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Use of the independent-particle model to treat curve-crossing transitions
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We discuss the usefulness of the independent-particle model to describe charge-transfer processes. We
consider, as a benchmark case, avoided crossing transitions in two-electron systems, described by means of the
Landau-Zener-Stueckelberg model. It is shown that the independent-particle model, with an equivalent-
electron interpretation of the one-electron transition probabilities, reproduces single-electron transition prob-
abilities for a wide range of physical situations. Significant deviations with respect to a two-electron calculation
are related to Stueckelberg oscillations of the transition probabilities.
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I. INTRODUCTION

While theoretical methods to describe collisions in on
electron systems are well established~see, e.g.,@1#!, there are
no specific methods for many-electron systems, whose
scription is usually based on the application of t
independent-particle approximation, in which the man
electron problem is reduced to several one-electron p
lems. Although the use of the independent-particle appro
mation is standard in atomic and molecular struct
calculations~see, e.g.,@2#!, where it is the basis of the widel
employed Hartree-Fock method, there is no equivalent
proach that can be systematically applied to dynamical pr
lems, as the time-dependent Hartree Fock method is diffi
to apply and not free from convergence problems~see@3#
and references therein!. On the other hand, the independe
particle approximation has been applied to ion-atom co
sions within different formalisms~see, e.g., Refs.@4,5# for
the application in close coupling atomic and molecular tre
ments; Refs.@6,7# for CTMC calculations; and@8# for CDW
calculations!. It has been also applied in collisions of atom
with clusters@9#, and, in connection with semiclassical mo
els @10#, to describe experimental results of single a
double capture from atomic and molecular targets@11#. It
should be noted, however, that the theoretical basis of
method is by no means obvious.

The simplest situation in which the approximation is a
plied involves systems with a clear distinction between
active electron and the remainder~core! electrons, such as in
proton-alkaline collisions@12# or collisions of closed-shel
multicharged ions–H collisions, e.g., C41-H ~see@13#!. The
treatment of these collisions is often carried out by empl
ing effective potentials to describe the interaction of the
tive electron with the atomic cores, and several model po
tials and pseudopotentials have been proposed@14#.
Furthermore, the use of effective potentials has been
tended to systems with two active electrons outside a clo
shell core@15#. A different extension of the method involve
the description by means of effective potentials of the H2

open-shell core~see@16# for H1-H2 and @17# for He21-H2

collisions!. The use of time-dependent model potentials h
also been suggested~see Refs.@18,3#!.
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In the independent-particle approximation, the Ham
tonian of the system is expressed as the sum of one-elec
effective Hamiltonians. The corresponding one-electron tr
sition probabilities are then evaluated in a relatively sim
way, and the final probabilities are obtained by using
many-electron interpretation. The most common interpre
tion @19# assumes that all electrons are equivalent. In t
paper and following this usage we shall call the independe
particle model~IPM! the independent-particle approximatio
with the equivalent electron interpretation.

Alternative treatments in which core and active electro
are not equivalent have also been proposed@20,21#, and this
idea has been used in models and calculations of do
capture@22,23# and double ionization@24# of He by ion im-
pact. Equivalent and nonequivalent models thus coexist,
in many cases it is not obvious which, if any, is the mo
appropriate one to use@1#. This is mainly because few cal
culations@25–27# have compared equivalent and nonequiv
lent treatments. There are also situations in which the met
is implicitly used: As will be explained in the following sec
tion, there is a limit of the nonequivalent treatment in whi
only the active electron undergoes transitions, so that it d
not appear to require the use of any many-electron inter
tation ~see, e.g., Refs.@12,13,28,29#!. Another alternative to
the usual IPM has been recently proposed@30,31,3# for H1

collisions with many-electron targets, which assumes that
transfer of one electron blocks further electron trans
which in practice means that the single capture cross sec
is increased by adding to it the corresponding ones
N-electron capture.

