periodic inx, it would be
natural to consider using the momentum states as a basis fWhere|n> is the momentum stalg@,+7kn) (wherepy is an
simulating the evolution. However, as the final expressiongrbitrary momentumand
(17) for £, indicates, spontaneous emission following the
absorption of a photon from the standing wave enables al3=%(1—2¢ sinwt){D[R?—1]+2D[R—L]+ D[ —L2]}.
transfer of momentum of any amount betwee24k and (25

+ 2k (because the momentum kick is projected ontoxhe . . di ~ikxy which
axis). This means that an exact one-dimensional simulatiofi'€"€R IS & unitary operatofcorresponding t@ ") whic

; ikx
of the master equation would require a dense set of momer;i&iSes the momentum bk, andL (corresponding t@™)
tum states. similarly lowers it by7k,

In practice, this dense set is not necessary as the initial
conditions have a finite momentum spread which will smear R=L 1=LT= E In+1){(n|, (26)
out any fine structure. In fact, the initial conditions from the n
experimental setup have a momentum spread of ordér 7
which means that features of ordék are not resolvable. It
therefore makes sense to approximate the continuous m
mentum transfer due to spontaneous emission by discre
momentum transfer in units dfk in order to take advantage
of the symmetry of the Hamiltonian. This is achieved by
replacingL, by

andl=X_|n}(n|.
_ Since all of the operators in the master equati@® can
e represented by matrices in th®) basis, it is a simple
matter to solve the equation using a suitable numerical envi-
ronment such aBATLAB . The initial state matrixn|p(0)|n)
is found by assuming a Gaussian initial momentum distribu-
tion of 1l/e half width of 6.5:k which forms the diagonal
‘ . elements ofp(0). To obtain smoother results a new set of
L3=(1-2esinwt) 2, V(u)D [ekUrix—_glku=ix] momentum states is chosen, still spaced:kybut shifted in
u=-101 (18) momentum by fractions oik compared to the original set.
The different density matrices are evolved and the results are

where V(u) is a discrete approximation t@/(u). This is combined to gain a more accurate result.
similar to the approach of Reff21] but is more rigorous.
ApproximatingW(u) by V(u) is not a unique procedure.
Here we adopt the method of choosik@u) such that the Without making the approximations of adiabatic elimina-
zeroth, first, and second moments agree. That is, tion of the upper level of the atom, and discretizing the

2. Simulations using quantum trajectories
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spontaneous-emission recoil, it would be numerically intrac-The imaginary part o> makesk non-Hermitian. The non-
table to solve the initial master equati@). That is because Hermitian part corresponds exactly to the anticommutator
of the size of the state matrix. However, it is possible to(the second term in the curly bracketi®s Egs. (A7) and
simulate the evolution of that equation stochastically, by tak{A8). It causes the modulus of the wave function to decay.
ing a large ensemble of quantum trajectories for the stat@his is because the smooth evolution takes into account only
vector. This can be done as the number of elements of th&hat happens when there are no jumps. The Hermitian part
state vector is roughly equal to the square root of the numbesf K corresponds exactly to the commutattire first term in
of elements of the state matrix. the curly bracketsin Egs.(A7) and(A8). The Hermitian part
The theory of quantum trajectori¢22] shows that it is of K, (for the ground stajealso corresponds exactly to the
possible to simulate incoherent transitions using Monte Carlédamiltonian which appears in the final equation of the Ap-
methodd 23], so this was done to obtain our second quantunpendix, Eq.(A12), which corresponds to the Hamiltonian of
mechanical simulations. A stochastic Safirger equation Eq. (14) in the experimentally relevant limit of <& (v

developed for atom optics by Dum, Zoller, and Rit§ed] ~1).
and Mdmer, Castin, and Dalibarf25] is used to include The point process incremends\;(t) anddN,(t) are, in
incoherent transitions. any infinitesimal time incremerdr, equal to either zero or

Rather than simulate the exact dynamics of the originabne. The probabilities for the latter are equal to the expecta-
master equatioti6) we follow Dyrting and Milburn[23] in  tion values of these stochastic processes and are, respec-
simulating an approximate master equation. The approximatgvely,
master equation is similar to that of Ed4) in that the atom

sees a potential. However, it is potentially a better approxi- (Y](1—2¢ sinT)sir?(q/2)| )

mation than that equation because we retain the excited state E[dN1]=7 ) dr, (30
of the atom|b). We derive this approximate master equation

as Eqgs.(A7) and(A8) in the Appendix, as a step along the E[dN,]=(T'/w)dT, (31)

route to deriving the master equati¢i¥) used above. The
method we use is related to, but uses different approximayith
tions from, that of Dyrting and Milburh23].

