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Relativistic corrections to the electromagnetic polarizabilities of compound systems
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The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary
masses, charges, and spins is obtained. A case in which the bound state exists due to electromagnetic interac-
tion is considered. The term, proportionaldd, is obtained taking into account the first relativistic correction.

It is shown that the complete result for this correction differs essentially from the commonly used égrm
proportional to the rms charge radius of the system. We propose that the same situation can take place in the
more complicated case of hadrons.
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[. INTRODUCTION scription of the electromagnetic polarizabilities of hadrons:
the MIT bag model[6,7], the nonrelativistic quark model

The electromagnetic polarizabilities and 8 are funda- [8—12, the chiral quark modef13,14, the chiral soliton
mental characteristics of the bound system. Their magnitude®odel [15,16, and the Skyrme moddl17,18. Here, we
depend not only on the quantum numbers of the constituentgpentioned only a small part of the publications on these
but also on the properties of the interaction between thestopics (see also reviey19]). Though much effort has been
constituents. Therefore, the experimental and theoretical ifdévoted to these calculations, all of them cannot be consid-
vestigation of the electromagnetic polarizabilities are of a€red as completely satisfactory. In particular, there is a prob-
great importance. In particular, their prediction and the comlem in the explanation of the magnitudes of proton and neu-
parison with experimental data may serve as a sensitive tod{on electric polarizabilities within a nonrelatlwstE quark
for tests of hadron models. Correspondingly, a large numbemodel. It was derived many years af20,2] that « can
of researchers have been attracted by this fascinating posdie represented as a sum
bility. The electromagnetic polarizabilities can be obtained

from the low-energy Compton scattering amplitude. In the — 2 (n[D|0)/[? Aq= A 192
lab frame, the amplitude of Compton scattering on the com- T34 E,-E Fha=actAa, (1.2
pound system of total angular momentu®s0, 1/2 up to
O(w?) terms read$1,2] whereD is the internal electric dipole operat¢@) and|n)
o L are the ground and excited states in terms of internal coordi-
T=Tgornt @w w6 € + B(k1 X €)- (kyX € ), nates, and, andE, the corresponding energies. The term
(1.1 Aw«in a has a relativistic nature and its leading term is equal
to
wherew;, K;, ande; are the energy, momentum, and polar-
ization vector of incomingi(=1) and outgoingi(=2) pho- eré
tons fi=c=1). The contributionTg,,, corresponds to the Aa= EVE 1.3

amplitude of Compton scattering off a pointlike particle with

spin, mass, charge, and magnetic moment equal to those \(th . .
5 eree and M are the particle charge and massg,is the
the compound system. For s 1, theO(w°) part of the electric radius defined through the Sachs form facher.

Compton scattering amplitude contains additional terms, pro: - 2
. . . ur definition ofrg absorbs a total chargeof the system.
portional to quadrupole and higher multipoles of the boun . : . S
he calculation of the quantityry in the nonrelativistic

system[3]. In particular, forS=1 there is a contribution uark model without relativistic corrections taken into ac-
proportional to the quadrupole moment operator. q .
count leads to the same magnitude a@f, for proton and

The investigation of electromagnetic polarizabilities is in- i Since\ i |t for th tron but ai
teresting not only for systems, bound by the electromagnetieelf ron. sinc& a 1S equal to zero for the neutron but gives

interaction, like atoms, but also for those bound by strong? Significant contribution te for the proton, one has a con-
interaction, such as atomic nuclgd] or hadrons[5]. At tradiction between the theoretical predictionffor nucle-
present there are many different approaches used for the dens and their experimental values, since the latter are close to
each other. In fact, this approach is not consistent, because
there are relativistic corrections @, that are of the same
*Email address: R.N.Lee@inp.nsk.su order asAa.
"Email address: A.l.Milstein@inp.nsk.su Starting from second-order perturbation theory, one gets
*Email address: Martin.Schumacher@phys.uni-goettingen.de  the following expression fow :
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2 (n|3]0)|2 where a=1/(ng) is the Bohr radius,g=—e;e,>0, u
ao=3 2 ————, (1.4  =mym,/(m;+m,) is the reduced massy=— ug?/2 is the
n#0 (En—Eop) ground-state binding energy in the nonrelativistic approxima-

_ _ _ _ tion, andc; are some quantities, bilinear with respect to
where J is the internal electromagnetic current. Using theel, € and depending on the ratio of charges and masses.
identity J=i[H,D], whereH is the Hamiltonian, one comes Here, for definiteness, we assume: ;. The two first terms
to the form Eq.(1.2) for an. The reIapwsUc correctlons'to of this expansion contain the paramegez1 in the denomi-
ao in Eq. (1.4 come from the corrections to wave functions pators and, therefore, come from the contribution of big dis-
and energies of the ground and excited states, and correctiQgncesr ~ a (or small momentg~ 1/a= g) to the matrix
to currentJ. In paperg 22,23, the relativistic corrections to glement. These two terms that have no contributions from the
the current operator and electric dipole operator were obgorn amplitude are the ones we are going to calculate in this
tained. In[24-26, some general expressions for the relativ-article. Since they are determined by a contribution from big
istic corrections to electric polarizabilities were obtained, bUtdistances(smaII momenty it is possible to use the nonrela-
no explicit calculations for a realistic system were made andjyistic expansion in the calculations. In fact, the first term is
the importance of these corrections was not realized. known and contains the contributions @f,, Eq. (1.2 and

