
PHYSICAL REVIEW A, VOLUME 64, 032507
Relativistic corrections to the electromagnetic polarizabilities of compound systems
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The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary
masses, charges, and spins is obtained. A case in which the bound state exists due to electromagnetic interac-
tion is considered. The term, proportional tov2, is obtained taking into account the first relativistic correction.
It is shown that the complete result for this correction differs essentially from the commonly used termDa,
proportional to the rms charge radius of the system. We propose that the same situation can take place in the
more complicated case of hadrons.
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I. INTRODUCTION

The electromagnetic polarizabilitiesā and b̄ are funda-
mental characteristics of the bound system. Their magnitu
depend not only on the quantum numbers of the constitue
but also on the properties of the interaction between th
constituents. Therefore, the experimental and theoretica
vestigation of the electromagnetic polarizabilities are o
great importance. In particular, their prediction and the co
parison with experimental data may serve as a sensitive
for tests of hadron models. Correspondingly, a large num
of researchers have been attracted by this fascinating p
bility. The electromagnetic polarizabilities can be obtain
from the low-energy Compton scattering amplitude. In t
lab frame, the amplitude of Compton scattering on the co
pound system of total angular momentumS50, 1/2 up to
O(v2) terms reads@1,2#

T5TBorn1āv1v2e1•e2* 1b̄~k13e1!•~k23e2* !,
~1.1!

wherev i , k i , andei are the energy, momentum, and pola
ization vector of incoming (i 51) and outgoing (i 52) pho-
tons (\5c51). The contributionTBorn corresponds to the
amplitude of Compton scattering off a pointlike particle wi
spin, mass, charge, and magnetic moment equal to thos
the compound system. For spinS>1, theO(v2) part of the
Compton scattering amplitude contains additional terms, p
portional to quadrupole and higher multipoles of the bou
system@3#. In particular, forS51 there is a contribution
proportional to the quadrupole moment operator.

The investigation of electromagnetic polarizabilities is
teresting not only for systems, bound by the electromagn
interaction, like atoms, but also for those bound by stro
interaction, such as atomic nuclei@4# or hadrons@5#. At
present there are many different approaches used for the
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the MIT bag model@6,7#, the nonrelativistic quark mode
@8–12#, the chiral quark model@13,14#, the chiral soliton
model @15,16#, and the Skyrme model@17,18#. Here, we
mentioned only a small part of the publications on the
topics ~see also review@19#!. Though much effort has bee
devoted to these calculations, all of them cannot be con
ered as completely satisfactory. In particular, there is a pr
lem in the explanation of the magnitudes of proton and n
tron electric polarizabilities within a nonrelativistic quar
model. It was derived many years ago@2,20,21# that ā can
be represented as a sum

ā5
2

3 (
nÞ0

u^nuDu0&u2

En2E0
1Da5as1Da, ~1.2!

whereD is the internal electric dipole operator,u0& and un&
are the ground and excited states in terms of internal coo
nates, andEn andE0, the corresponding energies. The ter
Da in ā has a relativistic nature and its leading term is eq
to

Da5
erE

2

3M
, ~1.3!

wheree and M are the particle charge and mass,r E is the
electric radius defined through the Sachs form factorGE .
Our definition ofr E

2 absorbs a total chargee of the system.
The calculation of the quantityas in the nonrelativistic
quark model without relativistic corrections taken into a
count leads to the same magnitude ofas for proton and
neutron. SinceDa is equal to zero for the neutron but give
a significant contribution toā for the proton, one has a con
tradiction between the theoretical prediction ofā for nucle-
ons and their experimental values, since the latter are clos
each other. In fact, this approach is not consistent, beca
there are relativistic corrections toas that are of the same
order asDa.

Starting from second-order perturbation theory, one g
the following expression foras :
©2001 The American Physical Society07-1
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as5
2

3 (
nÞ0

u^nuJu0&u2

~En2E0!3
, ~1.4!

where J is the internal electromagnetic current. Using t
identity J5 i @H,D#, whereH is the Hamiltonian, one come
to the form Eq.~1.2! for as . The relativistic corrections to
as in Eq. ~1.4! come from the corrections to wave function
and energies of the ground and excited states, and corre
to currentJ. In papers@22,23#, the relativistic corrections to
the current operator and electric dipole operator were
tained. In@24–26#, some general expressions for the relat
istic corrections to electric polarizabilities were obtained, b
no explicit calculations for a realistic system were made a
the importance of these corrections was not realized.

Due to the relation betweenJ andD, it is clear that there
also is a relativistic correction to the electric dipole mome
operator~see below! which is connected with the appropria
relativistic definition of the center-of-mass coordinate. T
neglect of this relativistic correction leads to an incompl
expression forā, and the missing piece that is calculated
the following turns out to be very essential. We expect t
the inclusion of all relativistic corrections allows one to r
move the big difference between the predictions of the n
relativistic quark model for proton and neutron electric p
larizabilities due to the difference inDa.

The expression for the magnetic polarizability in the no
relativistic quark model with no exchange and momentu
dependent forces has the form@21,27,28#

b̄5bpara1bdia

5
2

3 (
nÞ0

u^nuM u0&u2

En2E0
2S (

i

ei
2^r i

2&
6mi

1
^D2&
2M D , ~1.5!

where M is the internal magnetic dipole operator and t
summation in the second term on the right-hand side~rhs! is
performed over the constituent quarks,r i being the corre-
sponding internal radius vector.

In order to understand the importance of the different re
tivistic corrections for the polarizabilities, it is useful to co
sider the example of a system where the relativistic corr
tions can be obtainedab initio. In this paper, we calculate th
low-energy Compton scattering amplitude for a system
two particles with massesm1,2 and chargese1,2, bound by
electromagnetic forces. We consider the casee1,2

2 !1, which
provides the validity of the nonrelativistic expansion. W
consider, in detail, the cases of spin 0 and 1/2 of the parti
and give the result for general case of arbitrary spins.