In the quantum jump simulations the atom is always in roz 2k
state|b) or |a), and the potential it sees depends on which n= T 5 =2xIm —. (32
state it is in. Thus the atom has a quantum center-of-mass 4o’ |v|*  o|v| Ry

state| ) and an internal state which can be eitaesr b but ] ) )
not a superposition of both. The advantage of this approxi- 1he jumpsiwhendN;=1 ordN,=1) cause a discontinu-
mation over the full master equati@f) is that it has a clear OuS change i) given by Eq.(27), and are accompanied by
classical analog, as will be discussed in Sec. Il B 3. a change in the internal state of the atom as follows:

In the scaled units of Eq2), the stochastic equation for

! dN;=1
the state vectofy) is

a — b absorption,

i dNy=1
dlgy=— I;dTK|l//>+dN1(T) b — a stimulated emission, (33
- . dN,=1
x( V(1—2esin7)sin(q/2) _1>|¢> b — a spontaneous emission.
(YI[N(1-2¢ sin7) sin(a/2) 1] )

o It is the absence of the first jump process in the smooth
expipg/k) evolution which causes the decay in the modulus of the wave
+dN2(7)(W_1> |4). (27 function referred to above, and from E@2) it is clear that
the rate of these jumps is related to the non-Hermitian part of
the effective HamiltonianK. When the modulus squared
drops below a preset random number, a jump is assumed to
occur anddN;(7)=1. This is explained in detail in Ref.
[24]. These jumps correspond to the third term in the curly
p2/2+2k(1—2¢ sinT)siré(q/2)/v*  for o=a brackets in Eqs(A7) and (A8).
= p22—2x(1—2s sinT)siR(q/2)/ v for o=b The second jump procgs@pontaneogs emissiprcan
(29 only occur when th_e atom is in _the excited stbt_eFor as
long as the atom is in the excited state, the time until a
spontaneous emission has an exponential waiting time distri-
bution with meanw/I", which is simple enough to calculate
) independently of the wave function modulus. This is ex-
=1 E (29) plained in detail in Ref[23]. These jumps correspond to the
' first term in Eqs.(A7) and (A8), proportional simply td".

Here the non-Hermitian effective Hamiltoni&depends on
the internal stater=a,b of the atom

with
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When a spontaneous emission occurs, the atom receives a

PHYSICAL REVIEW A 64 033407

initial atomic
random momentum kick represented pyin Eq. (27). It is waverpacke? ,
given by[23] P bin E. (21 @_ﬂ_’ﬂ_’ﬂ—'ﬂ """ @ oot
initial atormic +
— . . wave packet
p=ksin¢sind, (34 -1 @
where ¢ and # are the Euler angles for the direction of i
spontaneous emission relative to the atomic dipole moment ' odlistic
(which is orthogonal to the direction of motio®). They are @ ctomic
generated as followsp €[ 0,27) is a random angle with uni- disfribution

form distribution andd is given by

0= arcco%Z cos(

wherey e[0,1] is a random number with uniform distribu-

arccos2y—1)+4m
3

: (39

Incoherent fransition giving the
atom a momentum kick

Time evolution of the wave packet

— using the Schrodinger equation, length
of the arrow corresponds 1o the time of
evolution

tion. FIG. 1. Graphic representation of the quantum trajectory
For the initial states we used squeezed minimum uncefmethod.

tainty wave packets with a momentum width which corre-

sponds to the experimental spread in momentum of the initialf the error lies above a specified tolerance the simulation is
cloud. The wave packets are initially equally spaced insidgestarteds steps before and the step size is decreased. We
one well of the standing wave. The smooth evolution part ofhave founds=30 to work well. This method is used to pre-
the stochastic Schdinger equation is solved numerically us- vent unphysical behavior due to a too large relative error.

ing the split-operator methol®6]. In this method the non-
unitary Schrdinger equation

. d

ikl =K[y) (36)
has as a solutiofifor 67 short enough to neglect the time
dependence dK) equal to

i(T+V)or

lb(n)), @7

| (7+ 5T)>:eX£< —

where T=p?/2 depends only op and V=K—T depends
only ong. Using the approximation

which is correct to orderdr)?; the evolution can be simu-

_i(T+V)er

" ~exp —iTér/IX)exp —iVaoT/k)

Xexp —iTd7/2k), (39

lated very fast by using fast Fourier transforms to transform

between the momentumand positionq bases. An adaptive
time stepsize methofR27] is used to control the stepsize of
the method. Once everysteps the relative errap is calcu-
lated as

_ )= lypl

A TPV 39

where

| i) =exp(—iT 87r/2K)exp( —iV r/R)exp( —iT 87/2K)| ¢),
(40)

|hg)=exp(—iV Sr/K)exp( —iT sr/k)exp( —iV 87/X)| ).

Figure 1 shows a graphic representation of the method of
quantum trajectories for our system.

3. Classical simulations

In the classical regime one can use Hamiltons’s equations
to calculate the dynamics of the system. The Hamiltonian
evolution of a system preserves the Poisson bracket relation
between the position variabtpand the momentum variable

p[28]
{q(t)'p(t)}q,pzl-

To prevent unphysical behavior when using a numerical in-
tegration routine we used a symplectic integrator method
which intrinsically preserves the Poisson bracket relation
[29]. It was slightly changed to include time-dependent sys-
tems[33]. The Hamiltonian(which depends on the internal
state of the atomis given by

(41)

p?2+2k(1—2¢ sin7)sir?(g/2) for
Ho= p2/2—2k(1—2¢ sint)sir?(q/2) for o=b.