Due to the relation betweehandD, itis clear thatthere g " Eq. (1.5), calculated in the leading nonrelativistic ap-
also is a relativistic correction to the electric dipole mome”tproximation(see below. Some contributions to the second
operator(see belowwhich is connected with the appropriate term are also known, namely, those containing the magnetic
relativistic definition of the center-of-mass coordinate. Thepolarizability Baias EQ. (1.5 and the correctioma, Eq.
neglect of this relativistic correction leads to an incomplete(1.3). These contributions come from the expansion of the
expression for, and the missing piece that is calculated in photon wave functions ovear ~ w/ g and from the expan-
the following turns out to be very essential. We expect thakion of the propagator of the system with respect to the pho-
the inclusion of all relativistic corrections allows one to re- ton energy and the center-of-mass kinetic energy of interme-
move the big difference between the predictions of the nondiate states. The corresponding resultsgoand A« can be
relativistic quark model for proton and neutron electric po-obtained using the nonrelativistic Hamiltonian of the system.
larizabilities du(_a to the d|fference_ma. S As was mentioned above, the other source of the contribu-

The expression for the magnetic polarizability in the non-tions to c,, which has not been investigated so far, is the
relativistic quark model with no exchange and momentum-elativistic correction to the Hamiltonian of the system and

dependent forces has the fof@il,27,2§ the corresponding corrections to the wave functions, energy
o levels, and currents. We will obtain the complete result for
B=Bparat Bdia the second term in the expansion E2.1). In the expression

5 _— 5 for the electromagnetic current, we neglect for a while the
2 3 |(n|M|0})] _(2 er(ry) N @) L5 dependence of the form factors on the momentum transfer.

345 E,—Eg T 6m; 2M |’ ' We will take this dependence into account at the consider-
ation of the general case of arbitrary spins.

where M is the internal magnetic dipole operator and the
summation in the second term on the right-hand $itlg) is A. The system of two spin-0 particles

performed over the constituent quarks,being the corre- Let us consider first the bound state of two spin-0 par-

sponding internal radius vector. ticles. In order to calculate the Compton scattering ampli-
In order to understand the importance of the different rela- ' P 9 P

tivistic corrections for the polarizabilities, it is useful to con- gg;’r;ﬂ'g ﬁgg\éef?é?;t(ﬁ) p:Jrf ttrr\]ii sgsée?;]én;gnt:;ag\);girgal

sider the example of a system where the relativistic CorreCHamiltonirgn has the for’m : ’

tions can be obtaineab initio. In this paper, we calculate the

low-energy Compton scattering amplitude for a system of 2
: . ~ 1 2 9

two particles with masses, , and charge®,; ,, bound by Hm[A]=2 + e Tro—ra’

electromagnetic forces. We consider the ca%ga@l, which My 2m,  [ry=ry

provides the validity of the nonrelativistic expansion. We

consider, in detail, the cases of spin 0 and 1/2 of the particle¥herem =p;i—&A(r;,t). Let us pass to the variablesand
and give the result for general case of arbitrary spins. R, corresponding to the relative and center-of-mass coordi-
nate:

2.2

Il. SCATTERING AMPLITUDES

m;
—r, M=m;+m,. (2.3

my
r=R+ ik r,=R-— M

For the electromagnetic interaction between particles, a
simple estimate shows that the padf Compton scattering

amplitude, proportional te? has the form Then, the momentg, are
’ (|

€p m
t=w?ad Cl+02;+03ﬁ+ ], 2.0 p1=—1P+ P, P2=7P-p 2.4
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whereP=—iV g andp=—i V,. ForA=0 we have _
Tres:_<‘/’O|eXF[_|(k1_k2)R]E§'

e "
Eplexq_l 2:T1)

2 P2 2 _
R, [A=0]=~ +H, ==+ 2 (25 e - ’ :
nr 2M "T2M 24 ' +m—2pz exp(—iky-rp) 80+w1_m_Hnr}
~ €, . €; .
The first relativistic correctiorg (Breit Hamiltonian, see, X € m, Pt exp(lkl-r1)+m—2p2 exp(iky-r2) |[ o)
e.g.,[29)]) to Eq.(2.2) reads
+(el<—>e’2‘, w1 — Wy, Ko —Ky). (2.9
2 2
Ag[A]= (=) _(_11%)? Here io(r) =7 Y ng)¥%exp(—ugr) is the wave function
8mj 8m; of the ground state, depending on the relative coordinate
Qi The final momentum of the bound system is equakio
9 (¢ S0 —k,. Using the relations E¢2.3) and Eq.(2.4) and making
—+——| 5. (2.6 X o
2mimy\ r 3 a simple transformation in order to cancel the exponents con-

taining R, we obtain

€1 my .My

m—l(p+ Wkl)exr<—lvk2'r)
my .My

p— Vk]_)(?X[{Iﬁk[r)