II. SCATTERING AMPLITUDES

For the electromagnetic interaction between particles
simple estimate shows that the partt of Compton scattering
amplitude, proportional tov2 has the form

t5v2a3S c11c2

«0

m
1c3

«0
2

m2
1••• D , ~2.1!
03250
ion

-
-
t
d

t

e
e

t

-
-

-
-

-

c-

f

s

a

where a51/(mg) is the Bohr radius,g52e1e2.0, m
5m1m2 /(m11m2) is the reduced mass,«052mg2/2 is the
ground-state binding energy in the nonrelativistic approxim
tion, and ci are some quantities, bilinear with respect
e1 , e2* and depending on the ratio of charges and mas
Here, for definiteness, we assumev5v1. The two first terms
of this expansion contain the parameterg!1 in the denomi-
nators and, therefore, come from the contribution of big d
tancesr;a ~or small momentap;1/a5mg) to the matrix
element. These two terms that have no contributions from
Born amplitude are the ones we are going to calculate in
article. Since they are determined by a contribution from
distances~small momenta!, it is possible to use the nonrela
tivistic expansion in the calculations. In fact, the first term
known and contains the contributions ofas , Eq. ~1.2! and
bpara , Eq. ~1.5!, calculated in the leading nonrelativistic ap
proximation ~see below!. Some contributions to the secon
term are also known, namely, those containing the magn
polarizability bdia , Eq. ~1.5! and the correctionDa, Eq.
~1.3!. These contributions come from the expansion of
photon wave functions overkr ;v/mg and from the expan-
sion of the propagator of the system with respect to the p
ton energy and the center-of-mass kinetic energy of inter
diate states. The corresponding results forb andDa can be
obtained using the nonrelativistic Hamiltonian of the syste
As was mentioned above, the other source of the contr
tions to c2, which has not been investigated so far, is t
relativistic correction to the Hamiltonian of the system a
the corresponding corrections to the wave functions, ene
levels, and currents. We will obtain the complete result
the second term in the expansion Eq.~2.1!. In the expression
for the electromagnetic current, we neglect for a while t
dependence of the form factors on the momentum trans
We will take this dependence into account at the consid
ation of the general case of arbitrary spins.

A. The system of two spin-0 particles

Let us consider first the bound state of two spin-0 p
ticles. In order to calculate the Compton scattering am
tude, it is convenient to put the system into the exter
electromagnetic fieldA(x,t). In this case, the nonrelativisti
Hamiltonian has the form

H̃nr@A#5
p1

2

2m1
1

p2
2

2m2
2

g

ur12r2u
, ~2.2!

wherepi5pi2eiA(r i ,t). Let us pass to the variablesr and
R, corresponding to the relative and center-of-mass coo
nate:

r15R1
m2

M
r , r25R2

m1

M
r , M5m11m2 . ~2.3!

Then, the momentapi are

p15
m1

M
P1p, p25

m2

M
P2p, ~2.4!
7-2
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whereP52 i¹ R andp52 i ¹ r . For A50 we have

H̃nr@A50#5
P2

2M
1Hnr5

P2

2M
1

p2

2m
2

g

r
. ~2.5!

The first relativistic correctionH̃B ~Breit Hamiltonian, see,
e.g.,@29#! to Eq. ~2.2! reads

H̃B@A#52
~p1

2!2

8m1
3 2

~p2
2!2

8m2
3

1
g

2m1m2
S d i j

r
1

r i r j

r 3 D p1
i p2

j . ~2.6!

The first term in Eq.~2.6! is the correction to the kinetic
energy and the second one is the correction due to the m
netic quanta exchange, corresponding to the space com
nent of the photon propagator in the Coulomb gauge. IA
50, then in the center-of-mass frame where the eigenva
of the operatorP is equal to zero we have

H̃B@A50#uP50[HB

52S 1

m1
3

1
1

m2
3D ~p2!2

8
2

g

2m1m2

3S d i j

r
1

r i r j

r 3 D pipj . ~2.7!

The terms, containing the operatorP in the Hamiltonian,
determine the contribution of recoil effect to the Compt
scattering amplitude. Within the precision of the present c
culations, these terms should be taken into account onl
the HamiltonianH̃nr and can be omitted inH̃B ~see below!.
The correctiond«0 to the ground-state energy, related to t
HamiltonianHB reads

d«05^0uHBu0&52g4F5

8
m4S 1

m1
3

1
1

m2
3D 1

m3

m1m2
G .

~2.8!

Let us start the calculation of the Compton scattering am
tude with the amplitudeTnr obtained with the use of the
nonrelativistic Hamiltonian Eq.~2.5!. This amplitude can be
represented as a sumTnr5Tres1Ts of resonance and seagu
parts. The partTres is determined by the second order
perturbation theory with respect to the terms inH̃nr@A#, lin-
ear in the vector potentialA. In the laboratory frame it has
the form
03250
g-
o-

e

l-
in

i-

Tres52^c0uexp@2 i ~k12k2!R#e2* •F e1

m1
p1 exp~2 ik2•r1!

1
e2

m2
p2 exp~2 ik2•r2!GF«01v12

P2

2M
2HnrG21

3 e1•F e1

m1
p1 exp~ ik1•r1!1

e2

m2
p2 exp~ ik1•r2!G uc0&

1~e1↔e2* , v1↔2v2 , k1↔2k2!. ~2.9!

