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Interaction of ions and molecules with surface modes in cylindrical channels in solids

Néstor R. Arista
División Colisiones Ato´micas, Instituto Balseiro and Centro Ato´mico Bariloche, Comisio´n Nacional de Energı´a Atómica,
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The interaction of ions and molecules with surface modes in cylindrical channels in solids is described on
the basis of the dielectric formalism, starting with simple dielectric models and using also more realistic
descriptions of the dielectric properties of various materials of experimental interest. The response of the
medium is first characterized in terms of the wake potential, calculating the main effects on the moving
particles, including self-energy values, stopping and lateral forces. The general scaling properties of the main
quantities as well as the effects of plasmon damping in real materials are described. The formulation is
extended to ion clusters and molecular composites, introducing new form factors to take into account the
cylindrical symmetry of the problem. Applications to simple ions, diclusters, dipoles, and polar molecules
channeled in microcapillaries and nanochannels are considered.
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I. INTRODUCTION

The interaction of charged particles with cylindrical cav
ties in solids is a subject of interest for current studies
electron and ion interaction with microchannels, capillari
and nanotubes in various materials. Previous experim
have been made using mostly electrons beams. The ex
tion of plasmons was observed by transmission of electr
through micropores in thin metal foils~with channel radii of
20–200 nm! @1,2#. More recently, the development of expe
mental techniques to produce carbon nanotubes with sma
diameters of;1 nm @3–5# has boosted a great number
studies, including electron-energy-loss spectroscopy@6#,
surface-plasmon excitation@7,8#, and preliminary studies o
ion channeling@9,10#. In addition, there are also recent stu
ies on the formation of hollow atoms in microcapillaries
various materials@11,12#.

Several theoretical studies of the energy loss of char
particles in cylindrical cavities have been published@13–15#.
The interaction process has been described mostly in cla
cal terms, and the connection with plasmon excitation w
formulated in a semiclassical way. More recently, a comp
hensive treatment of the interaction between charged
ticles and cylindrical surface modes, using both classical
quantum methods, has been carried out@16#. On the other
hand, there are extensive studies dealing with the trans
sion of ion clusters and molecules in thin foils@17# but there
are no studies of molecular transmission through nar
channels.

The purpose of this work is to study the interaction
atomic and molecular ions channeled through cylindri
cavities in solids, and to describe the main features of
interaction. The formulation is applied both to simp
dielectric-function models as well as to materials of expe
mental interest where more complicated dielectric functio
should be used. The present study will be restricted to n
relativistic velocities, since this is the range of current int
est in connection with ion and molecular-beam studies
relativistic treatment of the interaction of charged partic
1050-2947/2001/64~3!/032901~14!/$20.00 64 0329
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with cylindrical cavities has been made in Ref.@18# for the
case of electron beams.

This study includes calculations of induced potentials a
related quantities~self-energies and energy losses! for sev-
eral cases of experimental interest, like ion transmission
alumina and silver capillaries. The scaling properties of
induced field and related magnitudes will also be discuss

The formulation will be extended to the case of molecu
ions or composites, introducing new form factors that ta
into account the cylindrical symmetry of the problem. T
formulation will be applied to two cases of possible expe
mental interest: channeling of diclusters and electric dipo
or polar molecules, in narrow channels.

The paper is organized as follows: in Sec. II, the prop
ties of the modes of a cylindrical cavity are described, a
the analysis is extended to include the effects of damping
the response of the medium. In Sec. III the interaction w
external probes is considered, and in Sec. IV we calculate
main self-induced quantities~induced potential, stopping an
deflection forces!, derive the scaling properties, and calcula
the scaling functions. In Sec. V the formulation is extend
to the case of molecules or ion clusters, introducing app
priate cylindrical form factors, while Sec. VI refers to th
particular cases of diclusters and dipoles. Finally, Sec.
includes several applications to channeling of ions and m
ecules in materials of experimental interest.

II. MODES OF A CYLINDRICAL CAVITY

The electrostatic modes of a cylindrical cavity of radiusa
in a solid are determined by the solutions of the Lapla
equation, in terms of cylindrical Bessel functionsI m(x) and
Km(x), with m50,61,62,63, . . . , asfollows @19#.

~a! For r,a.

f (a)5Amei (kz1mw)I m~kr!e2 ivt; ~1!

~b! for r.a.

f (b)5Bmei (kz1mw)Km~kr!e2 ivt; ~2!
©2001 The American Physical Society01-1
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NÉSTOR R. ARISTA PHYSICAL REVIEW A 64 032901
where we use cylindrical coordinates (r,w,z) and k is a
wave vector along the axial channel direction denoted bz.
The relation between the coefficientsAm and Bm , and the
frequencies of the modesvk,m5vm(k), may be determined
by the usual matching conditions for the values of the fie
at r5a. These conditions lead to the following relation
@16#:

Am

Bm
5

Km~ka!

I m~ka!
~3!

and

«~v!5
I m8 ~ka!

I m~ka!

Km~ka!

Km8 ~ka!
, ~4!

where«(v) is the dielectric function of the medium; here th
primes denote the derivatives with respect to the argume
I m8 (x)5dIm(x)/dx, Km8 (x)5dKm(x)/dx.

From Eq.~4! one may obtain thedispersion relationfor
each of the modes,v5vm(k), which can be solved for eac
material using the appropriate dielectric function. This m
yield real or complex values forvm(k) depending on the
dielectric properties of the material.

The main characteristics of these modes are illustrate
Fig. 1, which show the dependence of the electrostatic
tential on the radial coordinater. These characteristics ar
independent of the model dielectric function. The cusp
havior observed atr5a is due to the accumulation of elec
tronic charge at the boundary~corresponding to surface
plasmon charge!.