€1 .mzk € 'mlk
mlex Evu mzex i kar

X|¢O>+(El<—>€§, Wi — Wy, k]_(—)_kz). (21@

The first term in Eq.(2.6) is the correction to the kinetic

energy and the second one is the correction due to the magdtes= —{(tho| & -
netic quanta exchange, corresponding to the space compo-

nent of the photon propagator in the Coulomb gauge If e,
=0, then in the center-of-mass frame where the eigenvalue
of the operatoiP is equal to zero we have

G(wq)

He[A=0]|p-o=Hp

_ i+ 1 (p?)? 9 Here,G(w)=[g¢+ w— w?/2M —H,,] ! is the nonrelativis-
mi mg 8 2m;m, tic propagator of the system in the operator form. The seagull
) amplitude T4 is determined by first order of perturbation
y 5_”+E - 27 theory with respect to the terms H,,[A] which are qua-
r r3 PP ' dratic inA. Similar to Eqg.(2.10, we obtain
2
. . — * €1 .My
The terms, containing the operat®rin the Hamiltonian, Ts=—€1- € (il Hex |V(k1—k2)-r
determine the contribution of recoil effect to the Compton 1
scattering amplitude. Within the precision of the present cal- e m,
culations, these terms should be taken into account only in + m—zexr< —i W(kl—kz)-r | o). (2.11

the HamiltonianH,,, and can be omitted iflg (see below.
The correctionde to the ground-state energy, related to the

HamiltonianH g reads Performing the expansion of Eq.9) and (2.11) with re-

spect tok; , and w; , up to quadratic terms and using the
relation w; — w,= (k;—k,)%/2M, we obtain

Seo=(0[Hgl0y= —g 2t L+ |+ 2 2
80_< | B| >_ g 8M 3 m3 m;m, B % (el+ez) x 2 9 (i_ 3)
1 2 nr €1 € +e€-r6&w 2
(2.9 M 2pg*\ My My
. , _ e1+te (e € .
Let us start the calculation of the Compton scattering ampli- + M \me —[erxXky]-[ € Xkz]
tude with the amplitudeT,,, obtained with the use of the 9= \mg M
nonrelativistic Hamiltonian Eq.2.5). This amplitude can be 2 2 2
n 1 (e € 3 e &
represented as a sufy, = T,est+ T Of resonance and seagull — =+ —=—=|. (212
parts. The parfl,¢s is determined by the second order of 22\ md mi) 2mgzlm m,

perturbation theory with respect to the termsHp,[A], lin-
ear in the vector potentigh. In the laboratory frame it has There is no need here to distinguish betwegnand w, in
the form the O(w?) term. Therefore, we set; = w,= w in Eq.(2.12.
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The result Eq(2.12) is in agreement with Eq.1.2) and Eq. i[F, [A=0]+Fg A=0], Dyl (.17
(1.5, with ao calculated in the nonrelativistic approxima- " Pt
tion, since in our model

=e & — p_i i + L(r . )
e e m, 2m2]  2mymyr P (1P
Pty " my)
1 2
+(12).
2 e, e)\2 . .
aonr=={(o|DnrGoDn| tho) = - = The rhs of Eq.(2.17) is nothing but the operator of total
3 nr20%nrl Y0 4\ m m . T .
219 1 2 current in the lab frame, containing the total momentam

This can be verified by differentiating the Hamiltonian

Ago S8 eyr?+ ey _ete e e H.[A]+Hg[A] over A at A=0. Therefore, there are no
*T73Mm (ol esri+earalyo) = Mg? ' relativistic corrections to the total electric dipole operator
Dio:- The internal electric dipole moment operator is defined

2
mp  m;

(213  as
5 e, )2
(YoM ¢hns0)=0, (/D |lﬂo>_ o D=Dyor— (e1+€2)Rem, (218
my 2
where R, is the center-of-mass vector. This vector is de-
eir% e2r2 3 eﬁ €5 fined in such a way that it satisfies the following relations:
(ol | — |lﬂo>— -/
mg - m; o P
. L [Rems PI=1,  i[Hor, Reml= H. (2.19
Here,Gy is the reduced Green function in the operator form: tot
Go=[eo—Hn +i0] X 1—| o) (o). (2.14  whereH,, is the total relativistic Hamiltonian of the system,

andP is the total momentum. Within our accuracy, the sec-
The details of calculations of different matrix elements, con-ond relation in Eq(2.19 reads:
taining the operatoG, are presented in Appendix A.

We pass now to the calculation of the relativistic correc- =) ﬁnr[A:o]
tions to the electromagnetic polarizabilities, connected with i[Hn[A=0]+Hg[A=0], Reml =\ 1= — v —
the Breit HamiltoniarH g Eq. (2.6). We perform the calcula- (2.20

tions in the same way as at the derivation of E29) and
Eq. (2.11), but for the HamiltonianH=H,,+Hg. At the Itis known(see, e.g.[30]) that there is a relativistic correc-
calculation of these corrections within our accuracy the term&on to R.p, in classical electrodynamics. For the case of two

of the Hamiltoniand s[A], quadratic inA do not contribute particles interacting due to electromagnetic field, the corre-
to the electromagnetic polarizabilities, i.e., the seagull conSPONding operator that satisfies the relations @9 has

