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Saddle points of potential-energy surfaces for symmetric triatomic molecules determined
by an algebraic approach
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The conditions satisfied by saddle points of the analytical potential-energy surfaces of the triatomic molecule
are derived from the algebraic approach. The conditions cause the potential paramgtieoduced in a
previous papefJ. Chem. Physl11, 4466(1999], to be imaginary. The criterion is applied to the triatomic
molecules HO and Q.
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[. INTRODUCTION faces, and then we give the solutions of stationary points of
the potential-energy surfaces.
In recent years, it has been shown that the algebraic ap-

proach is a useful method of treating molecular problems. A. Potential-energy surfaces
Some comprehensive reviews of the algebraic approach have . . . .
recently been publishefd—3]. The dynamical symmetric subgroup chain may be written

Since lachello, Levine, and others have successfullyS
treated molecular rovibrational states using the Lie algebraic
approacH1,2,9-11, many researchefg—8] have extended U, (4)@U,(4)D
the hybrid algebraic method to treat molecular rovibrational ! 2
states. On the other hand, some researchers are interested in
treating time-dependent problems and statistical problems D01(4)D0,53)D0,,(2), )
using the(dynamica) algebraic methodl12—-15.

As another active method, the analytical potential-energyvhere O,,(3) and O;,(2) describe the molecular rotation.
surfaces of the small polyatomic molecules can be obtainetthen the Hamiltonian of the triatomic molecules is expanded
by using the molecular algebraic Hamiltonian, since this alin terms of the Casimir operators of subgroups in the group
gebraic Hamiltonian can reproduce the molecular rovibrachain[1,19]
tional states well. Coopé 6] recently derived diatomic po-
tential functions using algebraic theory. Levine and co- H=A;C;+A,Co+A;,CH+A ,CH+AM o+ - -,
workers[17,18 obtained the potential-energy surfaces of the 2
triatomic molecules using () algebra.

Recently, we obtained the potential-energy surface of thavhere A, Ay, Ajp, A'1p, N, are the expansion coefficients,
triatomic molecules using @) algebra[19], which was suc- and they can be determined from spectroscopic datand
cessfully applied to triatomic species,®, H,S, SQ, etc.  C, are the Casimir operators of grou@g(4) andO,(4),
[19,20. We previously proposed a new transformation aboutespectivelyC{}, C{2 are two Casimir operators @i;,(4),
the bond angle, in which the parameterappears. The pa- andM, is the Majorana operatdd].
rametera reflects some properties of potential-energy sur- Using the canonical coordinates|;(,q,) and momenta
faces, for example, saddle points. The primary purpose ofp;,p,), the potential-energy surface is obtained from the
this paper is to show the relation between the saddle pointglassical limit of the algebraic Hamiltonig®) [19],
of potential-energy surfaces for triatomic molecules and the
parameter, since the saddle points are one of the importantV(d1,92) =H¢(d1,p1=0,02,p2=0)
features of potential-energy surfaces. _ 2 2 2

The paper is structured as follows. In Sec. Il we briefly = (Ac+ARINI(2=0a)ar+ (Ax+ A
review the algebraic theory appropriate to triatomic X N2(2—02) 02+ 2A 1N N,[ (2—2) (2~ g2) |2
potential-energy surfaces. The solutions of stationary equa-

01(4)®0,(4)
Ui4)

tions are also presented in this section. The saddle points and 1 2 2 2 2
their existing conditions are presented in Sec. Ill. In Sec. IV Xdy- Gzt ZANIN{(2—02) a1+ (20103

we present the relation between the conditions of the saddle

points and the parameter. Samples HO and Q are shown —2[(2—a))(2—a5) 1"+ A2+ 2(0; X )2}

in Sec. V. Section VI provides our conclusions. 3

II. THE SOLUTIONS OF STATIONARY POINTS OF
POTENTIAL-ENERGY SURFACES

The transformations between the canonical coordinates
and the molecular coordinates are, as suggested ir F3f.