A. Plasma-resonance model

The most simple approximation to the dielectric functi
around a plasma resonance is given by«(v)51
2vP0

2 /v(v1 ig) ~Drude model!, wherevP0 is the plasma

FIG. 1. Electrostatic modes of a cylindrical cavity as a functi
of the radial coordinater. The internal and external solutions a
given by Bessel functionsI m(kr) and Km(kr) as illustrated. The
modem50 is the only one that penetrates down to the center of
channel.
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frequency andg is the damping constant. In this model, th
energy-loss functionIm@21/«(v)# has a maximum at the
shifted plasma-resonance frequencyvP5(vP0

2 2g2/4)1/2.
In a previous work@16# the dispersion relationsvm(k)

have been shown for the ideal case of negligible damp
g!vP , vP>vP0; in such case, the frequencies of th
modesvk,m[vm(k) are real quantities, given by

vk,m
2 5vP

2xIm~x!uKm8 ~x!u, ~5!

so that the ratiosvk,m /vP are given by analytical functions
of the general variablex5ka. The function gm(x)
[xIm(x)uKm8 (x)u has the following limits: forx→0: g0(x)
→1, gm(x)→1/2 (mÞ0); for x→`: gm(x)→1/2 ~all m).
Hence, one gets the following limits:~i! for ka→0: vk,0
→vP , vk,m→vs (mÞ0); ~ii ! for ka→`: vk,m→vs ~all
m). Here vs5vP /A2 is the surface-plasmon frequency
plane surfaces (a→` limit ! @20#. Therefore, the frequency
of the modes is within the intervalvs,v,vP .

B. Damping effects

Let us consider now the effects of finite damping. In th
case the solutions of Eq.~4! yield complex frequencies
vk,m5vk,m

(1) 1 ivk,m
(2) . It may be observed that the imagina

part vk,m
(2) will be given simply by2g/2. In fact, by writing

vk,m5vk,m
(1) 2 ig/2, we get «@V#512vP0

2 /V2, with V2

5@(vk,m
(1) )21g2/4#, and so Eq.~4! yields a solution similar to

the case of negligible damping, Eq.~5!, but now in terms of
the frequencyV, namely,Vk,m

2 5vP0
2 gm(x).

Therefore, the solutions for finite damping will be of th
form

vk,m5@vP0
2 gm~x!2g2/4#1/22 ig/2, ~6!

with gm(x)5xIm(x)uKm8 (x)u.
The effects of the damping on the frequency of the mo

are shown in Fig. 2 for the modes withm50 and 1. We find
in general that the values of the frequencies diminish w
increasing damping. It may also be shown that for la
damping (g/vP0@1) the values ofvk,m become imaginary
~overdamped oscillations!.

C. Lorentz model

Similar considerations may be applied to the case of
Lorentz model, where the dielectric function is

«L~v!511
v1

2

v0
22v22 igv

, ~7!

with model parametersv0 andv1. In this case the maximum
of the energy-loss function, Im@21/«L(v)#, occurs at a
plasma frequency vP5(v0

21v1
22g2/4)1/2. Considering

again the dispersion relation for the modes of the cav
«L(v)5I m8 (x)Km(x)/I m(x)Km8 (x), Eq. ~4!, and proposing a
solution of the formvk,m5vk,m

(1) 2 ig/2, one gets

vk,m5@v0
21v1

2gm~x!2g2/4#1/22 ig/2, ~8!

e
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INTERACTION OF IONS AND MOLECULES WITH . . . PHYSICAL REVIEW A64 032901
with gm(x) defined before. The effects of the damping a
essentially similar to those illustrated in Fig. 2 for the Dru
model.

These models will be useful to characterize the domin
features of the optical properties of real materials.

III. INTERACTION WITH AN EXTERNAL CHARGE

Let us consider now a particle with chargeZe moving
within a cylindrical channel of radiusa, with trajectory par-
allel to thez axis, with velocityv, and with instantaneou
coordinates (r0 ,w0 ,z01vt).

Since the properties of the medium are represented b
frequency-dependent dielectric function, we introduce
Fourier transforms of the field quantities as follows:

F~ t !5E
2`

` dv

2p
e2 ivtF~v!. ~9!

A. Induced potential

As described previously@16#, the induced potential inside
(r,a) and outside (r.a) the cavity may be expanded i
terms of cylindrical Bessel functionsI m(x) and Km(x).

FIG. 2. Damping effects on the dispersion relation for the fi
two modes, m50, 1. The figure shows the changes in the frequ
cies with increasing values ofg/vP (g/vP50, 0.2, 0.5, 0.75, and
1!. The intersections ofv/vP with the lineux yield the values ofk
andv that could be excited by a particle with velocityv ~resonant
excitations! as described in the text.
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These fields must satisfy the usual boundary conditions,
in this way one obtains the following results for the intern
(f ind

(a) ) and external (f ind
(b) ) solutions.

~a! r,a. The total potential for r,a becomes
f tot

(a)(r,w,z,t)5fext(r,w,z,t)1f ind
(a) (r,w,z,t), where fext

is the bare Coulomb potential of the external charge andf ind
(a)

is the induced potential given in the frequency domain
@16#

f ind
(a) ~r,w,z,v!52Ze (

m52`

` E
0

`

dkIm~kr0!I m~kr!eim(w2w0)

3Ãm~k,v!$exp@ ik~z2z0!#d~v2kv !

1exp@2 ik~z2z0!#d~v1kv !% ~10!

and integrating inv, according to Eq.~9!,

f ind
(a) ~r,w,z,t !5

2

p
Ze (

m52`

` E
0

`

dkIm~kr0!I m~kr!eim(w2w0)

3$Re@Ãm~k,v!#cos~kz2vt !

2Im@Ãm~k,v!#sin~kz2vt !%uv5kv , ~11!

where we have used the propertiesÃm(k,v)1Ãm(k,2v)
52Re@Ãm(k,v)#, Ãm(k,v)2Ãm(k,2v)52i Im@Ãm(k,v)#,
and the value of the frequency is now linked tok by v
5kv.

~b! r.a. In this case one obtains for the total potent
the analogous expression

f tot
(b)~r,w,z,t !5

2

p
Ze (

m52`

` E
0

`

dkIm~kr0!Km~kr!eim(w2w0)

3$Re@B̃m~k,v!#cos~kz2vt !

2Im@B̃m~k,v!#sin~kz2vt !%uv5kv . ~12!

