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Experimental study of the quantum driven pendulum and its classical analog in atom optics
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We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated
optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution
containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the
atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory,
which we have developed and refined. We show experimental proof that the size and the position of the
resonances in phase space can be controlled by varying several parameters, such as the modulation frequency,
the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found
a surprising stability against amplitude noise. We present methods to accurately control the momentum of an
ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state
preparation.
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I. INTRODUCTION

The field of ‘‘quantum chaos’’ was born in 1917 whe
Albert Einstein tried to unravel which mechanical syste
could be subjected to the Bohr-Sommerfeld-Epstein qua
zation rules@1#. He concluded that in the absence of inva
ant tori in phase space these quantization rules canno
used and that, moreover, this absence applies to most
tems. Chaos is associated with a rapid divergence of a
trarily close points in phase space@2#. Strictly speaking there
can be no such thing as quantum chaos as an infinitely
level of detail is needed to describe the trajectories of a c
sical chaotic system. In reality a system is bound by Heis
berg’s uncertainty principle restricting the amount of det
of position and momentum needed for classical chaos. C
sical chaos can be described as the emergence of compl
on infinitely fine scales in classical phase space. In contr
in quantum mechanics structure is smoothed away in an
below the size of\ @2,3#.

During the years since the birth of quantum chaos, sign
cant amounts of theory have been created to give a b
description of chaotic physical systems in a quantum
namical context. The key question is, what happens to c
sical chaos in the quantum world? One approach is to s
generic features of quantum dynamics for a system wh
classical description exhibits chaotic dynamics. One exam
of such features is dynamical localization, a quantum s
pression of classical diffusion, which was discovered
Fishmanet al. @4# in numerical studies of the periodicall
kicked quantum rotor. Conductance fluctuations in ballis
microstructures associated with complex electron trajecto
constitute another example of the occurrence of quan
chaos @5#. Finally, molecular excitation experiments ca
show interesting quantum features~e.g., Anderson localiza
tion, an effect related to dynamical localization! if the scaled
Planck’s constant is kept finite but exhibits chaotic dynam
in the classical limit (\50) @6#. To gain a different perspec
tive on the quantum nature of classical chaos some exp
ments look at the manifestations of classical chaos in w
1050-2947/2001/64~3!/033407~15!/$20.00 64 0334
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propagation. In these experiments the time-independ
wave equation, the Helmholtz equation, is mathematica
equivalent to the time-independent Schro¨dinger equation for
a billiard system. In billiard-shaped cavities eigenfrequenc
and eigenfunctions can be measured by microwave abs
tion. In 1991 quantum scars, which are concentrations
probability along periodic orbits, were experimentally o
served by Sridhar@7#. Experiments to study the quantum
dynamics of classically chaotic systems have been car
out on Rydberg atoms, measuring microwave ionization
highly excited hydrogen atoms@8,9#. One result of these ex
periments is the recognition of different regimes determin
by how well classical and quantum mechanics agree w
each other. These regimes are characterized by the sc
microwave frequency given byV05n0V, wheren0 is the
principal quantum number of the initial state andV the mi-
crowave frequency.

It was first proposed by Graham, Schlautmann, and Zo
@10# to use atom manipulation experiments to test predicti
of quantum chaos. Cold atoms provide new grounds for
periments in quantum chaos which have some advanta
compared to Rydberg atom experiments. First, the poten
that are used are extremely well approximated as o
dimensional potentials. In contrast, the potentials involved
the Rydberg-atom ionization experiments are much harde
approximate by one-dimensional potentials. At present
three-dimensional quantum simulations needed for th
highly excited atoms are not feasible without severe appro
mations @9#. Second, in atom optics there is considera
control over the potentials. In the Rydberg-atom case
Coulomb potential dictates the dynamics and the system
complicated due to electron-electron interactions~the chaotic
trajectory of the outer electron in a Rydberg atom can clos
approach the shell of inner electrons!. In atom optics one can
tailor the potentials to match the theoretical description a
indeed achieve simple nonlinear potentials such as the n
linear pendulum which we consider in this study. We c
also achieve a considerable variety of modulation dynam
Finally, atom-optical systems are far less dissipative a
©2001 The American Physical Society07-1
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noisy than Rydberg-atom experiments due to laser coo
and the ability to operate far off resonance. Hence ato
optical systems can be well approximated by Hamilton
dynamics.

Moore et al. @11# and Ammannet al. @12# showed that
cold atoms can be used to simulate the quantum delta kic
rotor ~Q-DKR!. Raizen’s group also reported the experime
tal observation of dynamic localization in cold atoms@13#
which is the quantum suppression of chaotic diffusion. It c
be roughly understood by considering that classical cha
paths can interfere destructively. Decoherence will tend
suppress this quantum behavior and leads to classical
dynamics.

Our group has recently demonstrated the existence
phase space resonances for the quantum driven pend
~QDP! in cold atoms that we report on in this paper. A
though it is probably the first time that such phase-sp
resonances have been observed for the QDP, Raizen an
workers had previously observed momentum distributio
that are due to atoms being trapped in a first-order reson
in the dynamics of cold atoms in a phase-modulated stan
wave @14#. This particular first-order resonance correspon
to the central elliptic fixed point at the origin of phase spa
In contrast we are investigating second-order resonance
the QDP, which are distinct features in the momentum d
tribution of cold atoms traveling with a nonzero mean velo
ity on top of a background of atoms moving chaotically
phase space.

Phase-space resonances have also been seen in
physical systems. For example, they have been reporte
plasma physics. Sinclair, Hosea, and Sheffield@15# mapped a
toroidal magnetic field in a stellarator using phase stabili
electrons. Islands of stability emerged in the phase-space
namics of the electrons. In fluid flow experiments partic
motion in the fluid was shown to have chaotic and regu
phase-space regions@16#. In experiments on microwave ion
ization of Rydberg atoms strong classical resonance eff
in the final-bound-state quantum number distribution w
found by Bayfield and Sokol@17#. These peaks cannot b
associated with any quantum-mechanical resonance tra
tion @9#.

Atom-optics experiments provide a good opportunity
examine the transition between classical and quantum
chanics. Dyrting and co-workers@18# made a theoretica
study of cold atoms which are subjected to a sing
frequency amplitude-modulated standing wave. They p
dicted quantum tunneling between phase-space resona
for this system. Hug and Milburn@19# showed that quantum
mechanical velocity predictions for second-order pha
space resonances disagree by up to 20% with classical
dictions in the quantum driven pendulum@20#.

