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Use of the independent-particle model to treat curve-crossing transitions
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We discuss the usefulness of the independent-particle model to describe charge-transfer processes. We
consider, as a benchmark case, avoided crossing transitions in two-electron systems, described by means of the
Landau-Zener-Stueckelberg model. It is shown that the independent-particle model, with an equivalent-
electron interpretation of the one-electron transition probabilities, reproduces single-electron transition prob-
abilities for a wide range of physical situations. Significant deviations with respect to a two-electron calculation
are related to Stueckelberg oscillations of the transition probabilities.
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[. INTRODUCTION In the independent-particle approximation, the Hamil-
tonian of the system is expressed as the sum of one-electron
While theoretical methods to describe collisions in one-effective Hamiltonians. The corresponding one-electron tran-
electron systems are well establisiede, e.g/|1]), there are  sition probabilities are then evaluated in a relatively simple
no specific methods for many-electron systems, whose devay, and the final probabilities are obtained by using a
scription is usually based on the application of themany-electron interpretation. The most common interpreta-
independent-particle approximation, in which the many-tion [19] assumes that all electrons are equivalent. In this
electron problem is reduced to several one-electron prokpaper and following this usage we shall call the independent-
lems. Although the use of the independent-particle approxiparticle modelIPM) the independent-particle approximation
mation is standard in atomic and molecular structurewith the equivalent electron interpretation.
calculationgsee, e.g/,2]), where it is the basis of the widely Alternative treatments in which core and active electrons
employed Hartree-Fock method, there is no equivalent apare not equivalent have also been propdsj21], and this
proach that can be systematically applied to dynamical probidea has been used in models and calculations of double
lems, as the time-dependent Hartree Fock method is difficuitapture[22,23 and double ionizatioh24] of He by ion im-
to apply and not free from convergence problefsse[3]  pact. Equivalent and nonequivalent models thus coexist, and
and references therginOn the other hand, the independentin many cases it is not obvious which, if any, is the most
particle approximation has been applied to ion-atom colli-appropriate one to ugée]. This is mainly because few cal-
sions within different formalismgsee, e.g., Refd4,5] for  culations[25—27 have compared equivalent and nonequiva-
the application in close coupling atomic and molecular treatdent treatments. There are also situations in which the method
ments; Refs[6,7] for CTMC calculations; an@i8] for CDW is implicitly used: As will be explained in the following sec-
calculation. It has been also applied in collisions of atomstion, there is a limit of the nonequivalent treatment in which
with clusterg 9], and, in connection with semiclassical mod- only the active electron undergoes transitions, so that it does
els [10], to describe experimental results of single andnot appear to require the use of any many-electron interpre-
double capture from atomic and molecular targeits]. It tation (see, e.g., Ref§12,13,28,29. Another alternative to
should be noted, however, that the theoretical basis of ththe usual IPM has been recently propo$gd,31,3 for H*
method is by no means obvious. collisions with many-electron targets, which assumes that the
The simplest situation in which the approximation is ap-transfer of one electron blocks further electron transfer,
plied involves systems with a clear distinction between arwhich in practice means that the single capture cross section
active electron and the remaindeore electrons, such as in iS increased by adding to it the corresponding ones for
proton-alkaline collisiong12] or collisions of closed-shell N-electron capture.
multicharged ions—H collisions, e.g.}GH (see[13]). The In recent workg 27,32, we have employed model poten-
treatment of these collisions is often carried out by employial techniques to evaluate charge-transfer cross sections in
ing effective potentials to describe the interaction of the acion-H, collisions by using a model potential to describe the
tive electron with the atomic cores, and several model poteninteraction of the active electron with the;Hcore. These
tials and pseudopotentials have been propogéd]. works have pointed out that the two-electron interpretation
Furthermore, the use of effective potentials has been exaf the one-electron probabilities is indispensable, and par-
tended to systems with two active electrons outside a closedially explained the success of the IPM at high velocities,
shell core[15]. A different extension of the method involves while at low velocities, single-electron capture cross sections
the description by means of effective potentials of the H showed an important disagreement wath initio results that