Here c0(r )5p21/2(mg)3/2exp(2mgr) is the wave function
of the ground state, depending on the relative coordinatr .
The final momentum of the bound system is equal tok1
2k2. Using the relations Eq.~2.3! and Eq.~2.4! and making
a simple transformation in order to cancel the exponents c
taining R, we obtain

Tres52^c0ue2* •F e1

m1
S p1

m1

M
k1DexpS 2 i

m2

M
k2•r D

2
e2

m2
S p2

m2

M
k1DexpS i

m1

M
k2•r D GG~v1!

3e1•pF e1

m1
expS i

m2

M
k1•r D2

e2

m2
expS 2 i

m1

M
k1•r D G

3uc0&1~e1↔e2* , v1↔2v2 , k1↔2k2!. ~2.10!

Here,G(v)5@«01v2v2/2M2Hnr#
21 is the nonrelativis-

tic propagator of the system in the operator form. The sea
amplitude Ts is determined by first order of perturbatio
theory with respect to the terms inH̃nr@A# which are qua-
dratic in A. Similar to Eq.~2.10!, we obtain

Ts52e1•e2* ^c0uF e1
2

m1
expS i

m2

M
~k12k2!•r D

1
e2

2

m2
expS 2 i

m1

M
~k12k2!•r D G uc0&. ~2.11!

Performing the expansion of Eqs.~2.9! and ~2.11! with re-
spect tok1,2 and v1,2 up to quadratic terms and using th
relationv12v25(k12k2)2/2M , we obtain

Tnr52e1•e2*
~e11e2!2

M
1e1•e2* v2F 9

2mg4 S e1

m1
2

e2

m2
D 2

1
e11e2

Mg2 S e1

m1
2

1
e2

m2
2D G2@e13k1#•@e2* 3k2#

3F 1

2g2 S e1
2

m1
3

1
e2

2

m2
3D 1

3

2Mg2 S e1

m1
2

e2

m2
D 2G . ~2.12!

There is no need here to distinguish betweenv1 andv2 in
theO(v2) term. Therefore, we setv15v25v in Eq. ~2.12!.
7-3
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The result Eq.~2.12! is in agreement with Eq.~1.2! and Eq.
~1.5!, with as calculated in the nonrelativistic approxima
tion, since in our model

Dnr5mS e1

m1
2

e2

m2
D r ,

asnr5
2

3
^c0uDnrG0Dnruc0&5

9

2mg4 S e1

m1
2

e2

m2
D 2

,

Da5
e11e2

3M
^c0ue1r 1

21e2r 2
2uc0&5

e11e2

Mg2 S e1

m1
2

1
e2

m2
2D ,

~2.13!

^c0uM ucn5” 0&50, ^c0uD2uc0&5
3

g2 S e1

m1
2

e2

m2
D 2

,

^c0uFe1
2r 1

2

m1
1

e2
2r 2

2

m2
G uc0&5

3

g2 S e1
2

m1
3

1
e2

2

m2
3D .

Here,G0 is the reduced Green function in the operator for

G05@«02Hnr1 i0#21~12uc0&^c0u!. ~2.14!

The details of calculations of different matrix elements, co
taining the operatorG0 are presented in Appendix A.

We pass now to the calculation of the relativistic corre
tions to the electromagnetic polarizabilities, connected w
the Breit HamiltonianH̃B Eq. ~2.6!. We perform the calcula-
tions in the same way as at the derivation of Eq.~2.9! and
Eq. ~2.11!, but for the HamiltonianH̃5H̃nr1H̃B . At the
calculation of these corrections within our accuracy the te
of the HamiltonianH̃B@A#, quadratic inA do not contribute
to the electromagnetic polarizabilities, i.e., the seagull c
tribution from H̃B@A# is absent. In the corrections to th
electromagnetic polarizabilities from the resonance par
the amplitude, we can take the second order of expan
with respect tov of the operator Green function and p
k1,250 elsewhere. This means that within our accuracy,
can neglect inH̃B@A# the terms containing the total mome
tum P and replace the exponents in the photon wave func
by unity. Therefore, the terms in the HamiltonianH̃B@A#,
linear inA, can be represented in the form2A(0)JB , where

JB52S e1

m1
3

2
e2

m2
3D p2

2
p2

g~e12e2!

2m1m2r S p1
r

r 2
~r•p!D

~2.15!

is the correction to the operator of the total internal currenJ:

J5Jnr1JB5~e1 /m12e2 /m2!p1JB . ~2.16!

Let us now discuss the relativistic correction to the el
tric dipole moment operator. In the laboratory frame, it
equal toDtot5e1r11e2r2. For the total Hamiltonian of the
system the following relation holds
03250
:

-

-
h

s

-

f
on

e

n

-

i @H̃nr@A50#1H̃B@A50#, Dtot# ~2.17!

5e1

p1

m1
S 12

p1
2

2m1
2D 2

ge1

2m1m2r S p11
r

r 2
~r•p1!D

1~1↔2!.

The rhs of Eq.~2.17! is nothing but the operator of tota
current in the lab frame, containing the total momentumP.
This can be verified by differentiating the Hamiltonia
H̃nr@A#1H̃B@A# over A at A50. Therefore, there are no
relativistic corrections to the total electric dipole opera
Dtot . The internal electric dipole moment operator is defin
as

D5Dtot2~e11e2!Rcm , ~2.18!

where Rcm is the center-of-mass vector. This vector is d
fined in such a way that it satisfies the following relations

@Rcm , P#5 i , i @Htot , Rcm#5
P

Htot
, ~2.19!

whereHtot is the total relativistic Hamiltonian of the system
andP is the total momentum. Within our accuracy, the se
ond relation in Eq.~2.19! reads:

i @H̃nr@A50#1H̃B@A50#, Rcm#5
P

M
S 12

H̃nr@A50#

M
D .

~2.20!