I ~ . he form[22,2
tribution from Hg[A] is absent. In the corrections to the the formf 3
electromagnetic polarizabilities from the resonance part of 2 2
; . 1 P1 g P2 g
the amplitude, we can take the second order of expansion R, =R+ =—|1{r;, 5—— =1 +1{rp, 5=— — =
with respect tow of the operator Green function and put 2M 2my  2r 2m, 2r
k;,=0 elsewhere. This means that within our accuracy, we

can neglect irHg[A] the terms containing the total momen- -
tum P and replace the exponents in the photon wave function

by unity. Therefore, the terms in the Hamiltonikts[A],  Here, we took into account the first relativistic correction and
linear inA, can be represented in the formA(0)Jg, where  yse the notatiofia,bl =ab+ba. In terms of the variables
andp [see Eq(2.3) and Eq.(2.4)] we obtain
3 ( € €
a=—| 2 -2

p_zp_ g(e;—ep) p+L(r-p)
m3 m3 2 2m1m2r r2 _ (mZ_ ml) [
1 2 (2.15 Rem=R+ ——— ~{r,Hm}+gr ,

2Mm?
is the correction to the operator of the total internal curdent \yhere the term proportional to the total momentimis

omitted. Substituting this expression into Eg.18, we ob-
tain the relativistic correction to the internal electric dipole

Let us now discuss the relativistic correction to the elec_moment.

tric dipole moment operator. In the laboratory frame, it is
equal toDy,=eqr,+e,r,. For the total Hamiltonian of the
system the following relation holds

2 2
P1 P2 9
R,2—m+———]). (2.2

2m, r

(2.22

\]:Jnr+\]B:(ellml_ezlmz)p+JB. (216)

_ (e tey)(m—
5 2M2

(2.23

mﬁ({th&+g;

032507-4



RELATIVISTIC CORRECTIONS TO THE .. .. PHYSICAL REVIEW A 64 032507

Note that, as should be the case, the operator of total internal

2uwie - € e e
current=J,,,+ Jg satisfies within our accuracy the relation te=— u(_l _2
9g? my mp
J=i[Hp+Hg,Dp +Dgl, (2.24 |20 2_2)4_8_9(61—62)
whereD,,, is defined in Eq(2.13), andH,,+Hg is the in- m; m3/ 4 wmm
ternal part of Hamiltoniajsee Eq.(2.5 and Eq.(2.7)].
Let us write down now the corrections to tid w?) term pro’e € (e, e\
of Compton scattering amplitude, related to the Breit Hamil- tp= 2 m_1_ E
tonian and the corresponding current. The correction due to g
Jg reads 1061( 11 25
288\ m3 m3/  3mmim,|’
te=-— w2< ¢O|[E§ 'JBGgfl"Jnr ! 2 (2.30
+6&-I3,,Gle - Jgllvo) +(e1—€5).  (2.29 plo’e- €5 (e, e,\%3[ 1 L2 14
g my mg) |2\ g) T oumum,
The O(w?) correction to the amplitude, connected with the
expansion of the propagator with respecHtg, has the form wlole, € | e e, 12129
2 1 2
ST L T
2 m; m 4
to=— (ol € - In [ GZHaGH+ GaHpGo g Lo
+GoHeGoler nlvo) + (a1 €5). (220 X > i+ 1 !
8lmi m3 mmm, .

The contribution due to the correction to wave function is

tw=— w2< 1ﬁ0|[€5c : Jangel' JInrGoHg
+HpGo€s - I Gaer- Inel| o) + (€1 €5).

(2.27

At last, the contribution corresponding to the correction to

the ground-state energy reads:

te= 3w2580< pol€ - Jnregel' Jnel o) + (€14~ €).
(2.28

In order to calculate the matrix elements in E3.25—Eq.
(2.28 it is convenient to use the following relatiorisee
Appendix A):

Ly
gl2"®

Gof ho=— o,

r{r? 5ar 5a®
Go”%:‘g(§+7+T Vo
(2.29
, 1 118’
Gor lﬂo——a 3 tar —T) 0

5 1/r* 5ar® 5a%? 15m*
GOr l//0=_§ Z+ 6 + 2 - 8 0>

where a=1/ug. Using (2.29 and also the relationp
=iu[H,,r], we get the following results for the contribu-
tions Eq.(2.25-Eq.(2.28

Representing the sum of all contributions in Eg.30 as
w’€, - € ang We obtain the following result forvog :

1/e; e,\?(121 113
BT g2lm my) \6u aMm
e, te e e m;—m
( 1 2) _1__2)( 1 2) (23])
Mg? \mp my/ 2mym,

If one starts the calculation af, from Eq.(1.2), then it is
easy to check that the first term in EQ.31) corresponds to
the sum of corrections due to modification of wave function,
propagator, and ground-state energy. The second term in Eq.
(2.31) corresponds to the contribution due to the relativistic
correction to the electric dipole moment EQ.23. There-
fore, this correction appears due to the correct description of
the center-of-mass motion. It is seen that the first term in Eq.
(2.3) has the same dependence on chargea@s while

the second term is similar tha , Eq. (2.13. Taking a sum

of apg, @o nr, @andAa, we come to the following result for

«a for the system under consideration:

— 1 (e &)\ 9 (121 113
Cougtlm m, 2 91 " am
(e;tey) |3 e €| (ejtey)