The amplitude coefficientsÃm(k,v) andB̃m(k,v) in Eqs.
~11! and ~12! are determined from the boundary condition
which yield

Ãm~k,v!5
@12«~v!#Km~ka!Km8 ~ka!

«~v!I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!
,

~13!

B̃m~k,v!5
I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!

«~v!I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!
.

~14!

B. Coherent excitations, resonances, and wakes

According to Eqs.~10! and~11!, the values of the induced
field consist of a superposition of wave components that
isfy the conditionv5kv. This means that only waves wit
phase velocitiesv/k coincident with the particle velocityv
will be excited by the particle. It may be shown that the for

t
-
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NÉSTOR R. ARISTA PHYSICAL REVIEW A 64 032901
of the induced potential Eq.~11! has a typical ‘‘wake’’ struc-
ture, characterized by a function ofr and z2z02vt that
remains stationary in a frame of reference moving toget
with the particle at velocityv. These characteristics app
irrespective of the dielectric function used to represent
properties of the medium, but the shape of the wake poten
depends strongly on this@21#. ~The properties of the wake
potential have been studied previously only for partic
moving in homogeneous media@22#.!

By comparing Eqs.~4! and ~13! we see that the equatio
for the modes coincides with the poles of the ‘‘respon
functions’’ Ãm(k,v). This corresponds to theresonant exci-
tation of those modes. In particular, if one uses the plasm
resonance model considered before, the values ofk and v
that satisfy the resonance condition may be determined
each velocityv by solving the equationvm(k)5kv. This
condition is illustrated in Fig. 2 by the linev/vP5kv/vP
5ux, with u5v/vPa andx5ka. Then, the values ofk and
v are given in this case by the intersection of the li
v/vP5ux with the corresponding dispersion-relation cur
for each modem. In this way k and v become velocity-
dependent functions:k5km@v#, v5vm@v#.

The general properties of the wake potential are illustra
in Fig. 3, for a proton with velocityv55 a.u. in a channel o
radiusa510 a.u. Calculations were done for a medium w
vP50.5 a.u.,g50.05. The instantaneous position of th
particle is z50, r50 ~solid circle!. The figure shows the
values of the induced potential behind the particle. As it m
be observed, the potential has a ‘‘normal’’ wake behav
outside the cavity (r.a) but it becomes very flat inside it
The cusp behavior atr5a is due to the accumulation o
surface charge at the boundary~cf. also Fig. 1!. Panels~b!
and~c! of this figure show the lateral and front views of th
wake potential. It may be observed that the wavelength
the wake in thez direction is given by 2pv/vP , as in the
case of homogeneous media.

A detailed comparison between the wakes induced i
homogeneous medium and in a cylindrical cavity is shown
Fig. 4, which shows a cut of the wake potential in the tra
verse plane for two values of z (z50 andz5250 a.u.!. This
confirms that the values of the induced potential outside
cavity are very similar to those in homogeneous med
whereas inside the cavity the screening appears ‘‘froze
which is due to the fact that the electrons cannot penet
into the cavity~outer screening!.

IV. SELF-INDUCTION EFFECTS

From the general expression for the induced potential
may obtain some relevant quantities that represent the m
effects of the field on the moving charge. The quantities
interest are the self-induced potential~which is the source of
a self-energy interaction!, and the longitudinal and transvers
components of the electric field acting on the charge~which
produce the corresponding stopping and deflection forc!.
We denote these quantities using an upper index 0, nam
f ind

(0)[f ind(r ,t)ur5vt , Ez
(0)[ZeEz(r ,t)ur5vt , and Er

(0)

[ZeEr(r ,t)ur5vt . The expressions for these quantities a
the following.
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~a! Induced potential on the charge.

f ind
(0)5

2

p
Ze (

m52`

` E
0

`

dk@ I m~kr0!#2 Re@Ãm~k,kv !#,

~15!

and theself-energyis given by

Wsel f5
1

2
Zef ind

(0) .

~b! Longitudinal electric field (Ez
(0)) and stopping force

(Fz) on the particle.

FIG. 3. Calculation of the wake potential for a proton with v
locity v55 a.u. in a channel of radiusa510 a.u., for a medium
with vP50.5 a.u.,g50.05. The instantaneous position of the pa
ticle is z50, r50, and is illustrated by a solid circle in each figur
Panel~a! shows a general pattern of the induced potential; pan
~b! and ~c! show lateral and front views of the wake. The wav
length of the wake in thez direction is given by 2pv/vP , and the
lateral decay distance isv/vP .
1-4
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INTERACTION OF IONS AND MOLECULES WITH . . . PHYSICAL REVIEW A64 032901
Fz[ZeEz
(0)

5
2

p
~Ze!2 (

m52`

` E
0

`

dkk@ I m~kr0!#2 Im@Ãm~k,kv !#.

~16!

~c! Transverse electric field (Er
(0)) and deflection force

(Fr) on the particle.

Fr[ZeEr
(0)

52
2

p
~Ze!2 (

m52`

` E
0

`

dkkIm~kr0!I m8 ~kr0!

3Re@Ãm~k,kv !#. ~17!

It may be noted that the lateral force vanishes when
particle moves along the axis of the channel (r050) due to
the behavior ofI m8 (x) for x→0. We may also note an inter
esting relation betweenEr

(0) andf ind
(0) ,

FIG. 4. Comparison between the wakes induced in a homo
neous media~dashed line! and in a cylindrical cavity~solid line!.
The figures show two cuts of the induced potential along transv
planes located atz50 ~containing the position of the charge! and
z5250 a.u.~behind it!. The sharp behavior atr5a510 a.u. is
produced by the accumulation of surface-plasmon charge at
wall.
03290
e

Er
(0)52

1

2

]f ind
(0)

]r0
. ~18!

The physical meaning of this equation can be made c
by expressing it in terms of the self-energy and transve
force as: Fr52]Wsel f /]r0, which relates the transvers
force to the variation of the interaction energy in a sm
lateral displacement. This relation expresses the conserva
character of the transverse force, associated with variat
in the self-energy of the particle due to its interaction w
the cavity wall.

