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Electron-hydrogen elastic scattering
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We report on a study of electron-hydrogen scattering using a mé¢Btuatia, Schneider, and Temkin, Phys.
Rev. Lett.70, 1936(1993] that allows for theab initio calculation of total and elastic cross sections at higher
energies. In its general form the method uses complex-“radial” correlation functions{Kota) T-matrix
formalism. The complex-correlation KohRrmatrix method is reviewed in the context of electron-hydrogen
scattering, including the derivation of the equation for tbempleX scattering function, and the extraction of
the scattering information from the latter. The calculation reported here is restriciddwes in the elastic
region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are
calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds;
they are in general agreement with those of Schwhrtays. Rev.124, 1468 (1961)], but they are more
accurate and outside his error bounds at a couple of energies.
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[. INTRODUCTION bounds on the phase shifts. Thus where they exceed
Schwartz’ results, which they do at two energies, they are
In a previous papell], we developed a method for cal- necessarily more accurate. In general, our results are within
culating elastic and total cross sections for electron-atonthe stated uncertainty of his remarkable calculaticonsid-
scattering. Called “complex-correlation Kohfi-matrix,”  €ring when it was doneHere, given the convergence of our
and abbreviatedCCKT) the method is intended for nonelas- results, we would only claim greater accuracy.
tic scattering in low- and medium-energy range, by which we
mean the energy domain where all the inelastic channels arell. THE COMPLEX-CORRELATION KOHN  T-MATRIX
open plus the continuum of ionization channglp to a total METHOD
available energyE, which is, say, less than five times the
continuum threshold Clearly, no method can specify all ) .
such open channels individually, and usual approximations Confined to thee-H partial wave(denoted by.) problem,
such as the Born and Eikonal methd@are only reliable at the total spatial function is written:
high energies. Because our method is intended for the low ()
. o : : . ug’(ry)
continuum, it is a partial-wave method where the partial- \II(L*)(rl’rz):
wave expansion can still be expected to converge reasonably
effectively. _ _ _ + D) (rq,1p). (1
The original formulation[1] was applied to an approxi-
mation of electron-hydrogenefH) scattering called the The superscript £) above refers to singl€upper sign or
spherically symmetric mod€l3]. The Swave part of that triplet (lower sign scattering, respectivelyThis superscript
model reduces to the Temkin-Po@iP) model[4,5], and it  will be dropped hereinafter, except where it is necesgary.
was only for the latter that the actual calculation was carriedBeyond the terms containing, explicitly (those are the
out. (The TP model was later generalized in a different anderms giving rise to the exchange approximatjahe func-
more incisive way in what was called the “generalized ex-tion &, is the correlation function, which is our concern
change approximation['6]). here. For arbitrary this function is most efficiently written
In this paper we deal with the redi.e., physical e-H  in terms of symmetric Euler angl¢8],
problem. The method is reviewed in Sec. Il. Specifically, a
more detailed derivation of thecomplex optical potential

A. General

Yio(F1) 1d(r2) Yool F2) = (152)

— K, 1 Kx,1
and scattering equations is given. As opposed to Réfthe P = ; (L (r1. 12,112 D70, ¢,9)
emphasis here is on the numerical solution of the scattering
equation by decomposing it into its coupled real and imagi- +ff'_l(rz,rl,rlz)Df'_l(0,¢,¢)]. 2

nary parts and from the solution extracting thenatrix.

An actual calculation in its full generality, however, is still The D€ functions (=+1,—1) are exchange-adapted
a very extensive undertaking. We shall therefore confine oureombinations of Wigner function§The D functions, in gen-
selves, in this initial study, to elasti&wave scattering. Here eral have been calledbtational harmonics[9].) The f’s
our aim is to check and increase the accuracy of the class@bove are generalized “radial” functions, which depend on
calculation of Schwartg7]. Results are presented in Sec. lIl. the three residual coordinates that are requiteglond the
Suffice it here to say that our results are rigorous lowerEuler angles to define the two vectors, andr, (further
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technical details of the symmetry and other properties of thén defining the optical potential we have used the Feshbach
symmetric Euler angle description are given[8]). What  approach[12], involving projection operator® and Q,
distinguishes this CCKT approach is the fact that the “ra-which for the hydrogenidi.e., one-electrontarget can be
dial” functions are taken to be complex, that is, different written expicitly [13]