open-shell corésee[16] for H"-H™ and[17] for He&?"-H~ was explained as a consequence of the incorrect transition
collisions. The use of time-dependent model potentials hagprobabilities for double electron capture in the IRBEe[1]
also been suggestédee Refs[18,3)]). and references thereif%,33,7,, and[34]).
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The analyses of Reff27,32 were based on a comparison W(ry,ro.t) =]l 2.3
of Hamiltonian matrix elements, but the consequences in the
dynamics of the differences in Hamiltonian matrices was n%vherew is a solution of the one-electron eikonal equation:
considered. The aim of the present paper is to carry out
model calculations that yield insight into the properties of the P
independent electron approaches. For this purpose, we shall (h—i —) $=0. (2.9
consider a two-electron system in which transitions leading at
to single-electron transfer take place at an avoided crossinﬂ . . . .
of two potential-energy curves, and the Landau-Zener’ s mentioned in the Introduction, we consider a two-state

StueckelberdLZS) model[35-37 will be used for the cor- problqm. We expand the solution; of Eq.4) in t'erms of
responding energies and couplings. two diabatic orbitals{x,,x,}, obtained by carrying out a
The paper is organized as follows. In Sec. II, we will unitary transformation on the basis of adiabatic molecular

introduce the basic equations for our comparison betweeﬂlr_b'tals{‘“'r‘f?} SC/) that the rad!aL corr?pone_nts of the cou-
“exact” and IPM model calculations; in it we will apply the PINgs(xiD|Ih—i(a/dt)|x;D) vanish, where is a common
conclusions of Refs[27] and[32] to relate one- and two- translation factofsee Refs[27,37]). The two-electron basis

electron Hamiltonian matrix elements. In Sec. lll, we carryused to expand the solution of E.1) is then chosen as

out the comparisons using the simple Landau-Zener modefNtisymmetrized products of the diabatic spin orbitals

and in Section IV we do so with the LZS model. ConclusionsX1,2 X1,2- These functions are of the form

are drawn in Sec. V. Atomic units are used unless otherwise

stated. e Nij , — —
¢ij:E[||Xin||+||Xin||]v (2.5

Il. THEORY
whereN;;=1 for i#j and Ni,:l/\/i for i=j. Using Eq.
(2.2, it is easily shown that one- and two-electron energy

_ We employ a semiclassical eikonal description of the colifferences andHamiltoniar) couplings are related through
lision, where the nuclei follow rectilinear nuclear trajecto-

ries, with impact parameten and constant velocity, R eIHI S V= /2(v:|h

=b+vt, and the electronic motion is described by means of (#iIH1950=2(x ) 26
the semiclassical eikonal equation. For a two-electron sys- '
torm. it has the form q VST (Rl — (85 1HC ¢) = udhlxd — (xilhlx;)-

A. Two-electron and single-electron approaches

J For comparison purposes, we also consider briefly the
H—i5>‘1’(r1,rz,t)=0, (2.)  nonequivalent-electron treatment. We write in E8.2) h
=1/2(h?+h°), where different one-electron Hamiltonians

whereH is the nonrelativistic, fixed nuclei, electronic Hamil- h®, h? are used, respectively, for t_he core and _actlve elec-
tonian. In the single-electron approaches, it is assumed thértons. The two-electron wave function is now written as
one(active electron moves in the field created by the nuclei 1

and the other thécore electron. The interaction of the active _ = ca ac

electron with the core is represented by means of the effec- W(ryre)= \/EHW Rl @7
tive potential included in the one-electron Hamiltonin|n

this way, the electron-core interaction is taken into account ifvhere /¢, 42 are solutions of the equations

an average way by the effective potential, which is usually of

the central type and statisee Ref[14]), although in prin- 9

ciple it could be taken to be time-dependent. The two- (hc—i 5) #°=0, (2.9
electron HamiltoniarH is then approximated by