A further analysis indicates that we may consider a
composition of the forces into adissipativecomponent, re-
lated to the motion in thez direction, and aconservative
force component in the perpendicular plane~for the case of
parallel motion!. These components are represented by
imaginary and real parts ofÃm(k,v) respectively in Eqs.
~16! and ~17!.

By comparing the results for the stopping force, Eq.~16!,
with those corresponding to charged particles in homo
neous media we observe that Im@Ãm(k,v)# plays here the
role of the energy-loss function, Im@21/«(q,v)#), in previ-
ous calculations. Therefore, the denomination of ‘‘respo
functions’’ used forÃm(k,v) is justified.

A. Reduced variables and scaling properties

We may write the previous results in a more general w
by introducing the following variables:u[v/vca, x[ka,
j[r0 /a; wherevc denotes a characteristic frequency of t
material~in the plasma-resonance modelvc is given by the
plasma frequency!. The variableu5v/vs will be referred to
as thereduced velocity, introducing also thescaling velocity
vs5vca.

In terms of these variables, the equations for the indu
potential, and for the longitudinal and transverse fields, E
~15!–~17! may be cast in the following form.

f ind
(0)5

Ze

a
f pot~u,j!, ~19!

Ez
(0)5

Ze

a2
f z~u,j!, ~20!

Er
(0)5

Ze

a2
f r~u,j!, ~21!

where the scaling functions are given by

f pot~u,j!5
2

p (
m52`

` E
0

`

dx@ I m~xj!#2 Re@Ãm~x,xu!#,

~22!

f z~u,j!5
2

p (
m52`

` E
0

`

dxx@ I m~xj!#2 Im@Ãm~x,xu!#,

~23!
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NÉSTOR R. ARISTA PHYSICAL REVIEW A 64 032901
f r~u,j!52
2

p (
m52`

` E
0

`

dxxIm~xj!I m8 ~xj!Re@Ãm~x,xu!#.

~24!

Due to Eq.~18! there is also the following relation be
tween these functions,

f r~u,j!52
1

2

] f pot~u,j!

]j
. ~25!

These expressions take into account the scaling prope
already noted, so that the induced potential, electric fie
and forces may all be expressed in terms of a set of sca
functions f i(u,j). These functions may be calculated f
each material using appropriate dielectric functions. Size
pendence of the solutions~on the cavity radiusa) is simply
represented by the factors 1/a and 1/a2 in Eqs.~19!–~21!.

B. Simple models

The scaling properties described so far apply to any t
of dielectric function«(v). But if the previous models are
used, the values ofÃm(k,v) may be cast in a very simpl
form. The expressions for the Drude and Lorentz models
the following.

a. Drude model. In this case one gets

Ãm~k,v!5Ãm@x,ux#5
gm~x!

ux~ux1 id!2gm~x!

Km~x!

I m~x!
,

~26!

where x5ka, ux5kv/vP05v/vP0 , d5g/vP0 , and
gm(x)[xIm(x)uKm8 (x)u.

b. Lorentz model. In this case

Ãm~k,v!5Ãm@x,ux#

5
gm~x!

ux~ux1 id!2@gm~x!1v0
2/v1

2#

Km~x!

I m~x!
,

~27!

where ux5kv/v15v/v1 , d5g/v1 and gm(x)
[xIm(x)uKm8 (x)u.

These expressions show explicitly the parametrization
Ãm(k,v) in terms of the general variablesx5ka and u
5v/vs ~reduced velocity! for the simple models describe
before. It may be shown that the poles of the response fu
tions Ãm(k,v), Eqs. ~26! and ~27!, correspond to complex
frequencies given, respectively, by Eqs.~6! and ~8!.

C. Scaling functions

Figure 5 shows the functionsf pot(u,j), f z(u,j), and
f r(u,j), corresponding to the plasma-resonance mo
«(v)512vP

2 /v(v1 ig) with d5g/vP→0.
The functionsf pot(u,j), f z(u,j), and f r(u,j) show in a

general way the characteristics of the induced potential~and
self-energy!, and the longitudinal and transverse forces a
03290
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ing on a moving particle with reduced velocityu and reduced
radial coordinatej5r0 /a. The values off ind

(0) andEz
(0) and

Er
(0) may be evaluated from these results and using the r

tions ~19!, ~ 20!, and~21!.
As a general behavior, we observe in all cases an imp

tant increase of the values shown in Fig. 5 as the part
approaches the boundary of the channel (j→1). This is in

FIG. 5. Scaling functionsf pot(u,j), f z(u,j), and f r(u,j), for
the calculation of the induced potential, longitudinal force, a
transverse force acting on a moving particle with reduced velociu
and reduced radial coordinatej5r0 /a, according to the plasma
resonance model,«(v)512vP

2 /v(v1 ig) with d5g/vP→0. The
insets give the relations that may be used to calculate the value
f ind

(0) , Ez
(0) andEr

(0) using these scaling functions, Eqs.~19!–~21!.
1-6
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INTERACTION OF IONS AND MOLECULES WITH . . . PHYSICAL REVIEW A64 032901
agreement with the diverging behavior already noted in
limit in Ref. @16#. The ‘‘stopping function’’ f z(u,j) shows
the general characteristics of a stopping force, with a ma
mum at intermediate velocities~in particular, forj50, i.e.,
for particles moving along the channel axis, one getsumax

>0.8), and a Bethe-type decreasing behavior at high e
gies. Note however that the position of the maximum sh
to smaller velocities with increasing values ofj. Due to the
relation betweenu andv, this shows that the maximum valu
of the stopping force for thej50 case will occur for particle
velocities close to the scaling velocityvs5vPa. Note also
that sincevmax is proportional to the channel radius, one m
expect relativistic values ofvmax for channel radii a
.100 a.u.