(42

o=a

This is identical to the non-Hermitian Hamiltonid, with
v set to unity.

To gain a realistic model incoherent transitions have been
included in the classical simulation. This can be done analo-
gously to the quantum trajectory simulations described above
using a Monte Carlo simulation. The atom swaps internal
statesa andb when a jump occurs as described in E@S).

The probabilities for the point process incremedts$; and
dN, are now given by

E[dN;]= 7(1—2¢ cosr)siré(q/2)dr, (43

E[dN,]=(T"/w)dT. (44)
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When a transition takes place the position of the atom re- L,

mains unchanged and the momentum is changed. When a T laser AOM, 4
absorption or stimulated emission takes plagbl{=1) mo- cam N Single mode fiber
mentum of the atom changes byl recoil. In case of a .........

spontaneous emission the atom receives a random momel
tum kick p calculated in exactly the same way as the quan-

5

P AOM, - PBSC
tum case. /2580
4. Other theoretical considerations —— I
Polarizer §
The methods presented above lead to an atomic momer ™, I_P_D—I
tum distribution resulting from the interaction of atoms with ™
a modulated optical standing wave which is turned off and % .
on instantaneously. To obtain more accurate results we hav Standing wave
added into our numerical simulations the interaction due to a L]

finite turn-on and turn-off time of the standing wave due to
the experimental restrictions when using an acousto-optic
modulator. The shape and length of the turn-on and turn-off FIG. 2. Experimental setup used for our experimént. L, are
were measured using a 280 MHz bandwidth photodetectotenses used to couple the laser beam in and out of the optical fiber
We have also found that it is important to match the beginwhich is utilized to optimize the pointing stability and to improve
ning and end phase of the standing wave in our theoreticdf® quality of the laser beam. AQMstabilizes the light intensity.
simulations exactly with the experimental conditions. ThisAOM2 produces the intensity modulation which is needed to pro-
was also accomplished using the photodetector mentionedt'ce an amplitude-modulated standing wave.
above. .

The experimentally measured data consists of atomic pot_emperature of around &K'.Th's corresponds to admo-
sition distributions after 10 ms ballistic expansion time asmentum spread of 13 recoil momenta. Then the MOT was

described in the section below. To obtain a theoretical positurmEd off but the repumping beam was left on so that the

tion distribution after 10 ms, we evolve the theoretical posi_ator:1s_naccirrnéjcljagefdgjén thEt:eg og:ic;;l;rlldstztr?é?ﬁ A\‘:\tg/: vc(:s
tion distribution after the standing-wave interaction for pumping pern Qs P 9

10 ms using a propagator method. The position distributiori)umed on. It was left on for a time corresponding to a num-
after 10 ms turns out to be very similar to the momentum er of periods of the modulation frequency. Both the begin-

distribution straight after the standing-wave interaction as thé&N9 and end phases Of. thg .modulatlon have to be carefully
free evolution effectively transfers all the momentum fea_chose_n to ensure the visibility of the resonances. Afte_r the
tures into the position distribution. Because of this we will standing wave is switched off, the atoms undergo a period of

sometimes refer to the experimental results as momentuff@!listic expansioritypically 10 ms for values dt<0.1 and
distributions, although they are, strictly speaking, positionUP to 16 ms for larger values &). Then an image of the
distributions. cloud is taken using the freezing molasses meftidd31]. In
Finally one needs to consider the finite position width ofthis technique the optical molasses is turned on again with
the initial cloud, which will contribute to the final position the magnetic field still turned off and the resulting fluores-
distribution. Therefore we convolute the final theoretical po-cence is viewed with a 16 bit charge-coupled-devic€D)
sition distribution with the initial position distributiotbe- ~ camera. The CCD array of the camera was cooled, leading to
fore the standing-wave interactipto obtain our final theo- @ quantum efficiency of around 80% and a rms read noise of
retical prediction. 6.7 electrons. The experimental setup is shown in Fig. 2.
A frequency stabilized titanium sapphire laser produces
Ill. EXPERIMENTAL SETUP up to 2.2 W of light at 780 nm with a linewidth of 1 MHz
and a frequency drift of 50 MHz per hour. This beam is first
For our experiments a standard magneto-optic trapassed through an 80-MHz acousto-optic modulator (AOM
(MOT) was used. The pressure in the vacuum chamber wass seen in Fig. )2and then into a polarization-preserving
around 10° Torr. The magnetic field coils produced a mag- single-mode optical fiber. The output beam goes through a
netic field gradient of 10! T/m in an anti-Helmholtz con- polarizing beam-splitter cube and part of the light is fed
figuration. The Earth’s magnetic field was zeroed using thehrough a polarizer to a photodetector, which gives an elec-
Hanle effec30]. When applying a magnetic field the mag- tronic feedback signal to the AOMon the other end of the
nitude of absorption of the laser beams changes slightlyiber. This reduces the standing-wave intensity noise, point-
when the laser is at resonance with the atomic vapor. Thithg instability and polarization noise to less than 1%. AOM
can be used to zero the magnetic field with high precisionmodulates the amplitude of this beam and produces an inten-
An injection-locking scheme was utilized to decrease thesity modulation of the forml,(1—2e sinwt). High beam
linewidth of the trapping diode laser down to 100 kHz, while quality (Gaussian profile after the AOM is ensured by
allowing all the power of the laser to be used in the trappingmonitoring the beam in the far field. To test the spectral
experiment. Around 10rubidium atoms were polarization purity of our modulated standing wave the modulated light
gradient cooled for 10 ms. This brought the atoms down to avave was observed on a fast photodetector and subsequent