H=h(ry)+h(r,). (2.2 (ha—i%) oy 29

In the following, we shall assume that this approximation is
sufficiently accurate for the present purposes. For instancdn this approximation, the two-electron wave functiaﬁﬁe
for the case of collisions between multicharged ions apd Hare written as antisymmetrized products of a core orhital
molecules, the accuracy of approximati@2) was tested in  and a diabatic orbitaly{ ,, for the active electron. The en-
Refs.[27,32 by explicit comparison of the Hamiltonian ma- suing relationship between two- and single-electron ap-
trix elements of this equation with the correspondaigini- proaches is cumbersome, except in the case in which active
tio ones. and core orbitals are orthogonal, and the electron-electron
In the equivalent electron treatmefdalled IPM in the repulsion integrals between core and active electrons can be
present work one usei= —1/2V2+V with V the effective  neglected. Then, the two-electron matrix elements are iden-
potential. When the initial state is a singlet, the two-electrortical to the one-electron matrix elements for the active elec-
wave functionW is then written tron:
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(S IH[ ) =(x7|hx7),
2.10

(
(A7 THI )= (D7 IHI A= (X712 X)) = (X Thelx D).

. o . . The simple Landau-Zendt.Z) model is obtained by intro-
and, in this limit, the nonequivalent formalism reduces to theycing the additional approximation that transitions take
monoelectronic model of Eq2.9). Examples of applications place only atR=R,, and phase effects are neglected. The
can be found in ion -H CO”iSiOﬂS[lG,lﬂ. transition probablllty aR=R, is

a'Lzs(a,,B)=27TJmEPLZS(a,B,E)dE (2.1
0

B. Use of the Landau-Zener-Stueckelberg and Landau-Zener 2«
models for the single-electron case p=1-gq=1—-exg — —————|. (2.18
J1_h2
As mentioned in the Introduction, we shall study the va- AN1-b
lidity of the different approaches by assuming that the LZS¢. jiisions withb> R,

model is sufficiently exact in the solution of Eq2.4) or g the trajectory and no transitions take place, whiletor

(2.9. We assume that the molecular orbitgls, or x7 , have L = =
energies that cross, and we use the linear model for this Ro the crossing is traversed twice, &t =+ y1-D. After

crossing. For example, taking the explicit case of the equivathe crossing is traversed onc& (<Z<Z+), the popula-

the crossing is not traversed dur-

lent electron model, tions of the diabatic stateg;,x, are, respectively, *p
=g and p=1—q. Alternatively, one can employ the adia-
h,,—h1=a(R—Ry), batic orbital representatiofe,,¢,}, obtained by diagonal-
(2.1  izing the Hamiltonian matrix2.11), with ¢1=x1;¢>= x> at
hip=c, R>>R,. Application of the LZ model leads to populations

gf p(illq) and 1- piz q) for ¢, and ¢, respectively, for
Z <Z<Z+. ForZ>Z,, the crossing is traversed twice
and, neglecting interferences, the population of the function

whereRy is the crossing distance amdanda are constants.
The solution of Eq(2.4) is then expressed as

(r,)=as(t) x1+as(t) xs. (212 x2(=¢2) is
Ierleci;der to simplify the formalism, we introduce the param- PLZ<%,E> _2p(1-p)=2q(1—q) 2.19
R?,c2 and the corresponding total cross section is only a function
a= 2 of alB:
(2.13 1 N\
R2a aLZ(f =2wf bPLZ(E,b)db. (2.20
= B 0 B

v

) — — ) Finally, the perturbative limit§<1) of Eq.(2.20 is
and we employ scaled distancés Z/R,, b=b/R,. Substi-

tution of ¢ in Eq. (2.4) and use of Egs(2.11), and (2.13 L[ @ N
lead to the system of differential equations: 7\ g =8 I (2.21
da —
i — = \Jaa,— (B/2)[ Vb2+Z2—1]a,, lll. PERFORMANCE OF THE IPM USING LZ
dz PROBABILITIES

da, _ 219 In the LZ approximation, the single-electron transition

i— =aa,+(B2)[Vb?+Z?-1]a,, probabilities are given by Eq$2.18 and (2.19 (see also

dz Table ). Use of the standard IPM leads, for one passage
through the crossing region, and in the diabatic representa-

where tion, to
_:U_t:ﬂ (2.15 Pe=(1-p)>=0?,
Ro Ro
_ Ps=2p(1—p)=2q(1—q), (€N
and(x;| 3/ 9Z| x;)=0. If the collisional system is initially de-
scribed by the orbitak,, the transition probability toy, is pg=p>=(1—0q)?
given by
wherep, is the probability of the two electrons to remain in
pLZS(a,ﬁ,H):|a2(+oo)|2 (2.1  the initial orbital x;, ps is the probability to transfer one
electron toy,, and py is the probability to transfer both
and the total capture cross section, in units?éf is electrons toy,. Similar relations for the adiabatic represen-
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TABLE I. Populations of elastic and single-electron transfer channels after one and two passages through the crossing region as functions
of the LZ one-electron transition probabilitiesee Eq(2.18] g (first line) andp (second ling

