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Phase-space picture of resonance creation and avoided crossings
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Complex coordinate scalin@CC9 is used to calculate resonance eigenvalues and eigenstates for a system
consisting of an inverted Gaussian potential and a monochromatic driving field. Floquet eigenvalues and
Husimi distributions of resonance eigenfunctions are calculated using two different versions of CCS. The
number of resonance states in this system increases as the strength of the driving field is increased, indicating
that this system might have increased stability against ionization when the field strength is very high. We find
that the newly created resonance states are scarred on unstable periodic orbits of the classical motion. The
behavior of these periodic orbits as the field strength is increased may explain why there are more resonance
states at high field strengths than at low field strengths. Close examination of an avoided crossing between
resonance states shows that the two states exchange their structure, as in bound systems. This phenomenon
might lead to interesting effects at certain field strengths.
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[. INTRODUCTION scarring, where quantum eigenstates have higher probability
to be found near the locations of unstable periodic orbits in
The study of time-periodic quantum systems has attractethe classical phase spad®]. The scarring of Floquet states
considerable interest in recent years. One of the primary moen unstable periodic orbits might make it possible for a
tivating factors for this interest is the development of ultra-quantum system to exhibit stabilization even when the cor-
high intensity lasers, which can produce electric fields withinresponding classical dynamics is unstable. Some earlier stud-
atoms that rival those produced by the atomic nucleus. Exies indicate that stabilization can be associated with states
periments with these ultraintense lasers have led to the dishat are scarred on unstable or weakly stable periodic orbits
covery of many new phenomena, such as high-harmonigl1].
generation{ 1]. Simple one-dimensional models of the inter- In this paper we examine a time-periodic system with
action between intense lasers and atoms have been showndne-space dimension that shows signs of stabilization. In this
reproduce, at least qualitatively, many of these phenomengystem the number of localized Floquet states, or resonance
[2]. These models are especially interesting because thedtates, increases as the intensity of the driving field is in-
classical versions display chaotic motif8]. In addition to  creased. In Sec. Il we present the model and discuss the
providing insight into recent experiments, the study of these;|assical dynamics as well as prior studies of the quantum
models can also provide insight into quantum-classical Corgynamics. In Sec. Ill we describe two different versions of
respondence. _ complex coordinate scaling and compare their predictions in
One of the new phenomena observed in these systems igis system. In Sec. IV we investigate the relationship be-
the stabilization of atoms in intense laser fields. Stabilization een, the resonance states and the classical dynamics of the
is characterized by decreasen the probability for an elec- system. We find that the resonance states that are created as

tron to ionize as the ]aser mtensﬂyu&;creased Th|s' effect . the driving field is increased are associated with unstable
was first discovered in theoretical studies of the interaction

between high-frequency lasers and atdwis but this stabi- periodic orbits in the classical dynamics. We give an expla-
lization has been observed in recent experimg). Stud- nation, based on this association with periodic orbits, for
ies of the underlying classical dynamics of these Systemg/hy _th(_a number of resonance states increases as the laser
using one- and two-dimensional models have shown that thi€!d is increased.

classical motion can often account for the increased stability " Sec. V we carry out a detailed study of an avoided
of the atom at higher laser intensitiEs 7]. crossing between two resonance states. Avoided crossings in

The study of time-periodic quantum models is usua||ytime—perio'dic guantum systems can lead to significant
carried out within the context of Floquet thedig]. Floquet  changes in the structure of the Floquet state%13. Two
eigenstates are eigenstates of the one-period time-evolutigty0ided crossings that occur close together can even lead to
operator and are the natural states for describing timedelocalization of Floquet stat¢43]. Since stabilization de-
periodic systems because the corresponding Floquet eigeR€NdS upon the Floquet states remaining localized, avoided
values are conserved quantities. In some cases the FlogUgPSsings may play an important role in destroying stabiliza-
states of the system can be localized on stable structures fiPn- Finally, in Sec. VI we summarize our findings.
the classical phase spaf®, and this can lead to stabiliza-
tion because these Floquet states have very long lifetimes. In
this case, stabilization would also be predicted by the classi- [l. DRIVEN INVERTED GAUSSIAN MODEL
cal dynamics. However, there are often significant differ-
ences between the classical and quantum dynamics of cha- The model we will study is an inverted Gaussian potential
otic systems. One of the most striking examples of this ignteracting with a monochromatic driving field in the radia-
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As € is increased the region neak=£0,p=0) remains
stable, but the size of the stable region gets smalles s

0.5F .
= ol | increased. The filled squares in Fig. 1 indicate the locations
'v:_ of the periodic points in the strobe plot and the arrows show
—0.5F .

