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Interaction of ions and molecules with surface modes in cylindrical channels in solids
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The interaction of ions and molecules with surface modes in cylindrical channels in solids is described on
the basis of the dielectric formalism, starting with simple dielectric models and using also more realistic
descriptions of the dielectric properties of various materials of experimental interest. The response of the
medium is first characterized in terms of the wake potential, calculating the main effects on the moving
particles, including self-energy values, stopping and lateral forces. The general scaling properties of the main
quantities as well as the effects of plasmon damping in real materials are described. The formulation is
extended to ion clusters and molecular composites, introducing new form factors to take into account the
cylindrical symmetry of the problem. Applications to simple ions, diclusters, dipoles, and polar molecules
channeled in microcapillaries and nanochannels are considered.
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I. INTRODUCTION with cylindrical cavities has been made in REE8] for the
case of electron beams.

The interaction of charged particles with cylindrical cavi- ~ This study _iljcludes calcu_lations of induced potentials and
ties in solids is a subject of interest for current studies offelated quantitiegself-energies and energy lospdsr sev-
electron and ion interaction with microchannels, capillarieséral cases of prer|me_nta! Interest, |I|<<=T lon transmission in
and nanotubes in various materials. Previous experimen@umina and silver capillaries. The scaling properties of the
have been made using mostly electrons beams. The excitdtduced field and related magnitudes will also be discussed.
tion of plasmons was observed by transmission of electrons | "€ formulation will be extended to the case of molecular
through micropores in thin metal foilsvith channel radii of ~1ONS O composites, introducing new form factors that take
20-200 nm[1,2]. More recently, the development of experi- Into account t.he CV"“dF'Ca' symmetry of the prqblem. Th?
mental techniques to produce carbon nanotubes with Sma"egqrmula.tmn will be apphgd to two cases of possml_e experi-
diameters of~1 nm [3-5] has boosted a great number of mental interest: channeling of diclusters and electric dipoles,
studies, including electron-energy-loss sg ectroscdpy, or polar molecules, in narrow channels.

' g clec gy-loss sp ) by The paper is organized as follows: in Sec. Il, the proper-
surface-plasmon excitatidi7,8], and preliminary studies of

) h i dditi h I q ties of the modes of a cylindrical cavity are described, and
ion channelind9,10]. In addition, there are also recent stud- o anaiysis is extended to include the effects of damping on
ies on the formation of hollow atoms in microcapillaries of

] ; the response of the medium. In Sec. lll the interaction with
various material§11,12. external probes is considered, and in Sec. IV we calculate the
Several theoretical studies of the energy loss of chargeghain self-induced quantitiginduced potential, stopping and
particles in cylindrical cavities have been publisii#8-15.  deflection forcek derive the scaling properties, and calculate
The interaction process has been described mostly in classhe scaling functions. In Sec. V the formulation is extended
cal terms, and the connection with plasmon excitation waso the case of molecules or ion clusters, introducing appro-
formulated in a semiclassical way. More recently, a comprepriate cylindrical form factors, while Sec. VI refers to the
hensive treatment of the interaction between charged paparticular cases of diclusters and dipoles. Finally, Sec. VI
ticles and cylindrical surface modes, using both classical anihcludes several applications to channeling of ions and mol-
guantum methods, has been carried [di]. On the other ecules in materials of experimental interest.

hand, there are extensive studies dealing with the transmis-

sion of ion clusters and molecules in thin fdjls7] but there Il. MODES OF A CYLINDRICAL CAVITY
are no studies of molecular transmission through narrow _ o ) _
channels. The electrostatic modes of a cylindrical cavity of radaus

The purpose of this work is to study the interaction ofin a solid are determined by the solutions of the Laplace
atomic and molecular ions channeled through cylindricaleduation, in terms of cylindrical Bessel functiohg(x) and
cavities in solids, and to describe the main features of thi&m(X), with m=0,£1,£2,%3, ..., asfollows [19].
interaction. The formulation is applied both to simple (a Forp<a.
dielectric-function models as well as to materials of experi- , ,
mental interest where more complicated dielectric functions @ =Ane =™ (kp)e 'Y 1)
should be used. The present study will be restricted to non-
relativistic velocities, since this is the range of current inter-  (b) for p>a.
est in connection with ion and molecular-beam studies. A
relativistic treatment of the interaction of charged particles PO =B e kZT MK (kp)e et 2
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' ' ' ' ' ‘ frequency andy is the damping constant. In this model, the
energy-loss functionm[ —1/e(w)] has a maximum at the
shifted plasma-resonance frequenay= (w3,— y?/4)*?.

In a previous work[16] the dispersion relations (k)
have been shown for the ideal case of negligible damping:
y<wp, wp=wpg, IN such case, the frequencies of the
modeswy = wy(K) are real quantities, given by

©f = 0BX1 (XK (X)), (5)

so that the ratiosy ,/ wp are given by analytical functions
of the general variablex=ka. The function gm,(x)
=XIn(X)|K(X)| has the following limits: forxk—0: gg(x)
—1, gn(X)—1/2 (m#0); for x—oo: g,(x)—1/2 (all m).
Hence, one gets the following limitgi) for ka—0: wyg
—wp, wxm—ws (MF0); (i) for ka—=: w ,— s (@ll
m). Here ws=wp/\2 is the surface-plasmon frequency of
of the radial coordinat@. The internal and external solutions are plane surfacesa—c limit) [20]. Therefore, the frequency

given by Bessel functionsy(kp) and K (kp) as illustrated. The of the modes is within the intervads<w<wp .
modem=0 is the only one that penetrates down to the center of the
channel. B. Damping effects

FIG. 1. Electrostatic modes of a cylindrical cavity as a function

Let us consider now the effects of finite damping. In this
case the solutions of Eg4) yield complex frequencies

m=ot +iol) . It may be observed that the imaginary
part w() will be given simply by— y/2. In fact, by writing

— () _j —1_ 2 2 ; 2
by the usual matching conditions for the values of the fields?km= @km~1/2, we get s[Q]=1-wp /0% with €