from ordinary variational methods, wherein the radial func-

tions are taken to be real. In the latter case, when one forms P=P;+P,—P,P,, (10
the variational functional to be variddf. Eq. (5) below],
one uses the functioW|) on the left. That is so because the Q=1-P, (11

f functions would be real, so that only tfigfunctions in Eq.
(2) would be complex conjugated. When the radial functionswhere the spatial projectors are
are complex, however, then—in order to have a variational
principle for the T matrix—only the D but not the radial pi=e*riyOO(Fi)><e*riyoo(Fi)_ (12)
functions are to be complex conjugated in the left-hand func-
tion. This is indicated by using the tilde rather than star forNote thatP; and P, commute and are each idempotent,
that function, which is used in the functiorial of the varia- hence the complet® and Q operators are idempotenpf
tional principle(below). Explicitly, =P; Q?=Q) and orthogonal PQ=0).

To complete this review of the CCKT method, the optical

() . . .
~ u(ry) . . ~ potental is expanded in terms of the eigenspectrum of the
‘I,L: r Y’LCO(rl)qle(rZ) SO(rZ)i(lHZ)J’_qu! QHQ pr0b|em:

() 5
o, QHQP
where 5 (LLQHQPY]_ (13)
(P QD)
D= {(FoUry, 1o, r [ DN, ¢, )] This leads to complex radial eigenfunctiosig® and com-
“ plex eigenvaluegs. Insertng a complete set of these func-
HEO TN ot [P0, )]} (4)  tions(understood to be approximated by a discrete set arising
from Eq.(13) using an ansatz with a finite number of varia-
The Kohn variational principl€10] for T, reads tional parametejsallows the optical potential to be ex-
panded:
Sl —(—D'T]=0, )
VopUr(ry)

wherel, is the (Kohn) functional

- 2 . -2
No <Y’to(r1)¢1o(r2)r—Q<I>(L)><Qc1>(L>r—pxpL>

= | [V S 12 12
IL_f [\I,L(H_E)‘PL]drldrz. (6) rq - E_SS .

Carrying out the variation leads to scattering equation for a4
u{*)(r4) (Rydberg units throughouind lettingr,=r, To repeat the main point of the CCKT method: because the
radial functionsf{““(r,,r,,r15) in Eq. (2) are complex, the
resultingT, matrix (which in this method is actually a num-
ben will be complex and the associat&l matrix will be
nonunitary—S; =1—2ikT, . This means that the elastic
cross section, calculated from

d>  L(L+1) . N
—ﬁ—r—2+vdivex+vgg)—k2 U(L_):O, (7)

whereVy and V., are the well-known direct and exchange
potentials of the “exchange approximatiofl1]. These po-
tentials(the latter being nonlocghre real, however thae-
maining optical potential acting om (r) is complex,

o (elastig=4m(2L+1)|T.|? (15)

will be different from the total cross section, calculated from

1
VopuL:r<Yt0PHQmQHP\I’L>- (8)

4
oL(totaI)=7(2L+1)Im(TL). (16)

Thus, u, (r) is nontrivially complex and leads to @onuni-

tary T, matrix, which is derivable from the asymptotic form The effect of a nonunitarg, , is of course well known from

the literature(cf., for example, Refl14]). What is new about

of u. the CCKT is that it provides aab initio method for calcu-
it sin(kr — 7L/2) ' lating the associate'ﬂ_L, rather than parametrizing it, as was
lim u,(r)= + T, 9) done, for example, in the “clouded crystal ball” model of
r—o k neutron-nucleus scattering and reactighs.
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B. Some details of the CCKT method two real constant€, and C, such that the real and imagi-
The Kohn variational principle is generally applied in Nary parts of the asymptotic forii®) is satisfied; the equa-

such a way, as in Ref1], that the functioru, (r) of Eq.(7)  tions forL=0 reduce to
is parametrized by an expansion in terms of known func-

tions, and the functional in E{6) is analytically evaluated, lim[C,uP+CuP = Sinkr +Trcoskr—T, sinkr,

it is a bilinear expression in terms of tliknearn expansion r—so0

coefficients. TheKohn) principle then reduces to differen- (23
tiation with respect to these parameters, which in turn leads

to a set of linear equations, the last being an inhomogeneous lim[C,uM+Cou{®]=T, coskr+ Tgsinkr.  (24)
equation from the differentiation with respect 19 . The r—e

solution of the set of equations then provides values for all , . . . .
the (linean constants plus the value & . The latter can be The two linearly independent solutions will necessarily have

improved by subtracting the value of the functional itself, "€ @symptotic form

which in general will not be zero when the calculation is ) Al) @ (i)
performed in this way. In that case an improved can be rlTluR A’ sin(kr+ ), 29
obtained by subtraction,

limu{=A® sin(kr+ "), (26)

