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Complex-correlation Kohn T-matrix method of calculating total and elastic cross sections:
Electron-hydrogen elastic scattering
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~Received 13 April 2001; published 16 August 2001!

We report on a study of electron-hydrogen scattering using a method@Bhatia, Schneider, and Temkin, Phys.
Rev. Lett.70, 1936~1993!# that allows for theab initio calculation of total and elastic cross sections at higher
energies. In its general form the method uses complex-‘‘radial’’ correlation functions, in a~Kohn! T-matrix
formalism. The complex-correlation KohnT-matrix method is reviewed in the context of electron-hydrogen
scattering, including the derivation of the equation for the~complex! scattering function, and the extraction of
the scattering information from the latter. The calculation reported here is restricted toS waves in the elastic
region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are
calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds;
they are in general agreement with those of Schwartz@Phys. Rev.124, 1468 ~1961!#, but they are more
accurate and outside his error bounds at a couple of energies.

DOI: 10.1103/PhysRevA.64.032709 PACS number~s!: 34.80.Bm
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I. INTRODUCTION

In a previous paper@1#, we developed a method for ca
culating elastic and total cross sections for electron-a
scattering. Called ‘‘complex-correlation KohnT-matrix,’’
and abbreviated~CCKT! the method is intended for nonela
tic scattering in low- and medium-energy range, by which
mean the energy domain where all the inelastic channels
open plus the continuum of ionization channels~up to a total
available energyE, which is, say, less than five times th
continuum threshold!. Clearly, no method can specify a
such open channels individually, and usual approximati
such as the Born and Eikonal methods@2# are only reliable at
high energies. Because our method is intended for the
continuum, it is a partial-wave method where the parti
wave expansion can still be expected to converge reason
effectively.

The original formulation@1# was applied to an approxi
mation of electron-hydrogen (e-H) scattering called the
spherically symmetric model@3#. The S-wave part of that
model reduces to the Temkin-Poet~TP! model @4,5#, and it
was only for the latter that the actual calculation was carr
out. ~The TP model was later generalized in a different a
more incisive way in what was called the ‘‘generalized e
change approximation’’@6#!.

In this paper we deal with the real~i.e., physical! e-H
problem. The method is reviewed in Sec. II. Specifically
more detailed derivation of the~complex! optical potential
and scattering equations is given. As opposed to Ref.@1#, the
emphasis here is on the numerical solution of the scatte
equation by decomposing it into its coupled real and ima
nary parts and from the solution extracting theT matrix.

An actual calculation in its full generality, however, is st
a very extensive undertaking. We shall therefore confine o
selves, in this initial study, to elasticS-wave scattering. Here
our aim is to check and increase the accuracy of the cla
calculation of Schwartz@7#. Results are presented in Sec. I
Suffice it here to say that our results are rigorous low
1050-2947/2001/64~3!/032709~5!/$20.00 64 0327
m

e
re

s

w
-
bly

d
d
-

g
i-

r-

ic

r

bounds on the phase shifts. Thus where they exc
Schwartz’ results, which they do at two energies, they
necessarily more accurate. In general, our results are w
the stated uncertainty of his remarkable calculation~consid-
ering when it was done!. Here, given the convergence of ou
results, we would only claim greater accuracy.

II. THE COMPLEX-CORRELATION KOHN T-MATRIX
METHOD

A. General

Confined to thee-H partial wave~denoted byL) problem,
the total spatial function is written:

CL
(6)~r1 ,r2!5

uL
(6)~r 1!

r 1
YL0~ r̂1!f10~r 2!Y00~ r̂2!6~1↔2!

1FL
(6)~r1 ,r2!. ~1!

The superscript (6) above refers to singlet~upper sign! or
triplet ~lower sign! scattering, respectively.~This superscript
will be dropped hereinafter, except where it is necessa!
Beyond the terms containinguL explicitly ~those are the
terms giving rise to the exchange approximation!, the func-
tion FL is the correlation function, which is our concer
here. For arbitraryL this function is most efficiently written
in terms of symmetric Euler angles@8#,

FL5(
k

@ f L
k,1~r 1 ,r 2 ,r 12!D L

k,1~u,f,c!

1 f L
k,21~r 2 ,r 1 ,r 12!D L

k,21~u,f,c!#. ~2!