x=a andx=2a, Wherea= e/ w? is the excursion parameter
] of a free electron in the field. These periodic orbits were
Ir (b) w = .0925 a.u., € = .065 a.u] located using a numerical search procedure based on a two-

. 05F ] dimensional Newton’s Method, with initial conditions pat
5 ol . | =0 with x=0, X=a, andx=2a. Figure 1 shows that the
E_O al l periodic orbit at (0,0) is stable while the other two periodic
’ f orbits are unstable. As is increased the unstable periodic
I — e - orbits move toward larger values gf remaining close tx
Ir o (Qw=.0925au, e=.09au =a andx=2a. For very high-frequency driving fields two
~ 057 1 of the periodic orbits can be stable while the third is un-
= O0F . ' . A stable. This is illustrated in Fig.(d), which shows the clas-
S_0.5k _ sical strobe plot fow=2 a.u. ande=42 a.u. The value of
1k ! 2?a ] « in Fig. 1(d) is the same as in Fig.(d), but at the higher

' : ] frequency the periodic-orbit located near 2« is a stable
elliptic orbit surrounded by regular motion. The periodic or-
bit at x=« is hyperbolic.

The quantum dynamics of this system has been the sub-
ject of several investigations during the past decade. The
resonance states of this system were first calculated by Bard-
sley and Comella in 198914]. More recent studies have
focused on high-harmonic generati@dHG) in this system
FIG. 1. Strobe plots of the classical dynamics for the driven[15]. It is the findings of Ben-Tal, Moiseyev, and Kosloff

inverted Gaussian system. The initial conditions used to generatel6], hereafter BMK, that have the most relevance to our
the plots all lie on the ling=0. « is the classical excursion pa- Work. They found that the number of resonance states in this
rameter for a free electron in the field. The locations of the periodicsystem increased as the field strength was increased over a
orbits (stable and unstablare indicated by filled squares. certain range. BMK explain the creation of new-resonance
states as the field strength is increased by analyzing the dy-
tion gauge. The Hamiltonian of the system in atomic unitsnamics of the time-averaged system in a reference frame that

(which are used throughout the paper oscillates with a free electron in the driving field, known as
5 the Kramers-Henneberger or KH frami&7]. They found
H= E p— isin(wt) —Vyexd — (x/a)?] 1) qualitative agreement in that the number of bound states in
2 ® 0 ’ the time-averaged potential increases as the field strength is

increased. However, the quantitative agreement was not very
whereV,=0.63 a.u., a=2.65 a.u., eisthe strength of good. This is not surprising since the time-averaged KH de-
the driving field, andw is the field frequency. It is useful to Scription is on|y accurate for very high-frequency driving
write this asH=Hy+V, where fields. Since the frequency of the driving field used by BMK
5 and in this work (@w=0.0925 a.u.) is lower than the fre-
H0=p— —Voexd — (x/a)?] 2) quency of motion for two of the bound states in the undriven
2 system(0.4451 a.u. and 0.1400 a\.uthe time-averaged KH
description is not quantitatively accurate. It is somewhat sur-
and prising that the time-averaged KH description is qualitatively
. 2 accurate because the classical motion of the system in the
__c £ o time-averaged KH frame is stable while the classical motion
v ) psin(wt) @2 SirF(wt). @ of the exact system is largely unstable. Fkor 1 the time-
averaged potential in the KH frame is a double well with
Figure 1 illustrates the classical dynamics of this systemminima separated by approximatelya2 Motion in this
for driving frequencyw=0.0925 a.u. The strobe plots in double well would be quite different from that seen in the
Fig. 1 are calculated by evolving a set of trajectories, all withstrobe plots in Figs. (a—09 (although it would closely re-
initial momentump=0, over many cycles of the field and semble the motion shown in Fig(d), which is at a fre-
plotting the location of each trajectory whés 27rn/w (af-  quency that is high enough for the time-averaged KH de-
ter each full cycle of the field For e=0 the motion is regu- scription to be valigl Our goal in this paper is to find an
lar and bounded for negative energies. Motion at positivealternative explanation for the creation of resonance states as
energies is unbounded. Figure®%1(c) show the classical € is increased in this system, an explanation that does not
strobe plots fore=0.038, 0.065, and 0.09 a.u., respectively.rely on the time-averaged KH description.
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IIl. COMPLEX COORDINATE SCALING ’; ' | | | | |

In recent years the technique of complex coordinate scal-& Ar ()0=0,z,=0
ing (CC9S has been used extensively in the study of openk 0 ;
gquantum systems. In this section we will review two versions g  —04 i I I I I I -
. . . = 04 F I T T T T T -
of complex coordinate scalingtandard and exterior scaling (b) =03, z,=0
and show how these techniques can be used to compute tt '
resonance states of an open, time-periodic system. Result;.\
from the standard and exterior scaling versions are com- 3
pared, for both time-independent and time-dependent calcu~_
lations. R