(N2 .2 ; N imi
at p=a. These conditions lead to the following relations =[(w{2)*+ ¥*/4], and so Eq(4) yields a solution similar to

where we use cylindrical coordinateg,f,z) andk is a
wave vector along the axial channel direction denoted.by
The relation between the coefficiemds, and B,,,, and the
frequencies of the modasy = wy,(k), may be determined

[16]; the case of negligible damping, E@), but now in terms of
the frequency2, namely,QZ | = w5,gm(X).
An Knka) Therefore, the solutions for finite damping will be of the
B~ ©) form
Bm Im(ka)
and O m=[ wpodm(X) — 141~ yI2, (6)
I/ (ka) K, (ka) With gm(X) = X1 m(X)[Kfp(X)]-
e(w)= (K ; , (4) The effects of the damping on the frequency of the modes
m(ka) Km(ka) are shown in Fig. 2 for the modes with=0 and 1. We find

in general that the values of the frequencies diminish with
increasing damping. It may also be shown that for large
%famping ¢/ wpp>1) the values ofw, ,, become imaginary
(overdamped oscillations

wheree (w) is the dielectric function of the medium; here the
primes denote the derivatives with respect to the argument
[ (X)=dlL(x)/dx, K/ (X)=dKpn(x)/dx.

From Eqg.(4) one may obtain thelispersion relationfor
each of the modesy= w,,(k), which can be solved for each
material using the appropriate dielectric function. This may
yield real or complex values fow(k) depending on the Similar considerations may be applied to the case of the

C. Lorentz model

dielectric properties of the material. Lorentz model, where the dielectric function is
The main characteristics of these modes are illustrated in 5
Fig. 1, which show the dependence of the electrostatic po- w1
tential on the radial coordinate. These characteristics are e(w)=1+ W2 iy (@)

independent of the model dielectric function. The cusp be-

havior observed gh=a is due to the accumulation of elec- \ith model parameters, andw; . In this case the maximum

tronic charge at the boundarfcorresponding to surface- of the energy-loss function, I-1/e, ()], occurs at a

plasmon charge plasma frequency wp=(w3+ wi—y?/4)2.  Considering

again the dispersion relation for the modes of the cavity,
A. Plasma-resonance model gL(@) =11 (X)Kn(X)/1 o(X)K/(x), EQ. (4), and proposing a
The most simple approximation to the dielectric functionsolution of the formw, = w{’}—i /2, one gets
around a plasma resonance is given hby(w)=1 S .
— w3y w(w+iy) (Drude mode), where wp, is the plasma wm=[wo+ 01g9m(X) — y /4" —iyl2, (8
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These fields must satisfy the usual boundary conditions, and
in this way one obtains the following results for the internal
(4@ and external $)) solutions.

(8@ p<a. The total potential for p<a becomes
ggz(PySD'Zat) = ¢ext(p!(Pizrt) + ¢i(r?()j(p!(Pizrt)1 Where d’ext
e 0.75 is the bare Coulomb potential of the external charge a{il
is the induced potential given in the frequency domain by
[16]

0/®,

oo

- ¢|(r?21(pa(P,Z,w)=ZZe 2 dklm(kpo)lm(kp)eim(q”*%)
m=—x 0

X An(k, ) {exd ik(z—zy)]8(w—kv)
+exd —ik(z—zy) ] 8(w+kv)} (10

and integrating inw, according to Eq(9),

2 ” % .
¢|(r?()j(l)y¢a2,t):;ze z dklm(kpo)lm(kp)elm(¢7¢0)
0

m=—o®

k

0/®,

X{R An(k,w)]cogkz— wt)

—Im[An(k, @) ]sin(kz— o)} -, , (1)

A A S where we have used the properti8s,(k, w)+An(k, — o)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 :ZRQ:Am(k,w)], ﬁAm(k,w)—ﬁAm(k, _ w) =92j Im['Am(k,w)],
X = ka and the value of the frequency is now linked koby w

. . . . . =KUV.
FIG. 2. Damping effects on the dispersion relation for the first . . .
two modes, n+0, 1. The figure shows the changes in the frequen- (b) p=>a. In this case one obtains for the total potential

cies with increasing values of/ wp (y/wp=0, 0.2, 0.5, 0.75, and the analogous expression
1). The intersections ob/ wp with the lineux yield the values ok

: ) : . 2 ” o _
and w that could be excited by a particle with velocity(resonant (b) _ = f im(¢—¢g)
excitations as described in the text. Prot(pr ¢,21) erm:E—oc 0 dklm(kpo)Km(kp)e

with g(x) defined before. The effects of the damping are X{Rqﬁm(k,w)]coikz— wt)
essentially similar to those illustrated in Fig. 2 for the Drude _
model. —Im[B(k,w)]sinkz— wt)}| yoi, - (12)
These models will be useful to characterize the dominant ~ _
features of the optical properties of real materials. The amplitude coefficient8,(k, w) andB,(k,w) in Egs.
(11) and(12) are determined from the boundary conditions,
IIl. INTERACTION WITH AN EXTERNAL CHARGE which yield
Let us consider now a particle with charges moving B [1-&(w)]Kn(ka)K ! (ka)
within a cylindrical channel of radius, with trajectory par- Ank,w)= ; - ,
allel to thez axis, with velocityv, and with instantaneous (o)l n(ka)Kp(ka) —Ky(ka)l n(ka)
coordinates fg,¢g,Zgt vt). (13
Since the properties of the medium are represented by a ) )
frequency-dependent dielectric function, we introduce the & (o) = Im(ka)Kn(ka) —=Kn(ka)ln(ka)
m [}

Fourier transforms of the field quantities as follows: B e(w)lm(ka)K! (ka)—Kn(ka)l ! (ka)

(14)
» dw
F(t)=f_xzef"”tF(w). (9)

B. Coherent excitations, resonances, and wakes

According to Egs(10) and(11), the values of the induced
field consist of a superposition of wave components that sat-
As described previously16], the induced potential inside isfy the conditionw=kv. This means that only waves with