In this section we first begin by reviewing briefly the al- P Bty
gebraic theory of triatomic molecular potential-energy sur- gi=e ~tiThe (i=1,2), 4
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B 1 vector along the vectoq;, ¢ is the bond angleg, is the
&&= cosha(gp— ¢g)’ (5) bond angle at equilibrium position, amdis a parameter. The

wherer; is theith bond coordinater e is the equilibrium ~Potential-energy  surface of ~a triatomic molecule
bond lengthB; is the spectroscopic parametar,s the unit ~ V(d1,d2,¢), using Egs(4) and(5), may be written a$19]

V(rl,rz , d)) = (A1+A12) N%[z_ efﬁl(rlfrle)]e*ﬁl(rlfrle)+ (A2+A12)N§[2_ e*ﬁ’z(fffze)]efﬂz(fszze)

1
+ —e B rie]e Bilri—ried[ 2 — @ Balro—Tr2e) @ Balro—Toe V2~
2A NNy {[2—e ele d[2—e ele e/} coshald—dy)
+ E)\N N 2e*,31(f1*r1e)+2e*/32(f2*r2e)_2e*:31(f1*r1e)*32(f2*r2e);
472 cosfa(p— o)

1

—2[(2—e BTy Bilri—Tied (0 — @ Balra—Toeyg Balra—raet2 |
[(2—e e (2-e )e P Coshatd—do)

(6)
B. The solutions of stationary points

In this paper, we discuss the saddle points of potential-energy suif@cé® reach this goal, we first need to obtain the
stationary points of E(6). But it is convenient to start from E¢3). At the same time, for mathematical simplicity, we hereby
consider the situation where the bond angle is frozen at equilibrium position, thieti$,. Hence, after considering Ep),

Eq. (3) reads

V(G1,02) = (A1 +A)NI(2—05) 05 + (A + A1) NS(2—03) 5+ 2A1N No[ (2 03) (2— 05) 10,0,

1
+7MWNiN{(2— gD ai+ (2-a3)a5 - 2[(2— ) (2— 03) ]V 0)

=5,(2—0})ai+52(2—03)a5+2tV(2— 1) qi(2— a3) 3, )
|
where  s;=(A;+A)NZ+INNIN,,  S,=(Ay+ AN (@ {q;=0,,=0}. That is,{r;—,r,—=} when trans-
+3AN;N,, and 2=2(A;,N;N,— AN N,). formations(4) are considered. This solution corresponds to
The equations for stationary points are the case in which the two bonds are completely broken, i.e.,
the molecule is dissociated.
oV (b) {g,=0,0,=1} and{q;=1,,=0}. They correspond
EZO’ to {r;—%,r,—ry) and{r;—rq,r,—o} after Eq.(4) is

®) considered. The two solutions correspond to the case of one
-bond fully extended and the other bond at its equilibrium
position.
(¢ {g:=1,,=1}. This solution corresponds tdr,
—T1e,F2—T 9. It stands that the potential-energy surface
with reaches the global minimum.
The three cases above are trivial solutions of the equa-
(2—q§)q§ tions_ fpr stationary points, and they have been discussed in
— — (9) detail in Ref.[19].
(2-03)02(2—0q1)a1 (o) {af=107=1x\1—(t/s)?, (i,j=1,2). The solu-
tions with the minus sign are the stationary points of
and potential-energy surfaces.

IV
dd>

N 40,(1—g?)] sy +t
—_— — S
99, of] d1)) S1 \/

(2—99)q?
. Ill. SADDLE POINTS

ﬂ=4q2(1—q§) Sy +t
V(2—-93)a5(2—g5)as

d0;
(10 In Sec. Il, we obtained the solutions of stationary points.

