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Quantum entanglement and entropy
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Entanglement is the fundamental quantum property behind the now popular field of quantum transport of
information. This quantum property is incompatible with the separation of a single system into two uncorre-
lated subsystems. Consequently, it does not require the use of an additive form of entropy. We discuss the
problem of the choice of the most convenient entropy indicator, focusing our attention on a system of two
qubits, and on a special set, denotedbyrhis set contains both the maximally and partially entangled states
that are described by density matrices diagonal in the Bell basis set. We select this set for the main purpose of
making our work of analysis more straightforward. As a matter of fact, we find that in general the conventional
von Neumann entropy is not a monotonic function of the entanglement strength. This means that the von
Neumann entropy is not a reliable indicator of the departure from the condition of maximum entanglement. We
study the behavior of a form of nonadditive entropy, made popular by the 1988 work by T3afiiat. Phys.

52, 479 (1988]. We show that in the set, implying the key condition of nonvanishing entanglement, this
nonadditive entropy indicator turns out to be a strictly monotonic function of the strength of the entanglement,
if entropy indexegy larger than a critical valu€ are adopted. We argue that this might be a consequence of
the nonadditive nature of the Tsallis entropy, implying that the world is quantum and that uncorrelated sub-
systems do not exist.
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I. INTRODUCTION these authors a new kind of entropy indicator is made nec-

essary by the following deep difference between quantum

Entanglement is the fundamental quantum property beand classical information. In classical measurement the
hind the interesting process of quantum teleportation proShannon information is a natural measure of our ignorance
posed some years ago by Benregtal. [1]. For this reason it about the properties of a system, whose existence is indepen-

is important to quantify entanglemef]. It was also found dent of measurement. Quantum measurement, conversely,

S L cannot be claimed to reveal the properties of a system that
that the fidelity of the quantum teleportation is always Iarg(.arexisted before the measurement was made.

than that of any classical communication protocol, EVeN N1 this paper we focus on the earlier mentioned quantum
the noisy environmeri3]. However, for the teleportation (0 . hery essential for teleportation of information: entangle-
take place perfectly, it is necessary for the sender and thgent Entanglement implies that a system cannot be divided
recipient[1] to share a maximally entangled state. This gen-nto two uncorrelated subsystems; this, in turn, makes use-
erates the need for special purification protocols. On thgags the ordinary request for an additive form of entropy.
other hand, a statistical analysis of these protocols sharegys in this paper we explore and discuss the possible ben-
deep similarities with the second principle of thermodynam-fits stemming from the adoption of the nonadditive entropy
ics [4—6]. indicator advocated years ago by TsaJlid]. The choice of

In spite of the plausible conjecture that there exists a deefhe Tsallis form of nonadditive entropy for systems that can-
connection between quantum teleportation and thermodynot be divided in uncorrelated subsystetie nonextensive
namics[4—6], the entanglement is expressed by means of agase was made compelling by recent work of ABEZ]. This
entropic structure, the conventional von Neumann entropyis so because this author proved that the three axioms mak-
only in the case of pure states. In general the definitions oing the Shannon entropy a unique form of the extensive con-
entanglement dictated by the purification protocol are notlition can be properly generalized so as to make the Tsallis
directly related to entropy indicators. Cerf and Adajlf  entropy a unique form of the nonextensive case.
showed that the conditional von Neumann entropy can be- The Tsallis entropy is applied to a large number of physi-
come negative, thereby pointing out the nonordinary infor-cal conditions, characterized by the existence of extended
mation aspects of quantum entanglement. However, the reaorrelation[13]. The use of this form of nonadditive indica-
son for the lack of a direct connection between quantuntor in the field of quantum teleportation, to the best of our
entanglement of mixed states and the entropy indicator iknowledge, was discussed in only a few papglrd—17.
probably that, as shown in this paper, the von Neumann erReferencd 14] claimed to the realization of a greater sensi-
tropy is not a reliable indicator of entanglemdnf]. The tivity to the occurrence of a dephasing process, resulting in
inadequacy of the Shannon information, and consequently dhe annihilation of any form of entanglement. References
the von Neumann entropy as an appropriate quantum gendrt5—17 pointed out the efficiency of Tsallis entropy for the
alization of Shannon entrodg], was already pointed out by detection of the breakdown of local realism. Referefidg
Brukner and Zeilingef9,10]. It is notable that according to aimed at proving that the Jaynes principl®,19, applied to
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the nonextensive entropy, naturally yields an entangled state. lll. TSALLIS ENTROPY AT WORK: ENTANGLEMENT
The present paper, although based on an adoption of the OF FORMATION
Tsallis nonextensive entropy as in REE6], adopts a quite . . . .
different perspective, which does not rest on the adoption o\fN In this section we derive _th.e_ centrall result of this Paper.
the Jaynes principle. e sho_vv t_hat in the case of initial and flr_1al states, both_W|_th
The outline of the paper is as follows. Section Il is de- nonvanishing entanglement, and described by a statistical
density matrix diagonal in the Bell basis, the Tsallis entropy