Beam collimator Retro mitror
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FIG. 3. The position of the
resonances for loading and obser-
vation in phase space can be seen
v s : in (a). To be able to resolve the
distribution resonances using a CCD camera it
is important that the resonances
have maximum velocity. There-
fore they should be located on the
momentum axis for observation.
For loading the resonances need
®_ to be located on the position axis.
Part(b) shows the initial distribu-
tion of the atoms in phase space.
The pictures illustrates that the
resonances need to be placed on
the position axis for effective
(@) (0) loading to occur.

Phase space position of Ap
the resonances when
they are observed

Phase space position of
the resonances when
they are loaded o .

i Initial atomic
{

.’E

Fourier analysis of this signal indicated a spectral impurity of One needs to wait for approximately 4.25 cycles for the
about one part in a thousand. The light after AQid colli-  dynamics of the system to settle so that the resonances can
mated to a ¥ width of 2.85 mm. The beam passes throughbe observed. Chaotic motion needs some time to distribute
the vacuum chamber and through the atomic cloud and iatoms, which are positioned in phase space between the reso-
retroreflected to form the one-dimensional periodic opticalnances initially, to other phase space regions where chaos
potential. The alignment of the retroreflection was measuregersists(sea of chaos, inside the region of bounded motion

to be good to approximately 0.02°. There is a variation of thdf this has occurred resonances can emerge from the back-
scaled well depthc over the extent of the atomic cloud due ground of the chaotic region.

to the Gaussian profile of our standing-wave beam. This

amounts to approximately 2%. The final maximum irradi- v, PHASE-SPACE CHARACTERIZATION UTILIZING THE

ance of the standing wave in the region of the atomic cloud MODULATION PARAMETER & AND THE DRIVING

was 36.4-1 Wicn?. The whole experiment is computer AMPLITUDE
controlled using the Labview programming environment and ) . .
a general purpose interface b(GPIB) interface. Using the techniques described above we are able to pro-

vide detailed experimental analysis of size, position, and mo-
mentum of these resonances and compare experimental re-
sults with the applicable theory. For this introductory

Poincaresections(stroboscopic phase-space mapso-  discussion we concentrate on experiments with 0.1
vide an easy way to understand the classical dynamics of th@nodulation frequencw/27=300 kHz), being close to the
system. Atoms that start in a phase-space resonance rotateddantum regime, when the modulation parametés varied
phase space in time. FiguréaB shows the position of the and the scaled well depth is held constant{=1.15). The
resonances in phase space when they are loaded and whapper part of Figure 4 shows experimental res(dtdid line)
they are observed. The term “phase-space resonance” ings well as a quantum trajectory simulaticiistted ling for
plies that the resonances rotate with an angular velocity, sthe resulting atomic momentum distributions. Distinct peaks
that they have the same phase-space position after multipléd the momentum distribution correspond to phase-space
of the modulation period. Therefore one cycle is defined agesonances. Below the experimental data, Poinsaotions
one modulation period. Furthermore, it also implies that theyfor different values of the modulation parameteillustrate
rotate with the same angular frequency as they would in théhe classical phase space. The Poinca@tions are taken at
unmodulated case in phase spéfoe a period 1 resonange n+1/4 periods of the modulation frequency. Two islands of
[18]. The resonances are loaded when they are located on tis¢éability can be seen, encircled by a sea of chaos. These
position axis in phase space. This is easy to understand sineesult from second-order resonances, which bifurcate from
then they overlap with the initial atomic distribution shown the origin atx=1. The resonance width is proportionald¢o
in Fig. 3(b). To observe the resonance experimentally ongHowever, the islands of stability break up for larger values of
has to wait for at least a quarter cycleeriod 1 resonange ¢ and therefore do not scale with It can be seen that the
so that the resonances turn 90° and are positioned on tilsize and the shape of the center resonance and the two
momentum axis. When they are positioned on the momensecond-order resonances are strongly dependent on the
tum axis the standing wave is turned off. After a period ofmodulation parameter. Figurga shows the unmodulated
free evolution the momentum distribution can now be re-case. The region of bound motion is bound by the classical
solved experimentally by taking a picture of the atomic spa-separatrix. The motion of all atoms is regular. In Figb)4
tial distribution. Exact velocity measurements can be madéwo second-order resonances have emerged$0.22. The
by taking pictures of the distribution after different times andonset of chaotic motion can be seen. With increasing values
calculating the distance they have moved during that time. of ¢ the second-order resonances become more pronounced