We analyze in this study the phase-space resonances
we found in the dynamics of the experimental realization
the quantum driven pendulum and its classical analog w
cold atoms and test theoretical predictions. The sys
shows either classical or quantum behavior, depending on
parameters chosen for the system. In the context of this s
we mean by quantum behavior a situation where a class
simulation cannot predict some of the observed experime
03340
g
-

n

ed
-

n
ic
o
ke

of
um

e
co-
s
ce
g

s
.

for
-
-

ther
in

d
y-

r

ts
e

si-

e-

-
-

ces

-
re-

hat
f
h
m
he
dy
al
al

features while a quantum simulation can. This constitutes
importance of the system for quantum chaos studies. We
analyze here the observed second-order phase-space
nances in detail. We present experimental findings show
how they can be manipulated and how to momentum con
them. We give an overview of the resonance dynamics
different parameter regimes to characterize the atomic
namics qualitatively and quantitatively. A surprising range
dynamics arises. Furthermore, we present methods for
cient momentum phase-space state preparation utilizing
quantum chaotic phase space of the QDP. This could ha
variety of applications in atom optics, for example bea
splitters and atomic interferometry. Furthermore, we w
show introductory results on how noise affects the system

II. DESCRIPTION OF THE QUANTUM DRIVEN
PENDULUM AND ITS CLASSICAL ANALOG

Our QDP experiments have been carried out using c
rubidium atoms that are positioned in a far detuned opt
standing wave. Modulation of the intensity of the standi
wave leads to an effective Hamiltonian for the center-
mass motion~as shown in the Appendix! given by

H5
px

2

2m
1

\Veff

4
~122« sinvt !sin2~kx!, ~1!

where the effective Rabi frequency isVeff5V2/d, V
5GAI /I sat is the resonant Rabi frequency,« is the modula-
tion parameter,v is the modulation angular frequency,G is
the inverse spontaneous lifetime,d is the detuning of the
standing wave,t is the time, andpx the momentum compo
nent of the atom along the standing wave. HereI is the
spatial mean of the intensity of the unmodulated stand
wave ~which is half of the peak intensity soV
5GAI peak/2I sat) and I sat is the saturation intensity. Using
scaled variables@11# the Hamiltonian is given by

H5p2/212k~122« sint!sin2~q/2!, ~2!

whereH5(4k2/mv2)H, q52kx, p5(2k/mv)px and k is
the wave number. The driving amplitude is given by

k5v rVeff /v
25

\k2Veff

2v2m
, ~3!

wherev r5\k2/2m is the recoil frequency andt5tv is the
scaled time variable. The commutator is given by

@p,q#5 i -k, ~4!

where the scaled Planck’s constant is-k58v r /v. This system
can be seen to be equivalent to a driven pendulum, bec
the Hamiltonian is equivalent to that of an amplitude-driv
pendulum@18#.

The system exhibits classical and quantum-mechanica
gimes determined by the value of the scaled Planck’s c

stant-k @10#. To understand the nature of the resonances
best to estimate first when they can be treated classically
7-2
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EXPERIMENTAL STUDY OF THE QUANTUM DRIVEN . . . PHYSICAL REVIEW A64 033407
when one has to use a full quantum simulation to predict
dynamics of the system. The scaled Planck’s constant ca
rewritten as

-k5
4\k2

vm
54\

4p2

l2v
54\p2S 1

l

2 S l

2T
mD D 5

4\p2

2pI 0
5

h

I 0
,

~5!

whereT is the modulation period,\ is Planck’s constant,l is
the wavelength, andI 0 is the action of a free particle over th
distancel/2 in the timeT. Our one-dimensional system ca
be described in the corresponding two-dimensional ph
space which is spanned by momentum and position coo
nates. The position coordinate axis is orientated along
standing wave. The action of the system, multiplied by 2p,
is given by the area in phase space, which is encircled by

trajectory of a particle.-k can be interpreted as the ratio
Planck’s constant to the action of a particle in the syst
described. Now if the phase-space area of a resonance
the same order as\ we know that Heisenberg’s uncertain
relation forbids simulation of the dynamics using classi
trajectories but it rather requires the atoms to be treate

wave packets. Thus-k will indicate in which regime the ex-
periment is carried out. Therefore we know there is so

minimum order of magnitude of-k which must be exceede
before we expect to see differences between quantum
classical dynamics on a given time scale.

Quantum effects can be observed only if the decohere
is kept to a minimum. The magnitude of the detuning w
determine the amount of decoherence introduced into
system because the less the standing wave is detune
more incoherent transitions~e.g., spontaneous emission! will
occur. We now describe the full quantum dynamics, inclu
ing spontaneous emission.

A. The quantum master equation

Quantum mechanically, the state of the system is
scribed by a density operatorr. In order to describe sponta
neous emission as well as the motion induced by the sta
ing wave it is necessary to use a quantum master equa
Considering only motion in the direction of the standi
wave, and working in the interaction picture, this is

ṙ52
i

\
@H,r#1GL1r. ~6!

HereH is the Hamiltonian for the center-of-mass and int
nal state of the atom, given by

H5
px

2

2m
2\ds†s2

\

2
@V~x,t !s†1V†~x,t !s#. ~7!

Here V(x,t) is the position and time-dependent Rab
frequency operator for the atom in the standing wave and
is the detuning of the standing wave. The atomic opera
are defined in terms ofs5ua&^bu, whereua& and ub& corre-
spond to ground and excited states, respectively.
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The superoperatorL describes the incoherent evolutio
due to the coupling to the vacuum field modes at rateG and
is given by

L15E d2nW f~nW !D@eiknxxs#. ~8!

Here k is the wave number of the spontaneously emit
light, nW is a unit vector describing the direction of the spo
taneously emitted photon, andf(nW ) is the dipole radiation
distribution for this direction

f~nW !5
3

8p S 12
~dW •nW !2

dW •dW
D , ~9!

wheredW is the atomic dipole vector. The superoperatorD is
defined for arbitrary operatorsA andB by

D@A#B[ABA†2~A†AB1BA†A!/2. ~10!

Only thex componentnx appears in the superoperator
Eq. ~8! because we are only interested in motion in thex
direction. This is the direction of propagation of the lig
beams, so the dipole vector~which is parallel to the polar-
ization vector of the light! is perpendicular to thex direction.
This enables the integral in Eq.~8! to be simplified to

L15E du W~u!D@eikuxs#, ~11!

where

W~u!5H 3

8
~11u2! for uuu<1

0 for uuu.1.

~12!

Note thatu can be interpreted as thex component of the
momentum kick to the atom, in units of\k.

The evolution described by the master equation~6! is not
obviously related to that generated by the Hamiltonian~1!.
For a start, the real particle is an atom with two intern
states whereas the ideal particle has no internal states. To
the relation between the two models it is necessary to a
batically eliminate the upper level of the atom. This proc
dure is outlined in the Appendix where we also quant
some of the approximations involved. It is valid only if th
detuningd is much greater than the maximum of the Ra
frequency V(x,t). In the experiment the modulate
standing-wave Rabi frequency has the form

V~x,t !5VA122« sinvt sinkx, ~13!

which gives the master equation

ṙ52
i

\
@H,r#1lL2r. ~14!