A. Standard complex coordinate scaling

We first examine how the eigenvalues and eigenstates of i
time-independent open system can be calculated using star
dard CCS, a technique that is examined in detail in Refs.
[18,19. In this paper we will use a basis of particle-in-a-box —

—04 |
states for our calculations. These states are defined by g
~ 08
B \F S (nTX Nnm 4 S 19k
Xm=\sin =% N B

where —L/2<x=<L/2. Calculations using CCS are per- L 3
formed just as they are in traditional quantum mechanics,
except that the coordinate is scaled in the Hamiltonian so
that x—xe'? (0<#<m/4). Scaling the coordinate in this
fashion allows us to represent resonance states, which are not g, 2. The complex-scaled energies of the undriven inverted
in the Hilbert space, using square integrable eigenfunctiongsaussian system. The unscaled energies are shove, ithe CCS

As a result of this Scaling the new time-independent Ham”-energies in(b), and the ECCS energies {n). The bound states of
tonian is the system have energies0.4451, —0.1400, and—0.0001 a.u.

All calculations were performed using a box size200 a.u. and
400 basis states.

—0.5 0 0.5

240—2i0

Ho=Ho(x€? = —Voexd —(xe?a)?]. (5)

Hamiltonian becomes non-Hermitian and it is possible for
The kinetic-energy operator is easily evaluated using the basigenstates of the scaled system to have complex eigenval-
sis states in Eq4). As long as our box is sufficiently large yes. This can be seen in Fig(b, which shows the eigen-
[L>2a//cos(Z)] we find that values calculated using CCS with=0.3. The bound state
eigenvalues remain on the real axis but the positive-energy
continuum states are rotated into the lower half plane by an
angle of 29. It is this rotation of the continuum that will
allow us to identify resonances. No resonances exist for the

system with HamiltoniarH,.

(m|—Vyexd — (x€%a)?]|n)=V(m+n)—V(|m—n|),
(6

where

VoaJme ' j2m2a%e2i0 jor .
ex 412 o 2 ) ™ B. Exterior complex coordinate scaling

] ~ . The basic idea of exterior complex coordinate scaling
Once these matrix elements are calculatedHpenatrix can (ECCS is to scale the coordinate by a factcg'? as in CCS,
be constructed. Diagonaliziridy, yields the energy eigenval- but only in the regionx|=xs where the potential is zero.
ues of the time-independent system as well as the eigenveDiscontinuities at- xs are avoided by using a smooth scaling
tors relationx— F(x), where

2\

N . 1 [cosiA(Xx—Xg)]
— i

|¢,i>:n§=:1 Cniln). (8) F(x)=x+(e'’—=1)|x+ In( cost()\(erxS))” 9
Figure 2a) shows the energy eigenvaluesiaf calculated with A=5 a.u. and x,=25 a.u. This exterior scaling
without complex scaling §=0). The potential supports method is given a thorough presentation in Ré¢f9,20.
three bound states atE=—0.4451, —0.1400, and Because the potential is zero in the region where the coordi-
—0.00014 a.u. Without complex scaling all eigenvalues lienate is scaled, the potential matrix elements can be calcu-
on the real axis. When the coordinate is scaled, though, thiated without any complex scaling.e., using Egs(6) and
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(7), but with #=0). The scaled time-independent Hamil- (a)
tonian then becomeld ,=Hy+Vcap, Where

a 9
Vear()=Vo() V1) 7o+ Vo00 —5 (10 - A ﬂAAAAnAAAAﬂ i

s VU vavv VV\;UU 7

acts as a complex absorbing potential. The coordinate-

dependent factors in Eq10) are defined by
1, o 5, [of)\? , U
Vo(x)= 7 f (X)ﬁ—gf ) =] (13) (o)
Vi(x)=f73(x) il (12) ﬂ ﬂ
1 - o
ax % W . 4 W
and s UWU V Uw
1
Vz(X)=§[1—f72(X)], (13
where f(x)=dF/ax. Plots of F(x), Vo(x), Vi(X), and =20 e, 50

V,(x) are shown in Refd.19,20.

