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Saddle points of potential-energy surfaces for symmetric triatomic molecules determined
by an algebraic approach

Yujun Zheng and Shiliang Ding
Institute of Theoretical Chemistry, Shandong University, Jinan, Shandong 250100, People’s Republic of China
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The conditions satisfied by saddle points of the analytical potential-energy surfaces of the triatomic molecule
are derived from the algebraic approach. The conditions cause the potential parametera, introduced in a
previous paper@J. Chem. Phys.111, 4466 ~1999!#, to be imaginary. The criterion is applied to the triatomic
molecules H2O and O3.
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I. INTRODUCTION

In recent years, it has been shown that the algebraic
proach is a useful method of treating molecular problem
Some comprehensive reviews of the algebraic approach
recently been published@1–3#.

Since Iachello, Levine, and others have successf
treated molecular rovibrational states using the Lie algeb
approach@1,2,9–11#, many researchers@4–8# have extended
the hybrid algebraic method to treat molecular rovibratio
states. On the other hand, some researchers are interes
treating time-dependent problems and statistical proble
using the~dynamical! algebraic method@12–15#.

As another active method, the analytical potential-ene
surfaces of the small polyatomic molecules can be obtai
by using the molecular algebraic Hamiltonian, since this
gebraic Hamiltonian can reproduce the molecular rovib
tional states well. Cooper@16# recently derived diatomic po
tential functions using algebraic theory. Levine and c
workers@17,18# obtained the potential-energy surfaces of t
triatomic molecules using U~2! algebra.

Recently, we obtained the potential-energy surface of
triatomic molecules using U~4! algebra@19#, which was suc-
cessfully applied to triatomic species: H2O, H2S, SO2, etc.
@19,20#. We previously proposed a new transformation ab
the bond angle, in which the parametera appears. The pa
rametera reflects some properties of potential-energy s
faces, for example, saddle points. The primary purpose
this paper is to show the relation between the saddle po
of potential-energy surfaces for triatomic molecules and
parametera, since the saddle points are one of the import
features of potential-energy surfaces.

The paper is structured as follows. In Sec. II we brie
review the algebraic theory appropriate to triatom
potential-energy surfaces. The solutions of stationary eq
tions are also presented in this section. The saddle points
their existing conditions are presented in Sec. III. In Sec.
we present the relation between the conditions of the sa
points and the parametera. Samples H2O and O3 are shown
in Sec. V. Section VI provides our conclusions.

II. THE SOLUTIONS OF STATIONARY POINTS OF
POTENTIAL-ENERGY SURFACES

In this section we first begin by reviewing briefly the a
gebraic theory of triatomic molecular potential-energy s
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faces, and then we give the solutions of stationary points
the potential-energy surfaces.

A. Potential-energy surfaces

The dynamical symmetric subgroup chain may be writ
as

U1~4! ^ U2~4!.H O1~4! ^ O2~4!

U12~4!
J

.O12~4!.O12~3!.O12~2!, ~1!

where O12(3) and O12(2) describe the molecular rotation
Then the Hamiltonian of the triatomic molecules is expand
in terms of the Casimir operators of subgroups in the gro
chain @1,19#

H5A1C11A2C21A12C12
(1)1A812C12

(2)1lM121•••,
~2!

where A1 , A2 , A12, A812, l, are the expansion coefficient
and they can be determined from spectroscopic data.C1 and
C2 are the Casimir operators of groupsO1(4) andO2(4),
respectively.C12

(1) , C12
(2) are two Casimir operators ofO12(4),

andM12 is the Majorana operator@1#.
Using the canonical coordinates (q1 ,q2) and momenta

(p1 ,p2), the potential-energy surface is obtained from t
classical limit of the algebraic Hamiltonian~2! @19#,

V~q1 ,q2!5Hcl~q1 ,p150,q2 ,p250!

5~A11A12!N1
2~22q1

2!q1
21~A21A12!

3N2
2~22q2

2!q2
212A12N1N2@~22q1

2!~22q2
2!#1/2

3q1•q21
1

4
lN1N2$~22q2

2!q1
21~22q1

2!q2
2

22@~22q1
2!~22q2

2!#1/2q1•q212~q13q2!2%.

~3!