It is known ~see, e.g.,@30#! that there is a relativistic correc
tion to Rcm in classical electrodynamics. For the case of tw
particles interacting due to electromagnetic field, the cor
sponding operator that satisfies the relations Eq.~2.19! has
the form @22,23#

Rcm5R1
1

2M S H r1 ,
p1

2

2m1
2

g

2r J 1H r2 ,
p2

2

2m2
2

g

2r J
2H R,

p1
2

2m1
1

p2
2

2m2
2

g

r J D . ~2.21!

Here, we took into account the first relativistic correction a
use the notation$a,b%5ab1ba. In terms of the variablesr
andp @see Eq.~2.3! and Eq.~2.4!# we obtain

Rcm5R1
~m22m1!

2M2 S $r ,Hnr%1g
r

r D , ~2.22!

where the term proportional to the total momentumP is
omitted. Substituting this expression into Eq.~2.18!, we ob-
tain the relativistic correction to the internal electric dipo
moment:

DB5
~e11e2!~m12m2!

2M2 S $r ,Hnr%1g
r

r D . ~2.23!
7-4
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Note that, as should be the case, the operator of total inte
currentJ5Jnr1JB satisfies within our accuracy the relatio

J5 i @Hnr1HB ,Dnr1DB#, ~2.24!

whereDnr is defined in Eq.~2.13!, andHnr1HB is the in-
ternal part of Hamiltonian@see Eq.~2.5! and Eq.~2.7!#.

Let us write down now the corrections to theO(v2) term
of Compton scattering amplitude, related to the Breit Ham
tonian and the corresponding current. The correction du
JB reads

tc52v2^c0u@e2* •JBG0
3e1•Jnr

1e2* •JnrG0
3e1•JB#uc0&1~e1↔e2* !. ~2.25!

The O(v2) correction to the amplitude, connected with t
expansion of the propagator with respect toHB , has the form

tp52v2^c0ue2* •Jnr@G0
2HBG0

21G0
3HBG0

1G0HBG0
3#e1•Jnruc0&1~e1↔e2* !. ~2.26!

The contribution due to the correction to wave function is

tw52v2^c0u@e2* •JnrG0
3e1•JnrG0HB

1HBG0e2* •JnrG0
3e1•Jnr#uc0&1~e1↔e2* !.

~2.27!

At last, the contribution corresponding to the correction
the ground-state energy reads:

te53v2d«0^c0ue2* •JnrG0
4e1•Jnruc0&1~e1↔e2* !.

~2.28!

In order to calculate the matrix elements in Eq.~2.25!–Eq.
~2.28! it is convenient to use the following relations~see
Appendix A!:

G0rc052
r

g S r

2
1aDc0 ,

G0r rc052
r

g S r 2

3
1

5ar

6
1

5a2

3 Dc0 ,

~2.29!

G0r 2c052
1

g S r 3

3
1ar22

11a3

2 Dc0 ,

G0r 3c052
1

g S r 4

4
1

5ar3

6
1

5a2r 2

2
2

155a4

8 Dc0 ,

where a51/mg. Using ~2.29! and also the relationp
5 im@Hnr ,r # , we get the following results for the contribu
tions Eq.~2.25!–Eq. ~2.28!
03250
al

-
to

tc52
2mv2e1•e2*

9g2 S e1

m1
2

e2

m2
D

3F20S e1

m1
3

2
e2

m2
3D 1

89

4

~e12e2!

mm1m2
G ,

tp5
m2v2e1•e2*

g2 S e1

m1
2

e2

m2
D 2

3F1061

288 S 1

m1
3

1
1

m2
3D 1

25

3mm1m2
G ,

~2.30!

tw5
m2v2e1•e2*

g2 S e1

m1
2

e2

m2
D 2F3

4 S 1

m1
3

1
1

m2
3D 1

14

9mm1m2
G ,

te52
m2v2e1•e2*

g2 S e1

m1
2

e2

m2
D 2 129

4

3F5

8 S 1

m1
3

1
1

m2
3D 1

1

mm1m2
G .

Representing the sum of all contributions in Eq.~2.30! as
v2e1•e2* asB we obtain the following result forasB :

asB52
1

g2 S e1

m1
2

e2

m2
D 2S 121

6m
2

113

4M D
2

~e11e2!

Mg2 S e1

m1
2

e2

m2
D ~m12m2!

2m1m2
. ~2.31!

If one starts the calculation ofas from Eq. ~1.2!, then it is
easy to check that the first term in Eq.~2.31! corresponds to
the sum of corrections due to modification of wave functio
propagator, and ground-state energy. The second term in
~2.31! corresponds to the contribution due to the relativis
correction to the electric dipole moment Eq.~2.23!. There-
fore, this correction appears due to the correct descriptio
the center-of-mass motion. It is seen that the first term in
~2.31! has the same dependence on charges asasnr while
the second term is similar toDa , Eq. ~2.13!. Taking a sum
of asB , as nr , andDa, we come to the following result for
ā for the system under consideration:

ā5
1

mg4 S e1

m1
2

e2

m2
D 2F9

2
2g2S 121

6
2

113m

4M D G
1

~e11e2!

Mg2 F3

2 S e1

m1
2

1
e2

m2
2D 2

~e11e2!

2m1m2
G . ~2.32!

Thus, the relativistic corrections toas has reduced to a
renormalization ofasnr and essentially to a modification o
Da, Eq. ~1.3!. One can expect that the last statement is va
not only for the system under consideration. Indeed, due
the definition ofD, the correction toā related to the modi-
7-5
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fication of Rcm is proportional toQ/M , where Q is the total
charge of the system, and, therefore, has the same stru
asDa.