D. Analytical results for the stopping force

The integration of the stopping forceFz5ZeEz may be
carried out in analytical terms in the particular case o
sharp plasma resonance@16# and one obtains

FIG. 6. Effects of damping on the values of the potential a
stopping functionsf pot , f z , for particles moving along the channe
axis (j50), for a set of values ofg/vP . The curves forg/vP

50 correspond to the case of undamped plasma oscillations.
increasing damping values the dip in the potential atu;0.5, and the
threshold behavior in the stopping force~for u!1), are washed out
For large values ofg/vP the functionf z at low velocities shows the
‘‘friction force’’ characteristicsf z}u.
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Fz5 (
m52`

`

Fz,m

52S ZevP

v D 2

(
m52`

`

xKm~x!uKm8 ~x!u@ I m~xj!#2ux5xm
,

~28!

so that the functionf z(u,j) is in this case given by

f z~u,j!52
1

u2 (
m52`

`

xKm~x!uKm8 ~x!u@ I m~xj!#2ux5xm(u) .

~29!

The dependence onu in this expression is given parametr
cally through the functionsxm(u). This arises from the inter-
section condition:vk,m(x)5kv5uxvP ~Fig. 2! that yields
the values ofxm for each mode as a function of the reduc
velocity u.

Useful analytical results may also be obtained for tw
cases of particular interest.

a. Motion along the axis (r050). In this case only the
m50 term contributes, yielding a stopping force

Fz>2S ZevP

v D 2

K0S avP

v D . ~30!

It is interesting to note here the exponentialthresholdbehav-
ior for v!vs5vPa ~due to the behavior ofK0(x);exp
(2x)/Ax for x@1); this is a characteristic of the undampe
harmonic-oscillator model. On the other hand, forv@vs one
obtains the Bohr limit, withK0(vPa/v); ln(1.123v/vPa).

b. Motion near the border (r0;a). In the proximity of the
cavity wall a large number of termsm contribute to the force,
yielding a divergent behavior of the form

Fz>2S Zevs

v D 2

K0S 2vs

v
ur02au D . ~31!

This limit corresponds to the stopping force for a partic
moving parallel to an infiniteplanesurface@23#, at a distance
ur02au.

E. Damping effects

The previous analytical results apply to the special cas
sharp plasma resonances (d5g/vP→0). But in most cases
of experimental interest there is a significant broadening
this resonance. To quantify the expected differences in th
cases, the previous calculations have been extended to c
with gÞ0, using the values ofg/vP as a parameter.

These differences are illustrated in Fig. 6, which sho
the results for the potential functionf pot , and for the stop-
ping functionf z , for particles moving along the channel ax
(j50), considering a set of values ofg/vP . As a general
result we find a decreasing behavior of the magnitudes w
increasingg values~although not a monotonous one in th
case of the stopping function!. We observe that the dip in th

d
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potential atu;0.5 is progressively eliminated, whereas
the case of the stopping function we note two effects: a s
to lower velocities of the absolute minimum off z ~corre-
sponding to the stopping-power maximum!, and, more sig-
nificantly, the disappearance of the threshold behavior at
velocities observed for small damping values, turning int
‘‘frictionlike’’ force proportional to velocity when the damp
ing effect is large (g/vP.1). It is interesting to note that a
similar behavior~proportionality with velocity! was obtained
in the case of particles moving with trajectories parallel to
plane surface when the damping was important@24#.

V. INTERACTION WITH CLUSTERS AND MOLECULES

We will consider next the excitation of capillary mode
produced by atomic and molecular composites~neutral or
ionized!, including the cases of discrete or continuous cha
distributions.

A. Discrete distributions

The generalization of Eq.~10! for a cluster ofN ions with
chargesZie and trajectories given by:r5r i ,w5w i ,z5zi
1vt ~i.e., with a common velocityv) is straightforward.
First we determine the potential induced by the whole clus
within the cavity as follows:

f ind
(cluster)~r,w,z,t !52(

i 51

N

ZieE
2`

` dv

2p
e2 ivt (

m52`

`

eim(w2w i )

3E
0

`

dkIm~kr!I m~kr i !3Ãm~k,v!

3$exp@ ik~z2zi !#d~v2kv !

1exp@2 ik~z2zi !#d~v1kv !% ~32!

from which one can derive the electric field and other rela
quantities. In particular we will pay attention here to the to
stopping and lateral forces and to the self-energy of the
teracting system.

1. Stopping force

The total stopping force on the cluster may be calcula
by Fcluster5( j 51

N Fj , where Fj52Zje“f indurW5rW j
. The z

component of the total force gives the average energy los
cluster-stopping power

dE

dz U
cluster

5(
j 51

N

Fj• ẑ52(
j 51

N

Zje
]f ind

]z U
rW5rW j

. ~33!

Inserting Eq.~32! for f ind and performing thev integra-
tion one finally obtains

dE

dz U
cluster

5
2e2

p (
m52`

` E
0

`

dkk

3uF m
(cl)~k!u2Im@Ãm~k,v!#uv5kv , ~34!
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whereF m
(cl)(k) are thecluster form factors, which we define

here as

F m
(cl)~k!5(

i 51

N

ZiI m~kr i !e
2 ikzie2 imw i. ~35!

It may be observed that for a single ioni the form factor
reduces to,uF m

( i )(k)u25Zi
2@ I m(kr i)#2, so that one retrieves

the previous result of Eq.~16!.

2. Lateral force

Proceeding in a similar way one obtains the lateral fo
on the cluster,

Flat5(
j 51

N

Fj•r̂

52
e2

p (
m52`

` E
0

`

dkF m
(cl)*“rFm

(cl) Re@Ãm~k,v!#uv5kv ,

~36!

where

¹rF m
(cl)5k(

i 51

N

ZiI m8 ~kr i !e
2 ikzie2 imw i ~37!

3. Self-energy

Finally, the self-energy for the distribution of discre
charges is calculated as

Wcluster5
1

2 (
i , j

Zjef ind
( i ) ~r j ,w j ,zj ,t !, ~38!

wheref ind
( i ) (r j ,w j ,zj ,t) denotes the induced potential pro

duced by particlei acting on particlej.
This yields the following result:

Wcluster5
e2

p (
m52`

` E
0

`

dkuF m
(cl)~k!u2 Re@Ãm~k,v!#uv5kv

~39!

in terms of the cluster form factors previously defined.
As a generalization of Eq.~18!, Flat andWcluster satisfy

the conservative relation

Flat52“rWcluster ~40!