We will again use a basis of particle-in-a-box states to FIG. 3. Wave functions of two ECCS continuum states. The
calculateﬁo. Matrix elements for the potential-energy term state shown ina) is a partially scaled continuum state whose ei-
are calculated without any complex scaling, while the kineticgenvalue is rotated by less tha@ fom the real axis. The state in
energy and/c,p Matrix elements are calculated numerically. (b) is a fully scaled continuum state whose eigenvalue is rotated the

Diagonalizingﬁ gives the complex-energy eigenvalues forfu" 2 0 from the real axis. The partia_lly scaled state is Iocaliz_ed
the exterior scgled system, which are shown in Fig).2 between—xg andxg (Xsf25 g.u.), while the fully scaled state is
' . : Imost excluded from this region. Both states are peakedhgar
Note that the bound-state eigenvalues are still on the reaﬁ
axis and most of the continuum states have been rotated intwhere o is a coarse-graining parameter that determines the
the lower half plane by & However, several of the positive- width of the Gaussian in threandp directions. In this paper
energy states have been rotated into the lower half plane bye useoc=2 a.u., which gives each wave packet a width of
considerably less than® We refer to these as “partially 1.41 a.u. inx and 0.35 a.u. irp.
scaled” continuum states. Figure 3 shows the wave function Calculating Husimi distributions for complex-scaled
of one fully scaled continuum state and one partially scaledtates is not completely straightforward. One cannot simply
continuum state. The partially scaled state is strongly peakeapply Eq.(14) to the states calculated using CCS because the
nearx=Xxg and it is nonzero only within the regionx;<x  wave functions are not functions of the real spatial coordi-
<X, while the fully scaled state is zero within this region. nate, but rather of the complex-scaled coordinate. Some au-
As X, is decreased toward 0, the number of partially scaledhors have attempted to rotate the complex-scaled states back
states decreases. AL,=0 the ECCS eigenvalues exactly into the real coordinate frame in order to calculate the Hu-
match the CCS eigenvalues as expected. simi distribution[22]. While this is a simple procedure to
Since would to examine the structure of the resonanceéarry out, as it simply involves replacing(x) with (xe'%)
states in the periodically driven system, it is important first toin Eq. (14), it does not always work because the complex-
examine the structure of the eigenstatesHgf We can ac- Scaling transformation is not generally reversible. We avoid
complish this by calculating Husimi distributiof@1] for ~ these problems by calculating Husimi distributions for ECCS
each of the three bound states. A Husimi distribution is z5tates only. In our ECCS calculations the coordinate is only
representation of a quantum state in a basis of minimun§omplex scaled in the regiofx|>25 a.u., so for|x|
uncertainty Gaussian wave packets. It can be thought of as @25 aU. there is no complex scaling of the wave function.
quasiprobability distribution of the quantum state in the The ECCS method has been shown to produce the correct

phase space. The Husimi distributiéhD) of a quantum time evolution of a wave packet within the unscaled region,

wave function® (x) is defined as with reflectionless absorption of the wave packet in the
scaled regiorf23]. This allows us to calculate the Husimi
1\ 2 distribution of an ECCS state using Ed.4), provided that
G(xo,po):‘ (—) f e~ (x~x0*20%~ipoxp (x)dx| | we are only interested in the Husimi distribution in the un-
2 —o scaled region. This procedure is similar to that used in Ref.

(14 [9], in which the wave functions are calculated on a large
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’ (@) 4> P e &
_ ih—|W)=Ho|¥)——p sin(wt)|¥)+——sirt(wt)| V),
:; i at w 2(,02
o (15
-1 -
Qs wherep is the complex scaled momentum operator. Since all
-3 computations are performed in a basis of eigenstaté"éoof
. (b) 192> we must first calculate the matrix elementspofin calculat-
s 1 ing these matrix elements it is critical to recognize tHatis
35 not a Hermitian matrix and thus its eigenvectors do not have
a =1 the usual properties that eigenvectors of Hermitian matrices
have. One cannot obtain the left eigenvectors of a non-
=g e (9> Hermitian matrix simply by taking the complex conjugate of
= ° the right eigenvectors. In our cadé, is complex symmetric
SRS R g — and the coefficients of the left eigenvectors are equéhtd
o @ O C_———= complex conjugates pthe coefficients of the right eigenvec-
Y T tors, so
-3 N
S A (il =2 cnin. (16)

FIG. 4. Husimi distributions of the bound states of the invertedT e normalization of the eigenvectors is also different. For
Gaussian system. The bound state wave functions were calculat(?)cﬂr complex symmetric matrix the eigenvectors shoul.d be
using ECCS withx;=25 a.u. The scaling angle #=0.3 for all normalized so that the sum of the squares ofdhés is 1

plots. These distributions match those calculated without complex . S .
scaling, except for the very slight asymmetry at the far left andratherthan the sum of the absolute squares. With this in mind

right of (c). we can calculate the matrix elements fousing

grid of points inx and repeatedly projected onto a smaller ~ NN ~
grid as the wave function evolves. As in our method, the (¢i|l0|¢j>:mz:l n; CmiCni{m[p|n). (17)
repetitive projection method induces nonunitary time evolu-
tion only on the parts of the wave function that are outsid
some small range at and the Husimi distributions within
that range can be computed normally.