As a nontrivial test of our method of calculation w
checked the fulfillment of the low-energy theorem for t
Compton scattering amplitude. Atv50, this amplitude
should have the form

T~v50!52e1•e2*
~e11e2!2

E0
'2e1•e2*

~e11e2!2

M1«0

'2e1•e2*
~e11e2!2

M S 12
«0

M D ,

~2.33!

whereE05M1«0 is the mass of the system. It is interestin
that the term in rhs of Eq.~2.33!, proportional to the nonrel-
ativistic energy«0, appears as a contribution of terms fro
the Breit HamiltonianH̃B@A#, which we checked by explici
calculations~see Appendix B!.

B. The system of a spin-0 particle and a spin-1Õ2 particle

Let the first particle have the spin 1/2 and the seco
particle have the spin 0. Then we should add the term

dH̃nr@A#52
e1~11k1!

m1
s1•H ~2.34!

to the nonrelativistic HamiltonianH̃nr@A#, Eq.~2.2!. Here,H
is the external magnetic field,s15s1/2 is the spin operato
of the first particle, andk1 is its anomalous magnetic mo
ment in unitse1/2m1. There is also some additional contr
bution dH̃B@A# to H̃B@A#, Eq. ~2.7! ~see, e.g.,@29#!. The
terms ofdH̃B@A# linear ins1 as well as Eq.~2.34! determine
the O(v) terms of the Compton amplitude. These terms
well known and follow, together with thev-independent
term, from the low-energy theorem@31#. As it was explained
in the previous subsection, it is sufficient within our accura
to account for the Breit Hamiltonian only in the long-wav
limit, i.e., at v1,250 in order to obtain theO(v2) terms of
Compton amplitude. In this limit, the HamiltoniandH̃B@A#
reads

dH̃B@A#52
e1e2~112k1!

2m1
2 S pd~r !1

1

r 3 s1•~r3p1! D
1

e1e2~11k1!

m1m2r 3
s1•~r3p2!. ~2.35!

The explicit calculation shows that the contribution
dH̃nr@A# given by Eq.~2.34! and the terms in Eq.~2.35!
linear in s1 do not lead to any contributions toc1,2 in Eq.
~2.1!, i.e., they can be neglected in the calculation of pol
izabilities within our accuracy. In particular, there are
terms linear in the spin in the quantitiesc1,2, which is in
agreement with the general conclusion on the absenc
terms O(v2) linear in spin in the non-Born part of th
03250
ure

,

d

e

y

-

of

Compton amplitude@32#. The only term that should be take
into account in addition to those considered in the previo
subsection, is the spin-independent term in Eq.~2.35! ~Dar-
win term!:

dDHB5
pg~112k1!

2m1
2

d~r !. ~2.36!

It follows from Eq. ~2.35! that there is no correction to th
current associated with the HamiltoniandDHB . Using the
expressions~2.26–2.28! with the replacementHB→dDHB
and the relations Eq.~2.29! we obtain

dDtc50, dDtw52
5mv2e1•e2*

8m1
2g2 S e1

m1
2

e2

m2
D 2

~112k1!,

~2.37!

dDtp50, dDte5
129mv2e1•e2*

8m1
2g2 S e1

m1
2

e2

m2
D 2

~112k1!.

As a result, the correction to the electric polarizability ass
ciated with the Breit Hamiltonian in the system of spin 0 a
spin 1/2 will be the sum ofasB Eq. ~2.31! and

dasB5
31m

2m1
2g2 S e1

m1
2

e2

m2
D 2

~112k1!. ~2.38!

C. The system of two spin-1Õ2 particles

In the case of two spin-1/2 particles, it is necessary
account for two Darvin terms in addition to the Breit Ham
tonian Eq.~2.7!, corresponding to both particles

dDHB5
pg~112k1!

2m1
2

d~r !1
pg~112k2!

2m2
2

d~r !

~2.39!

and the Hamiltonian, corresponding to spin-spin interact
@29#:

dsHB5
g~11k1!~11k2!

m1m2

3F3~n•s1!~n•s2!2s1•s2

r 3
1

8p

3
d~r !s1•s2G ,

~2.40!

with n5r /r . It is more convenient to rewritedsHB in terms
of the total spin operatorS5s11s2:

dsHB5
g~11k1!~11k2!

2m1m2
F3ninjQi j

2r 3
14pd~r !S 2

3
S221D G ,

~2.41!

where the operatorQi j , quadratic inS, is equal to

Qi j 5SiSj1SjSi2
2
3 S2d i j . ~2.42!
7-6
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Note that in such a system as positronium, it is necessar
add the contribution of the annihilation diagram, which r
sults in the replacement (2S2/321)→(7S2/621) in the co-
efficient of thed-function in Eq. ~2.41! ~of course, in this
casem15m2 , e152e2). As in the previous subsection, th
terms proportional to thed-function in Eq. ~2.39! and Eq.
~2.41! give the contributiondasB , which should be added to
asB

, Eq. ~2.31!:

dasB5
31m

2g2 S e1

m1
2

e2

m2
D 2F112k1

m1
2

1
112k2

m2
2

1
4~11k1!~11k2!

m1m2
S 2

3
S~S11!21D G .

~2.43!

Here, we replacedS2 by its eigenvalueS(S11), whereS
50,1 is the total spin of the system. The term in Eq.~2.43!
containing the tensor operator 3(n•S)22S2 determines the
contribution to theO(v2) part of the Compton amplitude
which has the form

t (tensor)5v2aTe1
i e2

j* ^Qi j &, ~2.44!

where^•••& denotes the averaging over the spin part of
wave function. Of course,t (tensor) vanishes ifS50. Since
there is no correction to the current or to the energy of
ground state due to the tensor part ofdsHB , the contribu-
tions toaT come only from the corrections to the propaga
and to the wave function. Using Eqs.~2.26! and ~2.27!, and
the relations~see Appendix A!