~note that“r denotes here a derivative with respect to t
radial displacement of the whole cluster!.

B. Continuous distributions

The previous considerations may be extended also to
case of continuous distributions of charge moving with v
locity v. Thus, for instance, the self-energy for an extern
charge distribution of the formerext(r2vt), with v parallel
to thez axis, is given by
1-8
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INTERACTION OF IONS AND MOLECULES WITH . . . PHYSICAL REVIEW A64 032901
W5
1

2E d3rerext~r ,t !f ind~r ,t !, ~41!

where

f ind~r ,t !52E d3r 8erext~r 8,t !E
2`

` dv

2p
e2 ivt

3E
0

`

dk (
m52`

`

eim(w2w8)

3Ãm~k,v!I m~kr!I m~kr8!@eik(z2z8)d~v2kv !

1e2 ik(z2z8)d~v1kv !#. ~42!

This yields after some algebra the same result as in
~39!, where now

Fm~k!5E d3rrext~r !I m~kr!e2 ikze2 imw. ~43!

These are the form factors for extended charge distributio
In particular, if one takesrext(r ) given by( iZid(r2r i), one
retrieves the form factors of Eq.~35!.

C. Form factors

It is illustrative to compare the present results with tho
corresponding to ion clusters in infinite homogeneous so
@17#. Thus, for instance, by comparing the results for t
stopping force we observe that Im@Ãm(k,v)# plays here the
role of an energy-loss function~replacing Im@21/«(q,v)#);
in addition, the form factorsFm

(cl)(k) obtained here differ
appreciably from the corresponding quantities for homo
neous systems, where the form factors have the well-kno
Fourier-transform expression~plane-wave form factors!,
namely,

F~q!5E d3rrext~r !e2 iq•r. ~44!

The special forms of thecylindrical form factorsobtained
here, Eqs.~35! and ~43!, express the lack of translationa
invariance in the plane perpendicular to the channel a
Note in Eqs.~35! and~43! that only thez dependence main
tains the characteristic aspect of a translation factore2 ikz,
whereas the azimuthal dependence takes into account thp
periodicity of the present problem.

An additional difference to be considered is that the
lindrical form factors derived here depend on the transve
coordinatesr i of the charges~no translational invariance!, so
that they must be calculated for each position of the clu
in the transverse plane.

VI. APPLICATIONS: DIATOMIC SYSTEMS

Let us consider now the application of the previous dev
opments to two cases of special interest:~i! a ‘‘dicluster’’
consisting of two ions with chargesZ1 andZ2 moving in a
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correlated way through the channel, and~ii ! the case of ‘‘di-
pole channeling.’’

A. Diclusters

From the previous formulation we write the form fact
for this case as

F m
(22cl)~k!5Z1I m~kr1!e2 ikz1e2 imw1

1Z2I m~kr2!e2 ikz2e2 imw2. ~45!

We will analyze here the case of swift diclusters movi
along the channel axis, with an internuclear distancer 0, con-
sidering in particular the following cases.

~a! Aligned dicluster; i.e., a D cluster with internuclea
axis oriented in thez direction (r15r250, z12z25r 0). In
this case one finds that only them50 term contributes, with
a form-factor value

F 0
(22cl)~k!5@Z1e2 ikz11Z2e2 ikz2#. ~46!

More particularly, for Z156Z2 we get F 0
(22cl)(k)

52Z1 cos(kr0/2), and F 0
(22cl)(k)522Z1i sin(kr0/2), re-

spectively, withz152z25r 0/2. ~
~b! Transverse dicluster. Dicluster oriented in ther direc-

tion (z15z250, r15r25r 0/2, w150, w25p). Here one
gets

F m
(22cl)~k!5@Z11Z2e2 imp#I m~kr0/2! ~47!

~for all m values!. In particular, if Z156Z2 we get,
Fm

(22cl)(k)52Z1I m(kr0/2), wherem takes only even values
for Z15Z2, and only odd values forZ152Z2.

~c! Angular average.
By performing the angular average of Eq.~45! with r1

5r25r 0 sin(u)/2, z152z25r 0 cos(u)/2, w22w25p, one
gets

^uF m
(22cl)~k!u2&5~Z1

21Z2
2!Hm~kr0!12Z1Z2eimpGm~kr0!

~48!

in terms of the integrals,

Hm~x!5
1

2E21

1

du sin~u!F I mS x

2
sinu D G2

~49!

Gm~x!5
1

2E21

1

du sin~u!F I mS x

2
sinu D G2

cos~x cosu!.

~50!

B. Dipoles

We consider now the caseZ152Z2 in Eq. ~45!, and take
the limit, uZ1u5uZ2u→`, r 0→0, with d5Z1r05 constant
~electric-dipole moment).

This yields thedipole form factor
1-9
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F m
(dip)~k!5F I m8 ~kr0!kdr2 i I m~kr0!

3S kdz1
m

r0
dwD Ge2 ikz0e2 imw0, ~51!

where nowr0 ,z0 ,w0 are the cylindrical coordinates of th
dipole anddr ,dz ,dw are its components in the correspondi
directions. This is the general result for dipoles within t
channel.

In addition, we consider the case of random orientatio
of the dipole vectord. By performing the angular averag
over all possible orientations we get

^uF m
(dip)~k!u2&5

1

3
k2d2@ I m8 ~kr0!#2

1
1

3
k2d2@ I m~kr0!#2F11

m2

k2r0
2G . ~52!

Particular cases of interest for dipole motion along
axis of the channel (r050) are now the following:~a!
aligned dipole—parallel orientation~only m50 term!:
F 0

(dip)(k)5kd; ~b! perpendicular orientation~only m51
term!: F 1

(dip)(k)5 1
2 kd; and ~c! angular average.

Here we obtain from Eq.~52!, for r0→0,

^uF m
(dip)~k!u2&5

1

3
k2d2dm,01

1

6
k2d2dm,1 ~53!

Hence, in this case we get nonvanishing results only
m50 or 1.