IV. LOADING AND OBSERVATION OF RESONANCES
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=

results(solid line) for a range ofx between 1.11 and 1.36
with the scaled Planck’s constakt kept constant at 0.1
(modulation frequencyw/27=300 kHz) and the modula-
tion amplitudee kept constant at 0.32. This data was ob-
tained by adjusting the detuningjof the modulated standing
wave. Alternatively an adjustment of the modulation fre-
guency(with constant detuningcould be used to vary the
scaled well depthe¢ which would give similar results to that
of Fig. 5. Theoretical predictions from the quantum-
mechanical calculations are also shovdotted ling. The
lower section of Fig. 5 contains the corresponding Poincare
sections. One can see that with changing valuex dhe
velocity of the resonances is changed as is the size of the
R—" resonances. With increasingthe resonances become faster.
Momentum [recoils] We have chosen a smatl step size between Figs(&h and
€=0.00 €=022 £=023 5(b) to illustrate this increase in velocity without introducing
(a) (b) (©) a qualitative change of phase space. Figu® features the
emergence of a center island. Withincreasing even further
the second-order resonances move out, become smaller as
! shown in Fig. %d), and will eventually disappear in the sea
of chaos.

Slight discrepancies between quantum trajectory simula-
tions and the experimental data could result from nonunifor-
mities in the initial experimental position and momentum
distribution. Furthermore slight errors in the alignment of the
optical standing wave relative to the atomic cloud can pos-
sibly lead to discrepancies between theory and experiment.
In spite of such potential problems the agreement between
the experiment and theory is very good.

In the experiment we have found a maximum size of the
resonances for the scaled driving amplitudein a range
) | between 1.1 and 1.3, depending on the modulation parameter

o 3 - 3 e as predicted by theory. Nonlinear dynamics theory tells us
Momentum [recoils] that for every value of« there will be a modulation fre-

8?(;’)28 9:9‘;” €=(f‘;'4° quency which will be equal to the nonlinear natural fre-

quency of the system. When this occurs the system is in

FIG. 4. The upper section shows the experimental atomic mof€sonance. However, the size of the islands of regular motion
mentum distributiongsolid line) together with a quantum simula- resulting from these resonances is very sensitive to system
tion (dotted ling using the trajectory method of Sec. II B2 for parameters andx. In some cases the peaks in the momen-

No. of atoms [arb. units]

Position

No. of atoms [arb. units]

Position

different values of the modulation amplitude The lower part il- tum distribution are infinitely small, while in others they
lustrates the corresponding Poincaeetions. The size of the reso- form stable islands. Our simulations predict the formation of
nances is strongly dependent on the modulation amplitude observable stable resonances for driving amplitudes in the

rangex=1.0 to 1.5. It should be noted that the variation of
as can be seen in the experimental data and the quantutine scaled well deptk produces phase-space portraits which
simulations. The region of regular motion centered at zer@re similar to the ones which can be accomplished by varia-
momentum becomes smaller and eventually disappears in thien of the modulation parameter.
sea of chaos as can be seen in Figsl)44(f). The small
regions of regular motion positioned close to the region of VI. RESONANCE MOMENTUM
unbound motion(librations do not rotate. This means that
they cannot be observed in the experiment as they need to While we discussed period-1 resonances in the preceding
cross the position axis to be loaded as illustrated in FHig. 3 section, here we discuss the dynamics of period-2 resonances
Due to the small initial momentum width, atoms are notthat occur at lower values of. This is important as for this
loaded into the region of regular unbound motion. Neverthevalue of , higher values of the modulation frequency are
less, chaos leads to a homogeneous spread which is confinadcessible at a detuning which is not too small to destroy the
by the region of regular unbound motion. The small shoul-pendulum dynamics. If the detuning becomes too small the
ders visible in both experimental data and quantum simulaadiabatic elimination of the excited state breaks down and
tions result from this chaotic redistribution. the center-of-mass dynamics become far more complicated.
We have examined the phase space for different values dligher resonance momenta are accessible using higher
the scaled driving amplitude. Figure 5 shows experimental modulation frequencies. We have made momentum measure-
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FIG. 5. Experimental data
(solid line) and quantum trajectory
simulation (dotted ling showing
resonances as a function of the
scaled driving amplitudec. One
can see that the islands of regular
motion appear only for a small
range ofx. The momentum of the
resonances changes with The
corresponding Poincareections
are shown below.