T memued: TL_ I L. (17) e
When, however, the calculation is carried ¢as it is her¢ i \yhich one of the normalization constants, Ay | is
by solving directly foru, (r), then this is equivalent to mak- arbitrary. This is tantamount to |ettin,g(i):Al(i)/Ag) _which

ing I, =0. Thus theT_ that emerges is automatically the allows Eas.(23) and (24) to be rewritten as
improved(i.e., the second ordgresult. What we shall now ws Eqs.(23) (24) wr

do is to outline briefly how the calculation is performed 1
when the potentials and hence the solutions are complex. C,cosp)+CycospP==—T,, (27)

Specifically, the radial equation can be written K
£+ Ul =0, (18) Casiny)+Cosin i) =T, (28
where C:A®W cosy(M+ C,AP cosy(P=Tg, (29
d2 L(L+l) C]_A(l) sin 7]|(l)+ C2A(2) sin 7]|(2):T| . (30)
L= =+ Vgt Ve k2 (19)

dr? r? The »’s andA’s are extracted from the solutions of E¢21)
and (22); thus Eqs.(27)—(30) is a set of four equations for

The V4 is the (local) Hartree potential [V4(r) four real constantsC,;,C, and in particular the real and
=—2exp2r)(1+1/r)] andVe, is the well-known(nonlo-  imaginary parts ofT (i.e., Tg andT,). From the latter one
cal) static exchange potentifl1]. The remainingnonloca) calculates the elastic and total cross sections, Eds.and
potential is what is gererally called the optical potential, Eq.(16).
(5).

We now give a few details of how one solves the radial TABLE I|. Convergencdthe phase shiftéin radiang have been
equation(18) in the general case. Dropping subscrifgs-  optimized with respect tg and 6 for eachN(w) ] of Swave phase

perscript$, we write the solution of Eq4) shift as a function oN(w) for k=0.8.
u(r)=ug(r)+iu(r) (20) 's ’s
N(w) y=6 2 N v ) 7

whereug(r) andu,(r) are real functions which, substituted
in Eq. (18), lead to a coupled set dfeal) differential equa-
tions:

EA? 0.65127 EAR 1.61729

3(1) 1.23  0.79028

7(2) 0.68 0.87536 1@ 0.65 0.55 1.63845

(L+ Vg%))UR: Vggul , (21) 13(3) 0.68 0.87684 2B 0.84 0.70 1.64205
22(4) 0.69 0.88362 3@ 085 050 1.64294

34(5) 0.61 0.88584 5@%) 0.85 050 1.64344

50(6) 0.54 088616 8#) 0.85 0.50 1.64379

70(7) 0.66  0.88687

95(8) 0.72  0.88718

(L+Vu=-VPug, (22)

Vﬁ,'?,) and VE,'F), above are the real and imaginary parts of the
optical potential, respectivelyBoth are real, nonlocal poten-
tials.) The coupled Eqs21) and(22) have two sets of solu- A are the well-known exchange approximation phase sfiifth
tions (i.e., both regular at the originlabeledul(r), u"(r) it corresponds to no correlation terill(w)=0—V,,=0 in Eq.
where (=1,2). From these two solutions one determines(7)].
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TABLE II. Phase shifts of*S for variousk for N=95. TABLE lIl. Phase shifts of*S for variousk for N=84.

k y=06 n 7schwartz k Y o 7 7sSchwartz
0.1 0.53 2.55358 2.558) 0.1 0.85 0.12 2.93853 2.9388
0.2 0.60 2.06678 2.0679 0.2 0.84 0.39 2.71741 2.71R
0.3 0.72 1.69816 1.6968) 0.3 0.90 0.37 2.49975 2.4968
0.4 0.70 1.41540 1.4149 0.4 0.91 0.38 2.29408 2.29@8
0.5 0.70 1.20094 1.202) 0.5 0.88 0.44 2.10454 2.104%
0.6 0.70 1.04083 1.041) 0.6 0.77 0.52 1.93272 1.93@
0.7 0.71 0.93111 0.930) 0.7 0.70 0.55 1.77950 1.77%)
0.8 0.72 0.88718 0.88b) 0.8 0.86 0.50 1.64379 1.648