The D k,e functions (e511,21) are exchange-adapte
combinations of Wigner functions.~TheD functions, in gen-
eral have been calledrotational harmonics@9#.! The f ’s
above are generalized ‘‘radial’’ functions, which depend
the three residual coordinates that are required~beyond the
Euler angles! to define the two vectorsr1 and r2 ~further
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technical details of the symmetry and other properties of
symmetric Euler angle description are given in@8#!. What
distinguishes this CCKT approach is the fact that the ‘‘
dial’’ functions are taken to be complex, that is, differe
from ordinary variational methods, wherein the radial fun
tions are taken to be real. In the latter case, when one fo
the variational functional to be varied@cf. Eq. ~5! below#,
one uses the functionCL* ) on the left. That is so because th
f functions would be real, so that only theD functions in Eq.
~2! would be complex conjugated. When the radial functio
are complex, however, then—in order to have a variatio
principle for theT matrix—only theD but not the radial
functions are to be complex conjugated in the left-hand fu
tion. This is indicated by using the tilde rather than star
that function, which is used in the functionalI L of the varia-
tional principle~below!. Explicitly,

C̃L5
ul

~6 !~r 1!

r 1
YL0* ~ r̂1!f10~r 2!Y00* ~ r̂2!6~1↔2!1F̃L,

~3!

where

F̃L5(
k

$ f L
k,1~r 1 ,r 2 ,r 12!@D L

k,1~u,f,c!#*

1 f L
k,21~r 2 ,r 1 ,r 12!@D L

k,21~u,f,c!#* % ~4!

The Kohn variational principle@10# for TL reads

d@ I L2~21!LTL#50, ~5!

whereI L is the ~Kohn! functional

I L5E @C̃L~H2E!CL#dr1dr2 . ~6!

Carrying out the variation leads to scattering equation
uL

(6)(r 1) ~Rydberg units throughout! and lettingr 15r ,

F2
d2

dr2
2

L~L11!

r 2
1Vd6Vex1V op

(6)2k2GuL
(6)50, ~7!

whereVd and Vex are the well-known direct and exchang
potentials of the ‘‘exchange approximation’’@11#. These po-
tentials~the latter being nonlocal! are real, however the~re-
maining! optical potential acting onuL(r ) is complex,

VopuL5r K YL0* PHQ
1

E2QHQ
QHPCLL . ~8!

Thus,uL(r ) is nontrivially complex and leads to anonuni-
tary TL matrix, which is derivable from the asymptotic form
of uL

lim
r→`

uL~r !5
i L sin~kr2pL/2!

k
1TLeikr . ~9!
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In defining the optical potential we have used the Feshb
approach @12#, involving projection operatorsP and Q,
which for the hydrogenic~i.e., one-electron! target can be
written expicitly @13#

P5P11P22P1P2 , ~10!

Q512P, ~11!

where the spatial projectors are

Pi5e2r iY00~ r̂ i !&^e
2r iY00~ r̂ i !. ~12!

Note that P1 and P2 commute and are each idempoten
hence the completeP and Q operators are idempotent (P2

5P; Q25Q) and orthogonal (PQ50).
To complete this review of the CCKT method, the optic

potental is expanded in terms of the eigenspectrum of
QHQ problem:

dF ^F̃LQHQFL&

^F̃LQFL&
G50. ~13!

This leads to complex radial eigenfunctionsFL
(s) and com-

plex eigenvaluesEs . Insertng a complete set of these fun
tions~understood to be approximated by a discrete set aris
from Eq. ~13! using an ansatz with a finite number of vari
tional parameters! allows the optical potential to be ex
panded:

VopuL~r1!

5r 1(
s

Nv K YL0* ~ r̂1!f10~r2!
2

r 12
QFL

(s)L K QF̃L
(s) 2

r 12
PCLL

E2Es
.

~14!

To repeat the main point of the CCKT method: because
radial functionsf L

k,e(r 1 ,r 2 ,r 12) in Eq. ~2! are complex, the
resultingTL matrix ~which in this method is actually a num
ber! will be complex and the associatedSL matrix will be
nonunitary—SL5122ikTL . This means that the elasti
cross section, calculated from

sL~elastic!54p~2L11!uTLu2, ~15!

will be different from the total cross section, calculated fro

sL~ total!5
4p

k
~2L11!Im~TL!. ~16!

The effect of a nonunitarySL , is of course well known from
the literature~cf., for example, Ref.@14#!. What is new about
the CCKT is that it provides anab initio method for calcu-
lating the associatedTL , rather than parametrizing it, as wa
done, for example, in the ‘‘clouded crystal ball’’ model o
neutron-nucleus scattering and reactions@15#.
9-2
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B. Some details of the CCKT method

The Kohn variational principle is generally applied
such a way, as in Ref.@1#, that the functionuL(r ) of Eq. ~7!
is parametrized by an expansion in terms of known fu
tions, and the functional in Eq.~6! is analytically evaluated
it is a bilinear expression in terms of the~linear! expansion
coefficients. The~Kohn! principle then reduces to differen
tiation with respect to these parameters, which in turn le
to a set of linear equations, the last being an inhomogene
equation from the differentiation with respect toTL . The
solution of the set of equations then provides values for
the ~linear! constants plus the value ofTL . The latter can be
improved by subtracting the value of the functional itse
which in general will not be zero when the calculation
performed in this way. In that case an improvedTL can be
obtained by subtraction,

T L
improved5TL2I L . ~17!