Mg? [2\mi m3/ 2mmp

Thus, the relativistic corrections ta, has reduced to a
renormalization ofeo,, and essentially to a modification of
Aa, Eq.(1.3). One can expect that the last statement is valid
not only for the system under consideration. Indeed, due to
the definition ofD, the correction tax related to the modi-
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fication of R, is proportional toQ/M, where Q is the total Compton amplitud¢32]. The only term that should be taken
charge of the system, and, therefore, has the same structurdo account in addition to those considered in the previous
asAa. subsection, is the spin-independent term in &935 (Dar-

As a nontrivial test of our method of calculation we Win term):
checked the fulfillment of the low-energy theorem for the

Compton scattering amplitude. Ab=0, this amplitude ~ mg(1+2k;)
should have the form SpHp= om? o(r). (2.36
1
2 2
T(w=0)=—¢ € M% —€ € (e1tep)” It follows from Eq. (2.39 that there is no correction to the
Eo M+egg current associated with the HamiltoniaiyHg. Using the
5 expressiong2.26—2.28 with the replacementz— SpHpg
o (ete)T e and the relations Eq2.29 we obtain
~ El. 62 —_— y
M M
(2.33 Spnw’e - € [ e 2
5DtC:0' 5DtW:_—2122 _l__Z) (1+2K1),
whereE,=M + g is the mass of the system. It is interesting, 8mig m;  m;
that the term in rhs of Eq2.33, proportional to the nonrel- (2.37
ativistic energye,, appears as a contribution of terms from 129uw?e; € (e, e,)?
the Breit HamiltoniarH g[ A], which we checked by explicit 9ptp=0, Jpte= 8m2g? (m_l_ m, (1+2k)
1

calculations(see Appendix B
_ _ _ _ As a result, the correction to the electric polarizability asso-
B. The system of a spin-0 particle and a spin/2 particle ciated with the Breit Hamiltonian in the system of spin 0 and

Let the first particle have the spin 1/2 and the secondPin 1/2 will be the sum ot Eq. (2.31) and
particle have the spin 0. Then we should add the term

31M el 92 2
~ el(l_|_ Kl) 5aOB:ﬁ H— m— (1+2K1). (2.39
SHn[Al=————s-H (2.34) mig\ M My
1
to the nonrelativistic HamiltoniaRl . [A], Eq.(2.2). Here,H C. The system of two spin-i2 particles
is the external magnetic field, = 0,/2 is the spin operator In the case of two spin-1/2 particles, it is necessary to

of the first particle, ande, is its anomalous magnetic mo- account for two Darvin terms in addition to the Breit Hamil-
ment in unitse;/2m;. There is also some additional contri- tonian Eq.(2.7), corresponding to both particles

bution sHg[A] to Hg[A], Eq. (2.7) (see, e.9.[29]). The

terms of SHg[A] linear ins; as well as Eq(2.34) determine 5DHB:M5(r)+M5(r)
the O(w) terms of the Compton amplitude. These terms are 2m§ 2m§
well known and follow, together with thev-independent (2.39

term, from the low-energy theoref1]. As it was explained
in the previous subsection, it is sufficient within our accuracyand the Hamiltonian, corresponding to spin-spin interaction
to account for the Breit Hamiltonian only in the long-wave [29]:
limit, i.e., at w; ,=0 in order to obtain th@®(w?) terms of

Compton amplitude. In this limit, the HamiltoniafHg[A] 5SHB:9(1+K1)(1+ K3)
reads m;m,
3(n-s))(n-8)—s;-s, 87
~ ee(1+2k 1 _ .
5HB[A]:_% 775(F)+r—351-(r><171) X /3 + 3 o(r)s s,
1
(2.40
elez(1+ Kl)
* S (MXm). (2.39  with n=r/r. It is more convenient to rewrité;Hg in terms

3
mym,r .
e of the total spin operatoB=s; +s,:

The explicit calculation shows that the contribution of

5H,,[A] given by Eq.(2.34 and the terms in Eq(2.35 _9(1+ &) (1+K5) | 3nin;Qjj +4775(r)(z82—1>
linear in o; do not lead to any contributions t© , in Eq. 2mym, 23 3 ’
(2.1, i.e., they can be neglected in the calculation of polar- (2.41)
izabilities within our accuracy. In particular, there are no

terms linear in the spin in the quantities,, which is in ~ where the operatd®;; , quadratic inS, is equal to
agreement with the general conclusion on the absence of

terms O(w?) linear in spin in the non-Born part of the Q=SS +SS— §5%;. (2.42

SHg
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Note that in such a system as positronium, it is necessary to e(1+k)
add the contribution of the annihilation diagram, which re- Ms=Ti5 4158, fi=— —,
sults in the replacement 8/3—1)— (7S%/6—1) in the co- '
efficient of the §-function in Eqg.(2.41) (of course, in this and using Eq(2.40, we obtain
casem;=m,, ;= —e,). As in the previous subsection, the 3(f,—f,)%a3
terms proportional to the-function in Eq.(2.39 and Eq. =- 2 2T e (2.47)
(2.41) give the contributionaog , which should be added to 16f,f, J7a
aog EQ. (2.31: As was pointed out in the previous section, for positronium,
it is necessary to change the coefficientsefunction in Eq.
5 31#( e ez)z 142k, N 1+ 2k, (2.41). As a result, the contribution of the first term in Eq.
aop 2g2\m; M, 2 2 (1.5 to the magnetic polarizability of positronium is
B1=*32ad (2.48
A1+ k) (1+ k) (2 ” _ .
+ =S(S+1)-1]]|. where upper sign corresponds to parapositronilse @),
My My 3 and the lower sign to orthopositroniuns<1).