(p<a) and outside g>a) the cavity may be expanded in phase velocitieso/k coincident with the particle velocity
terms of cylindrical Bessel function$,(x) and K (x).  will be excited by the particle. It may be shown that the form

A. Induced potential
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of the induced potential Eq11) has a typical “wake” struc-

ture, characterized by a function of and z—z,—wvt that
remains stationary in a frame of reference moving togethei(,
with the particle at velocity. These characteristics apply !N
irrespective of the dielectric function used to represent the
properties of the medium, but the shape of the wake potentia
depends strongly on thi1]. (The properties of the wake
potential have been studied previously only for particles A
moving in homogeneous media2].) 20
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By comparing Eqs(4) and(13) we see that the equation \\\\§‘\\Q0'l,, [ -
for the modes coincides with the poles of the “response “‘\“Q\‘%&.’I iy ’
Y e

functions” A,(k,w). This corresponds to thesonant exci- TS
tation of those modes. In particular, if one uses the plasma-
resonance model considered before, the valueks afd w
that satisfy the resonance condition may be determined foi \
each velocityv by solving the equationv,(k) =kv. This ®
condition is illustrated in Fig. 2 by the line/wp=kv/wp
=ux, with u=v/wpa andx=ka. Then, the values df and

w are given in this case by the intersection of the line
ol wp=ux with the corresponding dispersion-relation curve
for each modem. In this way k and » become velocity-
dependent functionk=Kk.[v], o=w,[v].

The general properties of the wake potential are illustrated
in Fig. 3, for a proton with velocity =5 a.u. in a channel of
radiusa=10 a.u. Calculations were done for a medium with
wp=0.5 a.u.,y=0.05. The instantaneous position of the
particle isz=0, p=0 (solid circle. The figure shows the

values of the induced potential behind the particle. As it may (C)
be observed, the potential has a “normal” wake behavior 9 ™
outside the cavity g>a) but it becomes very flat inside it. JPRaNE=SEEENN

LY
Y
7

The cusp behavior gb=a is due to the accumulation of
surface charge at the bounddef. also Fig. 1. Panels(b)
and(c) of this figure show the lateral and front views of the
wake potential. It may be observed that the wavelength of P
the wake in thez direction is given by Zrv/wp, as in the ) . .
case of homogeneous media. FIG. 3. Calcu_latlon of the wake potentlal for a proton wn_h ve-
A detailed comparison between the wakes induced in &City v=5 a.u.in a channel of radius=10 a.u., for a medium
homogeneous medium and in a cylindrical cavity is shown inwr[h wp=0.5 a.u.,y=0.05. The instantaneous position of the par-

Fig. 4, which shows a cut of the wake potential in the trans_tlcle isz=0, p=0, and is illustrated by a solid circle in each figure.

verse plane for two values of z£0 andz= — 50 a.u). This Panel(a) shows a general pattern qf the induced potential; panels
fi that th | f the ind d potential outside th b) and (c) show lateral and front views of the wake. The wave-

con_lrms at the Ya ges otthein L.Jce potential outside ._tength of the wake in the direction is given by Zrv/wp, and the

cavity are very similar to those in homogeneous media ..., decay distance is/wp.

whereas inside the cavity the screening appears “frozen,” P

which is due to the fact that the electrons cannot penetrate

into the cavity(outer screening
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(a) Induced potential on the charge.

- 2 . ~
IV. SELF-INDUCTION EFFECTS ¢i(r?é:7ze 2 A1 kpo)]2 ReA. (K ko),

From the general expression for the induced potential we T om=-xJ0o

may obtain some relevant quantities that represent the main

effects of the field on the moving charge. The quantities of

interest are the self-induced potentiaihich is the source of and theself-energyis given by

a self-energy interactionand the longitudinal and transverse

components of the electric field acting on the chafrgkich 1

produce the corresponding stopping and deflection forces Wse”:EZed)i(r??j.

We denote these quantities using an upper index 0, namely:

Sine=bing(T Dlr—v, EV=ZeE(rh)—v, and EP

=ZeE,(r,t)|;,—v. The expressions for these quantities are (b) Longitudinal electric field E§°>) and stopping force

the following. (F,) on the particle.

(15
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0.0 T v v T T v T 1 &¢(0)
- g E 0)y_ md
> . E /= . (18
>, 05E -\(f:lz == P 2 dpy
= -1o0f N L - , . . .
= - A W 1 The physical meaning of this equation can be made clear
s '°r \ / 1 by expressing it in terms of the self-energy and transverse
o 20k a=10a.u 4 force as:F,=—dWseii/dpo, Which relates the transverse
Q o5l 3 ot 1 force to the variation of the interaction energy in a small
ks S v=s5au \‘ K cavit ] lateral displacement. This relation expresses the conservative
S B0k -0 v /‘ y . character of the transverse force, associated with variations
2 35| v '/ ™ bulk ] in the s_elf-energy of the particle due to its interaction with
= s "d' . L the cavity wall.
-4.0 P . A further analysis indicates that we may consider a de-
-40 -20 0 20 40 " ; VY
. _ composition of the forces into dissipativecomponent, re-
radial distance [a.u.] lated to the motion in the direction, and aconservative
— — force component in the perpendicular plaif@ the case of
~ :‘,,\ ] parallel motion. These comPonents are represented by the
2, ' bulk -] imaginary and real parts oA, (k,») respectively in Eqs.
I \ 1 (16) and(17).
c P cavity 7] By comparing the results for the stopping force, Ef),
2 ( ] with those corresponding to charged particles in homoge-
5 \‘7 . p g larged p g
o ; neous media we observe that[ly,(k,)] plays here the
2 role of the energy-loss function, [m 1/e(q,w)]), in previ-
S ous calculations. Therefore, the denomination of “response
= functions” used forA,,(k, ») is justified.
: 1 M
40 20 0 20 40 A. Reduced variables and scaling properties
radial distance [a.u.] We may write the previous results in a more general way

by introducing the following variablesi=v/w.a, x=Kka,

FIG. 4. Comparison between the wakes induced in a homogeé=py/a; wherew, denotes a characteristic frequency of the
neous medigdashed lingand in a cylindrical cavity(solid line). material(in the plasma-resonance model is given by the
The figures show two cuts of the induced potential along transversplasma frequengy The variableu=uv/v¢ will be referred to
planes located a=0 (containing the position of the chargand  as thereduced velocityintroducing also thecaling velocity
z=-50 a.u.(behind iy. The sharp behavior gt=a=10 a.u. is Vs=wea.
produced by the accumulation of surface-plasmon charge at the |n terms of these variables, the equations for the induced
wall. potential, and for the longitudinal and transverse fields, Eqs.