G0~3r i r j2r 2d i j !uc0&

52
3r i r j2r 2d i j

g S r

3
1

a

2D uc0&,

G0~3r i r j2r 2d i j !r uc0&

52
3r i r j2r 2d i j

g S 7a2

8
1

7ar

12
1

r 2

4 D uc0&,

~2.45!

we obtain

aT52
47~11k1!~11k2!

40Mg2 S e1

m1
2

e2

m2
D 2

. ~2.46!

In the system of two spin-1/2 particles there is a big pa
magnetic contribution to the magnetic polarizability from t
first term in Eq.~1.5!. The main contribution corresponds
the transition from the ground state with the total spinS
50 to the state withS51, with both states having the sam
angular momental 50, and radial quantum numbersnr50
~hyperfine splitting!. Representing the spin part of the ma
netic moment operator in the form
03250
to
-

e

e

r

-

M s5 f 1s11 f 2s2 , f i5
ei~11k i !

mi
,

and using Eq.~2.40!, we obtain

b152
3~ f 12 f 2!2a3

16f 1f 2
, a5

1

mg
. ~2.47!

As was pointed out in the previous section, for positroniu
it is necessary to change the coefficient ofd-function in Eq.
~2.41!. As a result, the contribution of the first term in E
~1.5! to the magnetic polarizability of positronium is

b156 3
7 a3, ~2.48!

where upper sign corresponds to parapositronium (S50),
and the lower sign to orthopositronium (S51).

D. The system of two particles with arbitrary spins

Let the particles have the spinss1,2 and magnetic mo-
mentsm1,2, which we represent in the form

ma5
easa

ma
~11ka!, a51,2. ~2.49!

The electromagnetic current for each particle has the fo
~see, e.g.,@33,34#!

j m5c̄~p8!FFe

pn1pn8

2m
1

Gm

2m
SmnqnGc~p!, ~2.50!

whereq5p82p. The operatorSmn is a generalization of the
corresponding matrix for spin 1/2. The indices numerat
the particles have been omitted. The quantitiesFe and Gm
depend onq2 and (smqm)2, wheresm is the four-vector of the
spin operator. These quantities are normalized as follows

Fe~q50!51, Gm~q50!511k. ~2.51!

If we neglect theq dependence of the form factors, then,
addition to the Breit Hamiltonian for two spin-0 particle
Eq. ~2.6!, it is necessary to take into account the Hamiltoni
Eq. ~2.40! ~with the corresponding spin operators! and two
other contributions@33#. Namely, the Darwin Hamiltonian

dDHB5 (
a51,2

2pg

3ma
2 ~112ka!~sa1za!d~r !, ~2.52!

z50 for integer spin andz51/4 otherwise, and the term
containing the quadrupole moments of the particles

dQHB5 (
a51,2

g~112ka!ja

2ma
2r 3

@3~n•sa!22sa
2#, ~2.53!

j51/(2s21) for integer spin andj51/(2s) otherwise. It is
clear that all matrix elements can be calculated in the sa
way as in the previous subsection. The averaging over
spin variables can be done using the following relations

^SSzuFs1is2 j1s2is1 j2
2

3
d i j s1•s2G uS,Sz8&

5A~S,s1 ,s2!^SSzuQi j uS,Sz8&,
7-7
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^SSzuFs1is1 j1s1is1 j2
2

3
d i j s1

2G uS,Sz8&

5B~S,s1 ,s2!^SSzuQi j uS,Sz8&, ~2.54!

whereS5s11s2 is the total spin operator,Qi j is defined in
Eq. ~2.42!, and forS>1

A~S,s1 ,s2!5
L212L~l11l2!23~l12l2!2

2L~4L23!
,

~2.55!
B~S,s1 ,s2!

5
3L21L~2l126l223!13~l12l2!~l12l221!

2L~4L23!
.

Here, L5S(S11), l1,25s1,2(s1,211) are the eigenvalue
of the operatorsS2 and s1,2

2 , respectively. ForS50,1/2 we
put A5B50. As a result, we obtain the following genera
zation of Eq.~2.43! to the case of arbitrary spins:

dasB5
62m

3g2 S e1

m1
2

e2

m2
D 2F112k1

m1
2 ~s11z1!1

112k2

m2
2

3~s21z2!1
2~11k1!~11k2!

m1m2
~L2l12l2!G .

~2.56!

The generalization of Eq.~2.46! is

aT52
47m

40g2 S e1

m1
2

e2

m2
D 2F2~11k1!~11k2!

m1m2
A~S,s1 ,s2!

1
112k1

m1
2

j1B~S,s1 ,s2!1
112k2

m2
2

j2B~S,s2 ,s1!G .

~2.57!

Let us now take into account theq dependence of the elec
tromagnetic form factors of the constituents defined in E
~2.50!. We assume, that the scale of variation of these fo
factors are much larger than the typical momentum tran
;mg. In other words, the characteristic size of each const
ent is much smaller than the size of the whole systema
51/mg. In this case it is sufficient, within our accuracy,
takeGm511k and to expand the form factorFe up to qua-
dratic in q terms,

Fe~q2,~smqm!2!'12
r e

2q2

6
1

r s
2~s•q!2

2
, ~2.58!

wherer e,s
2 are some constants. Multiplying theO(q2) terms

in this expression by24pg/q2 and performing the Fourie
transform, we obtain the additional terms in the Hamilton

d fHB5 (
a51,2

F2pg

3
~r ea

2 2r sa
2 sa

2!d~r !1grsa
2

3~sa•n!22sa
2

2r 3 G .