No. of atoms [arb. units]

=)

Position

Momentum [recoils]
x=111 k=113 K=1.21 k=136
(a) (b) {c) (d)

ments of the resonances for a range of modulation frequerguency and the momentum of the resonances as predicted by
cies keepinge ande constant. The system can be describedtheory.
by the Hamiltonian given in Eq(2). As long ask ande are In fact these results can be interpreted as the experimental
kept constant, the resonances will appear at the same scalpgof for the mapping of several different physical experi-
momentum. The measured momentpmof the resonances Ments into one unique theoretical case using scaled variables.
is proportional to the scaled momentyrmultiplied with the ~ The scaled quantum and classical theories produce a unique
modulation frequencyw. Therefore, the momentum of the result fore and « kept constant, while the resonance mo-
resonances should scale linearly with modulation frequencynentum can be varied experimentally from 0 to many recoils
For different values of the modulation frequeney the by adjusting the modulation frequenay while compensat-
detuning was adjusted to obtain the same value of the modirg with the detunings.
lation parametek. Then the momentum of the resonances
was measured using ballistic expansion. A graph of the ex-
perimental results is shown in Fig. 6. The resonance mo-
menta and their errors shown are obtained from a least-
squares analysis of time-of-flight data. The error bars also Exploring the effects of noise on an atom-optical system
include the momentum error resulting from the finite widthis of importance as the mechanisms involved are closely re-
of the resonances as well as slight asymmetries in theilated to decoherence, which is an intense area of study due to
shape. There is a linear relation between the modulation frets importance for the development of new quantum tech-

VIl. EFFECTS OF SMALL NOISE AMPLITUDES
ON THE SYSTEM

35

30 ]
° 25 1 FIG. 6. Momentum of the
§ resonances for different values of
2 | the modulation frequency/27.
é The modulation amplitude and
3 the scaled well deptix are held
E» 181 constant. Results foe=0.32 are
§ shown. A linear fit is well within

10 4 the error bars. This mechanism

could be used for effective veloc-
. ity control of atoms.
o] T T T T T T T T T

0 100 200 300 400 500 600 700 800 900 1000
Modulation frequency (kHz)
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changes slightly, the difference between the two cases is
nearly negligible. It is remarkable that the resonances are
fairly stable even with quite significant amounts of noise.
Further experimental and theoretical studies of the effects
when stronger noise is introduced are under way and will be
reported in a future paper.
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o
Q
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o

0.005

o
f=1
(=]
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0.004

o
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Q
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0.003

Number of atoms (arb.units)
Number of atoms (arb.units)

VIll. ATOMIC MOMENTUM STATE PREPARATION

o
1=}
Q
IS

0.0021

For many experiments in atom optics momentum state
preparation is of significance. We have conducted prelimi-
50 o %0 50 0 %0 nary experiments to achieve this goal. The final goal is to
M°me”'”g; recolls M°mem“("t'))'“ recols efficiently prepare atomic wave packets at a certain position
in phase space with adjustable position and momentum
FIG. 7. Amplitude noise is introduced to the system. The resoSpread. Furthermore, it might also be desirable to achieve
nances are remarkably stable. While there was no noise added this with a large-scaled Planck’s constant and at high values
part(a), 10% amplitude noise was added to obtain garxtThe data  Of detuning to prevent decoherence due to incoherent absorp-
was obtained a&=0.26. tion and spontaneous-emission processes. We have experi-
mentally shown that the momentum of resonances is deter-
nologies. Goetsch and Graham have undertaken a theoreticained by the value of the modulation frequency when the
study where they analyzed the influence of spontaneousiodulation amplitude and the modulation parameterare
emission on the dynamical localization in atomic kept constant as shown in Sec. VI. This provides the oppor-
momentum-transfer experimenit84]. Experiments explor- tunity for rough momentum selection. Note that one disad-
ing the effects of noise and dissipation on dynamical localvantage of this method is the fact that the momentum spread
ization were carried out by Klappaef al.[35] and Ammann of the atoms contained in the resonances is proportional to
et al. [12,21]. We have studied how intensity noise affectsthe modulation frequency.
the stability and the loading of the resonances of the driven Furthermore, the scaled theory predicts that the momen-
pendulum. To implement this we added noise to the modutum of the resonances is slightly dependent on the modula-
lated standing wave by adding a random number betweertion amplitudee as shown in Fig. 4. The resonance momen-
—1 and 1 multiplied by both the full modulation amplitude tum is also strongly dependent on the scaled well depds
« and the noise factor between 0 and 1 to every point of thean be seen in Fig. 5. The disadvantage of trying to change
modulation signal. This corresponds to adding white noise téhe resonance momentum by means of changing eitrar
the modulation signal. Figure 7 shows experimental resultsx is that the amount of atoms contained in the resonances as
Figure 7a) shows the atomic distribution with no added well as the size change dramatically when changing these
noise. In Fig. Tb), 10% amplitude nois¢noise factor: 0.1  two parameters. Therefore changing either of these param-
was added to the standing wave. Although the ratio betweeaters does not represent an efficient solution to control the
the height of the center resonance and the period 1 resonanc®mentum of an atomic ensemble.

0.001F 0.0011

5000

FIG. 8. Resonances of the quantum-driven
pendulum. Up to around 65% of the atoms can be
loaded into the resonances for effective momen-
tum preparation. This data was obtained at a
modulation parameter of 0.27 and a modulation
frequencyw/27 of 900 kHz.