Husimi distributions for the three ECCS bound states o

H, are shown in Fig. 4. The Husimi distributions shown in 5 —i
Figs. 4a) and 4b) match those that are found without com- (m|p|n)=
plex scaling the Hamiltonian and hence they are the correct

distributions. The distribution shown in Fig(e} shows some
very slight asymmetry near=+25 a.u. This is an effect of
the complex scaling and it is not seen in the unscaled bound L2 kax  Kar

states. Except for this small deviation the distribution shown P(k)= f sin(— __) f~1(x)dx (19
in Fig. 4(c) is indistinguishable from the Husimi distribution —L2 L 2

of the unscaled bound state.

®rhe(m[p|n) are easy to calculate when CCS is used il
simply pe'?. However, when ECCS is used those matrix
felements are calculated numerically using

han
E [P(m+n)+P(m—n)] (18

where

andf(x) is defined in Sec. Il B.
Since the Floquet eigenstates are calculated in a basis of

. . ed'genstates ofl, we can write them as
As we have seen, complex coordinate scaling can be use

to calculate the firsh energy eigenstates bf,. These eigen- N

states can then be used as a basis to compute the one-period |q,;>=_21 diﬁ|¢i>. (20

. . . ~ . 1=

time-evolution (Floque} matrix, U(T), for the driven sys-

tem. This matrix is ga_lculated by _nume_rically integrating thegecause they are eigenstates of the one-period time-

time-dependent Schadinger equatiorN times fromt=0 to  eyolution operatofFloguet matrix we can write

t=T= 27/ w with initial conditions| ¥ (t=0))=|4;), where

|zp_i> is th_eit_h energy eigensta_te . Diagonali_zation_ of U(T)|qﬁ>=e*‘q5T|qB>, (21

this matrix gives the Floquet eigenvalues and eigenstates

the basis of eigenstates ). whereqy is the quasienergy of the staflgs). Because the
The time-dependent Schtimger equation for the driven HamiltonianH, is not Hermitian, the time-evolution opera-

inverted Gaussian system is tor is not unitary. This means that the Floquet eigenvalues do

C. Floquet calculations
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(a) T=264T
S
i :
Q,
= -3
~ (b) T=1.5T
R
2 >
i » @@ =
[oN)
-3
() ©=0,2T
B!
«; E e o o @
-1
[oN)
=< -3
= -20 -10 0 10 20
X (a.u.)
FIG. 6. Husimi distributions of the resonance stateseat
=0.038 a.u. The resonance wave functions were calculated using
ECCS withxs=25 a.u. The locations of periodic orbits are indi-
cated by filled circles. The scaling angleéis-0.3 for all plots. The

lifetimes for each state are given in units of the driving period
=27l w.

FIG. 5. Floquet eigenvalues for the driven inverted Gaussian

system withw=0.0925 a.u. anc=0.038 a.u. The eigenvalues yoiermine the quasienergidand hence the lifetimesof
calculated using CCS are shown(@. In (b) the ECCS eigenvalues s . N
) : these states it is important to optimizeby finding the sta-
are shown. The scaling anglefds=0.3 for both sets of eigenvalues. . . f h . | is ch d
Resonance states are indicated by filled squares, while continuuH]onary pom_t or eac reso_nance eigenvalueyas c a_tng_e )
However, since our goal is not an accurate quantitative de-

states are indicated by filled circles. sve ) et e
termination of eigenvalues or lifetimes but a qualitative un-