In recent works@27,32#, we have employed model poten
tial techniques to evaluate charge-transfer cross section
ion-H2 collisions by using a model potential to describe t
interaction of the active electron with the H2

1 core. These
works have pointed out that the two-electron interpretat
of the one-electron probabilities is indispensable, and p
tially explained the success of the IPM at high velocitie
while at low velocities, single-electron capture cross secti
showed an important disagreement withab initio results that
was explained as a consequence of the incorrect trans
probabilities for double electron capture in the IPM~see@1#
and references therein,@4,33,7#, and@34#!.
©2001 The American Physical Society14-1
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The analyses of Refs.@27,32# were based on a compariso
of Hamiltonian matrix elements, but the consequences in
dynamics of the differences in Hamiltonian matrices was
considered. The aim of the present paper is to carry
model calculations that yield insight into the properties of
independent electron approaches. For this purpose, we
consider a two-electron system in which transitions lead
to single-electron transfer take place at an avoided cros
of two potential-energy curves, and the Landau-Zen
Stueckelberg~LZS! model@35–37# will be used for the cor-
responding energies and couplings.

The paper is organized as follows. In Sec. II, we w
introduce the basic equations for our comparison betw
‘‘exact’’ and IPM model calculations; in it we will apply the
conclusions of Refs.@27# and @32# to relate one- and two
electron Hamiltonian matrix elements. In Sec. III, we ca
out the comparisons using the simple Landau-Zener mo
and in Section IV we do so with the LZS model. Conclusio
are drawn in Sec. V. Atomic units are used unless otherw
stated.

II. THEORY

A. Two-electron and single-electron approaches

We employ a semiclassical eikonal description of the c
lision, where the nuclei follow rectilinear nuclear traject
ries, with impact parameterb and constant velocityv, R
5b1vt, and the electronic motion is described by means
the semiclassical eikonal equation. For a two-electron s
tem, it has the form

S H2 i
]

]t DC~r1 ,r2 ,t !50, ~2.1!

whereH is the nonrelativistic, fixed nuclei, electronic Ham
tonian. In the single-electron approaches, it is assumed
one~active! electron moves in the field created by the nuc
and the other the~core! electron. The interaction of the activ
electron with the core is represented by means of the ef
tive potential included in the one-electron Hamiltonian,h. In
this way, the electron-core interaction is taken into accoun
an average way by the effective potential, which is usually
the central type and static~see Ref.@14#!, although in prin-
ciple it could be taken to be time-dependent. The tw
electron HamiltonianH is then approximated by

H.h~r1!1h~r2!. ~2.2!

In the following, we shall assume that this approximation
sufficiently accurate for the present purposes. For insta
for the case of collisions between multicharged ions and2
molecules, the accuracy of approximation~2.2! was tested in
Refs.@27,32# by explicit comparison of the Hamiltonian ma
trix elements of this equation with the correspondingab ini-
tio ones.

In the equivalent electron treatment~called IPM in the
present work!, one usesh521/2“21V with V the effective
potential. When the initial state is a singlet, the two-elect
wave functionC is then written
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C~r1 ,r2 ,t !5uucc̄uu, ~2.3!

wherec is a solution of the one-electron eikonal equation

S h2 i
]

]t Dc50. ~2.4!

As mentioned in the Introduction, we consider a two-st
problem. We expand the solutions of Eq.~2.4! in terms of
two diabatic orbitals$x1 ,x2%, obtained by carrying out a
unitary transformation on the basis of adiabatic molecu
orbitals $w1 ,w2% so that the radial components of the co
plings ^x iDuh2 i (]/]t)ux jD& vanish, whereD is a common
translation factor~see Refs.@27,32#!. The two-electron basis
used to expand the solution of Eq.~2.1! is then chosen as
antisymmetrized products of the diabatic spin orbit
x1,2 x̄1,2. These functions are of the form

f i j
e 5

Ni j

A2
@ uux ix j̄ uu1uux jx ī uu#, ~2.5!

where Ni j 51 for iÞ j and Ni j 51/A2 for i 5 j . Using Eq.
~2.2!, it is easily shown that one- and two-electron ener
differences and~Hamiltonian! couplings are related through

^f i j
e uHuf ik

e &.A2^x j uhuxk&,
~2.6!

^f ik
e uHuf ik

e &2^f i j
e uHeuf i j

e &.^xkuhuxk&2^x j uhux j&.

For comparison purposes, we also consider briefly
nonequivalent-electron treatment. We write in Eq.~2.2! h
51/2(ha1hc), where different one-electron Hamiltonian
hc, ha are used, respectively, for the core and active el
trons. The two-electron wave function is now written as

C~r 1 ,r 2!5
1

A2
@ uuccc̄auu1uucac̄cuu#, ~2.7!

wherecc, ca are solutions of the equations

S hc2 i
]

]t Dcc50, ~2.8!