No. of atoms (arb. units)

1000

position [mm] position [mm]
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FIG. 9. Rather than turning the standing wave off when the Cycles
resonances are positioned on the momentum @asition 3, the
standing wave can be turned off slightly before or after that time. FIG. 10. Experimental data showing the momentum of the reso-
This corresponds to a rotation of the resonances by up tq@®°  nances for different end phases of the modulated standing wave.
sitions 1,2,4,5in phase space. Note the symmetry of positions 26.37 cycles correspond to turning off the standing wave at a modu-
and 4, 1 and 5. lation minimum. The data shown here were obtained at a modula-

tion frequencyw/27 of 900 kHz and a modulation parameter of

We have found a far more efficient way to control the 0.27. A sinusoidal fit is within the error bars.
momentum of an atomic ensemble while preserving atomic
coherence. Choosing the right parameters one can load up
65% of all atoms into the resonances. Figure 8 shows a
experimental atomic position distribution after 10-ms ballis-
tic expansion time. Here the two resonances were measun%ﬁ

to move with a momentum of 30.25 recoils. This methodatom ontics. We have characterized parts of the parameter
does not rely on changing any of the parameterk, or ¢. pucs. v 1zed p P

The velocity of the resonances can be well controlled by>Pace that determine the observed phase-space dynamics. We
changing the end phase of the modulation of the standin resented experimental evidence for how the size anq ampli-
wave. In this method we stop the modulation of the standingude Of these resonances depend on the modulation fre-
wave at different times, not necessarily when the resonancé®/ency, the scaled well depth, the modulation amplitude and
are positioned on the momentum axis. This corresponds to € scaled Planck’s constant of the system. With the appro-
rotation of the resonances by up to 45° from the observatioRriate choice of parameters even the central island of stabil-
position on the momentum axis as can be seen in Fig. 9. Wiy can be eliminated while retaining the second-order reso-
have achieved a velocity range of 35 recoils with this methodances. We have given experimental proof that the described
which could be even further extended by increasing theeXperimental system used can be accurately modeled by the
modulation frequency. Figure 10 shows the experimentalljfneory which we have provided here. We have developed
obtained velocities for different end phases of the modulatioiwo experimental methods in which the momentum of these
signal. The curve is approximately symmetric around 6.37€sonances can be controlled very accurately. One of the
cycles at which the resonances are positioned on the momeR1ethods allows us to fine tune the momentum of resonances.
tum axis. We have included a sinusoidal fit to show that thig=xperimental evidence for the accuracy and efficiency of this
velocity control mechanism can be explained by the rotatioimethod is given. In contrast to changing the modulation fre-
of the resonances in phase space. Note the two-cycle syrfiiency as a means for momentum control this method leaves
metry of this experiment, due to the fact that the resonancel§e momentum width of the resonances unchanged. We have

1R this paper we have presented experimental results and
theoretical techniques pertaining to this system.

We have given a thorough experimental investigation of
e quantum chaotic phase space of the driven pendulum in

which are utilized are period-2 resonances. investigated the effect of small-noise amplitudes on this
quantum chaotic system and found surprising stability.
IX. CONCLUSION In addition we have shown that the quantum chaotic

mixed phase space provides a range of possibilities for ef-
Atom optics is an ideal experimental setting to explore thefective quantum phase-space preparation. The results pre-
quantum driven pendulum and its classical analog. The dysented here are likely to be useful for atom interferometry,
namics are best understood from a quantum chaotic phafragg scattering, and perhaps even the coherent splitting of a
space or the classical analog, depending at which value @ose-Einstein condensate and other areas of atom optics. We
the scaled Planck’s constahtthe experiment is performed. have shown that up to approximately 65% of all atoms can
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be loaded into the resonances, allowing efficient atomic ve- . i
locity control. Pab= " 7 Pab™ E[QT(X-t)Pbb_PaaﬂT(X-t)]

Due to the control of the scaled Planck constant this ex-
periment provides an ideal environment for studies of quan- ) i
tum chaos and decoherence. Analyzing the driven pendulum +i6pap— %[pzipab], (Ad)
in atom optics is an effective means to explore the border-
land between quantum and classical physics as the experi-
ments illustrate that one needs to consider the wave nature of
atoms to accurately explain the atomic dynamics.

Further investigation is in progress addressing quantum .
phenomena which can occur in this system, some of which _ '_[pz Pob] (A5)
are predicted by Dyrting, Milburn, and Holméd48] and 2hm*" Fbed
Sanders and Milburp32].

. i
Pob=— L' ppp— E[Q(Xat)Pab_ PoaQ(x,1)]

Now in the experiment|Q(x,t)|<Q~4.65<10° s1,
and 8~7 GHz (§~44x10° s 1). Thus we are always in
the well-detuned regime whe@®< 6. As a result, most of

The corresponding author W.K.H. would like to thank the time the atom will be in the ground state with,,
Gerard Milburn and Cathy Holmes for some very helpful ~(2/8)?, as we will show. As long as we are not interested
discussions as well as Howard Carmichael for some interesth evolution faster than the time scdle *, we can then slave
ing discussions concerning quantum trajectories. H.M.Wpap @nd ppp, t0 paq. Specifically, we see from EqA4) that
would like to acknowledge enlightening discussions withp,p Will quickly come to equilibrium(at ratel'/2) with re-
Prahlad Warszawski. This work is supported by the Austraspect to the value op,,, which evolves slowly. Setting
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lian Research Council. pab=0 thus gives
i T _0of
APPENDIX: ADIABATIC ELIMINATION OF THE _ I[paa2'(X,1) = Q' (X, 1) ppp] (A6)
UPPER STATE Pab T—2is '