The solutions of typegd) correspond to saddle points, but
Four different types of stationary points are obtained. they are present only in certain conditions. In this section we
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will illustrate that the solution$d) denote the saddle points, The same conclusion can be obtained by repeating the
and then derive the existing conditions of the saddle pointsabove procedure for other points in the solutions of tighe

The potential-energy surface may be thought of as a func-

tion of two variables ¢4,95), V(d1.0>)-
For convenience, we define

92V 2—a2va? a2(g2—3)]
x="Y _asy1-30%) +at | 292 A3

e (2—-gDayl 2—-97 |
(11)

92V 2022 a2(a2—3)]

Y:_2:452(1_3q§)+4t ( q;)q; 0a2(a3 i )

903 (2=02)03] 2—0q; |
(12

AV 8t(1-93)(1—a;5

B (1=9)(1—q3) 13

T Je-ad)2-q))

As usual, a stationary pointj{y,g,0) at whichV is nei-

ther maximum nor minimum may be a “saddle point.” That

iS, (010,020 IS @ saddle point if21]

A:Z|(2qlo’q20)—X|(q10’q20)Y|(qu’q20)>O. (14)

From Eq. (4.59 in Ref. [2], we know thatA;<0 (i
=1,2) and|Aj<|Ai|, so we assumg;<0 (i=1,2) after
considering the expression ef. Hence we haves;s,>0.
The stationary points of typdd) are {q%=1, q5=1
—J1—-(t/s)? and {g3=1, q’;=1—1—(t/s;)%}. The

stationary points exist, if

1—(t/s))>>0 and 1-(t/s,)*>>0. (15

So we gett?—s;s,<0 from Eq.(15), sinces;s,>0.
We now calculate the values of, Y, Z at one of the
stationary points of typéd), for example,{q3,=1, q5,=1

—J1-(t/s,)%, ie.,

X|(q10,q20):8(t2_5132)/52. (16
Z|(q10'q20):0' (17)
(1-030)°
Y(g,0.0,0 =8S2——5— (18)
9100920 2_qgo
So,
_ 72
A_Z|(q10*q20)_Xl(qloquo)Y|(qloaQ2))
(1-959°
= 8[(t2—81S2)/32]852—q220
— Y20
(1-030°3
:_64(t2_5152)—q20 q20>0, (19)

t2/s3

sincet?—s,5,<0 [it is obvious thatg3,>0, (1—g5)>>0,
and t%/s3>0]. Therefore, the point [qZ,=105=1

—\1—(t/s,)?] is a saddle poinf21].

IV. THE EXISTING CONDITIONS OF SADDLE POINTS
AND THEIR RELATION TO PARAMETER «

In this section the existing conditions of saddle points are
presented obviously using fitting parameters in ), and
then the relation between the conditions and the parameter
is derived.

A. The existing conditions of saddle points

We have shown that the solutions of ty are saddle
points in Sec. lll. In this subsection the existing conditions of
saddle points are presented using the coefficients in@g.

Froms;<0, we have

A(A+ AN,

< —
A N;

(i,j=1,2. (20)

For the saddle point§qh=10%=1—1—(t/s;)?}, or,
equivalently, {a%=1, V(2—0%)a’%=—t/s;}, we havet

>0 sinces;<0, that is,

4A;,—\>0. (22)

On the other hand, from E@15), one has
A —A | 1+ N < g N 22
12 J N; FL2N+N; ) (22

Equations(20), (21), and(22) are the existing conditions
of saddle points.

Here, we discuss the special casa &f0. In this case, the
existing conditions of saddle points read

A,>0, (23
N

A<= Al 1+, (24)
i
4(Aj+ AN,

< AR AN, (25)

N;

The relation of Eq(25) is obviously right since we have
indicated thatA; <0 and|A;|<|A||.
From Egs.(23) and (24), we have

0<Ap<—Aj/ . (26)

14 N
N;

Now the existing conditions of saddle points go back to pre-
vious resultd17].
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TABLE |. Parameters required in E@6). (For the symmetric
triatomic moleculest ;,=r s isin A, B;=B,isin A", N;=N, is
dimensionlessA;=A,, Aj,, \ are in cmt)

1

contour 1 = -1.0 eV

H,O (o}
3} contour interval = 0.90 eV | N; 42 70
< A, -18.2219 —11.6522
Y A, -2.85 2.9914
A 1.0571 —3.0782
2r Mo 0.9706 1.2075
B 2.354 2.679
@ 1.6694 1.9166!