voted to a concise illustration of the main properties of the

nonextensive entropy at work in this paper. Section Ill ge.decreases upon an increase of the entanglement of formation.

voted to the entanglement of formation, shows that the vor-lrhe results of this section refer to the entanglement of for-

Neumann entropy, in general, is not a monotonic function of" ;\tg)rngo;ecl)ff (?or?%/asi;eerg g]; twgsgigltgtsh;Zuvsv,eto i\r/re]:agecf)miise
entanglement, while the nonextensive entropy is a monotonf 2P P ' 9

cally increasing function of the entanglement for suitably'llgiittri“?hnato:hghgni(:g gsﬁ'aeﬁrergfeer?t?ggleef?;igtwmgu?::}n
large values of the entropy index. In Sec. IV we study theP Y property y

entanglement of a de-phasing process, and we extend tﬁéﬂblgwty for pure statgldl]. The entanglement of formation

. ' . . extends to the statistical case the ordinary definition as fol-
monotonic properties of nonextensive er_1tropy FO a cond|t|oqows Let us denote by the statistical densi)t/y matrix for the
more general than that of Sec. Ill. Section IV is devoted to . ™ (1)© «(2) . .

; mixed state of a spac®;;;X Sjj; of two spin-1/2 particles.
concluding remarks. ;
The entanglement of formatiof21], denoted by the symbol

Er throughout, is defined as the minimum average entangle-

Il. NONEXTENSIVE ENTROPY ment of every ensemble of pure states that represgnts
The entropy indicator applied in this paper has the form
Er(p)= min > PE(|ay)), 3)
p—pY p=2iPilaj)(e] !
Sq(p)=Tr -1 1)

where E(]a;)) denotes the entanglement of a pure state,
which is defined according to the usual prescripti@h by
This form was originally proposed by Tsalljd1] for the  the expression

purpose of establishing the most convenient thermodynamic

perspective for fractal processes. It is worth remarking that E(Ja))=—Tr(palog, pa)=— Tr(pglog, pg), (4)

this is a generalization of the conventional Gibbs-Shannon

entropy indicator, whose explicit form is recovered from Eq.With

(1) in the limiting caseg— 1. This entropy indicator does not

fit the additivity condition, namely, the requirement that the pa=Trap,  pe=Tryp. ®
entropy of a systenA+ B, consisting of two statistically in-
dependent subsystemsand B, be the sum of the entropies
of these two subsystems. In fact, the definition of EL.
yields, in this case, the equality

Wootters, in an enlightening papg20], derived an ex-
plicit formula for the entanglement of formation of any arbi-
trary mixed state of a system of two qubits. This formula
reads

Sq(A+B)=S¢(A) +54(B) +(1-a)Se(A)Sy(B),  (2)

14+J1—C?(p)
— | (6)