The adiabatic elimination technique we use here is similar

to that introduced by Graham, Schlautmann, and Z¢ll6t Since()(x,t) is time dependent, this expression can only

for the same system, but we give a more complete derivatioR€ Valid if the rate of decay/2, is much greater than the
rate of variation of Q(x,t). In the experimentl’/2=19

including justifications for the approximations made using ¥ -1 whi ; . .
the parameters of the experiment. We also relate the equas10” S~ while the angular modulation frequency is typi-
tions to those of Dyrting and Milburf23], derived using a  cally an order of magnitude smaller. In deriving E46) we

different technique, which are the basis for the quantum tral'@ve also assumed that the kinetic energy is much less than
jectory simulations of this paper. hé andal’ and so can be ignored compared to them. In the

We can write the master equation for the two-level atomEXPerimento~44x 10° s 4, I123:8X 10" s™*, and the re-
in a light field as coil frequency is 3.810° s 1. Since the X momentum
half-width is of order 7 recoil momenta, the kinetic energy
divided by# is of order 18 s 1. Thus the above assump-
tions are justified.

Substituting Eq(A6) into Eq.(A5) and Eq.(A3) give the
following coupled equations:

. 1 i
p=r BO’pO’T—E{UTO',p} —E[Q(X,I)UT-F aQT(x,1),p]

~idlotopl- 5 —lP%p], (A1)

. 1
Paa=I"Bppp+ m{l ST QX,),paal
where for an arbitrary operatét
—T{QT(X,1) Q(X,1),paa 2+ T QT(X,1) ppp2 (X, 1)}

— 2n ) el knyXp a—ikngx |
BR fd n ¢(n)e ™Re N, (A2) ~ 57 [P2padl, (A7)

Explicitly using the internal state basisb we have 1
— {71 HQT(X1), pop]

pob=—T ppp+
i Pbb Povt 1o s
o _ T _
Paa=1 Bpon= 514 X pba= panll(x.1)] TR QX pol 2+ TR (X, paa (x,1))
i i
= S7mLP Paal, (A3) = S7mLP%pob]- (A8)
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These are the equations which are simulated by the quantubatic elimination[36] removes this requirement, and gives a
trajectories in Sec. 1l B 2. slightly different result in the end. This is based on moving
We can simplify the system still further by adiabatically INt0 the interaction picture with respect to the ground-state

liminati h b Ndoe—=0. Thi potentialH = (2/48) Q. (x,t)QT(x,t) (which results from the
eliminating the upper statgy,, by settingppp=0. This re-  g4iapatic eliminationbefore beginning the adiabatic elimi-
quires that the damping raté be much greater than the rate pation, It does not yield the above Dyrting-Milburn equa-

of variation of(x,t) and the kinetic energy divided by.  tions which are the basis for our quantum trajectory simula-
These are the same approximations as used above in derivifigns. For this reason, and because the correction to our final
Eq. (A6). Strictly, this technique also requires thBt be  master equation is small, we will continue to follow the sim-
much greater tha}?/ 5, which is not satisfied for our sys- pler procedure we have used so far.

tem. It can be shown that a more rigorous approach to adia- Slaving py;, t0 paa by settingp,,=0 gives

{Q(Xat)QT(th)vpbb}/2+ [ (5/r)[Q(Xat)QT(X1t)1pbb] . Q(Xat)PaaQT(Xat)
I2+46° O T%4+48%

Pobt (A9)

The first correction term on the left-hand sideHS) (the  Denoting p.,m Simply asp, the above scaling implies that
anticommutator scales likeQ2?/462, which is, as we have p=p,,. Using this, and substituting the above expression
shown above, negligible. The second correction term on théor p,, into Eq. (A3) gives finally

LHS (the commutatgrcannot be removed so simply, since

(as noted abovyethe experimental parameters do not satisfy

I'>?/5. In the more sophisticated treatment of making the r 1

adiabatic approximation in an interaction picture, this term p=——— BQT(x,t) pQ(x,t) — E{Q(x,t)QT(x,t),p}

does not appear. Knowing this, we can justify dropping it I*+4s

here. Thus we arrive at the simple expression

[OX001 (X001 5—[P2p]. (AL

—
QT (X, 1) paaQ(x,1) I?+46?
Pbb= e, (A10)
I'“+4¢
which scales as(t/8)? as claimed. For 6> this is identical to Eq(14). The more sophisticated

The reduced density operator for the center-of-mass alon@diabatic elimination would produce an extra Hamiltonian
is given by the partial trace over the internal atomic states:term scaling a€)*/5°. For the experimental parameters, this
is only about 1% as large as the dominant Hamiltonian term

Peom= TTintP = Paat Pbb (All)  scaling as2?/ 6, and can thus be safely ignored.
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