(15—(17) may be cast in the following form.

F,=ZeEY
0= pot<u &), (19
=—<Ze>2m_2 “AKK 1 n(kpo) T2 IM[ Ak ko) 1.
Ze
(16 B = fu.g), (20
(c) Transverse electric fieIdE(f,o)) and deflection force
(F,) on the particle. Ze
EP=—1,(u,9), (21)
F,=2eE) a
where the scaling functions are given by
=——(Ze>2m_2 “dkKly(Kpo)l (ko) , -
- fpolU,O)=— 2 | dxIm(x&)]> R Ap(x,xU)],
X Re Ap(k,kv)]. 17 T m=-e JoO
(22)
It may be noted that the lateral force vanishes when the "
particle moves along the axis of the channgl0) due to f 2
the behavior of ;(x) for x—0. We may also note an inter- ; doq 1 m(x) 12 IM[An(X X W),
esting relation betweeB!” and ¢{3), (23)
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0 — T T — T

2 » -
f(u,§)=—— Em fodxxlm(X§)lg(Xé)Re{Am(x,xu)]-

e (24)

Due to Eq.(18) there is also the following relation be-
tween these functions,

o (u.g)

1 of joi(u,
f(u,é)=~— 5%-

These expressions take into account the scaling propertie
already noted, so that the induced potential, electric field,
and forces may all be expressed in terms of a set of scaling
functions f;(u,&). These functions may be calculated for
each material using appropriate dielectric functions. Size de-
pendence of the solutiorien the cavity radiug) is simply
represented by the factorsaland 142 in Egs.(19)—(21).

(29

B. Simple models

= [
The scaling properties described so far apply to any types. ™
of dielectric functions(w). But if the previous models are *
used, the values ok, (k,w) may be cast in a very simple
form. The expressions for the Drude and Lorentz models are
the following.
a. Drude model. In this case one gets

Im(X) Km(X)
UX(UX+18)—gm(X) Th(X)’
(26)

An(k,w)=A[X,ux]=

where X:ka, UX:kU/pr:w/wpo, o= ’ylwpo, and

Im(X) =X1 () [K /(X))
b. Lorentz model. In this case

f(u.8)

An(k,0)=A[X,Ux]

_ Im(X) Km(X)
UX(UX+i8) —[gm(X) + w3 3] ITm(X)’
(27)
where ux=kv/w,=wl/w,, J6=ylo, and gmn(X) u

=xXIm(X) [Kip(x)]- : .

These expressions show explicitly the parametrization of FICG: 5. Scaling function,e(u,£), f,(u.£), andf,(u,£), for
A (k . h | iabl K d the calculation of the induced potential, longitudinal force, and
Am(k, @) in terms of t e genera' variables=ka an 'u transverse force acting on a moving particle with reduced velacity
=v/vs (reduced velocity for the simple models described 5,4 reduced radial coordinate=p,/a, according to the plasma-
before. It may be shown that the poles of the response fungggonance modet(w)=1— wd/w(w+i7) with 5= y/wp—0. The

tions A, (k,w), Egs.(26) and (27), correspond to complex insets give the relations that may be used to calculate the values of
frequencies given, respectively, by E¢8) and (8). #%, E? andE using these scaling functions, E¢9)—(21).

C. Scaling functions ing on a moving particle with reduced velocityand reduced
Figure 5 shows the function§,,(u,€), f,(u,¢), and radial coordinat&€=po/a. The values ofp{s) andEL and
f,(u,§), corresponding to the plasma-resonance modell,:_f,o) may be evaluated from these results and using the rela-
g(w)=1— w3 w(w+iy) with §=y/wp—0. tions (19), ( 20), and(21).
The functionsf ,,(u,£), f,(u,£), andf (u,&) show in a As a general behavior, we observe in all cases an impor-
general way the characteristics of the induced potefdiadl ~ tant increase of the values shown in Fig. 5 as the particle
self-energy, and the longitudinal and transverse forces act-approaches the boundary of the chanrieb(). This is in
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0.0 — 1t - 1 ' 1 r 1 v T r 1 -
F.= Zw Fz,m
-0.2 4 m=
— Zewp 2 , 2
S 04 - === 2 XKnOOIKGOOI m(XE) P
E) o
2 06 i (28)
so that the functiorf,(u,§) is in this case given by
-0.8 i
1 & , )
-1.0 L L = s s . fZ(U,§)=——2 2 XKm(X)|Km(X)|[Im(X§)] |x:xm(u)-
0.0 ) : . . . ) U” m=-c
(29)
The dependence amin this expression is given parametri-
0.0 1 cally through the functions,(u). This arises from the inter-
section condition:wy m(X) =kv=uxwp (Fig. 2) that yields
the values ok, for each mode as a function of the reduced
o 9 7 velocity u.
s Useful analytical results may also be obtained for two
o~ 02 cases of particular interest.
‘ ] a. Motion along the axisgp=0). In this case only the
m=0 term contributes, yielding a stopping force
-0.3 76 a
1 1 1 ] ] 1 =— ( wp) 0 —wp (30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