EF(p>=h(

making it evident that the additive property is recovered only

in the caseq=1, which, as noted earlier, makes the nonex-where

tensive entropy of Eq(l) become equivalent to the usual

Shannon entropy. h(x)=—-xlog, Xx—(1—x)log,(1—X). @)
According to Tsallis and to advocates of this nonextensive

entropy indicator(for a review, see Ref13]), the violation ~ The quantityC(p), referred to by Wootters asoncurrence

of the additive condition turns into a benefit when this en-is defined by

tropy indicator is used to study cases where the ideal condi-

tion of statistical independence is prevented by the nature of C(p)=maxO\m,—Ni—Ay—\g}, 8

the processes under stuf3]. Notable examples are pro- ,

cesses with long-range correlatida3]. We believe that WN€réAm, A1, A3, andh; are the square roots of eigenval-

quantum entanglement, which is the basic property for teleues of the matriyp, setin a decreasing order, wikf, being

portation[1], is probably the most evident example of a con-the maximum eigenvalue. The matrix denotes a spin-

dition incompatible with the existence of uncorrelated sub-lipped state:

systems. For this reason, the additivity condition can be

safely renounced, and the adoption of an entropy ingex ;E(Uy@) o) p* (oy@ay). 9

#1 might turn out to be beneficial. This paper is devoted to

discussing to what extent this conjecture proves toThe values of the entanglement of formation range from O to

be correct. 1. FurthermoreEg is a monotonically increasing function of
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C. The values of the concurren€® in turn, range from 0 to  discuss the problem of detecting this increased entanglement
1, as the values oEr do. Consequently, the concurrence with the Tsallis entropy. We found it to be relatively easy to
itself can be considered as a proper measure of the entanglestablish this important result within the SetHowever, we
ment of formation. Note that the entanglement of formationcannot rule out the possibility that this property is shared by
is the only kind of entanglement studied in the present papeany other set of states, resulting in the concurrence being an
For simplicity, we shall often refer to it simply as entangle- increasing function oP,,. In all these cases we might find

ment. the same property of the entropy being proportional to the
inverse of the entanglement.
A. On 7, the working basis set for a system of two qubits It is worth anticipating an aspect of fundamental impor-

tance. The plausible reason why, as we shall see, the inverse
of the Tsallis entropy indicator is a successful measure of
entanglement, in the s@t is the following fundamental fact:

3 The nonextensive nature of Tsallis entropy would make
> Siai) sense only in a world where it were impossible to create
i=1 uncorrelated systems, and consequently, a vanishing en-

The most general expressif22] of a mixed state of the
spaceS{he S is
3

E rio;
i=1

®1+1®

ey
P=16| %

3 3 tanglement. In fact, the Tsallis entropy is not the sum of the
entropies of the parts, not even when these parts are uncor-
+.=21 ,—2‘1 tijgi@oi]’ (10 related. The condition that we set, of nonvanishing entangle-
ment, as stated earlier, is equivalent to ruling out the occur-
wherer; ,s;, andt;; are real parameters. Due to the excessivaence of a splitting of the system into two uncorrelated parts.
number of involved parameters, the direct use of this expresFherefore, it corresponds to an ideal condition for the appli-
sion would make the calculation too complicated. For thiscation of the Tsallis entropy. We shall come back to this
reason we decided to limit our investigation to a set definedmportant issue in Sec. IV.
by

J={p:C(p)=2P,,—1>0}, (12) B. Parametrization of thg eigenyalues of the statistical
density matrix

whereP,, denotes the greatest eigenvalue of the density ma- pyare we adopt a perspective of thermodynamic kind, in-
trix p describing the quantum state. On behalf of future de‘spired by the lines proposed by Plenio and Veddl We
velopments, we remark that the conditiéh,>1/2 makes  455ume that a purification protocol yields an entanglement
this maximum value unique. The adoption of theseds our changeAE, . We aim at establishing a change of the nonex-
working set, does not rule out the possibility of consideringiensjve entropy corresponding to the same “thermodynamic”
physical conditions of interest for the field of quantum tele-yansformation. To solve this delicate problem we imagine
portation. In fact, the seX contains states with positive en- e statistical density matrip, belonging to the sed, to be
tanglement of formatiofi E(p) >0] that are described by 5 function of a real parameta, belonging to an interval
d_ensity matrices corresponding to the solution of the €quar¢,  ¢,], which can be thought of as playing the same role as
tion that of variables like pressure, temperature, and volume in
~ the state transformations in ordinary thermodynamics. We
pP=p-- (120 assume that the initial and final conditions correspond to