Here the Hamiltonian is
7-3
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H5
px

2

2m
1

\Veff

4
~122« sinvt !sin2~kx!, ~15!

which is the same as in Eq.~1!, with Veff5V2/d. The effec-
tive damping rate isl5G(V/2d)2 and the superoperatorL2
is

lL25lE du W~u!D @eikuxA122« sinvt sinkx#

~16!

5
G

d

Veff

4
~122« sinvt !E du W~u!D@eik(u11)x

2eik(u21)x#. ~17!

B. Simulation methods

To obtain reliable theoretical data we have utilized tw
different methods to obtain our quantum simulations. T
dynamics are modeled using either the master equatio
quantum trajectories. These methods are inherently differ
Both have been tested and found to give essentially iden
results, strengthening the validity of the presented theory
allow a comparison with classical physics we also prese
method to obtain classical simulations. This will be of im
portance for future decoherence and quantum chaos stu

1. Simulations using the master equation

Since the Hamiltonian~15! is periodic inx, it would be
natural to consider using the momentum states as a basi
simulating the evolution. However, as the final express
~17! for L2 indicates, spontaneous emission following t
absorption of a photon from the standing wave enable
transfer of momentum of any amount between22\k and
12\k ~because the momentum kick is projected onto thx
axis!. This means that an exact one-dimensional simula
of the master equation would require a dense set of mom
tum states.

In practice, this dense set is not necessary as the in
conditions have a finite momentum spread which will sm
out any fine structure. In fact, the initial conditions from t
experimental setup have a momentum spread of order\k
which means that features of order\k are not resolvable. It
therefore makes sense to approximate the continuous
mentum transfer due to spontaneous emission by disc
momentum transfer in units of\k in order to take advantag
of the symmetry of the Hamiltonian. This is achieved
replacingL2 by

L35~122« sinvt ! (
u521,0,1

V~u!D @eik(u11)x2eik(u21)x#,

~18!

where V(u) is a discrete approximation toW(u). This is
similar to the approach of Ref.@21# but is more rigorous.

ApproximatingW(u) by V(u) is not a unique procedure
Here we adopt the method of choosingV(u) such that the
zeroth, first, and second moments agree. That is,
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E W~u! du515V~21!1V~0!1V~1!, ~19!

E W~u!u du5052V~21!1V~1!, ~20!

E W~u!u2 du5 2
5 5V~21!1V~1!. ~21!

The first condition here is just thatV is normalized. The
second is thatV reproduces the correct mean momentu
kick ^Dp& in spontaneous emission~i.e., zero!. The third is
that V reproduces the correct mean squared momentum
^(Dp)2&5(2/5)(\k)2. The three conditions imply

V~21!5 1
5 , V~0!5 3

5 , V~1!5 1
5 . ~22!

Under this approximation, we can write the master eq
tion in the momentum basis as

ṙ52
i

\
@H,r#1lL3r, ~23!

where

H5
1

2m (
n

~p01\kn!2un&^nu

1
\Veff

16
~122« sinvt !~R21L222I !, ~24!

whereun& is the momentum stateup01\kn& ~wherep0 is an
arbitrary momentum! and

L35 1
5 ~122« sinvt !$D@R22I #12D@R2L#1D@ I 2L2#%.

~25!

HereR is a unitary operator~corresponding toe2 ikx) which
raises the momentum by\k, andL ~corresponding toeikx)
similarly lowers it by\k,

R5L215L†5(
n

un11&^nu, ~26!

and I 5(nun&^nu.
Since all of the operators in the master equation~23! can

be represented by matrices in theun& basis, it is a simple
matter to solve the equation using a suitable numerical e
ronment such asMATLAB . The initial state matrix̂nur(0)un&
is found by assuming a Gaussian initial momentum distri
tion of 1/e half width of 6.5\k which forms the diagona
elements ofr(0). To obtain smoother results a new set
momentum states is chosen, still spaced by\k, but shifted in
momentum by fractions of\k compared to the original set
The different density matrices are evolved and the results
combined to gain a more accurate result.

2. Simulations using quantum trajectories

Without making the approximations of adiabatic elimin
tion of the upper level of the atom, and discretizing t
7-4
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spontaneous-emission recoil, it would be numerically intr
table to solve the initial master equation~6!. That is because
of the size of the state matrix. However, it is possible
simulate the evolution of that equation stochastically, by t
ing a large ensemble of quantum trajectories for the s
vector. This can be done as the number of elements of
state vector is roughly equal to the square root of the num
of elements of the state matrix.

The theory of quantum trajectories@22# shows that it is
possible to simulate incoherent transitions using Monte C
methods@23#, so this was done to obtain our second quant
mechanical simulations. A stochastic Schro¨dinger equation
developed for atom optics by Dum, Zoller, and Ritsch@24#
and Mo” lmer, Castin, and Dalibard@25# is used to include
incoherent transitions.

Rather than simulate the exact dynamics of the origi
master equation~6! we follow Dyrting and Milburn@23# in
simulating an approximate master equation. The approxim
master equation is similar to that of Eq.~14! in that the atom
sees a potential. However, it is potentially a better appro
mation than that equation because we retain the excited
of the atomub&. We derive this approximate master equati
as Eqs.~A7! and ~A8! in the Appendix, as a step along th
route to deriving the master equation~14! used above. The
method we use is related to, but uses different approxi
tions from, that of Dyrting and Milburn@23#.

In the quantum jump simulations the atom is always
stateub& or ua&, and the potential it sees depends on wh
state it is in. Thus the atom has a quantum center-of-m
stateuc& and an internal state which can be eithera or b but
not a superposition of both. The advantage of this appro
mation over the full master equation~6! is that it has a clear
classical analog, as will be discussed in Sec. II B 3.

In the scaled units of Eq.~2!, the stochastic equation fo
the state vectoruc& is

duc&52
i

-k
dtKuc&1dN1~t!

3S A~122« sint!sin~q/2!

^cu@A~122« sint! sin~q/2!#2uc&
21D uc&

1dN2~t!S exp~ ip̄q/-k!

A^cuc&
21D uc&. ~27!

Here the non-Hermitian effective HamiltonianK depends on
the internal states5a,b of the atom

K5H p2/212k~122« sint!sin2~q/2!/n* for s5a

p2/222k~122« sint!sin2~q/2!/n for s5b
~28!

with

n512
iG

2d
. ~29!
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The imaginary part ofn makesK non-Hermitian. The non-
Hermitian part corresponds exactly to the anticommuta
~the second term in the curly brackets! in Eqs. ~A7! and
~A8!. It causes the modulus of the wave function to dec
This is because the smooth evolution takes into account o
what happens when there are no jumps. The Hermitian
of K corresponds exactly to the commutator~the first term in
the curly brackets! in Eqs.~A7! and~A8!. The Hermitian part
of Ka ~for the ground state! also corresponds exactly to th
Hamiltonian which appears in the final equation of the A
pendix, Eq.~A12!, which corresponds to the Hamiltonian o
Eq. ~14! in the experimentally relevant limit ofG!d (n
'1).