It is interesting to note here the exponenttakesholdbehav-
FIG. 6. Effects of damping on the values of the potential andjor for v<v,=wpa (due to the behavior oKy(x)~exp
stqpping functiond ., f,, for particles moving along the channel (—X)/& for x>1); this is a characteristic of the undamped
axis (£=0), for a set of values ofy/wp. The curves fory/we  harmonic-oscillator model. On the other hand, #f v one
=0 correspond to the case of undamped plasma oscillations. Wit§,:2ins the Bohr limit withK o(wpalv) ~In(1.123/ wpa).
increasing damping values the dip in the potential-a0.5, and the b. Motion near the bordempg~a). In the proximity of the

threshold behavior in the stopping forder u<1), are washed out, cavity wall a large number of ternma contribute to the force,
For large values o¥/ wp the functionf, at low velocities shows the .| = . .
yielding a divergent behavior of the form

“friction force” characteristicsf ,ocu.
2 2w
KO( i

v

agreement with the diverging behavior already noted in this lpo—al |. (39

limit in Ref. [16]. The “stopping function”f,(u,&) shows
the general characteristics of a stopping force, with a maxitnis [imit corresponds to the stopping force for a particle

mum at intermediate velocitien particular, foré=0, i.e.,  moving parallel to an infinitplanesurface[23], at a distance
for particles moving along the channel axis, one g&tsc  |p,—al.

=0.8), and a Bethe-type decreasing behavior at high ener-
gies. Note however that the position of the maximum shifts
to smaller velocities with increasing values &fDue to the
relation betweem andv, this shows that the maximum value ~ The previous analytical results apply to the special case of
of the stopping force for thé=0 case will occur for particle Sharp plasma resonances<(y/wp—0). But in most cases
velocities close to the scaling velocit= wpa. Note also of experimental interest there is a significant broadening of

that sincev o is proportional to the channel radius, one maythIS rest(;]nance._To qualntn;ytt_he eﬁpectgd dlffertencdesdlr: these
expect relativistic values ofv,, for channel radiia cases, e previous caiculations have been extended o cases

~100 au. with y#0, _using the valugs ofl wp as a parameter.
These differences are illustrated in Fig. 6, which shows
the results for the potential functiofy,, and for the stop-
D. Analytical results for the stopping force ping functionf,, for particles moving along the channel axis
(¢=0), considering a set of values 6f wp. As a general
The integration of the stopping forde,=ZeE, may be result we find a decreasing behavior of the magnitudes with
carried out in analytical terms in the particular case of aincreasingy values(although not a monotonous one in the
sharp plasma resonanfko] and one obtains case of the stopping functipniWe observe that the dip in the

E. Damping effects
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potential atu~0.5 is progressively eliminated, whereas in where}‘gﬁ')(k) are thecluster form factorswhich we define
the case of the stopping function we note two effects: a shifhere as
to lower velocities of the absolute minimum &§ (corre-

sponding to the stopping-power maximynand, more sig- N

nificantly, the disappearance of the threshold behavior at low fﬁf')(k):; Zil n(kpy) e~ e Imer, (35
velocities observed for small damping values, turning into a
“frictionlike” force proportional to velocity when the damp- It may be observed that for a single iotthe form factor

ing effect is large §/wp>1). It is interesting to note that a g4y ces t01|~7:51i1)(k)|222i2[|m(kpi)]za so that one retrieves
similar behavior(proportionality with velocity was obtained the previous result of Eq16),

in the case of particles moving with trajectories parallel to a
plane surface when the damping was impor{24f. 2 Lateral force

V. INTERACTION WITH CLUSTERS AND MOLECULES Proceeding in a similar way one obtains the lateral force
on the cluster,
We will consider next the excitation of capillary modes N
produced by atomic and molecular compositasutral or -
e . . . : é:latzz Fp
ionized, including the cases of discrete or continuous charg =Rl

distributions.

2 oo

e o ~

- _ (ch* cl)

A. Discrete distributions p m;_m 0 dkZ'm VP]:(m R Am(K,®) ][ 0-10 »
The generalization of Eq10) for a cluster ofN ions with (36)

chargesZ;e and trajectories given byp=p;,¢=¢;,z=2z

+vt (i.e., with a common velocity) is straightforward. where

First we determine the potential induced by the whole cluster

within the cavity as follows: (eh N , ik —imo:
. v, F =ki21 Zil! (kp;) e kag=ime (37)
*» do - . -
S (o2 =22 ZieJ s-e X emer
i=1 —&T m=—o 3. Self-energy
% ~ Finally, the self-energy for the distribution of discrete
X | dKlm(kp) m(kpi) X Am(k, @) charges is calculated as

X{exr[ik(z— Zi)]a(w—kv) Wcluster:% E Zjed’i(r?d(pj 1P azj ,t), (38)
+exfgd —ik(z—z)]8(w+kv)} (32 h

here ¢{%(p; , #;z,t) denotes the induced potential pro-
uced by particle acting on particlg.
This yields the following result:

from which one can derive the electric field and other relate

quantities. In particular we will pay attention here to the total
stopping and lateral forces and to the self-energy of the in-
teracting system.

2 o

e o ~
| Weiuster=— 2, f dK F 50 (k)1 REAR(K, )] = ko
1. Stopping force T m=-—= Jo

The total stopping force on the cluster may be calculated (39)
_<N _ . . . '
by Feiuster=2j-1Fj, where Fj=—Z;eVinglr—r. The Z  in terms of the cluster form factors previously defined.
component of the total force gives the average energy loss or As a generalization of Eq18), F,,; and W,,ser Satisfy
cluster-stopping power the conservative relation
dE N “ N d; Fiat= =V ,Weiuster (40)
o 2R3 zje% 33 ’
cluster 171 =1 r=r (note thatV , denotes here a derivative with respect to the
radial displacement of the whole cluster
Inserting Eq.(32) for ¢;,q and performing thew integra-
tion one finally obtains B. Continuous distributions
2 ® The previous considerations may be extended also to the
dE 2e o X T . )
_— = 2 dkk case of continuous distributions of charge moving with ve-
dz cluster T m=-=J0 locity v. Thus, for instance, the self-energy for an external

() L (20 i charge distribution of the formep,(r —vt), with v parallel
X|Fw (K AIM[AR(K, @) ]lo=k» B4 10 thez axis, is given by
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1 . correlated way through the channel, &gl the case of “di-
W= ff d°repexdr,t) dina(r,t), (4)  pole channeling.”
where A. Diclusters
+ de From the previous formulation we write the form factor
binal(r,1)=2 f d*repe(r’t) | 5—e ! for this case as
. FE =241 n(kpy)e Kae™ M1
X | dk X, eme=¢h +Z,l m(kpy) e~ KZ2emimez, (45)
0 m= -
X A (k w)lm(kp)lm(kpr)[eik(zfz’)ﬁ(w_kv) We will analyze here the case of swift diclusters moving
along the channel axis, with an internuclear distangeon-
+e—ik(z—2’)5(w+ kv)]. (42) sidering in particular the following cases.