S ha2 i
]

]t Dca50. ~2.9!

In this approximation, the two-electron wave functionsf j
ne

are written as antisymmetrized products of a core orbitalxc

and a diabatic orbital,x1,2
a , for the active electron. The en

suing relationship between two- and single-electron
proaches is cumbersome, except in the case in which ac
and core orbitals are orthogonal, and the electron-elec
repulsion integrals between core and active electrons ca
neglected. Then, the two-electron matrix elements are id
tical to the one-electron matrix elements for the active el
tron:
4-2
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USE OF THE INDEPENDENT-PARTICLE MODEL TO . . . PHYSICAL REVIEW A64 032714
^f i
neuHuf j

ne&.^x i
auhaux j

a&,
~2.10!

^f i
neuHuf i

ne&2^f j
neuHuf j

ne&.^x i
auhaux i

a&2^x j
auhaux j

a&,

and, in this limit, the nonequivalent formalism reduces to
monoelectronic model of Eq.~2.9!. Examples of applications
can be found in ion -H2 collisions @16,17#.

B. Use of the Landau-Zener-Stueckelberg and Landau-Zener
models for the single-electron case

As mentioned in the Introduction, we shall study the v
lidity of the different approaches by assuming that the L
model is sufficiently exact in the solution of Eqs.~2.4! or
~2.9!. We assume that the molecular orbitalsx1,2 or x1,2

a have
energies that cross, and we use the linear model for
crossing. For example, taking the explicit case of the equ
lent electron model,

h222h115a~R2R0!,
~2.11!

h125c,

whereR0 is the crossing distance andc anda are constants
The solution of Eq.~2.4! is then expressed as

c~r ,t !5a1~ t !x11a2~ t !x2 . ~2.12!

In order to simplify the formalism, we introduce the param
eters

a5
R0

2c2

v2
,

~2.13!

b5
R0

2a

v
,

and we employ scaled distancesZ̄5Z/R0 , b̄5b/R0. Substi-
tution of c in Eq. ~2.4! and use of Eqs.~2.11!, and ~2.13!
lead to the system of differential equations:

i
da1

dZ̄
5Aaa22~b/2!@Ab̄21Z̄221#a1 ,

~2.14!

i
da2

dZ̄
5Aaa11~b/2!@Ab̄21Z̄221#a2 ,

where

Z̄5
vt

R0
5

AR22b2

R0
~2.15!

and^x i u]/]Z̄ux j&50. If the collisional system is initially de-
scribed by the orbitalx1, the transition probability tox2 is
given by

PLZS~a,b,b̄!5ua2~1`!u2 ~2.16!

and the total capture cross section, in units ofR0
2, is
03271
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0

`

b̄PLZS~a,b,b̄!db̄. ~2.17!

The simple Landau-Zener~LZ! model is obtained by intro-
ducing the additional approximation that transitions ta
place only atR5R0, and phase effects are neglected. T
transition probability atR5R0 is

p512q512expF2
2pa

bA12b̄2G . ~2.18!

For collisions withb.R0, the crossing is not traversed du
ing the trajectory and no transitions take place, while forb

,R0 the crossing is traversed twice, atZ̄656A12b̄. After
the crossing is traversed once, (Z̄2,Z̄,Z̄1), the popula-
tions of the diabatic statesx1 ,x2 are, respectively, 12p
5q and p512q. Alternatively, one can employ the adia
batic orbital representation,$w1 ,w2%, obtained by diagonal-
izing the Hamiltonian matrix~2.11!, with w15x1 ;w25x2 at
R..R0. Application of the LZ model leads to population
of p(512q) and 12p(5q) for w1 andw2 respectively, for
Z̄2,Z̄,Z̄1. For Z̄.Z̄1 , the crossing is traversed twic
and, neglecting interferences, the population of the funct
x2 ([w2) is

PLZS a

b
,b̄D52p~12p!52q~12q! ~2.19!

and the corresponding total cross section is only a func
of a/b:

sLZS a

b D52pE
0

1

b̄PLZS a

b
,b̄Ddb̄. ~2.20!

Finally, the perturbative limit (p!1) of Eq. ~2.20! is

sp
LZS a

b D58p2
a

b
. ~2.21!