(2.43 D. The system of two particles with arbitrary spins

Here, we replace®’ by its eigenvalueS(S+1), whereS Let the particles have the spirss , and magnetic mo-
=0,1 is the total spin of the system. The term in Eg43  mentsu, ,, which we represent in the form

containing the tensor operator r8(S)?>—S? determines the

contribution to theO(w?) part of the Compton amplitude, Ua= easa(1+ Kky), a=1,.2. (2.49
which has the form My

2 i ik The electromagnetic current for each particle has the form
Litensoy = @ arer €5 (Qjj), (244 (see, e.9.[33,34)

where(- - -) denotes the averaging over the spin part of the L=, P,+P, Gm Y

wave function. Of coursetcnsoy Vanishes ifS=0. Since Ju=(p)|Fe 2m +ﬁ2wq ¥(p),  (2.50
there is no correction to the current or to the energy of the ) o

ground state due to the tensor part&Hg, the contribu- Whereq=p’—p. The operatok ,, is a generalization of the
tions to -y come only from the corrections to the propagatorCO”eSpond'”g matrix for spin 1/2. The indices numerating

and to the wave function. Using Eq®.26 and (2.27), and the particles have been omitted. The quantifigsand G,
the relationgsee Appendix A depend om? and (s,q*)?, wheres,, is the four-vector of the

spin operator. These quantities are normalized as follows:

Go(3rir;—r28;)| o) Fe(@=0)=1, Gn(q=0)=1+«x. (250
3rirj—r2s;
N

r a

L2 If we neglect theg dependence of the form factors, then, in
3 2

| o), addition to the Breit Hamiltonian for two spin-0 particles,
Eq.(2.6), it is necessary to take into account the Hamiltonian
Eq. (2.40 (with the corresponding spin operatpend two
other contribution$33]. Namely, the Darwin Hamiltonian

Go(3rir;—r28;)r| o)

3rirj—r2s; 7a2+7ar+r2>| )
= — — —_— —_— ar
g9 8 12 4 ¢0>’ opHp= 3_2(1+2Ka)(sa+ L) o(r), (252
=12 3m
(2.45 : a
. {=0 for integer spin and’=1/4 otherwise, and the term
we obtain containing the quadrupole moments of the particles
2 g(1+2k,) €
oy - HATIOAT ) (81 C2 )7 4 SHe= 2, =— —-—[3(n's)*~], (253
40Mg? m; m a=12  2mgr

. ) . . £=1/(2s—1) for integer spin and= 1/(2s) otherwise. It is
In the system of two spin-1/2 particles there is a big paragjear that all matrix elements can be calculated in the same
magnetic contribution to the magnetic polarizability from theWay as in the previous subsection. The averaging over the

first term in Eq.(1.5). The main contribution corresponds to spin variables can be done using the following relations
the transition from the ground state with the total s@in

=0 to the state witt6=1, with both states having the same 2 ,
angular momenta=0, and radial quantum numbens=0 (SS| 8182+ 82181~ 55”51'52 S:S)
(hyperfine splitting. Representing the spin part of the mag-

netic moment operator in the form =A(S,51,52)(SS|QjISS,),
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2 Since the terms in this Hamiltonian have the same structure
(SS|s1iS1j+ 511815~ §5ijﬁ 1S,S)) as above, it is easy to write down the result for the corre-
sponding corrections to polarizabilities:

=B(S;51,52)(SS[QjIS,S)), (2.59 )

_62ufer &)\, 2 .2
whereS=s; +s, is the total spin operatof;; is defined in 5f“08—p s (TermTshatrea—reha),
Eqg. (2.42, and forS=1 9 ! 2

' , (2.60
AZ42A (N1 +Np)—3(A1—\y)2 47u ( e ez) 5
= Sjar=———|———| [r5B(S,s.,s
A(S,s1,S5) PA(4A=3) , faT a0g2\m; my [rsiB(S,s1,S2)
2.5
B(S,s1,S,) 259 +15B(S,s5,51)].

3AZ+A(2N1—6N5—3)+3(A1—Ap)(N\;—\p—1)  If the parameters of the form factorg ;~1/m?<a?, then
- 2A(4A—3) - the contributions Eq(2.60 to the polarizabilities are of the
same order asrog. The first relativistic correction to the
Here, A=S(S+1), Ny ,=S; AS1,+1) are the eigenvalues Compton scattering amplitude at=0, Eq.(2.33, is propor-
of the operatorss? and iz, respectively. FoiS=0,1/2 we tional toey,=— 19?2 and is independent of the spins of the
put A=B=0. As a result, we obtain the following generali- constituents. Then, the correction to the amplitude» &0

zation of Eq.(2.43 to the case of arbitrary spins: connected with spin-dependent terms in Breit Hamiltonian as
well as the Darwin term&lso having the spin origjrshould
62ufe, € \31+2k, 1+2ky vanish. This statement was checked expliciige Appendix
2B S T 7 (Ss1t i)+ —— B).
39 1 2 mj m; . , _—
Let us consider now the paramagnetic contribution to the
2(1+ k1) (14 1) magnetic polarizability from the first term in E¢lL.5. Let
X (Sy+ o)+ (A=N1—Ny) |- $1=S,. Then, the total spin of the ground state Ss=s;
My Ma —S,, and the main contribution corresponds to the transition