Elastic Monoelectronic IPM Hamret al. [30] Bielectronic

One crossing

2 2

(diabatig q o q q
1-p (1-p)? (1-p)? (1-p)?
One crossing
(adiabati¢ 1—q (1—q)? 1-2q+0? 1-¢?
P p? p 2p—p?
Two
crossings +2q+2q? 1-49+8g°—8g3+4q*  1-4q+89°—8g°+4q* 1-29%+2q*

1-2p+2p? 1-4p+8p®—8p3+4p*  1—4p+8p*-8p3+4p*  1-4p+10p*—8p3+2p*

Single-electron

transfer Monoelectronic IPM Hammt al. [30] Bielectronic
One crossing
(diabatig 1-q 2q(1—q) 1-¢? 1-¢?
p 2p(1-p) 2p—p° 2p—p?

One crossindadiabatig q 2q(1—q) 29—q° q°

1-p 2p(1-p) 1-p? (1-p)?
Two
crossings 2(1—q) 49— 129%+16q°—8q* 49—809%+8qg°—4q* 29%-2qg*

2p(1-p) 4p—12p%+16p3—8p* 4p—8p?+8ps—4p* 4p—10p2+8p3—2p*

tation are given in Table I, as well as the corresponding traninadequacy of the IPM for double electron transitions at least

sition probabilities when the crossing is traversed twice. in the low-velocity domain where a molecular approach is
In order to analyze the behavior of the IPM probabilities, applicable, hence we shall exclugg from the two-electron

we consider the “exact” two-electron equatid.l). We  basis. This is meaningful for many systems for which two-

construct a two-electron badisee Eq(2.9)], electron transitions are negligible; this is, for example, the
- case of collisions of H with atoms and molecules
be=Ilx1xall, [27,30,31,38 For the ensuing two-stated basis, we can em-

(3.2 ploy the same analytical treatment of E¢®.13—(2.17) by
substitutingys by W, {x1,x2} by {¢e.,ds}, and, from Eq.
(3.3), a by 2a. In particular, this leads to the LZ populations
of the diabatic state$de,¢s}, by using Egs.(2.18 and

consisting of the collision entrance channgl and the (2.19. These LZ populationécalled bielectronigare listed

1 - -
¢S:E[||X1X2||+”X2X1||]

single-electron capture channg{. Equation(2.6) reads in Table | together with the IPM ond&q. (3.1)]. Diagonal-
2 ization of the Hamiltonian matrix3.3) in the ¢, ¢ basis
Hes=v2hyo, yields two adiabatic states, whose LZ populations during the

(3.3 collision are also listed in Table I. This table allows an ex-
plicit comparison of the IPM and two-electron probabilities,
carried out in the frame of the LZ treatment. A similar com-
parison using LZS cannot be carried out analytically and is
considered in the following section.

We have included in Table | the populations given by the
method of Ref[30]. We see that the expression fof using

Hss—Hee=h2o—h1.