The point process incrementsdN1(t) anddN2(t) are, in
any infinitesimal time incrementdt, equal to either zero or
one. The probabilities for the latter are equal to the expe
tion values of these stochastic processes and are, res
tively,

E@dN1#5h
^cu~122« sint!sin2~q/2!uc&

^cuc&
dt, ~30!

E@dN2#5~G/v!dt, ~31!

with

h5
GV2

4vd2unu2
5

l

vunu2
523Im

2k

-kn*
. ~32!

The jumps~whendN151 or dN251) cause a discontinu
ous change inuc& given by Eq.~27!, and are accompanied b
a change in the internal state of the atom as follows:

a →
dN151

b absorption,

b →
dN151

a stimulated emission, ~33!

b →
dN251

a spontaneous emission.

It is the absence of the first jump process in the smo
evolution which causes the decay in the modulus of the w
function referred to above, and from Eq.~32! it is clear that
the rate of these jumps is related to the non-Hermitian par
the effective HamiltonianK. When the modulus square
drops below a preset random number, a jump is assume
occur anddN1(t)51. This is explained in detail in Ref
@24#. These jumps correspond to the third term in the cu
brackets in Eqs.~A7! and ~A8!.

The second jump process~spontaneous emission! can
only occur when the atom is in the excited stateb. For as
long as the atom is in the excited state, the time unti
spontaneous emission has an exponential waiting time di
bution with meanv/G, which is simple enough to calculat
independently of the wave function modulus. This is e
plained in detail in Ref.@23#. These jumps correspond to th
first term in Eqs.~A7! and ~A8!, proportional simply toG.
7-5
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When a spontaneous emission occurs, the atom receiv
random momentum kick represented byp̄ in Eq. ~27!. It is
given by @23#

p̄5-k sinf sinu, ~34!

where f and u are the Euler angles for the direction
spontaneous emission relative to the atomic dipole mom
~which is orthogonal to the direction of motionx). They are
generated as follows:fP@0,2p) is a random angle with uni
form distribution andu is given by

u5arccosF2 cosS arccos~2y21!14p

3 D G , ~35!

whereyP@0,1# is a random number with uniform distribu
tion.

For the initial states we used squeezed minimum un
tainty wave packets with a momentum width which cor
sponds to the experimental spread in momentum of the in
cloud. The wave packets are initially equally spaced ins
one well of the standing wave. The smooth evolution par
the stochastic Schro¨dinger equation is solved numerically u
ing the split-operator method@26#. In this method the non-
unitary Schro¨dinger equation

i -k
d

dt
uc&5Kuc& ~36!

has as a solution~for dt short enough to neglect the tim
dependence ofK) equal to

uc~t1dt!&5expS 2
i~T1V!dt

-k
D uc~t!&, ~37!

where T5p2/2 depends only onp and V5K2T depends
only on q. Using the approximation

expS 2
i ~T1V!dt

-k
D 'exp~2 iTdt/2-k!exp~2 iVdt/-k!

3exp~2 iTdt/2-k!, ~38!

which is correct to order (dt)2; the evolution can be simu
lated very fast by using fast Fourier transforms to transfo
between the momentump and positionq bases. An adaptive
time stepsize method@27# is used to control the stepsize o
the method. Once every§ steps the relative errorw is calcu-
lated as

w5
i uca&2ucb&i

i uc&i , ~39!

where

uca&5exp~2 iTdt/2-k!exp~2 iVdt/-k!exp~2 iTdt/2-k!uc&,
~40!

ucb&5exp~2 iVdt/2-k!exp~2 iTdt/-k!exp~2 iVdt/2-k!uc&.
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If the error lies above a specified tolerance the simulation
restarted§ steps before and the step size is decreased.
have found§530 to work well. This method is used to pre
vent unphysical behavior due to a too large relative er
Figure 1 shows a graphic representation of the method
quantum trajectories for our system.

3. Classical simulations

In the classical regime one can use Hamiltons’s equati
to calculate the dynamics of the system. The Hamilton
evolution of a system preserves the Poisson bracket rela
between the position variableq and the momentum variabl
p @28#

$q~ t !,p~ t !%q,p51. ~41!

To prevent unphysical behavior when using a numerical
tegration routine we used a symplectic integrator meth
which intrinsically preserves the Poisson bracket relat
@29#. It was slightly changed to include time-dependent s
tems@33#. The Hamiltonian~which depends on the interna
state of the atom! is given by

Hs5H p2/212k~122« sint!sin2~q/2! for s5a

p2/222k~122« sint!sin2~q/2! for s5b.
~42!

This is identical to the non-Hermitian HamiltonianKs with
n set to unity.

To gain a realistic model incoherent transitions have b
included in the classical simulation. This can be done ana
gously to the quantum trajectory simulations described ab
using a Monte Carlo simulation. The atom swaps inter
statesa andb when a jump occurs as described in Eqs.~33!.
The probabilities for the point process incrementsdN1 and
dN2 are now given by

E@dN1#5h~122« cost!sin2~q/2!dt, ~43!

E@dN2#5~G/v!dt. ~44!

FIG. 1. Graphic representation of the quantum traject
method.
7-6
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EXPERIMENTAL STUDY OF THE QUANTUM DRIVEN . . . PHYSICAL REVIEW A64 033407
When a transition takes place the position of the atom
mains unchanged and the momentum is changed. Whe
absorption or stimulated emission takes place (dN251) mo-
mentum of the atom changes by61 recoil. In case of a
spontaneous emission the atom receives a random mo
tum kick p̄ calculated in exactly the same way as the qu
tum case.

4. Other theoretical considerations

The methods presented above lead to an atomic mom
tum distribution resulting from the interaction of atoms wi
a modulated optical standing wave which is turned off a
on instantaneously. To obtain more accurate results we h
added into our numerical simulations the interaction due
finite turn-on and turn-off time of the standing wave due
the experimental restrictions when using an acousto-o
modulator. The shape and length of the turn-on and turn
were measured using a 280 MHz bandwidth photodetec
We have also found that it is important to match the beg
ning and end phase of the standing wave in our theore
simulations exactly with the experimental conditions. Th
was also accomplished using the photodetector mentio
above.