not necessarily have unit modulus, and thus the quasienefierstanding of the relationship between the quantum dynam-
giesqﬁ are in genera| Comp|eX. We can write the quasienerlcs-ar:]d the classical mF)tIon, it .|S _n.Ot critical that be
gies asqz=Q,+iT 42, wherer,=1/T 4 is the lifetime of optlmlzeq for our calculations. Optlmlzmgpresents a prpb—
the statgq,). Resonance states are easily identified by plot/ém in this type of study because the optimal valueddb
ting the Floquet eigenvalues, which we will denote)gs generally different for different resonance states. We yw_sh_ to
—exp(—iq,T). Figure 5 shows the Floquet eigenvalues Ca|_stud)-/ all of thg resonance states of the system gnd it is im-
culated using both CCS and ECCS for the driven GaussiaRossible to optimize for all resonance states within a single
system withw=0.0925 a.u. andk=0.038 a.u. The con- calculation of the Floquet matrix. We find that changifg
tinuum eigenvalues that were found with the CCS methodretween 0.3 and 0.7 results in no visible change in the plots
form a well-defined spiral from the origin out to the edge of of the resonance eigenvalues. There is also no visible change
the unit circle. These states are indicated by filled circles irin the Husimi distributions of the states. Not optimizidg
Fig. 5(a). Resonance states are indicated by filled squaresiay lead to slight inaccuracies in the calculated lifetimes for
and lie off of the continuum spiral. The continuum spiral is the resonance states, but we find that the error in the lifetimes
not as well defined when the ECCS method is used, as no greater than-0.1T.
shown in Fig. Bb). However, only a few eigenvalues near In Fig. 6 we show the Husimi distributions of the three
the origin appear to fall out of the spiral. This could causeECCS resonance states indicated in Figp) 5Lifetimes of
some difficulty in identifying broadshort-lived resonances, the three states are indicated in units of the driving period
but narrow(long-lived) resonances can still be easily identi- T=2#/w. Filled circles indicate the locations of the classi-
fied. Figure 5 shows that CCS and ECCS appear to give theal periodic orbits. The resonance state with the longest life-
same resonance eigenvalues. time is almost indistinguishable from the ground state of the
The resonance eigenvalues should be independent of thandriven system shown in Fig(&. The state shown in Fig.
scaling angle#, while the continuum eigenvalues rotate 6(b) has a much shorter lifetime and is beginning to elongate
around the origin a9 is changed. However, when calcula- toward the positions of the unstable periodic orbits, with a
tions are performed using a finite basis the resonance eigepeak of probability near the periodic orbit atx (
values will be weakly dependent up@n24]. To accurately =6.98 a.u., p=0). At this field strength the periodic or-
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3 (a) t=75T (b)t=1.4T

Im A

Im A

-20 -10 0 10 20 -20 -10 0 10 20
x (a.u.) x (a.u.)

FIG. 8. Husimi distributions for the four resonance states at
€=0.065 a.u. Lifetimes for each state are given in units of the
driving period T=2#/w. The locations of the periodic orbits are
indicated by filled circles.

€=0.065 a.u. Lifetimes for the states are indicated in units
FIG. 7. Floquet eigenvalues fes=0.0925 a.u. and two differ-  of the driving period and the positions of the periodic orbits

ent field strengths. The eigenvalues are calculated using ECCS withire indicated by filled circles. At this field strength the sepa-
6=0.3 andxs=25 a.u. Resonance states are indicated by filledration between the periodic orbits is about five times the
squares and continuum states by filled circles. At these higher fielgidth of the wave packets used to compute the Husimi dis-
strengths the number of resonance states is greater than g@ihution. The state with the longest lifetime looks very much
€=0.038 a.u. like the ground state of the undriven system. The states

shown in Figs. &) and &c) show some similarities to the
bits are separated by approximately 3.3 a.u., which is onlgxcited states of the undriven system, but they have both
two times the width of the wave packets used in calculatingheen elongated in the direction of the unstable periodic or-
the Husimi distribution. This makes it difficult to tell whether bits. The state shown in Fig(l® has a probability peak near
or not the Husimi distribution has separate peaks on eacthe unstable periodic orbit ak& 16.67 a.u.,p=0), while
periodic orbit. The state shown in Fig(cp has a very short the state shown in Fig.(8) has a peak between the two
lifetime and its Husimi distribution is similar to that of a unstable orbits. These two states appear to have become at

continuum state. least partially associated with the unstable periodic orbits.
The state shown in Fig.(8) is the newly created resonance
IV. RESONANCE CREATION AND SCARRING and it has the shortest lifetime of the four. It has a modest
peak near the periodic orbit ak£9.09 a.u.,p=0).
Figure 7 shows the Floquet eigenvalues ée+0.065 and Figure 9 shows HDs for four of the five resonance states

0.09 a.u. Again, resonance states are indicated by filledt e=0.09 a.u. At this field strength the separation of the
squares while continuum states are indicated by filled circlegeriodic orbits is approximately eight times the width of the
We see that the number of resonance states increasesas wave packets used for the Husimi distribution. The state that
increased, from only three &=0.038 a.u.(see Fig. 5to  closely resembles the undriven ground stdt&y. Ib)] no
five ate=0.09 a.u. This is in agreement with BMK.6]. In longer has the longest lifetime. Instead, the longest-lived
the classical system, however, the stable structure near (state resembles the first-excited bound statel g@fbut with
=0,p=0) gets smaller ag is increased. If the resonance additional peaks near the periodic orbits»xat11.52 a.u.
states were associated with this stable classical structure thamdx=22.04 a.u. The state shown in Figd®is similar to
some of the resonances should disappea¢ ssincreased. the state shown in Fig.(8), but with a more prominent peak
Instead, the opposite behavior is found. To find the explananear the periodic orbit at=11.52 a.u. Note that the lifetime
tion for the increase in the number of resonance states wef this state is also greater than that of the state shown in Fig.
examine the Husimi distributions of the resonance states in8(d).
dicated in Fig. 7. At low values ofe all of the resonances have their prob-
Figure 8 shows HDs for the four resonance states ahbility concentrated neax&0, p=0). At these low values
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FIG. 10. Floquet eigenvalues of three resonance stitbsled