Employing Eqgs(3.3), one finds that, when the energy curves
of x; and x, cross atR=R,, the energy curves of the two-
electron statesp, and ¢ also cross at the same point. A
double electron capture sta#g; can also be defined as

b= —|| (3.4 this method is identical to the corresponding one in the stan-
4= 11X2X2 ' dard IPM, butps is given by the sum of the IPM values for
and, using Eq(2.6), one obtains Ps and pq of Eq. (3.2). Furthermorg_, we have g!sp included
in Table | the one-electron transition probabilitidabeled
Hgg— Hss=ho—hyy (3.5 monoelectronig which, as shown in Sec. Il, can be taken as

corresponding to the nonequivalent independent electron
so that the energy of the double electron transition sfate treatment.
also crosses those of statés and ¢, at R=R,. The pres- An additional illustration is given in Fig. 1, where we
ence of this unphysical triple crossing reflects the intrinsichave plotted the probabilities for single-electron transition
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FIG. 1. Transition probabilities after two passages through the | |
. . . . oy 1 L L
crossing point as functions of the one-electron transition probability 0 0.05 0.1
g of Eqg. (2.18: M, monoelectronicB, bielectronic; IPM, standard
IPM; H, modified IPM of Ref[30]. o/B
after the collision as functions of the parameteOf course FIG. 2. Relative errof (¢— ¢”)/¢®] in the LZ approximation,

use of other parameters rather thgnsuch asa/B of Eq.  with o calculated using the standard IPMPM) and the modified

(2.13, or g2 would yield a different qualitative illustration of method of Ref[30] (H).

the results of Table I, for instance usedfesults symmetri-

cal monoelectronic probabilities and asymmetrical bielecirectly related to the Hamiltonian matrix elemefgse, e.g.,

tronic results, whereas the opposite holds dér From this  Egs (2.18 and(2.19], we have evaluated the cross sections

figure and Table |, one can conclude the following in thefyr single-electron transitions, in terms of the more meaning-

frame of the LZ approximation. o . ful scaled quantitiesx and 8 by integrating bielectronic and
(i) The IPM provides a good approximation to the bielec-|pp transition probabilities of Table I. Furthermore, we have

tronic values in a wide range of physical situations wWith  piatted in Fig. 2 the relative error of this cross section as a

>0.6, the differences being smaller than 10%. Whenal,  {,nction of the parametew/ 8= c?2mav [see Eq.(2.20)].

the IPM and bielectronic results converge and correspond t9pis allows us to select the minimum velocity to apply the

situations in yvhich the crossing is traversed diabatically andppg with a given error for a particular crossing. As expected,

the perturbative expressid@.21) holds. the method of Ref[30] leads always to larger deviations

(i) Table I explains the reasons for the good behavior ofyith respect to the bielectronic result than the standard cal-
the IPM in thep<1 limit. For instance, in the diabatic rep- ¢ jation.

resentation, the IPM reproduces exactly the population of the  Next we extend our analysis to the more exact LZS
entrance channel in the way of the collision, thus indicatingnethod. In this respect, we first compare in Fig. 3 the IPM

that the agreement in Fig. 1 is not fortuitous. and bielectronic cross sections obtained in the LZ and LZS

(iii) There appear important differences between nonaqels, It can be observed that, except for large values of
equivalentimonoelectronigand equivalen{iPM and bielec- al B (>0.07) (see also Fig. R both approximations yield

tronic) probabilities of Fig. 1 for the whole range of values g;milar cross sections. It can be noted that the regiog

of g, with the exceptiong|=0 (but notq—0), q=0.5, and (97 corresponds to values of the transition probabiity

g—1. o >0.6 where the IPM and bielectronic probabilities agisee
_ (iv) The modified IPM of Ref[30] reproduces exactly the g 1) complementary information is provided by the ab-
bielectronic result in the first part of the collisigsee Table solute errorg (o®— o'PM)/o"PM] plotted in Fig. 4, obtained

I.)' However_,.i.t over(.estimates-the f"?a' single-electron transiby subtracting the corresponding cross sections plotted in
tion probabilities; this overestimate is due to the fact that thg-, 5
unphysical value opg of the standard IPM is added com- — “Aihqugh the previous results are very encouraging with
pletely to the smglg—electron transition probab|I.|ty. ,Hence'regards to the applicability of the IPM, the comparison in
we conclude that in the present model application, thggms of the Lz model suffers from a drawback, in that both
method of Ref[30] offers no clear improvement over the |pp\ and LZ approaches have a common limitation: from
usual IPM. Egs.(2.19 and(3.1) we see that they cannot provide transi-
tion probabilities larger than 0.5. Thus, in the numerical cal-
culation of Refs[32] it was concluded that the largest de-
Our first calculation refers to the comparison of cross secviations of the IPM with respect to thab initio results
tions using the LZ model. Since the parameteos q are not  appear when thab initio transition probabilityps reaches