The transformations between the canonical coordina
and the molecular coordinates are, as suggested in Ref.@19#,

qi
25e2b i (r i2r ie) ~ i 51,2!, ~4!
©2001 The American Physical Society20-1
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a1•a25
1

cosha~f2f0!
, ~5!

where r i is the i th bond coordinate,r ie is the equilibrium
bond length,b i is the spectroscopic parameter,ai is the unit
03272
vector along the vectorqi , f is the bond angle,f0 is the
bond angle at equilibrium position, anda is a parameter. The
potential-energy surface of a triatomic molecu
V(q1 ,q2 ,f), using Eqs.~4! and ~5!, may be written as@19#
he
by
V~r 1 ,r 2 ,f!5~A11A12!N1
2@22e2b1(r 12r 1e)#e2b1(r 12r 1e)1~A21A12!N2

2@22e2b2(r 22r 2e)#e2b2(r 22r 2e)

12A12N1N2$@22e2b1(r 12r 1e)#e2b1(r 12r 1e)@22e2b2(r 22r 2e)#e2b2(r 22r 2e)%1/2
1

cosha~f2f0!

1
1

4
lN1N2F2e2b1(r 12r 1e)12e2b2(r 22r 2e)22e2b1(r 12r 1e)2b2(r 22r 2e)

1

cosh2a~f2f0!

22@~22e2b1(r 12r 1e)!e2b1(r 12r 1e)~22e2b2(r 22r 2e)!e2b2(r 22r 2e)#1/2
1

cosha~f2f0!G . ~6!

B. The solutions of stationary points

In this paper, we discuss the saddle points of potential-energy surfaces~6!. To reach this goal, we first need to obtain t
stationary points of Eq.~6!. But it is convenient to start from Eq.~3!. At the same time, for mathematical simplicity, we here
consider the situation where the bond angle is frozen at equilibrium position, that is,f[f0. Hence, after considering Eq.~5!,
Eq. ~3! reads

V~q1 ,q2!5~A11A12!N1
2~22q1

2!q1
21~A21A12!N2

2~22q2
2!q2

212A12N1N2@~22q1
2!~22q2

2!#1/2q1q2

1
1

4
lN1N2$~22q1

2!q1
21~22q2

2!q2
222@~22q1

2!~22q2
2!#1/2q1q2%

[s1~22q1
2!q1

21s2~22q2
2!q2

212tA~22q1
2!q1

2~22q2
2!q2

2, ~7!
to
i.e.,

one
m
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of
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we
where s15(A11A12)N1
21 1

4 lN1N2 , s25(A21A12)N2
2

1 1
4 lN1N2, and 2t52(A12N1N22 1

4 lN1N2).
The equations for stationary points are

]V

]q1
50,

~8!
]V

]q2
50,

with

]V

]q1
54q1~12q1

2!H s11t
~22q2

2!q2
2

A~22q2
2!q2

2~22q1
2!q1

2J ~9!

and

]V

]q2
54q2~12q2

2!H s21t
~22q1

2!q1
2

A~22q2
2!q2

2~22q1
2!q1

2J .

~10!

Four different types of stationary points are obtained.
~a! $q150,q250%. That is, $r 1→`,r 2→`% when trans-
formations~4! are considered. This solution corresponds
the case in which the two bonds are completely broken,
the molecule is dissociated.

~b! $q150,q251% and $q151,q250%. They correspond
to $r 1→`,r 2→r 2e% and $r 1→r 1e ,r 2→`% after Eq. ~4! is
considered. The two solutions correspond to the case of
-bond fully extended and the other bond at its equilibriu
position.

~c! $q151,q251%. This solution corresponds to$r 1
→r 1e ,r 2→r 2e%. It stands that the potential-energy surfa
reaches the global minimum.

The three cases above are trivial solutions of the eq
tions for stationary points, and they have been discusse
detail in Ref.@19#.

~d! $qi
251,qj

2516A12(t/sj )
2%, (i , j 51,2). The solu-

tions with the minus sign are the stationary points
potential-energy surfaces.

III. SADDLE POINTS

In Sec. II, we obtained the solutions of stationary poin
The solutions of type~d! correspond to saddle points, bu
they are present only in certain conditions. In this section
0-2
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will illustrate that the solutions~d! denote the saddle points
and then derive the existing conditions of the saddle poi

The potential-energy surface may be thought of as a fu
tion of two variables (q1 ,q2), V(q1 ,q2).