The experimentally measured data consists of atomic
sition distributions after 10 ms ballistic expansion time
described in the section below. To obtain a theoretical p
tion distribution after 10 ms, we evolve the theoretical po
tion distribution after the standing-wave interaction f
10 ms using a propagator method. The position distribut
after 10 ms turns out to be very similar to the moment
distribution straight after the standing-wave interaction as
free evolution effectively transfers all the momentum fe
tures into the position distribution. Because of this we w
sometimes refer to the experimental results as momen
distributions, although they are, strictly speaking, posit
distributions.

Finally one needs to consider the finite position width
the initial cloud, which will contribute to the final positio
distribution. Therefore we convolute the final theoretical p
sition distribution with the initial position distribution~be-
fore the standing-wave interaction! to obtain our final theo-
retical prediction.

III. EXPERIMENTAL SETUP

For our experiments a standard magneto-optic t
~MOT! was used. The pressure in the vacuum chamber
around 1029 Torr. The magnetic field coils produced a ma
netic field gradient of 1021 T/m in an anti-Helmholtz con-
figuration. The Earth’s magnetic field was zeroed using
Hanle effect@30#. When applying a magnetic field the ma
nitude of absorption of the laser beams changes slig
when the laser is at resonance with the atomic vapor. T
can be used to zero the magnetic field with high precisi
An injection-locking scheme was utilized to decrease
linewidth of the trapping diode laser down to 100 kHz, wh
allowing all the power of the laser to be used in the trapp
experiment. Around 106 rubidium atoms were polarizatio
gradient cooled for 10 ms. This brought the atoms down t
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temperature of around 8mK. This corresponds to a 1/e mo-
mentum spread of 13 recoil momenta. Then the MOT w
turned off but the repumping beam was left on so that
atoms accumulated in theF53 ground state. After a re
pumping period of 500ms the optical standing wave wa
turned on. It was left on for a time corresponding to a nu
ber of periods of the modulation frequency. Both the beg
ning and end phases of the modulation have to be caref
chosen to ensure the visibility of the resonances. After
standing wave is switched off, the atoms undergo a period
ballistic expansion~typically 10 ms for values of-k,0.1 and
up to 16 ms for larger values of-k). Then an image of the
cloud is taken using the freezing molasses method@11,31#. In
this technique the optical molasses is turned on again w
the magnetic field still turned off and the resulting fluore
cence is viewed with a 16 bit charge-coupled-device~CCD!
camera. The CCD array of the camera was cooled, leadin
a quantum efficiency of around 80% and a rms read nois
6.7 electrons. The experimental setup is shown in Fig. 2

A frequency stabilized titanium sapphire laser produc
up to 2.2 W of light at 780 nm with a linewidth of 1 MHz
and a frequency drift of 50 MHz per hour. This beam is fi
passed through an 80-MHz acousto-optic modulator (AO1
as seen in Fig. 2! and then into a polarization-preservin
single-mode optical fiber. The output beam goes throug
polarizing beam-splitter cube and part of the light is f
through a polarizer to a photodetector, which gives an e
tronic feedback signal to the AOM1 on the other end of the
fiber. This reduces the standing-wave intensity noise, po
ing instability and polarization noise to less than 1%. AOM2
modulates the amplitude of this beam and produces an in
sity modulation of the formI o(122« sinvt). High beam
quality ~Gaussian profile! after the AOM2 is ensured by
monitoring the beam in the far field. To test the spect
purity of our modulated standing wave the modulated lig
wave was observed on a fast photodetector and subseq

FIG. 2. Experimental setup used for our experiment.L1 , L2 are
lenses used to couple the laser beam in and out of the optical
which is utilized to optimize the pointing stability and to improv
the quality of the laser beam. AOM1 stabilizes the light intensity.
AOM2 produces the intensity modulation which is needed to p
duce an amplitude-modulated standing wave.
7-7
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FIG. 3. The position of the
resonances for loading and obse
vation in phase space can be se
in ~a!. To be able to resolve the
resonances using a CCD camera
is important that the resonance
have maximum velocity. There
fore they should be located on th
momentum axis for observation
For loading the resonances nee
to be located on the position axis
Part ~b! shows the initial distribu-
tion of the atoms in phase spac
The pictures illustrates that th
resonances need to be placed
the position axis for effective
loading to occur.
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Fourier analysis of this signal indicated a spectral impurity
about one part in a thousand. The light after AOM2 is colli-
mated to a 1/e width of 2.85 mm. The beam passes throu
the vacuum chamber and through the atomic cloud an
retroreflected to form the one-dimensional periodic opti
potential. The alignment of the retroreflection was measu
to be good to approximately 0.02°. There is a variation of
scaled well depthk over the extent of the atomic cloud du
to the Gaussian profile of our standing-wave beam. T
amounts to approximately 2%. The final maximum irra
ance of the standing wave in the region of the atomic clo
was 36.461 W/cm2. The whole experiment is compute
controlled using the Labview programming environment a
a general purpose interface bus~GPIB! interface.

IV. LOADING AND OBSERVATION OF RESONANCES

Poincare´ sections~stroboscopic phase-space maps! pro-
vide an easy way to understand the classical dynamics o
system. Atoms that start in a phase-space resonance rota
phase space in time. Figure 3~a! shows the position of the
resonances in phase space when they are loaded and
they are observed. The term ‘‘phase-space resonance’’
plies that the resonances rotate with an angular velocity
that they have the same phase-space position after mult
of the modulation period. Therefore one cycle is defined
one modulation period. Furthermore, it also implies that th
rotate with the same angular frequency as they would in
unmodulated case in phase space~for a period 1 resonance!
@18#. The resonances are loaded when they are located o
position axis in phase space. This is easy to understand s
then they overlap with the initial atomic distribution show
in Fig. 3~b!. To observe the resonance experimentally o
has to wait for at least a quarter cycle~period 1 resonance!,
so that the resonances turn 90° and are positioned on
momentum axis. When they are positioned on the mom
tum axis the standing wave is turned off. After a period
free evolution the momentum distribution can now be
solved experimentally by taking a picture of the atomic s
tial distribution. Exact velocity measurements can be m
by taking pictures of the distribution after different times a
calculating the distance they have moved during that tim
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One needs to wait for approximately 4.25 cycles for t
dynamics of the system to settle so that the resonances
be observed. Chaotic motion needs some time to distrib
atoms, which are positioned in phase space between the
nances initially, to other phase space regions where ch
persists~sea of chaos, inside the region of bounded motio!.
If this has occurred resonances can emerge from the b
ground of the chaotic region.