(a) Aligned dicluster; i.e., a D cluster with internuclear
This yields after some algebra the same result as in Ecxis oriented in the direction (p;=p,=0, z;—2,=rg). In
(39), where now this case one finds that only tine=0 term contributes, with
a form-factor value

}-m(k):f Arpexi(1) I m(kp)e ™2™ Ime, (43 FE (k) =[Z,e K+ 2,0 k2], (46)

These are the form factors for extended charge distribution
In particular, if one takepe,(r) given by>;Z;5(r —r;), one
retrieves the form factors of E@35).

Wore particularly, for Z;=+z, we get F& (k)
=27, coskry2), and FE (k)= —2Z,i sinkry2), re-
spectively, withz;=—2z,=r4/2. (
(b) Transverse dicluster. Dicluster oriented in fheirec-
tion (z,=2,=0, p1=pr=rp/2, ¢1=0, ¢,=). Here one
It is illustrative to compare the present results with thosegets
corresponding to ion clusters in infinite homogeneous solids
[17]. Thus, for instance, by comparing the results for the FoeD () =[Z,+Z,e7 ™I 1(Kpo/2) 47)
stopping force we observe that [Il,(k,»)] plays here the
role of an energy-loss functiofieplacing Ini —1/e(q,®)1);  (for all m values. In particular, if Z,=+Z, we get,
in addition, the form factors7;"(k) obtained here differ #2-c)(k)=27,1, (kpo/2), wherem takes only even values

appreciably from the corresponding quantities for homogefor z,=Z7,, and only odd values foZ,= — Z,.
neous systems, where the form factors have the well-known (c) Angular average.

C. Form factors

Fourier-transform expressioriplane-wave form factojs By performing the angular average of E@5) with p;
namely, =p,=Tosin0)/2, z,=—2,=1,c0s@)/2, ©,— @,=1r, One
gets
Fa)= [ Frpene e (49

(|FED(K)|?)=(Z2+Z5)H n(Kr o) + 22, Z,€™"Gp(Kr )

The special forms of theylindrical form factorsobtained (48)

here, Egs.(35) and (43), express the lack of translational )
invariance in the plane perpendicular to the channel axish terms of the integrals,
Note in Egs.(35) and(43) that only thez dependence main-
tains the characteristic aspect of a translation faetdk?, 11 . X
whereas the azimuthal dependence takes into accountithe 2 Him(X) = Ej_lde sin( 0)[ ! m( 25N 0)
periodicity of the present problem.

An additional difference to be considered is that the cy- 111
Imdrlc_al form factors derived here dep_end on th(_a transverse G(X)= _J désin(6) Im(isina)
coordinates; of the chargesno translational invariangeso 2)1 2
that they must be calculated for each position of the cluster (50
in the transverse plane.

2
(49

2
CcOog X €c0sHh).

B. Dipoles

VI. APPLICATIONS: DIATOMIC SYSTEMS . .
We consider now the cash = —Z, in Eq. (45), and take

Let us consider now the application of the previous develthe limit, |Z,|=|Z,|—®, ro—0, with d=Z;r,= constant
opments to two cases of special interg$t:a “dicluster”  (electric-dipole moment)
consisting of two ions with charges, andZ, moving in a This yields thedipole form factor
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2.0 —— E—
]—‘(dip)k=[l’ kpo)kd, —il (K .
m = (K)=|15(kpo)kd, =il n(Kpo) L Ag —__ Optical data
o —_ 15 S B Drude model 1
% kdz+ p_d<P> e*ikzoe*im#’o, (51) 3 [ 0p=1.9,v=2.85 (a.u)
0 = [

where nowpg,zy,¢, are the cylindrical coordinates of the
dipole andd, ,d,,d,, are its components in the corresponding
directions. This is the general result for dipoles within the =
channel.

In addition, we consider the case of random orientations
of the dipole vectord. By performing the angular average
over all possible orientations we get

[

<|f§ﬁ”’><k>|2>=%kzdz[lr’n(kpo)]z

| AlLO —— Optical data
1 2 1.0 S N Lorentz model | -
+ §k2d2[lm(kpo)]2 1+ —| (52 I ®,=0.52 , ©,=0.88
k“po

v=0.63 (a.u.)

Particular cases of interest for dipole motion along the osl

Im [-1/ e(®)]

axis of the channel (,=0) are now the following:(a)

aligned dipole—parallel orientatiorfonly m=0 term:

FLP)(Ky=kd; (b) perpendicular orientatiofonly m=1 g .

term): F{¥P)(k) = 1kd; and(c) angular average. b R
Here we obtain from Eq52), for po—0, T T T T T

(dip) 1|2 122 122 @ [eV]

FPk)|%y= =k?d?Sm ot =k?d?5, 53

(Fm ™01 3 moT 6 m1 63 FIG. 7. Energy loss function(ELF), Im[ — 1/e(w)], of Ag (a)

and alumina(b). The solid lines are the experimental valyes)
Hence, in this case we get nonvanishing results only foand the dashed lines show fittings to the data using simple models.

m=0 or 1. In the case of Ag a Drude model has been used, with parameters

wpg=1.9 andy=2.85 a.u.; corresponding to an effective plasma

— (2 _ A 2ip\12—
VII. CALCULATIONS frequency wp_ct=(wpo— y/4) 1.257_ a.u. (_34.2 _e\b. The_ _
low-energy plasma resonance at 3.7 eV is outside this rough fitting.
A. Swift ions in various materials The ELF of alumina was fitted by a Lorentz model with parameters