_3 A, B, and C) that are involved in an avoided crossing around
=0.0805 a.u. The points show the eigenvaluesfe0.076, 0.078,

20 -10 0 10 20 20 -10 0 10 20 0.08, 0.0805, 0.081, 0.083, and 0.085 a.u. The numbers shown in

x (a.u.) x (a.u.) the plot indicate the field strengths at the end points of each eigen-

FIG. 9. Husimi distributions for four of the five resonance statesvalue sequence. The lines are intended only as an aid to the eye.

ate=0.09 a.u. The resonance state with the shortest lifetime is not o
shown because its Husimi distribution is indistiguishable from thatand 9b)] decreases asis increased. However, the observed
of a continuum state. Lifetimes for each state are given in units of€havior could lead to stabilization for an excited state of the

the driving periodT=2/w. The locations of the periodic orbits undriven system. The excited states have most of their prob-
are indicated by filled circles. ability away from =0, p=0) and would thus overlap with
resonance states that are not peaked at that point. Since these
of € the two unstable periodic orbits are located close to théesonances grow in number and increase their lifetimes as
stable orbit nearX=0,p=0). If any resonance state was is increased, an excited state of the undriven system may
associated with the unstable periodic orbits at such low fieldecome stabilized against ionization @gs increased.
strengths it would be difficult to tell from its Husimi distri-
bution. As € is increased the unstable periodic orbits move
toward larger values ok and some of the resonance states
begin to spread in that direction as well. At moderate values Avoided crossings between resonance eigenvalues have
of e some states show peaks near the periodic orbit that iseen identified in this systefl5,16]. Avoided crossings be-
farthest from &=0,p=0), close tox=2«. Only at high tween Floquet eigenvalues play an important role in multi-
values ofe do we begin to see a state that is peaked on th@hoton ionization[25]. Overlapping avoided crossings in
unstable orbit that is closest ta£0, p=0), nearx=a. We  closed systems can lead to the delocalization of Floquet
believe that it is the association between the resonances arigenstates, while isolated avoided crossings result in only
the unstable periodic orbits that explains the creation of resdransient changes in the structure of the Floquet s{dtés
nance states as is increased. At lowe all three periodic Delocalization is closely related to ionization in open sys-
orbits are too close together to support many quantum statéems because long-lived resonance states can only exist if
because they all occupy essentially the same region of phagleey are localized within the interaction region. Therefore it
space. Ase is increased the unstable periodic orbits moveis important to understand how avoided crossings affect the
away from the stable one and from each other. This allowstructure of Floquet states in open systems. In this section we
quantum states to be associated with these unstable orbittvestigate an isolated avoided crossing to determine
without occupying the same region of phase space as th&hether or not the change in the structure of the Floquet
states associated with the stable orbit, so new resonanstates is similar to that seen in closed systems.
states are created. It is the scarring of resonance states onFigure 10 shows the Floquet eigenvalues of three reso-
unstable periodic orbits of the classical system that accountsance states at several field strengths betwee0.076 and
for the increase in the number of resonance eigenstates, everd85 a.u. Two of these statéabeledA andB in Fig. 10 and
as the stable region in the classical phase space is dimimadicated by filled circles and squares, respectivelse in-
ished. volved in a prominent avoided crossing at a field strength of
The behavior we see here would be unlikely to stabilizeabout e=0.0805 a.u. The third resonance eigenvallsee
the ground state of the undriven system against ionization itbeledC and indicated by filled triangl¢passes close by the
a high-intensity field. This is because the lifetime of the reso-other two at this field strength, but it is not clear from Fig. 10
nance state whose Husimi distribution most closely redf that state is involved in the avoided crossing. The avoided
sembles that of the ground std&hown in Figs. 6a), 8(a), crossing between statés and B appears to be an isolated

V. AVOIDED CROSSINGS BETWEEN RESONANCES
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S IR ——— (B By 2l T T states. Note that there are slight differences between the Hu-
T T T simi distributions of stated andB at e=0.073 a.u. and the
% 1 corresponding distributions at=0.083 a.u., but these may
: D be due to a small amount of mixing with sta®or with
-1 continuum states.
Figure 11 does not reveal any significant increase in the
-3 delocalization of any of the resonance states. In fact, the
{d) &,z=2.1T (e) B,t=2.9T (£) C,r=2.1T structural changes of the Floquet states as they pass through
A the avoi([:ieg 2cﬁ;oss;}ng are identical to thots)e seen in clr(])sed
5 systems[13,26. This is not surprising, because in this
@ @@ @ avoided crossing it is the real parts of the eigenvaligks
termined by the angular position of the point in Fig,) 1@at
avoid crossing, while the imaginary pattetermined by the
g A t=1.2T (h) B,7=6.5T (i) C,t=2.7T distance of the point from the origin in Fig. L@ctually
cross. This is an indication that the coupling between states
3t D @ and B is stronger than the coupling of those states to the
s C‘”\E continuum[27]. Thus, the continuum plays no major role in
o1

the avoided crossing and one would expect the behavior to
be similar to that seen in closed systems. We expect that the