V. PHASE-SPACE CHARACTERIZATION UTILIZING THE
MODULATION PARAMETER « AND THE DRIVING

AMPLITUDE k

Using the techniques described above we are able to
vide detailed experimental analysis of size, position, and m
mentum of these resonances and compare experimenta
sults with the applicable theory. For this introducto
discussion we concentrate on experiments with-k50.1
~modulation frequencyv/2p5300 kHz), being close to the
quantum regime, when the modulation parameter« is varied
and the scaled well depthk is held constant (k51.15). The
upper part of Figure 4 shows experimental results~solid line!
as well as a quantum trajectory simulations~dotted line! for
the resulting atomic momentum distributions. Distinct pea
in the momentum distribution correspond to phase-sp
resonances. Below the experimental data, Poincare´ sections
for different values of the modulation parameter« illustrate
the classical phase space. The Poincare´ sections are taken a
n11/4 periods of the modulation frequency. Two islands
stability can be seen, encircled by a sea of chaos. Th
result from second-order resonances, which bifurcate fr
the origin atk51. The resonance width is proportional to«.
However, the islands of stability break up for larger values
« and therefore do not scale with«. It can be seen that the
size and the shape of the center resonance and the
second-order resonances are strongly dependent on
modulation parameter. Figure 4~a! shows the unmodulated
case. The region of bound motion is bound by the class
separatrix. The motion of all atoms is regular. In Fig. 4~b!
two second-order resonances have emerged for«50.22. The
onset of chaotic motion can be seen. With increasing val
of « the second-order resonances become more pronou
7-8
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EXPERIMENTAL STUDY OF THE QUANTUM DRIVEN . . . PHYSICAL REVIEW A64 033407
as can be seen in the experimental data and the qua
simulations. The region of regular motion centered at z
momentum becomes smaller and eventually disappears in
sea of chaos as can be seen in Figs. 4~d!–4~f!. The small
regions of regular motion positioned close to the region
unbound motion~librations! do not rotate. This means tha
they cannot be observed in the experiment as they nee
cross the position axis to be loaded as illustrated in Fig. 3~a!.

Due to the small initial momentum width, atoms are n
loaded into the region of regular unbound motion. Nevert
less, chaos leads to a homogeneous spread which is con
by the region of regular unbound motion. The small sho
ders visible in both experimental data and quantum sim
tions result from this chaotic redistribution.

We have examined the phase space for different value
the scaled driving amplitudek. Figure 5 shows experimenta

FIG. 4. The upper section shows the experimental atomic
mentum distributions~solid line! together with a quantum simula
tion ~dotted line! using the trajectory method of Sec. II B 2 fo
different values of the modulation amplitude«. The lower part il-
lustrates the corresponding Poincare´ sections. The size of the reso
nances is strongly dependent on the modulation amplitude«.
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results~solid line! for a range ofk between 1.11 and 1.36
with the scaled Planck’s constant-k kept constant at 0.1
~modulation frequencyv/2p5300 kHz) and the modula
tion amplitude« kept constant at 0.32. This data was o
tained by adjusting the detuningd of the modulated standing
wave. Alternatively an adjustment of the modulation fr
quency~with constant detuning! could be used to vary the
scaled well depthk which would give similar results to tha
of Fig. 5. Theoretical predictions from the quantum
mechanical calculations are also shown~dotted line!. The
lower section of Fig. 5 contains the corresponding Poinc´
sections. One can see that with changing values ofk the
velocity of the resonances is changed as is the size of
resonances. With increasingk the resonances become fast
We have chosen a smallk step size between Figs. 5~a! and
5~b! to illustrate this increase in velocity without introducin
a qualitative change of phase space. Figure 5~c! features the
emergence of a center island. Withk increasing even furthe
the second-order resonances move out, become smalle
shown in Fig. 5~d!, and will eventually disappear in the se
of chaos.

Slight discrepancies between quantum trajectory simu
tions and the experimental data could result from nonunif
mities in the initial experimental position and momentu
distribution. Furthermore slight errors in the alignment of t
optical standing wave relative to the atomic cloud can p
sibly lead to discrepancies between theory and experim
In spite of such potential problems the agreement betw
the experiment and theory is very good.

In the experiment we have found a maximum size of
resonances for the scaled driving amplitudek in a range
between 1.1 and 1.3, depending on the modulation param
« as predicted by theory. Nonlinear dynamics theory tells
that for every value ofk there will be a modulation fre-
quency which will be equal to the nonlinear natural fr
quency of the system. When this occurs the system is
resonance. However, the size of the islands of regular mo
resulting from these resonances is very sensitive to sys
parameters« andk. In some cases the peaks in the mome
tum distribution are infinitely small, while in others the
form stable islands. Our simulations predict the formation
observable stable resonances for driving amplitudes in
rangek51.0 to 1.5. It should be noted that the variation
the scaled well depthk produces phase-space portraits whi
are similar to the ones which can be accomplished by va
tion of the modulation parameter«.

VI. RESONANCE MOMENTUM

While we discussed period-1 resonances in the prece
section, here we discuss the dynamics of period-2 resona
that occur at lower values ofk. This is important as for this
value of k, higher values of the modulation frequency a
accessible at a detuning which is not too small to destroy
pendulum dynamics. If the detuning becomes too small
adiabatic elimination of the excited state breaks down a
the center-of-mass dynamics become far more complica
Higher resonance momenta are accessible using hi
modulation frequencies. We have made momentum meas

-
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FIG. 5. Experimental data
~solid line! and quantum trajectory
simulation ~dotted line! showing
resonances as a function of th
scaled driving amplitudek. One
can see that the islands of regul
motion appear only for a smal
range ofk. The momentum of the
resonances changes withk. The
corresponding Poincare´ sections
are shown below.
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ments of the resonances for a range of modulation frequ
cies keepingk and« constant. The system can be describ
by the Hamiltonian given in Eq.~2!. As long ask and« are
kept constant, the resonances will appear at the same s
momentum. The measured momentumpx of the resonances
is proportional to the scaled momentump multiplied with the
modulation frequencyv. Therefore, the momentum of th
resonances should scale linearly with modulation freque

For different values of the modulation frequencyv, the
detuning was adjusted to obtain the same value of the mo
lation parameterk. Then the momentum of the resonanc
was measured using ballistic expansion. A graph of the
perimental results is shown in Fig. 6. The resonance m
menta and their errors shown are obtained from a le
squares analysis of time-of-flight data. The error bars a
include the momentum error resulting from the finite wid
of the resonances as well as slight asymmetries in t
shape. There is a linear relation between the modulation
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quency and the momentum of the resonances as predicte
theory.

In fact these results can be interpreted as the experime
proof for the mapping of several different physical expe
ments into one unique theoretical case using scaled varia
The scaled quantum and classical theories produce a un
result for « and k kept constant, while the resonance m
mentum can be varied experimentally from 0 to many reco
by adjusting the modulation frequencyv while compensat-
ing with the detuningd.