When, however, the calculation is carried out~as it is here!
by solving directly foruL(r ), then this is equivalent to mak
ing I L50. Thus theTL that emerges is automatically th
improved~i.e., the second order! result. What we shall now
do is to outline briefly how the calculation is performe
when the potentials and hence the solutions are comp
Specifically, the radial equation can be written

@L L
(6)1V op

(6)#uL
(6)~r !50, ~18!

where

L L
(6)52

d2

dr2
1

L~L11!

r 2
1Vd6Vex2k2. ~19!

The Vd is the ~local! Hartree potential @Vd(r )
522 exp(22r)(111/r )# andVex is the well-known~nonlo-
cal! static exchange potential@11#. The remaining~nonlocal!
potential is what is gererally called the optical potential, E
~5!.

We now give a few details of how one solves the rad
equation~18! in the general case. Dropping subscripts~su-
perscripts!, we write the solution of Eq.~4!

u~r !5uR~r !1 iuI~r ! ~20!

whereuR(r ) anduI(r ) are real functions which, substitute
in Eq. ~18!, lead to a coupled set of~real! differential equa-
tions:

~L1V op
(R)!uR5V op

(I )uI , ~21!

~L1V op
(R)!uI52V op

(I )uR , ~22!

V op
(R) andV op

(I ) above are the real and imaginary parts of t
optical potential, respectively.~Both are real, nonlocal poten
tials.! The coupled Eqs.~21! and~22! have two sets of solu
tions ~i.e., both regular at the origin!, labeleduR

( i )(r ), uI
( i )(r )

where (i 51,2). From these two solutions one determin
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two real constantsC1 and C2 such that the real and imag
nary parts of the asymptotic form~9! is satisfied; the equa
tions for L50 reduce to

lim
r→`

@C1uR
(1)1C2uR

(2)#5
sinkr

k
1TR coskr2TI sinkr,

~23!

lim
r→`

@C1uI
(1)1C2uI

(2)#5TI coskr1TR sinkr. ~24!

The two linearly independent solutions will necessarily ha
the asymptotic form

lim
r→`

uR
( i )5AR

( i ) sin~kr1hR
( i )!, ~25!

lim
r→`

uI
( i )5AI

( i ) sin~kr1h I
( i )!, ~26!

in which one of the normalization constants, sayAR
( i ) , is

arbitrary. This is tantamount to lettingA( i )5AI
( i )/AR

( i ) , which
allows Eqs.~23! and ~24! to be rewritten as

C1 coshR
(1)1C2 coshR

(2)5
1

k
2TI , ~27!

C1 sinhR
(1)1C2 sinhR

(2)5TR , ~28!

C1A(1) cosh I
(1)1C2A(2) cosh I

(2)5TR , ~29!

C1A(1) sinh I
(1)1C2A(2) sinh I

(2)5TI . ~30!

Theh ’s andA’s are extracted from the solutions of Eqs.~21!
and ~22!; thus Eqs.~27!–~30! is a set of four equations fo
four real constants:C1 ,C2 and in particular the real and
imaginary parts ofT ~i.e., TR and TI). From the latter one
calculates the elastic and total cross sections, Eqs.~15! and
~16!.

TABLE I. Convergence@the phase shifts~in radians! have been
optimized with respect tog andd for eachN(v)# of S-wave phase
shift as a function ofN(v) for k50.8.

1S 3S
N(v) g5d h (1) N(v) g d h (2)

EAa 0.65127 EAa 1.61729
3~1! 1.23 0.79028
7~2! 0.68 0.87536 10~2! 0.65 0.55 1.63845

13~3! 0.68 0.87684 20~3! 0.84 0.70 1.64205
22~4! 0.69 0.88362 35~4! 0.85 0.50 1.64294
34~5! 0.61 0.88584 56~5! 0.85 0.50 1.64344
50~6! 0.54 0.88616 84~6! 0.85 0.50 1.64379
70~7! 0.66 0.88687
95~8! 0.72 0.88718

aEA are the well-known exchange approximation phase shifts@11#;
it corresponds to no correlation terms@N(v)50→Vop50 in Eq.
~7!#.
9-3
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III. CALCULATION