VII. CALCULATIONS

A. Swift ions in various materials

The application of the previous formulation to real ma
rials requires first some analysis of the dielectric proper
for each particular case. The materials of specific interes
relation with previous experiments include Ag and alumin
Figure 7 shows the energy-loss functions~ELF!, Im
@21/«(v)#, for these materials, according to the availab
data@25#. The solid lines are the experimental values wh
the dashed lines show approximate fittings to the data u
simple models. These cases bear very different charact
tics and so they will be analyzed separately.

1. Silver

The ELF of Ag @Fig. 7~a!# was fitted by a simple Drude
model with parametersvP051.9 and g52.85 a.u.; this
yields an ‘‘effective’’ plasma frequencyvP2e f f5(vP0

2

2g2/4)1/251.257 a.u., or 34.2 eV. As it may be seen, th
model yields only a rough representation of the average
havior of the ELF on a wide range of frequencies, includi
the dominant interband transitions aroundvP2e f f , but the
optical plasma resonance at 3.7 eV is outside this desc
tion.
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Calculations were performed using both this simp
model as well as the complete set of tabulated data, for
real and imaginary parts of«(v) @25#, obtaining values of
the induced potential and stopping force, from Eqs.~15! and
~16!, for protons moving within channels in Ag with rad
a510 and 20 Å . The protons are assumed to be mov
along the channel axis,r050 ~the results forr0Þ0 would
be larger than those obtained here!. These calculations are
shown in Fig. 8~solid circles and dotted lines! as a function
of the proton velocity. We observe from this figure that,
spite of its crudeness, the fitting model reproduces very w
the results of the realistic description. These figures illustr
also the main characteristics of the problem; the shift in
values of the induced potential and stopping force are
accordance with the scaling predictions. In particular, it m
be observed that the maximum stopping values drop b
factor 4 while the position of the maximum~indicated by
vertical bars! shifts by a factor 2 for the present values ofa.

FIG. 7. Energy loss functions~ELF!, Im@21/«(v)#, of Ag ~a!
and alumina~b!. The solid lines are the experimental values@25#
and the dashed lines show fittings to the data using simple mod
In the case of Ag a Drude model has been used, with parame
vP051.9 andg52.85 a.u.; corresponding to an effective plasm
frequency vP2e f f5(vP0

2 2g2/4)1/251.257 a.u. ~34.2 eV!. The
low-energy plasma resonance at 3.7 eV is outside this rough fitt
The ELF of alumina was fitted by a Lorentz model with paramet
v050.52, v150.78, andg50.63 a.u., corresponding to a plasm
frequencyvP5(v0

21v1
22g2/4)1/250.883 a.u.~24 eV!.
1-10
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INTERACTION OF IONS AND MOLECULES WITH . . . PHYSICAL REVIEW A64 032901
2. Alumina

A similar analysis of the dielectric properties was ma
for targets of Al2O3. The ELF of alumina is shown in Fig
7~b!, which includes the experimental data@25# and an ap-
proximate fitting using a Lorentz model with paramete
v050.52, v150.78, and g50.63 a.u. The plasma fre
quency in this case,vP5(v0

21v1
22g2/4)1/2, takes the value

0.883 a.u., or 24 eV, which corresponds to the observa
plasma frequency.

Calculations of induced potentials and stopping forces
protons moving in channels of different radii,a510, 20, and
50 Å , are shown in Fig. 9. It is observed that as the rad
increases not only the magnitudes of the induced poten
and electric field decrease~as predicted by the scaling laws!,
but also that their behavior becomes flat, with the import
values concentrated near the cavity walls, and within an
teraction distance;v/vP . The most critical effect is ob-
served in the stopping force in panel~b!.

A detailed analysis shows that the condition for the ‘‘fl
limit’’ is that x[ka@1, and since the values ofk of interest
arek;vP /v, this condition may be written asa@aad , be-

FIG. 8. Calculations of the induced potential~a! and stopping
force~b!, using Eqs.~15! and~16!, for protons moving within chan-
nels in Ag with radii a510 and 20 Å , as a function of proto
velocity. The protons are assumed to be moving along the cha
axis,r050. The lines with solid circles are the results obtained
integration of the ELF data, while the dashed lines are the res
obtained using the simple fitting model shown in Fig. 8.
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ing aad5v/vP theadiabatic distance. The stopping force in
this limit takes the form of Eq.~31!. In these conditions, the
interaction with the walls is negligible through nearly all th
internal region of the cavity, except only for a thin layer
thicknessv/vP where the interaction is like that for plan
surfaces.

Conversely, one can characterize the conditions to
serve cylindrical curvature effects bya;aad5v/vP . In this
case the particle feels the effect of the surrounding walls.
the range of velocities of interest in ion-beam experime
one gets values of radii in the rangea;5250 Å ~i.e., in the
nanoscale range!.

B. Channeling of diclusters

We will illustrate here the application of the previous fo
mulation to the case of diclusters channeled through nar
holes. One of the simplest cases is that of a pair of prot
with correlated motion through the channel~this particular
case bears some relationship with experiments with H2

1

ions in solid foils, when the dissociation fragments are d
tected@26#!.

Figure 10 shows the values of the energy loss of a pai
protons moving with various internuclear distances in
channel of radiusa510 Å in alumina. The center of mas

el

lts

FIG. 9. Calculations of induced potentials and stopping for
for protons moving in alumina channels of different radii,a510,
20, and 50 Å . Note the increasingly flat behavior throughout
inner region for large channel radius, and the importance of
interactions near the border, in a layer of thickness;v/vP .
1-11
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NÉSTOR R. ARISTA PHYSICAL REVIEW A 64 032901
of the dicluster is on the channel axis. For the caser 0
53 Å we show the results for parallel, perpendicular, a
random orientation~angular average!. For the other radii (r 0
from 10 Å to 30 Å! we show only the case of parallel orien
tation. We also show for comparison the stopping valuesSp
for single protons channeled also along the axis~solid
circles!, and 4Sp ~open circles! which is the limiting value
for two united protons. The values of 4Sp nearly agree with
the angular average of the diproton energy loss for the c
r 053 Å . This indicates that the average energy loss in t
case is nearly the same as if the two particles were uni
even though the internuclear distance~3 Å! is not negligible
compared with the channel radius. With increasingr 0 the
differences in the stopping values become large, and im
tant interference effects appear forr 0 values large that the
channel diameter; these effects may be expected to aris
the case of dissociation of diatomic ions within narrow cha
nels.