VII. EFFECTS OF SMALL NOISE AMPLITUDES
ON THE SYSTEM

Exploring the effects of noise on an atom-optical syst
is of importance as the mechanisms involved are closely
lated to decoherence, which is an intense area of study du
its importance for the development of new quantum te
f

-

FIG. 6. Momentum of the
resonances for different values o
the modulation frequencyv/2p.
The modulation amplitudee and
the scaled well depthk are held
constant. Results fore50.32 are
shown. A linear fit is well within
the error bars. This mechanism
could be used for effective veloc
ity control of atoms.
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EXPERIMENTAL STUDY OF THE QUANTUM DRIVEN . . . PHYSICAL REVIEW A64 033407
nologies. Goetsch and Graham have undertaken a theore
study where they analyzed the influence of spontane
emission on the dynamical localization in atom
momentum-transfer experiments@34#. Experiments explor-
ing the effects of noise and dissipation on dynamical loc
ization were carried out by Klappaufet al. @35# and Ammann
et al. @12,21#. We have studied how intensity noise affec
the stability and the loading of the resonances of the dri
pendulum. To implement this we added noise to the mo
lated standing wave by adding a random number betwe
21 and 1 multiplied by both the full modulation amplitud
k and the noise factor between 0 and 1 to every point of
modulation signal. This corresponds to adding white noise
the modulation signal. Figure 7 shows experimental resu
Figure 7~a! shows the atomic distribution with no adde
noise. In Fig. 7~b!, 10% amplitude noise~noise factor: 0.1!
was added to the standing wave. Although the ratio betw
the height of the center resonance and the period 1 reson

FIG. 7. Amplitude noise is introduced to the system. The re
nances are remarkably stable. While there was no noise adde
part~a!, 10% amplitude noise was added to obtain part~b!. The data
was obtained ate50.26.
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changes slightly, the difference between the two case
nearly negligible. It is remarkable that the resonances
fairly stable even with quite significant amounts of nois
Further experimental and theoretical studies of the effe
when stronger noise is introduced are under way and will
reported in a future paper.

VIII. ATOMIC MOMENTUM STATE PREPARATION

For many experiments in atom optics momentum st
preparation is of significance. We have conducted preli
nary experiments to achieve this goal. The final goal is
efficiently prepare atomic wave packets at a certain posi
in phase space with adjustable position and momen
spread. Furthermore, it might also be desirable to achi
this with a large-scaled Planck’s constant and at high val
of detuning to prevent decoherence due to incoherent abs
tion and spontaneous-emission processes. We have ex
mentally shown that the momentum of resonances is de
mined by the value of the modulation frequency when
modulation amplitude« and the modulation parameterk are
kept constant as shown in Sec. VI. This provides the opp
tunity for rough momentum selection. Note that one disa
vantage of this method is the fact that the momentum spr
of the atoms contained in the resonances is proportiona
the modulation frequency.

Furthermore, the scaled theory predicts that the mom
tum of the resonances is slightly dependent on the mod
tion amplitude« as shown in Fig. 4. The resonance mome
tum is also strongly dependent on the scaled well depthk as
can be seen in Fig. 5. The disadvantage of trying to cha
the resonance momentum by means of changing either« or
k is that the amount of atoms contained in the resonance
well as the size change dramatically when changing th
two parameters. Therefore changing either of these par
eters does not represent an efficient solution to control
momentum of an atomic ensemble.

-
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a
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FIG. 8. Resonances of the quantum-driv
pendulum. Up to around 65% of the atoms can
loaded into the resonances for effective mome
tum preparation. This data was obtained at
modulation parameter of 0.27 and a modulati
frequencyv/2p of 900 kHz.
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W. K. HENSINGERet al. PHYSICAL REVIEW A 64 033407
We have found a far more efficient way to control t
momentum of an atomic ensemble while preserving ato
coherence. Choosing the right parameters one can load u
65% of all atoms into the resonances. Figure 8 shows
experimental atomic position distribution after 10-ms ball
tic expansion time. Here the two resonances were meas
to move with a momentum of 30.25 recoils. This meth
does not rely on changing any of the parametersk, -k, or «.
The velocity of the resonances can be well controlled
changing the end phase of the modulation of the stand
wave. In this method we stop the modulation of the stand
wave at different times, not necessarily when the resonan
are positioned on the momentum axis. This corresponds
rotation of the resonances by up to 45° from the observa
position on the momentum axis as can be seen in Fig. 9.
have achieved a velocity range of 35 recoils with this meth
which could be even further extended by increasing
modulation frequency. Figure 10 shows the experiment
obtained velocities for different end phases of the modula
signal. The curve is approximately symmetric around 6
cycles at which the resonances are positioned on the mom
tum axis. We have included a sinusoidal fit to show that t
velocity control mechanism can be explained by the rotat
of the resonances in phase space. Note the two-cycle s
metry of this experiment, due to the fact that the resonan
which are utilized are period-2 resonances.

IX. CONCLUSION

Atom optics is an ideal experimental setting to explore
quantum driven pendulum and its classical analog. The
namics are best understood from a quantum chaotic p
space or the classical analog, depending at which valu
the scaled Planck’s constant-k the experiment is performed

FIG. 9. Rather than turning the standing wave off when
resonances are positioned on the momentum axis~position 3!, the
standing wave can be turned off slightly before or after that tim
This corresponds to a rotation of the resonances by up to 45°~po-
sitions 1,2,4,5! in phase space. Note the symmetry of positions
and 4, 1 and 5.
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In this paper we have presented experimental results
theoretical techniques pertaining to this system.

We have given a thorough experimental investigation
the quantum chaotic phase space of the driven pendulum
atom optics. We have characterized parts of the param
space that determine the observed phase-space dynamic
presented experimental evidence for how the size and am
tude of these resonances depend on the modulation
quency, the scaled well depth, the modulation amplitude
the scaled Planck’s constant of the system. With the app
priate choice of parameters even the central island of sta
ity can be eliminated while retaining the second-order re
nances. We have given experimental proof that the descr
experimental system used can be accurately modeled by
theory which we have provided here. We have develop
two experimental methods in which the momentum of the
resonances can be controlled very accurately. One of
methods allows us to fine tune the momentum of resonan
Experimental evidence for the accuracy and efficiency of t
method is given. In contrast to changing the modulation f
quency as a means for momentum control this method lea
the momentum width of the resonances unchanged. We h
investigated the effect of small-noise amplitudes on t
quantum chaotic system and found surprising stability.

In addition we have shown that the quantum chao
mixed phase space provides a range of possibilities for
fective quantum phase-space preparation. The results
sented here are likely to be useful for atom interferome
Bragg scattering, and perhaps even the coherent splitting
Bose-Einstein condensate and other areas of atom optics
have shown that up to approximately 65% of all atoms c

e

. FIG. 10. Experimental data showing the momentum of the re
nances for different end phases of the modulated standing w
6.37 cycles correspond to turning off the standing wave at a mo
lation minimum. The data shown here were obtained at a mod
tion frequencyv/2p of 900 kHz and a modulation parameter
0.27. A sinusoidal fit is within the error bars.
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be loaded into the resonances, allowing efficient atomic
locity control.