As stated in the Introduction we calculate here on
S-wave ~i.e., L50! elastic scattering, specifically, phas
shifts. This means, sinceDL5constant in Eq.~12!, that the
correlation functionFL is only a function of the ‘‘radial’’
coordinates. HereFL is taken of Hylleraas form

TABLE II. Phase shifts of1S for variousk for N595.

k g5d h hSchwartz

0.1 0.53 2.55358 2.553~1!
0.2 0.60 2.06678 2.0673~9!
0.3 0.72 1.69816 1.6964~5!
0.4 0.70 1.41540 1.4146~4!
0.5 0.70 1.20094 1.202~1!
0.6 0.70 1.04083 1.041~1!
0.7 0.71 0.93111 0.930~1!
0.8 0.72 0.88718 0.886~1!
-
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FL50
(6) 5e2gr 12dr 2(

lmn

Nv

Clmnr 1
l r 2

mr 12
n 6~1↔2!, ~31!

where the sum includes all triples such thatl 1m1n5v
and v50,1,2, . . . ,8. The total number of termsNv
depends on spin and whetherg5d or not. The values of
Nv as a function ofl ,m,n is given in the following simple
array:

TABLE III. Phase shifts of3S for variousk for N584.

k g d h hSchwartz

0.1 0.85 0.12 2.93853 2.9388~4!
0.2 0.84 0.39 2.71741 2.7171~5!
0.3 0.90 0.37 2.49975 2.4996~8!
0.4 0.91 0.38 2.29408 2.2938~4!
0.5 0.88 0.44 2.10454 2.1046~4!
0.6 0.77 0.52 1.93272 1.9329~8!
0.7 0.70 0.55 1.77950 1.7797~6!
0.8 0.86 0.50 1.64379 1.643~3!
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To summarize the calculation, theQHQ problem is solved
~for a giveng andd andNv). The result is a set of eigen
values Es (s51,2, . . .Nv) and associated eigenfunction
F (s). From them~the terms in! the optical potential, Eq.~14!
is constructed, and the integro-differential Eq.~7! is solved
noniteratively. Because all quantities are real, the solutio
unique ~up to an arbitrary normalization! with asymptotic
form

lim
r→`

u(6)~r !}sin~kr1h (6)! ~32!

From u(6)(r ) and its derivative the phase shifth is readily
extracted.

Examples demonstrating the convergence ofh for k
50.8 as a function ofNv are given in Table I. By virtue of
the fact thath ’s are rigorous lower bounds on the phase sh
@13#, the convergence then becomes a powerful indication
the accuracy of the result. Phase shifts as a function ofk are
given in Tables II and III. To repeat, they are rigorous low
bounds in all cases. They are compared to the result
Schwartz @7#. Our 1S phase shifts are seen to exce
Schwartz’~including his estimated error! at k50.3, 0.4. Oth-
erwise our results for both1S and 3S are within his esti-
mated uncertainty, which we find to be quite impressive c
sidering that his calculation was carried out over 40 ye
ago. Nevertheless we believe that our present calculatio
more accurate. The difficulty in making a secure extrapo
tion is due to the difficulty of estimating quantitatively th
effects of polarization and other long-range potentials at n
zero k. ~In principle, one can optimally, rigorously includ
polarization by use of a polarization pseudostate@16#; how-
ever, in practice those corrections are small, yet requir
is

t
of

r
of

-
s
is
-

n-

a

much more extensive calculation than is worthwhile here
our present purpose.! The convergence of the results sugge
that they are accurate to one or two units in the fourth pl
after the decimal point.~We have given five digits because
that accuracy they are rigorous lower bounds.!

Scattering lengths are not included in our calculation,
cause atk50 the Kohn variational principle, which applie
to Schwartz’ calculation, is well known to provide rigorou
~in this case upper! bounds@17#. It is worth recalling that one
of us @18# had earlier deduced that long-range polarizat
would have decisive quantitative effect on the scatter
length and had derived a formula

a5a~R!2aS 1

R
2

a

R2
1OS 1

R3D D ~33!

in which a(R) represents the value of scattering length
cluding only the region of configuration spacer<R, and the
remaining terms in Eq.~33! give the effect of the long-range
polarization (a5 polarizability of the hydrogen atom54.5).
Use of that formula led to the first correct estimate of the t
scattering length@18#. Thus when Schwartz applied his ca
culation atk50, he found it necessary to include the equiv
lent of long-range polarization terms, as predicted@18#, in
addition to the Hylleraas terms in order to get adequate c
vergence. For these reasons we believe his scattering len
are sufficiently secure and accurate as not to require fur
calculation. His results are:a(1S)55.96560.003, a(3S)
51.768660.0002.
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