BT S T T 300 i 51050 delqcalization and destruction of resonance states occurs pri-
* (am) * (2 * (a-u) marily as the result of coupling between a resonance state
FIG. 11. Husimi distributions for the states involved in the @Nd the continuum rather than between resonance $2gks

avoided crossing shown in Fig. 10. The labglsB, and C corre- Avoided crossings between resonance states may play an

spond to the labels in Fig. 10. Lifetimes for each state are given ifMmportant role in other phenomena in this system. For ex-
units of the driving periodT:Zﬂ-/w. The top row(a_o shows ample, it has been shown in bound SyStemS that avoided

Husimi distributions for the three resonance states et Crossings between Floquet eigenstates can result in increased
=0.078 a.u. The second rowd—f) shows the distributions at HHG. Avoided crossings contribute to increased HHG in two
=0.0805 a.u. The bottom rowg—i) shows the distributions a¢ ~ ways. During the turn on of a laser field avoided crossings
=0.083 a.u. States and B appear to exchange their structure as can put the quantum system into a superposition of Floquet
they pass through the avoided crossing. S&toes not appear to states that may emit radiation at higher frequencies than
undergo any major changes in its structure, but its lifetime increasewould be emitted by a single Floquet std29]. Avoided
dramatically as it passes through the avoided crossing. The loc&rossings also contribute to HHG by spreading the Floquet
tions of the periodic orbits at each field strength are indicated bystates over a wider range of energy, thus allowing a single
filled circles. Floquet state to emit higher frequency radiation. For the type
of avoided crossing observed here the states are only delo-

avoided crossing. This type of avoided crossing has beefi@lized near the exact field strength at which the avoided
shown to result in nothing more than an exchange of struccrossing occurs, because at this field strength the Floquet
ture between the two eigenstafdss,26. However, this ef-  states have mixed t_helr structyres]. At that_ particular field
fect has only been observed in closed systems. In open sy8trength, though, this effect could lead to increased HHG. In
tems the eigenvalues are complex and the structural changt&t, increased HHG has been observed in previous studies of
of the eigenstates as they pass through an isolated avoid&e avoided crossings in this syst¢frb.
crossing might lead to delocalization of one or both of the
states.

To determine the effect of this avoided crossing on the
resonance states we examine the Husimi distributions of the We utilize the complex coordinate Floguet method to cal-
statesA, B, andC shown in Fig. 11. As is increased from culate resonance states for an inverted Gaussian potential
0.078 a.u. to 0.0805 a.u. the statesnd B undergo strong driven by a monochromatic field. As has been previously
mixing with each other. When the field strength is increasedbserved, we find that the number of resonance states in-
to 0.083 a.u. we find that statésand B have completely creases as the field strength is increased. This behavior in the
exchanged their structure. Stefedoes not appear to have quantum system seems to be opposite to what is observed in
any significant structural changes in this range of fieldthe classical system, where the dynamics becomes increas-
strengths. However, it should be noted that st@téas a ingly unstable as the field strength is increased. An examina-
significant increase in its lifetime as is increased from tion of the Husimi distributions of the resonance states in this
0.078 a.u. to 0.083 a.u. StatdsandB exchange lifetimes as system shows that the newly created resonances states are
well as structure, but the lifetimes of both states eat associated with unstable periodic orbits in the classical mo-
=0.083 a.u. are somewhat smaller than the correspondingpn. This scarring of the eigenstates on unstable periodic
lifetimes ate=0.078 a.u. It may be that stat@ somehow orbits has been seen in other systems and it represents one of
gains stability at the expense of stafesandB, even though the most significant deviations of quantum dynamics from
it does not appear to pick up any of the structure of thosehe corresponding classical dynamics. In this system, reso-

VI. CONCLUSION
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nance eigenstates are scarred on unstable periodic orbits ambre likely to destroy resonance states than is coupling be-
the movement of the periodic orbits in the phase space akween two resonance states. Avoided crossings of the type
lows for the creation of new resonance states as the fieldgtudied here, however, could lead to many interesting effects
strength is increased. The creation of these new resonansech as increased high-harmonic generation.
states might help to stabilize the system against ionization in
intense fields. . _ ACKNOWLEDGMENTS
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