IV. CALCULATIONS
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(a) (b)

FIG. 3. Total cross sections for
single-electron transition calcu-
lated with: (a) bielectronic transi-
tion probabilities;(b) IPM transi-
| 1 1 ! tion probabilities. Upper panels
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values larger than 0.5, which cannot be obtained in the IPMhe LZS results show noticeable differences from the LZ
calculation. Therefore, a comparison using the more exaaines. An additional illustration of this point is provided by
LZS model is needed. In practice, this involves a solution ofthe transition probabilities plotted in Fig. 5. It can be noted
the system of differential equatiok.14) for given values of  that the IPM transition probabilitig€q. (4.1)] reproduce the

a and B to obtain PLZS(a,B,H) of Eq. (2.16. Use of the shape of the bielectronic transition probabilities wlféj‘\ is

two-electron interpretatiofsee Eqs(3.1)] leads to smaller than 0.5, as in the case of Figc)5>which indicates
that the agreement in Fig(ld) is not fortuitous; however, the
PISPM(CY,B,E) = ZPLZS(CY,B,H)[].— PLZS(a,,B,H)]. fact that Eq(4.1) cannot yield transition probabilities greater

(4.1  than 0.5, leads to the distortion of the IPM curves with re-
spect to the bielectronic ones in Figgaband 3b).
For the same crossing, the bielectronic result is obtained as
[see Eq.(3.3)]
V. CONCLUSIONS

bi = pLzs "
PJ(a,B,b)=P3(2a,B,b). (4.2) In this work, we have analyzed the usefulness of the

. e PM bi i widely applied IPM to calculate single-electron capture cross
The transition probabilitie®s™ and P have been inte-  gactions, We have considered a simple case that can be
grated over the scaled impact parametare Eq.(2.17b)_] 10 treated analytically, namely curve-crossing transitions in the
obtain the corresponding total cross sectiofis' anda?'. In | andau-Zener approximation, which furnishes the main
the illustration of Fig. 3, a noticeable decreaser§f can be  mechanism of many dynamical problems. We have restricted
observed with respect ' in the region in which the cross our analysis to a situation of low electronic correlation,
section is maximum. This is clearer from the absolute errorsvhere the electronic Hamiltonian can be approximated as a
plotted in Fig. 4. The largest differences between the IPMsum of monolectronic Hamiltonians. This implies that the
and bielectronic cross sections appear in the region of valuesurve crossing between the two-electron energies arises from
of @ and B where the cross section is maximum and wherea crossing between the one-electron potential-energy curves
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velocity: (a) vo=R3a/20, (b) 1.5v0, (¢) 2.0v,.)
20.00 -
a , " IPM population of the entrance channel is exact for the first
15,00 o i half of the collision. It further yields transition probabilities
‘ / and cross sections for the whole collision in good agreement
; with the “exact” ones for many physical situations, and in
10.009 e > i particular at high impact velocities, where the diabatic rep-
S A e resentation is appropriate. This explains the success of the
5.00 /Q. ’ / - IPM at high energies.
(> = The limitations of the IPM found in previous low-energy
050 040 060 08B0 100 1% 140 calculationg 32] cannot be studied with the LZ model when

the interference effects neglected in this model lead to tran-
sition probabilities greater than 0.5. To include these physical
FIG. 4. Absolute errors ¢°—o'™). (a) LZ model; (b) LzS  Situations in our analysis, we have calculated numerically the
model. transition probabilities by employing the LZS model. In par-
ticular, given a particular crossing, the contour plots of Fig. 4
an be used to estimate the error introduced by the IPM in
e calculated cross section.

ol

at the same internuclear distance, and there is a simple rel
tionship between one- and two-electron Hamiltonian matrix
elementgsee Ref[27]). Using the LZ approximation for the
one- and two-electron cases, we have compared the popula-

tions of the two-electron states with those obtained in the This work has been partially supported by DGICYT
IPM. We have shown that, in the diabatic representation, th€roject Nos. BFM2000-0025 and FTN2000-0911.
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