~2.59!
03250
.

er
-

n

Since the terms in this Hamiltonian have the same struc
as above, it is easy to write down the result for the cor
sponding corrections to polarizabilities:

d fasB5
62m

3g2 S e1

m1
2

e2

m2
D 2

~r e1
2 2r s1

2 l11r e2
2 2r s2

2 l2!,

~2.60!

d faT52
47m

40g2 S e1

m1
2

e2

m2
D 2

@r s1
2 B~S,s1 ,s2!

1r s2
2 B~S,s2 ,s1!#.

If the parameters of the form factorsr e,s
2 ;1/m2!a2, then

the contributions Eq.~2.60! to the polarizabilities are of the
same order asasB . The first relativistic correction to the
Compton scattering amplitude atv50, Eq.~2.33!, is propor-
tional to«052mg2/2 and is independent of the spins of th
constituents. Then, the correction to the amplitude atv50
connected with spin-dependent terms in Breit Hamiltonian
well as the Darwin terms~also having the spin origin! should
vanish. This statement was checked explicitly~see Appendix
B!.

Let us consider now the paramagnetic contribution to
magnetic polarizability from the first term in Eq.~1.5!. Let
s1>s2. Then, the total spin of the ground state isS5s1
2s2, and the main contribution corresponds to the transit
from the ground state to the state withS5s12s211, with
both states having the same angular momentum,l 50, and
radial quantum nambernr50 ~hyperfine splitting!. A simple
explicit calculation leads to

b152
~ f 12 f 2!2s2~s111!a3

4 f 1f 2~s12s211!2
. ~2.61!

This term should be added to the diamagnetic contribut
bdia @see Eq.~2.12!#:

bdia52
1

2g2 S e1
2

m1
3

1
e2

2

m2
3D 2

3

2Mg2 S e1

m1
2

e2

m2
D 2

.

~2.62!

III. CONCLUSION

We have obtained the complete result for the first rela
istic corrections to the electromagnetic polarizabilities,
cluding the tensor part that exists for the total spinS>1. We
demonstrated that, within our accuracy, this tensor part c
tains the quadrupole moment of the system and not
higher multipoles. For the system of two spinless particle
is easy to check that the total relativistic correction E
~2.13! and~2.31! is negative at arbitrary masses and charg
In the general case of nonzero spins and arbitrary anoma
magnetic moments, the relativistic correctionDa1asB
1dasB , wheredasB is given by Eq.~2.56!, can be posi-
tive. It is interesting to consider some special cases. The
of them is a hydrogenlike ion. In this case,e15e, e2
52Ze, andm2@m1. In the limit m2→` the result for elec-
tric polarizabilities is independent of the spin and magne
7-8



a

te

u
tic

riz
is
on

n

.

to

-

el
ly
o
n

e
-
n

in-
s.

of

r

th

RELATIVISTIC CORRECTIONS TO THE . . . PHYSICAL REVIEW A 64 032507
moment of the nucleus. Neglecting also the anomalous m
netic momentk1 of the electron, we obtain from Eqs.~2.12!,
~2.13!, ~2.31!, and~2.43!

ā5
9

2m3aem
3 Z4

2
14

3m3aemZ2
, ~3.1!

where aem5e251/137 is the fine-structure constant. No
that in this limit, the correctionDa , Eq. ~1.3!, vanishes. The
result Eq.~3.1! is in agreement with that obtained in@34,35#
with the use of the reduced Green function of the Dirac eq
tion for an electron in a Coulomb field. For the magne
polarizability ats250 we have

b̄5bdia52
1

2m3aemZ2
. ~3.2!

For s251/2 in the limit m2@m1 there is a very big contri-
bution from the paramagnetic part of the magnetic pola
ability, Eq. ~2.47!. In the Compton scattering amplitude th
contribution should be taken into account only for phot
energiesv much smaller than the energyEh f;aem

4 m1
2/m2 of

the hyperfine splitting. Formg2@v@Eh f the paramagnetic
contribution should be omitted.

Another interesting example is positronium. As we me
tioned above, in this case, it is necessary to replace (2S2/3
21)→(7S2/621) in the coefficient of thed-function in Eq.
~2.41! due to the contribution of the annihilation diagram
Putting m15m25m, e152e25e, andk15k250, we ob-
tain Da50 and the complete result for the polarizabilities

ā5
36

~maem!3
1

1

6m3aem
H 21001 for S50

735 for S51
,

~3.3!

b̄5~21!S
24

7m3aem
3

2
4

m3aem

.

As in the previous case, for photon energyv@aem
4 m the

paramagnetic contribution should be omitted in the Comp
scattering amplitude.

For S51 ~orthopositronium! we also have the tensor po
larizability

aT52
47

20m3aem

. ~3.4!

Thus, we have shown that the complete set of the first r
tivistic corrections differs essentially from the common
used termDa. We suppose that for the electromagnetic p
larizabilities of hadrons investigated within the constitue
quark model an analogous situation may be found.
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APPENDIX A

In this appendix, we derive the formulas for the result
the action of the operatorG0, Eq. ~2.14!, on the wave func-
tion uc0&, multiplied by some polynomial ofr . More pre-
cisely, we obtain the expression forG0Ylm(r /r )r nuc0& in the
form of the productYlm(r /r )P(r )uc0&, whereP(r ) is some
polynomial. Since the HamiltonianHnr commutes with the
operator of angular momentuml5r3p, we can make the
following transformation:

G0Ylm~r /r !r nuc0&5Ylm~r /r !G0
( l )~r n2d l0^r

n&!uc0&,
~A1!

where G0
( l )5@«02Hnr

( l )1 i0#21, Hnr
( l )52(2mr )21] r

2r 1 l ( l
11)/(2mr 2)2g/r is the radial Hamiltonian with the angula
momentuml, and

^r n&5^c0ur nuc0&5
~n12!!