The case of nearly aligned diclusters may be of interes
relation to possible experiments with molecular ions. For
stance, it would correspond to the Coulomb explosion~after
break up! of H2

1 ions, producing two correlated proton
whose motion is confined to the channel walls. The pres
results are indicative of the magnitude of the expected ‘‘v
nage effects,’’ but a complete simulation would be requir
to compare with actual experiments.

C. Channeling of dipoles or polar molecules

The final question to be considered here is the interac
of electric dipoles with narrow channels. This question m
be of interest for instance in experiments with excited neu
hydrogen atoms at the leveln52 ~which has the property o

FIG. 10. Energy loss of a dicluster formed by a pair of proto
moving with internuclear distancesr 053, 10, 15, 20, 25, and 30 Å
in a channel with radiusa510 Å in alumina. The dicluster move
along the channel axis. Forr 053 Å the figure shows the cases o
parallel ~dashed!, perpendicular~dotted line!, and random~solid
line! orientation of the internuclear axis. The set of curves for
other r 0 values corresponds to the case of parallel orientation.
solid circles show the proton-stopping values (Sp) for the same
channel, whereas the open circles show four times these va
(4Sp), which agrees closely with the angular average of the ene
loss for r 053.
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spontaneous polarization, with a relatively large dipole m
ment, d53 a.u.), or in experiments with polar molecule
like NaCl, LiF, HF, H2O, or others~dipole moments:d
53.3, 2.6, 0.8, and 0.7 a.u., respectively!. The conditions of
very low electron densities within the channel may favor t
possibility of transmission of unbroken molecules, whi
could not survive transmission in the usual experiments w
solid foils.

It was observed in Fig. 10 that the energy loss of a pair
charges is not very sensitive to the internuclear distanc
this is much smaller than the channel radius. Therefore
first approach to the present problem can be made by c
sidering the system as a simple electric dipole, according
the description given before, Eqs.~51!–~53!. Figure 11
shows the calculated values of the energy loss of a dip
momentd53 a.u. The results correspond to a dipole mo
ing along the channel axis with radiusa510 Å . The curves
correspond to dipoles oriented parallel and perpendicula
the channel axis, and to the angular average of the en
loss. We find here a larger orientational dependence tha
Fig. 10, this is because of the angular dependence of
dipole field, in contrast to the dominant monopole interact
of Fig. 10. For comparison, the curve corresponding to
proton-stopping power divided by 20 is also shown. We co
clude from this comparison that for such narrow channel
energy loss of a dipole may be 20 times smaller than tha
a proton. In fact, the ratio of dipole to proton stopping d
pends strongly on the channel radiusa. This ratio decreases
rapidly with increasing radius~like 1/a2), since the dipole
stopping decreases like 1/a4, whereas the proton stoppin
diminishes as 1/a2. This indicates the advantage of usin
narrow channels to test the energy loss of polar~atomic or
molecular! systems. The magnitude of the energy loss in
cates that the effect could be observable using nanochan
or nanotubes with several microns of length~note also that
the present results correspond to the channel axis, so
they give lower bound estimations!.

s

e
e

es
y

FIG. 11. Energy loss of a dipole momentd53 a.u. moving
along the axis (r050) within a channel in alumina, with radiusa
510 Å . The curves correspond to dipoles oriented parallel a
perpendicular to the axis, and to the angular average of the en
loss. For comparison, the proton stopping divided by 20 (Sp/20), is
also shown.
1-12
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Finally, Fig. 12 shows the self-energy of a channeled
pole as a function of its angular orientation~the angleu

between the dipole momentdW and the velocityvW ). The mini-
mum energy value if obtained foru5p/2, corresponding to
the transverse orientation of the dipole. However, the m
nitude of these values seems to be too small to have prac
consequences.

VIII. SUMMARY

The significant advances in the production of chann
and nanotubes in solids provides the possibility of new st
ies on the interaction of swift ions and molecules with the
systems. Current studies of transmission of ions through
crochannels are producing new information about the b
interaction processes and require also theoretical studie
the area.

FIG. 12. Angular dependence of the self energy of a chann
dipole as a function of its angular orientationu ~the angle between

the dipole momentdW and the velocityvW ), for v55 a.u. anda
510 Å , and for two positions of the dipole within the channel,j
[r0 /a50 and 0.5. The minimum energy value if obtained foru
5p/2, corresponding to the transverse orientation of the dipole
Y

. B

er

03290
i-

-
al

ls
-

e
i-
ic
in

In a previous formulation@16# several analytical results
for a simple plasma-resonance dielectric function have b
derived. Here the analysis was extended to incorporate m
realistic descriptions of the dielectric properties of materi
of experimental interest. The scaling properties of the
duced field and forces have been derived, using a se
scaling functions to represent the general dependenc
terms of reduced variables.

Based on this formulation, the magnitudes and the beh
ior of the expected energy losses and self-energies have
evaluated, for ions channeled in Ag and alumina targets.
influence of the dielectric properties on the calculated val
has been shown and parametrized, and the size effects
characterized.

The formulation was extended to ion clusters or molecu
composites, and the results were expressed in terms of a
type of form factors which incorporate the conditions im
posed by the cylindrical geometry. The particular cases of
energy loss of dissociated or exploding diclusters, and
energy loss of channeled dipoles~with possible applications
to the channeling of polar molecules or atoms! have been
analyzed. Other possible applications may include the st
of transient shifts of the atomic lines of moving ions, due
the effect of the induced potential, or the possible influen
of the wake potential on the spectra of emitted electro
~field-acceleration effects!.

The condition of low electronic density within the chann
provides a unique environment that could be convenient
the design of novel experiments of transmission of single
correlated ions, neutral atoms and molecules. The gen
formulation and the results and ideas presented here cou
useful for experimental studies and further advances al
these lines.
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