(2.56 from the ground state to the state wii+s;—s,+1, with

both states having the same angular momentus(Q, and

The generalization of Eq2.46) is radial quantum namber, =0 (hyperfine splitting. A simple
explicit calculation leads to

47M el EQ)Z 2(1+K1)(1+K2)A(S ) ) 3
= oM m 151,82 f1—f2)%sy(s;+1)a
2092\ M m mym, Bl:_( 1—f2)%sy(s:+1) . (2.61
4f fo(s;—5,+1)?
1+2K1 l+2K2
2 §1B(S,s1,57) + 2 §2B(S,s;,51) |- This term should be added to the diamagnetic contribution
. 2 Buia [se€ Eq(2.12]:
(2.57
_ 1[e e 3 (e &)\
Let us now take into account tleedependence of the elec- Bdia=— - 5| 3+t 3|~ .
- - e 2¢2\m? mi/ 2mg2\lmi m,
tromagnetic form factors of the constituents defined in Eq. 9 1 2 9
(2.50. We assume, that the scale of variation of these form (2.62
factors are much larger than the typical momentum transfer
~ rg. In other words, the characteristic size of each constitu- ll. CONCLUSION

ent is much smaller than the size of the whole sysgem
=1/ng. In this case it is sufficient, within our accuracy, to
takeG,,= 1+ « and to expand the form factét, up to qua-
dratic inq terms,

We have obtained the complete result for the first relativ-
istic corrections to the electromagnetic polarizabilities, in-
cluding the tensor part that exists for the total spral. We
demonstrated that, within our accuracy, this tensor part con-

122 r2s q)? tains the quadrupole moment of the system and not any
, , 9° risa) . . . o ar
Fe(g%,(s#q,)9)~1— - T (2.58  higher multipoles. For the system of two spinless particles it
is easy to check that the total relativistic correction Egs.
(2.13 and(2.3]) is negative at arbitrary masses and charges.
In the general case of nonzero spins and arbitrary anomalous
magnetic moments, the relativistic correctiadhia+ aqg
+ dapg, Wheredapg is given by Eq.(2.56), can be posi-
2 3( ~n)2—é tive. It is interesting to consider some special cases. The first
SiHg= E Lg(rZ —r2 é)g(r)Jrgrz Sa _ of them is a hydrogenlike ion. In this case;=e, e,
aSip| 3 62 %@ @ 3 =—Ze, andm,>m;. In the limit m,— the result for elec-
(2.59 tric polarizabilities is independent of the spin and magnetic

whererg,S are some constants. Multiplying tf@(g?) terms
in this expression by-4g/g? and performing the Fourier
transform, we obtain the additional terms in the Hamiltonian
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moment of the nucleus. Neglecting also the anomalous magf the authors(M.S.) thanks Deutsche Forschungsgemein-
netic momentk, of the electron, we obtain from EqR.12), schaft for the support of this work through Grant Nos.
(2.13, (2.3), and(2.43 Schu222 and 436RUS113/510.

9 14

2miad 7% 3miagZ?’

a= (3.0 APPENDIX A

In this appendix, we derive the formulas for the result of

where a,=e?=1/137 is the fine-structure constant. Note the action of the operatdg,, Eq. (2.14, on the wave func-
that in this limit, the correctioth a , Eq. (1.3), vanishes. The tion [#), multiplied by some polynomial of. More pre-
result Eq.(3.1) is in agreement with that obtained 84,35  Cisely, we obtain the expression G m(r/r)r" i) in the
with the use of the reduced Green function of the Dirac equaform of the producty,(r/r)P(r)|¢o), whereP(r) is some
tion for an electron in a Coulomb field. For the magneticpolynomial. Since the Hamiltoniall,, commutes with the
polarizability ats,=0 we have operator of angular momentuis=rXp, we can make the
following transformation:
BB Bz B2 (o) = Yin( /G- St

For s,=1/2 in the limit m,>m, there is a very big contri-
bution from the paramagnetic part of the magnetic polarizypere G =Teo—HO+i0]7L, HO = —(2ur)~1a2r +1(I
ability, Eq. (2.47). In the Compton scattering amplitude this +1)/(2ur
contribution should be taken into account only for photon
energieso much smaller than the energy,~ s, m3/m, of
the hyperfine splitting. Foug?> w>E,; the paramagnetic
contribution should be omitted. N n L (nE2)b

Another interesting example is positronium. As we men- (r=(olr"lvho)= on+1 &
tioned above, in this case, it is necessary to repla&?/g2
—1)—(7S%/6—1) in the coefficient of thes-function in Eq. o
(2.41) due to the contribution of the annihilation diagram. Wherea=1/ug. In the derivation of Eq(Al) we used the
Puttingm;=m,=m, ;= —e,—e, and k= k,=0, we ob-  identity
tain Ae=0 and the complete result for the polarizabilities

2)—gl/r is the radial Hamiltonian with the angular
momentuml, and

(A2)

(L= o) Po) Yim(r/e)r " ¢ho) =Yim(r/r)(r"—= 8,6(r™)) [ tho).