Using Egs.(20), (21), and(22), one has

4(AJ+A12)N]-
N;

1 _4A12+ 3)\< _4A12_3

FIG. 1. The PES of KO molecule obtained from Ed6) with

the parameters in Table I. The bond angle is frozen at equilibrium - _ m _ 1IN; _

e 4A1,—12A45 A,
position. N; N;

B. The relation between the existing conditions of saddle points - _ ﬁ _ 12Ni )
A —4| 1+ A
and parameter a N; N;

In the analytical potential-energy surfaces of triatomic Ni+N; 3N; 12N;
molecules Eq(6), the calculating formula of the parameter <A /72,\1_+ N | +W "N Aj
is given by[19] b ' !

A 2N;+N; N;+3N; 12NJ-A
_27TCV m i I'N;+N; N, N, T
a= I J
2m o) ©
(—4A;,+3\) 1+Vsm27 B Ni+2Nj<O 28)
CUUINGEN;
~ # (27)  sinceN;>0 andA;<0.
V—4A5+ 3\ Hence, the parameter is imaginary.
TABLE Il. The calculated dissociation energié=V) and force
4 1 ] constants 4J; A; Rad.
contour 1 =-1.0 eV H20 O5
This work  Refs[24,25 This work Refs[24,26
contour interval = 0.50 eV
<3 De, 4.39 4.61 5.248 5.115
"o D¢ 10.44 10.2 6.87 6.33
o
Kyq 9.39 8.45 6.84 6.16
k1o —0.1026 —0.101 1.075 1.602
Kas 0.71 0.697 3.78 2.102
Ky11 —66.30 —-59.4 —54.992 -55
Ki1p 0.242 0.25 -2.879 -2.6
Ki111 384.49 384.0 230.68
k1133 - 279 - 141 - 1140

FIG. 2. The PES of @molecule obtained from Eq6) with the Ki112 —0.568 7.713

parameters in Table I. The bond angle is frozen at equilibrium pok,;,, -7.28 45.41

sition.
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V. PRACTICAL APPLICATIONS These figures and data are in good agreement with the results

In this section, the criterion previously introduced is ap_produced by other methods7,18,22-26

plied to the HO and Q molecules. The relevance of these te(rileaglr?/ Yr']?éblsalsne':;g' i?ﬁ:ﬁns;rovc\:(lli] giglg I)I’ tgﬁ dpe:fr;m-
two molecules for life processes leads to the importance ofor e | f fg h yOn I. | h’ dd
experimental and theoretical studies of them. Moreover, thgo_tentla—energy surtace o t. €3 oe_cue as sacdie

. points. Conversely, parameteris real («=1.6694) for the
potential-energy surfaces of the water molediié,18,23 H,O molecule and its potential-energy surface has no saddle
and of the ozone molecul&7,18,23 have been widely stud- 2. 150 indi tpd by oth g¥h a8 2
ied using various methods. Receamb initio calculations points, as also indicated by other meth¢a#,23.
suggest that there are two equilibrium structur@s, and
Dj,, symmetric in the electronic ground state of the ozone VI. CONCLUSIONS
molecule[23], called stable open structure and metastable A simple criterion for the existence of saddle points in
ring structure. The work we are interested in is the stablgriatomic molecular potential-energy surfaces is presented in
open structure for the ozone molecule. . this paper. That is, the imaginary value of the parameter

In Eq. (6) Ay=A, andN;=N, for symmetric triatomic jndjcates the presence of saddle points. Additionally, the co-
molecules, the contours are plotted in Fig. 1 fogGdand  grdinates of saddle points are provided.

Fig. 2 for O;. The coefficients required in E() to produce
those plots that can be obtained by fitting spectroscopic data ACKNOWLEDGMENTS
are shown in Table I.

In Table I, we also provide the force constants produced This work was supported by the National Science Foun-
by Eqgs.(46)—(54) in Ref.[19], the dissociation energid3, dation of China. Partial financial support from the Science
(for moleculg andD; (for one bond produced by Eq9.33) Foundation of Shandong Province, China, is greatly appreci-
and (34) of Ref. [19], and those from other calculations. ated.
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