III. PERFORMANCE OF THE IPM USING LZ
PROBABILITIES

In the LZ approximation, the single-electron transitio
probabilities are given by Eqs.~2.18! and ~2.19! ~see also
Table I!. Use of the standard IPM leads, for one passa
through the crossing region, and in the diabatic represe
tion, to

pe5~12p!25q2,

ps52p~12p!52q~12q!, ~3.1!

pd5p25~12q!2,

wherepe is the probability of the two electrons to remain
the initial orbital x1 , ps is the probability to transfer one
electron tox2, and pd is the probability to transfer both
electrons tox2. Similar relations for the adiabatic represe
4-3
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TABLE I. Populations of elastic and single-electron transfer channels after one and two passages through the crossing region as
of the LZ one-electron transition probabilities@see Eq.~2.18!# q ~first line! andp ~second line!.

Elastic Monoelectronic IPM Hamreet al. @30# Bielectronic

One crossing
~diabatic! q q2 q2 q2

12p (12p)2 (12p)2 (12p)2

One crossing
~adiabatic! 12q (12q)2 122q1q2 12q2

p p2 p2 2p2p2

Two
crossings 122q12q2 124q18q228q314q4 124q18q228q314q4 122q212q4

122p12p2 124p18p228p314p4 124p18p228p314p4 124p110p228p312p4

Single-electron
transfer Monoelectronic IPM Hamreet al. @30# Bielectronic

One crossing
~diabatic! 12q 2q(12q) 12q2 12q2

p 2p(12p) 2p2p2 2p2p2

One crossing~adiabatic! q 2q(12q) 2q2q2 q2

12p 2p(12p) 12p2 (12p)2

Two
crossings 2q(12q) 4q212q2116q328q4 4q28q218q324q4 2q222q4

2p(12p) 4p212p2116p328p4 4p28p218p324p4 4p210p218p322p4
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tation are given in Table I, as well as the corresponding tr
sition probabilities when the crossing is traversed twice.

In order to analyze the behavior of the IPM probabilitie
we consider the ‘‘exact’’ two-electron equation~2.1!. We
construct a two-electron basis@see Eq.~2.5!#,

fe5uux1x 1̄uu,
~3.2!

fs5
1

A2
@ uux1x 2̄uu1uux2x 1̄uu#

consisting of the collision entrance channelfe and the
single-electron capture channelfs . Equation~2.6! reads

Hes.A2h12,
~3.3!

Hss2Hee.h222h11.

Employing Eqs.~3.3!, one finds that, when the energy curv
of x1 andx2 cross atR5R0, the energy curves of the two
electron statesfe and fs also cross at the same point.
double electron capture statefd can also be defined as

fd5uux2x 2̄uu ~3.4!

and, using Eq.~2.6!, one obtains

Hdd2Hss.h222h11 ~3.5!

so that the energy of the double electron transition statefd
also crosses those of statesfe and fs at R5R0. The pres-
ence of this unphysical triple crossing reflects the intrin
03271
-

,

c

inadequacy of the IPM for double electron transitions at le
in the low-velocity domain where a molecular approach
applicable, hence we shall excludefd from the two-electron
basis. This is meaningful for many systems for which tw
electron transitions are negligible; this is, for example,
case of collisions of H1 with atoms and molecules
@27,30,31,38#. For the ensuing two-stated basis, we can e
ploy the same analytical treatment of Eqs.~2.13!–~2.17! by
substitutingc by C, $x1 ,x2% by $fe ,fs%, and, from Eq.
~3.3!, a by 2a. In particular, this leads to the LZ population
of the diabatic states$fe ,fs%, by using Eqs.~2.18! and
~2.19!. These LZ populations~called bielectronic! are listed
in Table I together with the IPM ones@Eq. ~3.1!#. Diagonal-
ization of the Hamiltonian matrix~3.3! in the fe ,fs basis
yields two adiabatic states, whose LZ populations during
collision are also listed in Table I. This table allows an e
plicit comparison of the IPM and two-electron probabilitie
carried out in the frame of the LZ treatment. A similar com
parison using LZS cannot be carried out analytically and
considered in the following section.

We have included in Table I the populations given by t
method of Ref.@30#. We see that the expression forpe using
this method is identical to the corresponding one in the st
dard IPM, butps is given by the sum of the IPM values fo
ps and pd of Eq. ~3.1!. Furthermore, we have also include
in Table I the one-electron transition probabilities~labeled
monoelectronic!, which, as shown in Sec. II, can be taken
corresponding to the nonequivalent independent elec
treatment.