For convenience, we define

X5
]2V

]q1
2

54s1~123q1
2!14tA~22q2

2!q2
2

~22q1
2!q1

2Fq1
2~q1

223!

22q1
2 G ,

~11!

Y5
]2V

]q2
2

54s2~123q2
2!14tA~22q1

2!q1
2

~22q2
2!q2

2Fq2
2~q2

223!

22q2
2 G ,

~12!

Z5
]2V

]q1]q2
5

8t~12q1
2!~12q2

2!

A~22q1
2!~22q2

2!
. ~13!

As usual, a stationary point (q10,q20) at whichV is nei-
ther maximum nor minimum may be a ‘‘saddle point.’’ Th
is, (q10,q20) is a saddle point if@21#

D5Zu(q10 ,q20)
2 2Xu(q10 ,q20)

Yu(q10 ,q20)
.0. ~14!

From Eq. ~4.59! in Ref. @2#, we know thatAi,0 (i
51,2) anduA12u,uAi u, so we assumesi,0 (i 51,2) after
considering the expression ofsi . Hence we haves1s2.0.
The stationary points of type~d! are $q10

2 51, q20
2 51

2A12(t/s2)2% and $q20
2 51, q10

2 512A12(t/s1)2%. The
stationary points exist, if

12~ t/s1!2.0 and 12~ t/s2!2.0. ~15!

So we gett22s1s2,0 from Eq.~15!, sinces1s2.0.
We now calculate the values ofX, Y, Z at one of the

stationary points of type~d!, for example,$q10
2 51, q20

2 51
2A12(t/s2)2%, i.e.,

Xu(q10 ,q20)
58~ t22s1s2!/s2 , ~16!

Zu(q10 ,q20)
50, ~17!

Yu(q10 ,q20)
58s2

~12q20
2 !2

22q20
2

. ~18!

So,

D5Zu(q10 ,q20)
2 2Xu(q10 ,q20)

Yu(q10 ,q2))

528@~ t22s1s2!/s2#8s2

~12q20
2 !2

22q20
2

5264~ t22s1s2!
~12q20

2 !2q20
2

t2/s2
2

.0, ~19!

since t22s1s2,0 @it is obvious thatq20
2 .0, (12q20

2 )2.0,
and t2/s2

2.0#. Therefore, the point @q10
2 51,q20

2 51
2A12(t/s2)2# is a saddle point@21#.
03272
s.
c-

The same conclusion can be obtained by repeating
above procedure for other points in the solutions of type~d!.

IV. THE EXISTING CONDITIONS OF SADDLE POINTS
AND THEIR RELATION TO PARAMETER a

In this section the existing conditions of saddle points
presented obviously using fitting parameters in Eq.~6!, and
then the relation between the conditions and the parameta
is derived.

A. The existing conditions of saddle points

We have shown that the solutions of type~d! are saddle
points in Sec. III. In this subsection the existing conditions
saddle points are presented using the coefficients in Eq.~6!.

From si,0, we have

l,2
4~Aj1A12!Nj

Ni
~ i , j 51,2!. ~20!

For the saddle points$qi0
2 51,qj 0

2 512A12(t/sj )
2%, or,

equivalently, $qi0
2 51, A(22qj 0

2 )qj 0
2 52t/sj%, we have t

.0 sincesj,0, that is,

4A122l.0. ~21!

On the other hand, from Eq.~15!, one has

A12,2Aj /S 11
Nj

Ni
D,2Aj /S Ni1Nj

2Ni1Nj
D . ~22!

Equations~20!, ~21!, and~22! are the existing conditions
of saddle points.

Here, we discuss the special case ofl[0. In this case, the
existing conditions of saddle points read

A12.0, ~23!

A12,2Aj /S 11
Nj

Ni
D , ~24!

0,2
4~Aj1A12!Nj

Ni
. ~25!

The relation of Eq.~25! is obviously right since we have
indicated thatAj,0 anduA12u,uAj u.

From Eqs.~23! and ~24!, we have

0,A12,2Aj /S 11
Nj

Ni
D . ~26!

Now the existing conditions of saddle points go back to p
vious results@17#.
0-3
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B. The relation between the existing conditions of saddle points
and parameter a

In the analytical potential-energy surfaces of triatom
molecules Eq.~6!, the calculating formula of the parametera
is given by@19#

a5
2pcn

N A m

~24A1213l!S 11
2m

M
sin2

f0

2 D r e

;
1

A24A1213l
. ~27!