Due to the control of the scaled Planck constant this
periment provides an ideal environment for studies of qu
tum chaos and decoherence. Analyzing the driven pendu
in atom optics is an effective means to explore the bord
land between quantum and classical physics as the ex
ments illustrate that one needs to consider the wave natu
atoms to accurately explain the atomic dynamics.

Further investigation is in progress addressing quan
phenomena which can occur in this system, some of wh
are predicted by Dyrting, Milburn, and Holmes@18# and
Sanders and Milburn@32#.
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APPENDIX: ADIABATIC ELIMINATION OF THE
UPPER STATE

The adiabatic elimination technique we use here is sim
to that introduced by Graham, Schlautmann, and Zoller@10#
for the same system, but we give a more complete deriva
including justifications for the approximations made usi
the parameters of the experiment. We also relate the e
tions to those of Dyrting and Milburn@23#, derived using a
different technique, which are the basis for the quantum
jectory simulations of this paper.

We can write the master equation for the two-level at
in a light field as

ṙ5GS Bsrs†2
1

2
$s†s,r% D2

i

2
@V~x,t !s†1sV†~x,t !,r#

2 id@s†s,r#2
i

2\m
@p2,r#, ~A1!

where for an arbitrary operatorR

BR5E d2nW f~nW !eiknxxRe2 iknxx. ~A2!

Explicitly using the internal state basisa,b we have

ṙaa5GBrbb2
i

2
@V†~x,t !rba2rabV~x,t !#

2
i

2\m
@p2,raa#, ~A3!
03340
-

-
-
m
r-
ri-
of

m
h

l
t-
.

-

r

n

a-

-

ṙab52
G

2
rab2

i

2
@V†~x,t !rbb2raaV

†~x,t !#

1 idrab2
i

2\m
@p2,rab#, ~A4!

ṙbb52Grbb2
i

2
@V~x,t !rab2rbaV

†~x,t !#

2
i

2\m
@p2,rbb#. ~A5!

Now in the experimentuV(x,t)u&V'4.653109 s21,
and d'7 GHz (d'443109 s21). Thus we are always in
the well-detuned regime whereV!d. As a result, most of
the time the atom will be in the ground state withrbb
;(V/d)2, as we will show. As long as we are not interest
in evolution faster than the time scaleG21, we can then slave
rab andrbb to raa . Specifically, we see from Eq.~A4! that
rab will quickly come to equilibrium~at rateG/2) with re-
spect to the value ofraa , which evolves slowly. Setting
ṙab50 thus gives

rab.
i@raaV

†~x,t !2V†~x,t !rbb#

G22id
. ~A6!

SinceV(x,t) is time dependent, this expression can on
be valid if the rate of decay,G/2, is much greater than th
rate of variation of V(x,t). In the experimentG/2.19
3106 s21 while the angular modulation frequency is typ
cally an order of magnitude smaller. In deriving Eq.~A6! we
have also assumed that the kinetic energy is much less
\d and\G and so can be ignored compared to them. In
experimentd'443109 s21, G.3.83107 s21, and the re-
coil frequency is 3.83103 s21. Since the 1/e momentum
half-width is of order 7 recoil momenta, the kinetic ener
divided by \ is of order 105 s21. Thus the above assump
tions are justified.

Substituting Eq.~A6! into Eq.~A5! and Eq.~A3! give the
following coupled equations:

ṙaa5GBrbb1
1

G214d2
$ id@V†~x,t !V~x,t !,raa#

2G$V†~x,t !V~x,t !,raa%/21GV†~x,t !rbbV~x,t !%

2
i

2\m
@p2,raa#, ~A7!

ṙbb52Grbb1
1

G214d2
$2 id@V~x,t !V†~x,t !,rbb#

2G$V~x,t !V†~x,t !,rbb%/21GV~x,t !raaV
†~x,t !%

2
i

2\m
@p2,rbb#. ~A8!
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These are the equations which are simulated by the quan
trajectories in Sec. II B 2.

We can simplify the system still further by adiabatica

eliminating the upper staterbb , by settingṙbb50. This re-
quires that the damping rateG be much greater than the ra
of variation ofV(x,t) and the kinetic energy divided by\.
These are the same approximations as used above in der
Eq. ~A6!. Strictly, this technique also requires thatG be
much greater thanV2/d, which is not satisfied for our sys
tem. It can be shown that a more rigorous approach to a
th
e

sfy
h
rm
i

lo
s

ing

e

s

e

03340
m

ing

a-

batic elimination@36# removes this requirement, and gives
slightly different result in the end. This is based on movi
into the interaction picture with respect to the ground-st
potentialH05(\/4d)V(x,t)V†(x,t) ~which results from the
adiabatic elimination! before beginning the adiabatic elim
nation. It does not yield the above Dyrting-Milburn equ
tions which are the basis for our quantum trajectory simu
tions. For this reason, and because the correction to our
master equation is small, we will continue to follow the sim
pler procedure we have used so far.

Slavingrbb to raa by settingṙbb50 gives
rbb1
$V~x,t !V†~x,t !,rbb%/21 i ~d/G!@V~x,t !V†~x,t !,rbb#

G214d2
.

V~x,t !raaV
†~x,t !

G214d2
. ~A9!
t
ion

an
is
rm
The first correction term on the left-hand side~LHS! ~the
anticommutator! scales likeV2/4d2, which is, as we have
shown above, negligible. The second correction term on
LHS ~the commutator! cannot be removed so simply, sinc
~as noted above! the experimental parameters do not sati
G@V2/d. In the more sophisticated treatment of making t
adiabatic approximation in an interaction picture, this te
does not appear. Knowing this, we can justify dropping
here. Thus we arrive at the simple expression

rbb.
V†~x,t !raaV~x,t !

G214d2
, ~A10!

which scales as (V/d)2 as claimed.
The reduced density operator for the center-of-mass a

is given by the partial trace over the internal atomic state

rcom5Trintr5raa1rbb ~A11!
e

e

t

ne
:

Denoting rcom simply asr, the above scaling implies tha
r.raa . Using this, and substituting the above express
for rbb into Eq. ~A3! gives finally

ṙ5
G

G214d2 S BV†~x,t !rV~x,t !2
1

2
$V~x,t !V†~x,t !,r% D

2 i
d

G214d2
@V~x,t !V†~x,t !,r#2

i

2\m
@p2,r#. ~A12!

For d@G this is identical to Eq.~14!. The more sophisticated
adiabatic elimination would produce an extra Hamiltoni
term scaling asV4/d3. For the experimental parameters, th
is only about 1% as large as the dominant Hamiltonian te
scaling asV2/d, and can thus be safely ignored.
and
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