Nu)
Ill. CALCULATION D(Dp=e 172> CrirrL(152), (31

Imn

As stated in the Introduction we calculate here only\nore the sum includes all triples such thatm-+n=aw
Swave (i.e., L=0) elastic scattering, specifically, phase gnq ,=01,2... 8. The total number of termsN
shifts. This means, sincB, =constant in Eq(12), that the  depends on spin and whethgr= 5 or not. The values of
correlation functiond, is only a function of the “radial” N, as a function of,m,n is given in the following simple

coordinates. Her@_ is taken of Hylleraas form array:
w 0 1 2 3 4 5 6 7 8
s N,(y=9d) 1 3 7 13 22 34 50 70 95
3s N, (y#9d) 1 4 10 20 35 56 84 120 165

To summarize the calculation, tHgHQ problem is solved much more extensive calculation than is worthwhile here for
(for a giveny and § andN,). The result is a set of eigen- our present purposeThe convergence of the results suggests
values & (s=1,2,...N,) and associated eigenfunctions that they are accurate to one or two units in the fourth place
@), From them(the terms ifthe optical potential, Eq14)  after the decimal pointWe have given five digits because to
is constructed, and the integro-differential E@) is solved that accuracy they are rigorous lower bounds. _
noniteratively. Because all quantities are real, the solution is Scattering lengths are not included in our calculation, be-
unique (up to an arbitrary normalizationwith asymptotic ~cause ak=0 the Kohn variational principle, which applies

form to Schwartz’ calculation, is well known to provide rigorous
(in this case uppéboundd17]. It is worth recalling that one

lim u)(r)eesin(kr + 7)) (32) of us[18] had ea_lrl_ier deduc_ed _that long-range polarizati_on

r o would have decisive quantitative effect on the scattering

length and had derived a formula

Fromu(*)(r) and its derivative the phase shiftis readily
extracted. a=a(R)—a
Examples demonstrating the convergence spffor k

=0.8 as a function oN are given in Table I. By virtue of . . . .
the fact thaty's are rigorous lower bounds on the phase shift" which a(R) represents the value of scattering length in-
¢luding only the region of configuration spaceR, and the

13], th h ful indicati 9 . ;
[13], the convergence then becomes a powerful indication 0remalnmg terms in Eq.33) give the effect of the long-range

the accuracy of the result. Phase shifts as a functidnaoe larizati — polarizability of the hvd 45
given in Tables Il and Ill. To repeat, they are rigorous lowerPo'arization = polarizability of the hydrogen atom4.5).

bounds in all cases. They are compared to the results dflse of that formula led to the first correct estimate of the true

Schwartz [7]. Our 'S phase shifts are seen to exceedscatt_ering lengt18]. Thus_ when Schwarfcz applied his c_al-
Schwartz'(including his estimated errpatk=0.3, 0.4. Oth- culation atk=0, he founq it necessary to |nclud<_a the equiva-
erwise our results for bothS and 3S are within his esti- Ient.c_)f long-range polarization terms, as predicia8], in
mated uncertainty, which we find to be quite impressive confr’Iddltlon to the Hylleraas terms in orpler to get adeq_uate con-
sidering that his calculation was carried out over 40 yearé/ergence. For these reasons we believe his scattering lengths

ago. Nevertheless we believe that our present calculation are sufficiently secure and accurate as not to require further

. . 1 _ 3
more accurate. The difficulty in making a secure extrapola-calcmat'on' His results area("S)=5.9650.003, a("S)

tion is due to the difficulty of estimating quantitatively the =1.7686-0.0002.
effects of polarization and other long-range potentials at non-
zerok. (In principle, one can optimally, rigorously include
polarization by use of a polarization pseudos{4t®|; how- Numerical results were obtained with the Cray Y-MP
ever, in practice those corrections are small, yet require aomputer of the NASA Center for Computation Science.

1
R?

R m2 (33
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