FIG. 1. The PES of H2O molecule obtained from Eq.~6! with
the parameters in Table I. The bond angle is frozen at equilibr
position.

FIG. 2. The PES of O3 molecule obtained from Eq.~6! with the
parameters in Table I. The bond angle is frozen at equilibrium
sition.
03272
Using Eqs.~20!, ~21!, and~22!, one has

24A1213l,24A1223F4~Aj1A12!Nj

Ni
G

524A12212A12

Nj

Ni
2

12Nj

Ni
Aj

5A12F24S 11
3Nj

Ni
D G2

12Nj

Ni
Aj

,2Aj /
Ni1Nj

2Ni1Nj
F24S 11

3Nj

Ni
D G2

12Nj

Ni
Aj

54Aj

2Ni1Nj

Ni1Nj
3

Ni13Nj

Ni
2

12Nj

Ni
Aj

58Aj

Ni12Nj

Ni1Nj
,0, ~28!

sinceNi.0 andAj,0.
Hence, the parametera is imaginary.

TABLE I. Parameters required in Eq.~6!. ~For the symmetric
triatomic molecules:r 1e5r 2e is in Å, b15b2 is in Å21, N15N2 is
dimensionless,A15A2, A 12, l are in cm21.!

H2O O3

N1 42 70
A1 218.2219 211.6522
A12 22.85 2.9914
l 1.0571 23.0782
r 1e 0.9706 1.2075
b1 2.354 2.679
a 1.6694 1.9166I

TABLE II. The calculated dissociation energies~eV! and force
constants (aJ; Å; Rad!.

H2O O3

This work Refs.@24,25# This work Refs.@24,26#

Dei 4.39 4.61 5.248 5.115
De 10.44 10.2 6.87 6.33

k11 9.39 8.45 6.84 6.16
k12 20.1026 20.101 1.075 1.602
k33 0.71 0.697 3.78 2.102
k111 266.30 259.4 254.992 255
k112 0.242 0.25 22.879 22.6
k133 20.243 20.23 22.95 23.9
k1111 384.49 384.0 230.68
k1133 22.79 21.41 211.40
k1112 20.568 7.713
k1122 27.28 45.41-
0-4
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V. PRACTICAL APPLICATIONS

In this section, the criterion previously introduced is a
plied to the H2O and O3 molecules. The relevance of thes
two molecules for life processes leads to the importance
experimental and theoretical studies of them. Moreover,
potential-energy surfaces of the water molecule@17,18,22#
and of the ozone molecule@17,18,23# have been widely stud
ied using various methods. Recentab initio calculations
suggest that there are two equilibrium structures,C2v and
D3h , symmetric in the electronic ground state of the ozo
molecule @23#, called stable open structure and metasta
ring structure. The work we are interested in is the sta
open structure for the ozone molecule.

In Eq. ~6! A15A2 and N15N2 for symmetric triatomic
molecules, the contours are plotted in Fig. 1 for H2O, and
Fig. 2 for O3. The coefficients required in Eq.~6! to produce
those plots that can be obtained by fitting spectroscopic
are shown in Table I.

In Table II, we also provide the force constants produc
by Eqs.~46!–~54! in Ref. @19#, the dissociation energiesDe
~for molecule! andDei ~for one bond! produced by Eqs.~33!
and ~34! of Ref. @19#, and those from other calculation
e

m

03272
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These figures and data are in good agreement with the re
produced by other methods@17,18,22–26#.

Clearly visible in Fig. 2, as shown in Table I, the param
eter a in this case is imaginary (a51.916 6I), and the
potential-energy surface of the O3 molecule has saddle
points. Conversely, parametera is real (a51.6694) for the
H2O molecule and its potential-energy surface has no sa
points, as also indicated by other methods@22,23#.

VI. CONCLUSIONS

A simple criterion for the existence of saddle points
triatomic molecular potential-energy surfaces is presente
this paper. That is, the imaginary value of the parametea
indicates the presence of saddle points. Additionally, the
ordinates of saddle points are provided.

ACKNOWLEDGMENTS

This work was supported by the National Science Fo
dation of China. Partial financial support from the Scien
Foundation of Shandong Province, China, is greatly appr
ated.
.