Th licati f th . f lati | wp=0.52, ;=0.78, andy=0.63 a.u., corresponding to a plasma
e application of the previous formulation to real mate'frequencywp:(w§+w§— 1214)42=0.883 a.u(24 eV).

rials requires first some analysis of the dielectric properties

for each particular case. The materials of specific interest in

relation with previous experiments include Ag and alumina. Calculations were performed using both this simple
Figure 7 shows the energy-loss functiof&LF), Im model as well as the complete set of tabulated data, for the
[ —1/e(w)], for these materials, according to the availablereal and imaginary parts af(w) [25], obtaining values of
data[25]. The solid lines are the experimental values whilethe induced potential and stopping force, from E4%) and

the dashed lines show approximate fittings to the data usingL6), for protons moving within channels in Ag with radii
simple models. These cases bear very different characteria=10 and 20 A . The protons are assumed to be moving

tics and so they will be analyzed separately. along the channel axigip=0 (the results forpy#0 would
) be larger than those obtained her&éhese calculations are
1. Silver shown in Fig. 8(solid circles and dotted linggs a function

The ELF of Ag[Fig. 7(a)] was fitted by a simple Drude of the proton velocity. We observe from this figure that, in
model with parametersopp=1.9 and y=2.85 a.u.; this spite of its crudeness, the fitting model reproduces very well
yields an “effective” plasma frequencywp_o¢i=(w3, the results of the realistic description. These figures illustrate
—y214)Y2=1.257 a.u., or 34.2 eV. As it may be seen, thisalso the main characteristics of the problem; the shift in the
model yields only a rough representation of the average besalues of the induced potential and stopping force are in
havior of the ELF on a wide range of frequencies, includingaccordance with the scaling predictions. In particular, it may
the dominant interband transitions aroungd s, but the be observed that the maximum stopping values drop by a
optical plasma resonance at 3.7 eV is outside this descrigactor 4 while the position of the maximurindicated by
tion. vertical bar$ shifts by a factor 2 for the present valuesaof
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2 2 15 | -
° o [ ; ]
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i © ]
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2 ° [ . :
E o 06| . ‘ protons - ALLO, | & -
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%) -
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0 10 20 30 40 50 60 70 80 P, (A)
v[a.ul] FIG. 9. Calculations of induced potentials and stopping forces

for protons moving in alumina channels of different radii 10,

FIG. 8. _Calculatlons of the induced potent(a_) anq s_topplng 20, and 50 A . Note the increasingly flat behavior throughout the
force (b), using Eqs(15) and(16), for protons moving within chan- inner region for large channel radius, and the importance of the

nels n Ag with radiia=10 and 20 A, as a _functlon of proton interactions near the border, in a layer of thickness/ wp .
velocity. The protons are assumed to be moving along the channel
axis, po=0. The lines with solid circles are the results obtained by . o . .

integration of the ELF data, while the dashed lines are the resultfld @a¢=v/wp the adiabatic distanceThe stopping force in

obtained using the simple fitting model shown in Fig. 8. this limit takes the form of Eq(31). In these conditions, the
interaction with the walls is negligible through nearly all the
2 Alumina internal region of the cavity, except only for a thin layer of

o ) ) ) _ thicknessv/wp where the interaction is like that for plane

A similar analysis of the dielectric properties was madegrfaces.
for targets of AO;. The ELF of alumina is shown in Fig.  Conversely, one can characterize the conditions to ob-
7(b), which includes the experimental dg26] and an ap-  serve cylindrical curvature effects lay-a,q=v/wp . In this
proximate fitting using a Lorentz model with parameterscase the particle feels the effect of the surrounding walls. For
wo=0.52, w;=0.78, and y=0.63 a.u. The plasma fre- the range of velocities of interest in ion-beam experiments
quency in this casayp=(wj+ i~ y?/4)", takes the value one gets values of radii in the range-5—50 A (i.e., in the
0.883 a.u., or 24 eV, which corresponds to the observablanoscale range
plasma frequency.

Calculations of induced potentials and stopping forces for
protons moving in channels of different radiis= 10, 20, and
50 A, are shown in Fig. 9. It is observed that as the radius We will illustrate here the application of the previous for-
increases not only the magnitudes of the induced potentiahulation to the case of diclusters channeled through narrow
and electric field decreagas predicted by the scaling layys holes. One of the simplest cases is that of a pair of protons
but also that their behavior becomes flat, with the importanwith correlated motion through the chann#his particular
values concentrated near the cavity walls, and within an inease bears some relationship with experiments wish" H
teraction distance~v/wp. The most critical effect is ob- ions in solid foils, when the dissociation fragments are de-
served in the stopping force in par@). tected[26]).

A detailed analysis shows that the condition for the “flat  Figure 10 shows the values of the energy loss of a pair of
limit” is that x=ka>1, and since the values &fof interest  protons moving with various internuclear distances in a
arek~ wp /v, this condition may be written as>a,q, be-  channel of radius=10 A in alumina. The center of mass

B. Channeling of diclusters
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FIG. 10. Energy loss of a dicluster formed by a pair of protons via.u.]

moving with internuclear distanceg=3, 10, 15, 20, 25, and 30 A

in a channel with radiua=10 A in alumina. The dicluster moves FIG. 11. Energy loss of a dipole momedt=3 a.u. moving
along the channel axis. Fop=3 A the figure shows the cases of along the axis g,=0) within a channel in alumina, with radius
parallel (dashed, perpendicular(dotted ling, and random(solid =10 A. The curves correspond to dipoles oriented parallel and
line) orientation of the internuclear axis. The set of curves for theperpendicular to the axis, and to the angular average of the energy
otherr, values corresponds to the case of parallel orientation. Théoss. For comparison, the proton stopping divided by 2020), is

solid circles show the proton-stopping value§,) for the same  also shown.