An additional illustration is given in Fig. 1, where w
have plotted the probabilities for single-electron transiti
4-4



f

ec

he

c

d
n

o
-
th

in

on

s

s
th
-
e

th
e

ec

ns
ng-

ve
s a

he
d,
s
cal-

ZS
M
ZS

s of

b-

in

ith
in
th
m
i-
al-
e-

th
ilit
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after the collision as functions of the parameterq. Of course
use of other parameters rather thanq, such asa/b of Eq.
~2.13!, or q2 would yield a different qualitative illustration o
the results of Table I, for instance use ofq results symmetri-
cal monoelectronic probabilities and asymmetrical biel
tronic results, whereas the opposite holds forq2. From this
figure and Table I, one can conclude the following in t
frame of the LZ approximation.

~i! The IPM provides a good approximation to the biele
tronic values in a wide range of physical situations withq
.0.6, the differences being smaller than 10%. Whenq→1,
the IPM and bielectronic results converge and correspon
situations in which the crossing is traversed diabatically a
the perturbative expression~2.21! holds.

~ii ! Table I explains the reasons for the good behavior
the IPM in thep!1 limit. For instance, in the diabatic rep
resentation, the IPM reproduces exactly the population of
entrance channel in the way of the collision, thus indicat
that the agreement in Fig. 1 is not fortuitous.

~iii ! There appear important differences between n
equivalent~monoelectronic! and equivalent~IPM and bielec-
tronic! probabilities of Fig. 1 for the whole range of value
of q, with the exceptionsq50 ~but notq→0), q50.5, and
q→1.

~iv! The modified IPM of Ref.@30# reproduces exactly the
bielectronic result in the first part of the collision~see Table
I!. However, it overestimates the final single-electron tran
tion probabilities; this overestimate is due to the fact that
unphysical value ofpd of the standard IPM is added com
pletely to the single-electron transition probability. Henc
we conclude that in the present model application,
method of Ref.@30# offers no clear improvement over th
usual IPM.

IV. CALCULATIONS

Our first calculation refers to the comparison of cross s
tions using the LZ model. Since the parametersp or q are not

FIG. 1. Transition probabilities after two passages through
crossing point as functions of the one-electron transition probab
q of Eq. ~2.18!: M, monoelectronic;B, bielectronic; IPM, standard
IPM; H, modified IPM of Ref.@30#.
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directly related to the Hamiltonian matrix elements@see, e.g.,
Eqs.~2.18! and~2.19!#, we have evaluated the cross sectio
for single-electron transitions, in terms of the more meani
ful scaled quantitiesa andb by integrating bielectronic and
IPM transition probabilities of Table I. Furthermore, we ha
plotted in Fig. 2 the relative error of this cross section a
function of the parametera/b5c2/2pav @see Eq.~2.20!#.
This allows us to select the minimum velocity to apply t
IPM with a given error for a particular crossing. As expecte
the method of Ref.@30# leads always to larger deviation
with respect to the bielectronic result than the standard
culation.

Next, we extend our analysis to the more exact L
method. In this respect, we first compare in Fig. 3 the IP
and bielectronic cross sections obtained in the LZ and L
models. It can be observed that, except for large value
a/b (.0.07) ~see also Fig. 2!, both approximations yield
similar cross sections. It can be noted that the regiona/b
,0.07 corresponds to values of the transition probabilityq
.0.6 where the IPM and bielectronic probabilities agree~see
Fig. 1!. Complementary information is provided by the a
solute errors@(sbi2s IPM)/s IPM# plotted in Fig. 4, obtained
by subtracting the corresponding cross sections plotted
Fig. 3.

Although the previous results are very encouraging w
regards to the applicability of the IPM, the comparison
terms of the LZ model suffers from a drawback, in that bo
IPM and LZ approaches have a common limitation: fro
Eqs.~2.19! and~3.1! we see that they cannot provide trans
tion probabilities larger than 0.5. Thus, in the numerical c
culation of Refs.@32# it was concluded that the largest d
viations of the IPM with respect to theab initio results
appear when theab initio transition probabilityps reaches

e
y

FIG. 2. Relative error@(s2sbi)/sbi# in the LZ approximation,
with s calculated using the standard IPM~IPM! and the modified
method of Ref.@30# (H).
4-5
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FIG. 3. Total cross sections fo
single-electron transition calcu
lated with: ~a! bielectronic transi-
tion probabilities;~b! IPM transi-
tion probabilities. Upper panels
correspond to LZ and lower pan
els to LZS approaches.
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values larger than 0.5, which cannot be obtained in the I
calculation. Therefore, a comparison using the more ex
LZS model is needed. In practice, this involves a solution
the system of differential equations~2.14! for given values of
a and b to obtain PLZS(a,b,b̄) of Eq. ~2.16!. Use of the
two-electron interpretation@see Eqs.~3.1!# leads to

Ps
IPM~a,b,b̄!52PLZS~a,b,b̄!@12PLZS~a,b,b̄!#.