.

ys.
.
,

.

osc.

l-
@1# F. Iachello and R.D. Levine,Algebraic Theory of Molecules
~Oxford University Press, Oxford, 1995!.

@2# S. Oss, Adv. Chem. Phys.93, 455 ~1996!.
@3# A. Frank, and P. van Isacker,Algebraic Methods in Molecular

and Nuclear Structure Physics~Wiley, New York, 1994!.
@4# A. Franket al., Ann. Phys.252, 211 ~1996!.
@5# Dennis Bonatsos and C. Daskaloyannis, Phys. Rev. A48, 3611

~1993!.
@6# R.N. Alvarez, Dennis Bonatsos, and Yu.F. Smirnov, Phys. R

A 50, 1088~1994!.
@7# Zhong-Qi Ma, Xi-Wen Hou, and Mi Xie, Phys. Rev. A53,

2173 ~1996!.
@8# Z. Chang, Phys. Rep.262, 173 ~1995!.
@9# F. Iachello and R.D. Levine, J. Chem. Phys.77, 3046~1982!.

@10# O.S. van Roosmalenet al., J. Chem. Phys.79, 2515~1983!.
@11# F. Iachello and S. Oss, Phys. Rev. Lett.66, 2976~1991!.
@12# Y. Alhassid and R.D. Levine, Phys. Rev. A18, 89 ~1978!.
@13# Daren Guanet al., Chem. Phys.218, 1 ~1997!; 233, 35 ~1998!;

J. Chem. Phys.113, 4424~2000!.
@14# Yujun Zheng, Xizhang Yi, and Daren Guan, Int. J. Quantu

Chem.76, 500 ~2000!.
@15# Yujun Zhenget al., Chem. Phys.252, 179 ~2000!.
@16# I.L. Cooper, J. Phys. Chem.102, 9565~1998!.
@17# I. Benjamin and R.D. Levine, Chem. Phys. Lett.117, 314

~1985!.
@18# I.L. Cooper and R.D. Levine, J. Mol. Struct.199, 201 ~1989!.
@19# Shiliang Ding and Yujun Zheng, J. Chem. Phys.111, 4466

~1999!.
v.

@20# Yujun Zheng and Shiliang Ding, Chem. Phys.246, 225~1999!;
255, 217 ~2000!.

@21# See, M.H. Protter and C.B. Morrey Jr.,Modern Mathematical
Analysis~Addison-Wesley, London, 1964!.

@22# S. Carter and N.C. Handy, J. Chem. Phys.87, 4294~1987!; L.
Halonen and T. Carrington,ibid. 88, 4171~1988!; P. Jensen, J.
Mol. Spectrosc.133, 438~1989!; E. Kauppi and L. Halonen, J
Phys. Chem.94, 5779 ~1990!; A. Bastida, J. Zuniga, and A
Requena, J. Mol. Spectrosc.136, 185 ~1989!; P. Jensen, S.A.
Tashkun, and V.G. Tyuterev,ibid. 168, 271~1994!; C.D. Paulse
and J. Tennyson,ibid. 168, 313 ~1994!; O.L. Polyansky, P.
Jensen, and J. Tennyson, J. Chem. Phys.101, 7651~1994!.

@23# P.J. Hay, R.T. Pack, R.B. Walker, and E.J. Heller, J. Ph
Chem. 86, 862 ~1982!; M.G. Sheppard and R.B. Walker, J
Chem. Phys.78, 7191 ~1983!; S.S. Xantheas, G.J. Atchity
S.T. Elbert, and K. Ruedenberg,ibid. 94, 8054 ~1991!; A.
Banichevich, S.D. Peyrimoff, and F. Grein, Chem. Phys.178,
155 ~1993!; S. Carter, I.M. Mills, J.N. Murrell, and A.J.C
Varandas, Mol. Phys.45, 1053 ~1982!; V1.G. Tyuterev, S.
Tashkun, P. Jensen, A. Barbe, and T. Cours, J. Mol. Spectr
198, 57 ~2000!.

@24# G. Herzberg,Infrared and Raman Spectra of Polyatomic Mo
ecules~Van Nostrand, New York, 1950!.

@25# A.R. Hoy, I.M. Mills, and G. Strey, Mol. Phys.24, 1265
~1972!.

@26# A. Barbe, C. Secroun, and P. Jouve, J. Mol. Spectrosc.49, 171
~1974!.
0-5