_ 36 1 —1001 for S=0
a= + ,
(Magm)® 6maey| 735 for S=1 For our purposes, it is sufficient to consider the cases
3.3 —1 for |#0 andn=1 for [ =0. It is easy to check that in
(3.3
_ s 24 4 these cases one can represent the result of acti@f bin
B=(-1) P e rhs of Eq.(Al) in the form
em em

As in the previous case, for photon energwagmm the | ~
paramagnetic contribution should be omitted in the Compton G(r"=81o(r™)| oy = kz Cur o), (A3)
scattering amplitude. -0

For S=1 (orthopositronium we also have the tensor po-

larizability where C, are some constants to be found. Acting on both
sides of this equation with the operatgy—H!) and collect-
47 34 ing the coefficients with different powers of we obtain
aT 20m3aem- (3.9
\ wo Ma+y o A=-0d+2)
Thus, we have shown that the complete set of the first rela- "~ 8io{r") =~ Cor “=—— —Cur

2 2u

tivistic corrections differs essentially from the commonly

used termA «. We suppose that for the electromagnetic po- = [(k=14+2)(k+1+3)
larizabilities of hadrons investigated within the constituent +k20 ( 21 k+2
guark model an analogous situation may be found.

_ k
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ity during his stay, when a part of this work was done. Onecasen=|—1, | #0, we finally obtain
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GoYim(r/o)r" go) The contribution due to the correction to wave function is

(n=1+DlI(n+1+2)! Tw= _<¢0|[€; -JInrGo€1-InrGoHp
g(2/a)"*Y(n+1)!

—Yim(r/r)

+HgGo€; - InGo€r Incl| o) + (€1 €5). (BS)
$ (k=D - . .
X 2 (K= )T(kF] +1)'| o). (A5) At last, the contribution corresponding to the correction to

the ground-state energy reads:

For the casen=1, | =0 we have
Te= 580( lﬁo|€’£ "]an(z)El"]nr| ¢0>+(51<_’ 6;) (B6)

n+2)! 1/ (2ria)k  k+2 _ _ . .
Gor " o) =— (—)+1 — %— —— || o). Using the results of Appendix A, we obtain the following
g(2a)"t iz kK \(k+1)t 2 expressions for the corrections:
(A6)
*
Using the formulagAd4) and (A5), one can easily calculate __ €1 & gzﬂz(ﬁ_ 2) & &) &
all matrix elements needed. 3 m; m mf mg myms, |’
(B7)
APPENDIX B
* 2 2
In this appendix, we check the fulfilment of the low- _&ae 92u| 5 e ) 8g ,
energy theorem. Namely, we reproduce the two first terms of ° 6 2 om3) mmp
the expansion with respect /M of the Compton scatter-
ing amplitude atw=0: € € , o[ €1 € 1 1 12
(e,+€,)2 €0 12 m; my m;  my/ mmy
T(w=0)~—el~e§T 1_M . (B1)
€6 , e &)’ 1 1 14
In fact, the first term is contained in E(2.12. In order to Tw= g IH m, m, 9 m’ + m3) " mm,)|’
obtain the second term, we have to take into account the
corrections to the current, seagull, wave function, propagator, * 2
. K L~ ; €1- € 5 3 el ez 1 1 8
and energy due to the Breit Hamiltoni&tg[ A]. The contri-  To=— 7 g u o S5ul—m + —3 |+ ol
bution to the amplitude ab=0 due toJg reads 1 2 my  m 2
= — (o[ € - IgGo€r- i+ € - IneGoer- Jal| tho) Summing up these contributions, we get
+ (€, €). B2 (e;+e,)?
( 1 2) ( ) TB —€- 6; #MQZ, (B8)
The contribution due to the correction to seaditlie terms

in Hg[A] being quadratic irA) reads which is the second term in E¢B1). Let us consider now

2 2 02 the contribution to the Compton amplitude at=0, con-
1,22 d with the spin-dependent terms and the Darwin terms
T, ) A oV (€ &) necte p p
<¢o|[ mf mg (e-p)(e-p)tie &) 2} in Breit Hamiltonian. Note that all these terms are propor-
tional to eithers(r) or to the operator (8n;— 5ij)/r3. The
9° | €€ (€-1)(€ 1) termso §(r) give the contributions t@,, andT,. Using the
+ mm,| T + 3 |1ho).- (B3 results of Appendix A, it is easy to show that the sum of

these two contributions is zero. The terms(3n;n;
The contribution connected with the expansion of propagator- 9j)/r° give the contributions t@,, andT,. Again, direct

with respect taHg has the form calculations show that they also cancel each other. Therefore,
we proved that the first relativistic correction to the Compton
To=—(¥ol(& - InGoHgGoe€r- In)) | ¥ho) + (€1 € ). amplitude atw=0 is spin independent, which is in agree-

(B4) ment with the low-energy theorem.
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