~4.1!

For the same crossing, the bielectronic result is obtaine
@see Eq.~3.3!#

Ps
bi~a,b,b̄!5PLZS~2a,b,b̄!. ~4.2!

The transition probabilitiesPs
IPM and Ps

bi have been inte-
grated over the scaled impact parameter@see Eq.~2.17!# to
obtain the corresponding total cross sectionsss

IPM andss
bi . In

the illustration of Fig. 3, a noticeable decrease ofss
IPM can be

observed with respect toss
bi in the region in which the cros

section is maximum. This is clearer from the absolute err
plotted in Fig. 4. The largest differences between the IP
and bielectronic cross sections appear in the region of va
of a andb where the cross section is maximum and wh
03271
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the LZS results show noticeable differences from the
ones. An additional illustration of this point is provided b
the transition probabilities plotted in Fig. 5. It can be not
that the IPM transition probabilities@Eq. ~4.1!# reproduce the
shape of the bielectronic transition probabilities whenPs

bi is
smaller than 0.5, as in the case of Fig. 5~c!, which indicates
that the agreement in Fig. 4~b! is not fortuitous; however, the
fact that Eq.~4.1! cannot yield transition probabilities greate
than 0.5, leads to the distortion of the IPM curves with
spect to the bielectronic ones in Figs. 5~a! and 5~b!.

V. CONCLUSIONS

In this work, we have analyzed the usefulness of
widely applied IPM to calculate single-electron capture cro
sections. We have considered a simple case that can
treated analytically, namely curve-crossing transitions in
Landau-Zener approximation, which furnishes the m
mechanism of many dynamical problems. We have restric
our analysis to a situation of low electronic correlatio
where the electronic Hamiltonian can be approximated a
sum of monolectronic Hamiltonians. This implies that t
curve crossing between the two-electron energies arises
a crossing between the one-electron potential-energy cu
4-6
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at the same internuclear distance, and there is a simple
tionship between one- and two-electron Hamiltonian ma
elements~see Ref.@27#!. Using the LZ approximation for the
one- and two-electron cases, we have compared the pop
tions of the two-electron states with those obtained in
IPM. We have shown that, in the diabatic representation,

FIG. 4. Absolute errors (sbi2s IPM). ~a! LZ model; ~b! LZS
model.
s

.

03271
la-
x

la-
e
e

IPM population of the entrance channel is exact for the fi
half of the collision. It further yields transition probabilitie
and cross sections for the whole collision in good agreem
with the ‘‘exact’’ ones for many physical situations, and
particular at high impact velocities, where the diabatic re
resentation is appropriate. This explains the success of
IPM at high energies.

The limitations of the IPM found in previous low-energ
calculations@32# cannot be studied with the LZ model whe
the interference effects neglected in this model lead to tr
sition probabilities greater than 0.5. To include these phys
situations in our analysis, we have calculated numerically
transition probabilities by employing the LZS model. In pa
ticular, given a particular crossing, the contour plots of Fig
can be used to estimate the error introduced by the IPM
the calculated cross section.
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FIG. 5. Products of the scaled impact parameterb̄ and the tran-

sition probabilities@see Eqs.~4.1! and~4.2!# Ps
bi(a,b,b̄) ~full line!

and Ps
IPM(a,b,b̄) ~dashed line!, as functions ofb̄. ~a! a51.4, b

520; ~b! a50.62, b513.3; ~c! a50.35, b510. ~These values of
a andb correspond to constant values ofa, c, R0 , and increasing
velocity: ~a! v05R0

2a/20, ~b! 1.5 v0 , ~c! 2.0 v0 .)
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Mó and A. Riera, J. Phys. B23, 2797 ~1990!; L.F. Errea, B.
Herrero, L. Méndez, O. Mo´, and A. Riera,ibid. 24, 4049
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