channel, whereas the open circles show four times these values

(4S,), which agrees closely with the angular average of the energypPOntaneous polarization, with a relatively large dipole mo-
loss forr,=3. ment,d=3 a.u.), or in experiments with polar molecules,

like NaCl, LiF, HF, HO, or others(dipole moments:d
=3.3, 2.6, 0.8, and 0.7 a.u., respectiyeljhe conditions of

T;h’z d|clushter 'Sh on th? cfhannel I?)ils. For tg.e fage dvery low electron densities within the channel may favor the
= we show the results for parallel, perpendicular, and,,ggipijity of transmission of unbroken molecules, which

random orientatiortangular averageFor the other radiic  ¢oyid not survive transmission in the usual experiments with
from 10 A to 30 A we show only the case of parallel orien- solid foils.

tation. We also show for comparison the stopping vatBgs It was observed in Fig. 10 that the energy loss of a pair of
for single protons channeled also along the atsslid  charges is not very sensitive to the internuclear distance if
circles, and 4S, (open circles which is the limiting value  this is much smaller than the channel radius. Therefore, a
for two united protons. The values of54 nearly agree with  first approach to the present problem can be made by con-
the angular average of the diproton energy loss for the cassidering the system as a simple electric dipole, according to
ro=3 A. This indicates that the average energy loss in thighe description given before, Eq$51)—(53). Figure 11
case is nearly the same as if the two particles were unitecshows the calculated values of the energy loss of a dipole
even though the internuclear distar(@A) is not negligible ~momentd=3 a.u. The results correspond to a dipole mov-
compared with the channel radius. With increasipgthe  ing along the channel axis with radias=10 A . The curves
differences in the stopping values become large, and impogorrespond to dipoles oriented parallel and perpendicular to
tant interference effects appear fioy values large that the the channel axis, and to the angular average of the energy
channel diameter; these effects may be expected to arise h;\_ss. We f|r_1d _here a larger orientational dependence than in
the case of dissociation of diatomic ions within narrow chan."19- 10, this is because of the angular dependence of the
nels. dipole field, in contrast to the dominant monopole interaction

The case of nearly aligned diclusters may be of interest irﬁ)f Tg' 1t0. Fpr compar:jsopd tc?i c;gvg ccl)rresrﬁ)ondin\?v o the
relation to possible experiments with molecular ions. For inProton-stopping power divided by U IS alSo Sshown. YVe con-

stance, it would correspond to the Coulomb explogiiter clude from this comparison that for such narrow channel the
break up of H,* ions, producing two correlated protons energy loss of a dipole may be 20 times smaller than that of

whose motion is confined to the channel walls. The preserﬁl pr(;)torl[. In flact, t?ﬁ raﬂo of (ljlpc()jlg t_lczhprototn s(;opplng de-
results are indicative of the magnitude of the expected “yici-PENCS strongly on the channe! radais ' nis ratio decreases

nage effects,” but a complete simulation would be required@Pidly with increasing radiusiike 1/a?), since the dipole
to compare with actual experiments. stopping decreases likeaf, whereas the proton stopping

diminishes as B?. This indicates the advantage of using

narrow channels to test the energy loss of pé&omic or

moleculay systems. The magnitude of the energy loss indi-
The final question to be considered here is the interactiogates that the effect could be observable using nanochannels

of electric dipoles with narrow channels. This question mayor nanotubes with several microns of lengtiote also that

be of interest for instance in experiments with excited neutrathe present results correspond to the channel axis, so that

hydrogen atoms at the level=2 (which has the property of they give lower bound estimations

C. Channeling of dipoles or polar molecules
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T 7 T T T T In a previous formulatiorf16] several analytical results
a=10A ALO, for a simple plasma-resonance dielectric function have been
05 F ve=5au. 3 derived. Here the analysis was extended to incorporate more

realistic descriptions of the dielectric properties of materials
of experimental interest. The scaling properties of the in-
duced field and forces have been derived, using a set of
scaling functions to represent the general dependence in
terms of reduced variables.

Based on this formulation, the magnitudes and the behav-
ior of the expected energy losses and self-energies have been

W/ d>(10° eV)

£=0.5 evaluated, for ions channeled in Ag and alumina targets. The
25 L L ' L L L L L influence of the dielectric properties on the calculated values
0 20 40 60 80 100 120 140 160 180 hag been shown and parametrized, and the size effects were
8 [deg] characterized.

The formulation was extended to ion clusters or molecular
%omposites, and the results were expressed in terms of a new
type of form factors which incorporate the conditions im-
posed by the cylindrical geometry. The particular cases of the
energy loss of dissociated or exploding diclusters, and the
energy loss of channeled dipolésith possible applications
to the channeling of polar molecules or atgnhsve been
analyzed. Other possible applications may include the study

Finally, Fig. 12 shows the self-energy of a channeled di-of transient shifts of the atomic lines of moving ions, due to
pole as a function of its angular orientatidthe angle® the effect of the induced potential, or the possible influence
between the dipole momedtand the velocity). The mini-  of the wake potential on the spectra of emitted electrons
mum energy value if obtained far=7/2, corresponding to (field-acceleration effects
the transverse orientation of the dipole. However, the mag- The condition of low electronic density within the channel
nitude of these values seems to be too small to have practicprovides a unique environment that could be convenient for
consequences. the design of novel experiments of transmission of single or

correlated ions, neutral atoms and molecules. The general
VIIl. SUMMARY formulation and the results and ideas presented here could be

o . ) useful for experimental studies and further advances along
The significant advances in the production of channelghese lines.

and nanotubes in solids provides the possibility of new stud-
ies on the interaction of swift ions and molecules with these
systems. Current studies of transmission of ions through mi-
crochannels are producing new information about the basic
interaction processes and require also theoretical studies in This work was supported in part by ANPCYT of Argen-
the area. tina (PICT030357%.

FIG. 12. Angular dependence of the self energy of a channele
dipole as a function of its angular orientatiénthe angle between
the dipole momentd and the velocityv), for v=5 a.u. anda
=10 A, and for two positions of the dipole within the chanrél,
=py/a=0 and 0.5. The minimum energy value if obtained tor
= /2, corresponding to the transverse orientation of the dipole.
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