2n11
an, ~A2!

wherea51/mg. In the derivation of Eq.~A1! we used the
identity

~12uc0&^c0u!Ylm~r /r !r nuc0&5Ylm~r /r !~r n2d l0^r
n&!uc0&.

For our purposes, it is sufficient to consider the casesn> l
21 for l 5” 0 andn>1 for l 50. It is easy to check that in
these cases one can represent the result of action ofG0

( l ) in
rhs of Eq.~A1! in the form

G0
( l )~r n2d l0^r

n&!uc0&5 (
k50

`

Ckr
kuc0&, ~A3!

where Ck are some constants to be found. Acting on bo
sides of this equation with the operator«02Hnr

( l ) and collect-
ing the coefficients with different powers ofr, we obtain

r n2d l0^r
n&52

l ~ l 11!

2m
C0r 222

~ l 21!~ l 12!

2m
C1r 21

1 (
k50

` S ~k2 l 12!~k1 l 13!

2m
Ck12

2g~k11!Ck11D r k. ~A4!

From this relation, we can find the coefficientsCi . For the
casen> l 21, l 5” 0, we finally obtain
7-9
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G0Ylm~r /r !r nuc0&

52Ylm~r /r !
~n2 l 11!! ~n1 l 12!!

g~2/a!n11~n11!!

3 (
k5 l

n11
~k21!! ~2r /a!k

~k2 l !! ~k1 l 11!!
uc0&. ~A5!

For the casen>1, l 50 we have

G0r nuc0&52
~n12!!

g~2/a!n11 (
k52

n11
1

k S ~2r /a!k

~k11!!
2

k12

2 D uc0&.

~A6!

Using the formulas~A4! and ~A5!, one can easily calculat
all matrix elements needed.

APPENDIX B

In this appendix, we check the fulfillment of the low
energy theorem. Namely, we reproduce the two first term
the expansion with respect to«0 /M of the Compton scatter
ing amplitude atv50:

T~v50!'2e1•e2*
~e11e2!2

M S 12
«0

M D . ~B1!

In fact, the first term is contained in Eq.~2.12!. In order to
obtain the second term, we have to take into account
corrections to the current, seagull, wave function, propaga
and energy due to the Breit HamiltonianH̃B@A#. The contri-
bution to the amplitude atv50 due toJB reads

Tc52^c0u@e2* •JBG0e1•Jnr1e2* •JnrG0e1•JB#uc0&

1~e1↔e2* !. ~B2!

The contribution due to the correction to seagull~the terms
in H̃B@A# being quadratic inA) reads

Ts5^c0u H S e1
2

m1
3

1
e2

2

m2
3D F ~e1•p!~e2* •p!1~e1•e2* !

p2

2 G
1

g2

m1m2
F e1•e2*

r
1

~e1•r !~e2* •r !

r 3 G J uc0&. ~B3!

The contribution connected with the expansion of propaga
with respect toHB has the form

Tp52^c0u~e2* •JnrG0HBG0e1•Jnr!uc0&1~e1↔e2* !.
~B4!
03250
of

e
r,

r

The contribution due to the correction to wave function is

Tw52^c0u@e2* •JnrG0e1•JnrG0HB

1HBG0e2* •JnrG0e1•Jnr#uc0&1~e1↔e2* !. ~B5!

At last, the contribution corresponding to the correction
the ground-state energy reads:

Te5d«0^c0ue2* •JnrG0
2e1•Jnruc0&1~e1↔e2* !. ~B6!

Using the results of Appendix A, we obtain the followin
expressions for the corrections:

Tc52
e1•e2*

3
g2m2S e1

m1
2

e2

m2
D F5mS e1

m1
3

2
e2

m2
3D 14

e12e2

m1m2
G ,

~B7!

Ts5
e1•e2*

6
g2mF5mS e1

2

m1
3

1
e2

2

m2
3D 1

8g

m1m2
G ,

Tp5
e1•e2*

12
g2m3S e1

m1
2

e2

m2
D 2F7mS 1

m1
3 1

1

m2
3D 1

12

m1m2
G ,

Tw5
e1•e2*

6
g2m3S e1

m1
2

e2

m2
D 2F9mS 1

m1
3 1

1

m2
3D 1

14

m1m2
G ,

Te52
e1•e2*

4
g2m3S e1

m1
2

e2

m2
D 2F5mS 1

m1
3 1

1

m2
3D 1

8

m1m2
G .

Summing up these contributions, we get

TB52e1•e2*
~e11e2!2

2M2
mg2, ~B8!

which is the second term in Eq.~B1!. Let us consider now
the contribution to the Compton amplitude atv50, con-
nected with the spin-dependent terms and the Darwin te
in Breit Hamiltonian. Note that all these terms are prop
tional to eitherd(r ) or to the operator (3ninj2d i j )/r

3. The
terms}d(r ) give the contributions toTw andTe . Using the
results of Appendix A, it is easy to show that the sum
these two contributions is zero. The terms}(3ninj
2d i j )/r

3 give the contributions toTw andTp . Again, direct
calculations show that they also cancel each other. There
we proved that the first relativistic correction to the Compt
amplitude atv50 is spin independent, which is in agre
ment with the low-energy theorem.
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@4# M.-Th. Hütt, A. I. L’vov, A. I. Milstein, and M. Schumacher,
Phys. Rep.323, 457 ~2000!.

@5# A. I. L’vov, Phys. Lett. B304, 29 ~1993!.
@6# P. C. Hecking and G. F. Bertsch, Phys. Lett. B99, 237~1981!.
7-10



B

to

tt. .

.

RELATIVISTIC CORRECTIONS TO THE . . . PHYSICAL REVIEW A 64 032507
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