These density matrices, recently used by Benee#l. [21] p(£1) and p(&,), respectively, so thaTAEFEEF(p (£2))
(also see Ref.23]), become diagonal when expressed in the EF(p(g_l))' We set th_e d_ependence;mbn ¢insucha way
Bell basis set. The s&f contains entangled Werner states as to fulfill the constraint _|m_pqsed by the norm conserv_atll(_)n
[24] as well as maximally entangled states. We also note tha}' # = 1. @nd, among the infinitely large number of possibili-
any mixed state can be brought into a diagonal form in thé'_es fitting these conditions, we select_the form most conve-
Bell basis set by random bilateral rotatidi#4]. This implies ~ Ment for the purpose of evaluatingdSy=Sy(p(¢2))
that, in spite of the simplification made, our discussion is still ~ Sa(P(£1)). Let Py, be the largest of the four eigenvalues of
rather general. The problem under discussion here is the si§l€ Statistical density matrix, and let us denote the other
nificance of the Tsallis entropy as a measure of entangld!1'€€ €igenvalues by, ,P,, andPs. These eigenvalues are
ment. The working set of states that we selégtdoes not ~ @sSumed to be functions of the paramefaevith the follow-
conflict with the possibility of discussing this issue with ref- INg condition: in the whole intervdl¢,, ], we have

erence to one of the relevant physical conditions recently P_(&)>1 (13)
examined by investigators in this field of reseaf2h,23. In m 2

fact, we shall study the change of the Tsallis entropy indica- I I .
tor upon the entanglement change of a given pair of particles-l.-he derivativesiPy,/d¢ and_d.Pj /dg, with | ranging from 1
3, are assumed to be finite. The norm-conservation con-

This change might be the result of a purification process suclp 3 -
as that studied by Bennett and co-work¢?4,23. These straint enforces the condition

authors discussed the purification of a pair of Werner states,

showing how to increase the entanglement of formation of de: dP, dP, dP;

one pair at the price of decreasing that of another. Here we dé dé  dE  dg- (14)
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As pointed out earlierconcurrenceis equivalent to the not correlated to that of the entanglement, and that conse-
entanglement of formation and, in the Setconcurrence is a quently the von Neumann entropy is not an adequate en-
strictly increasing monotonic function oP,. Thus the tanglement indicator.
change ofP,, will be either positive or negative according to
whether the entanglement change is positive or negative.  p. Search of critical entropy indexes as a function of theg

We shall assume that in the whole interya& ,¢,] the transformation of the statistical density matrix
derivatived P,,,/d¢ is either always positive or always nega- eigenvalues

tive. As stressed earlier, this convenient choice is legitimized The theoretical developments of this subsection show that
by the fact that, as in ordinary thermodynamics, we are con- P

sidering a state transformation, consequently both the ejhe ;a"?:ﬁ‘ c:ft:]he vonNNeumann ert1tropy Is aﬁ;clmse?jut?]nce of
tanglement and entropy changes depend only on the initi pe actthat the von INeumann entropy meg and this

and final states, and are independent of the paths used tropy index is smaller than, or equal to, a critical value
connect these two states. (p1,p2), wherep; and p, denote initial and final states,

respectively. In Sec. Ill E we shall show, in fact, that tpr

>Q(p1,p2) the nonextensive entropy becomes a monotonic

function of the entanglement strength, inversely proportional
Here we show that the von Neumann entropy, namely, théo it: the conditionAE>0 yieldsAS,<0, while the condi-

quantum version of the Shannon information, turns out to beion AEE<0 yieldsAS,>0.

inadequate as an entanglement indicator. This is so because, First, we show that the property that we plan to prove is a

as we see, the von Neumann entropy can either increase plausible property. For this purpose, let us study ¢hee-

decrease, corresponding to the entanglement charkge, rivative of the nonextensive entropy. This quantity reads

regardless of whether the entanglement change is positive or

negative. This conclusion agrees with the remarks in the re- dSq qPq tdp, ° (dPy| 7t P\ tdP,

cent work by Brukner and Zeilingg®]. dé¢ qg-1 dé E de P de
We note that to prove the inadequacy of the von Neumann (19)

entropy as an indicator of entanglement, it is enough to find

a case where the sign of the entropy change is not strictiyve remind the reader th&,, is the largest eigenvalue of

determined by that of the entanglement change. Thus let ugiereby implying the property

consider the special physical condition corresponding to

C. Failure of the von Neumann entropy

P;
dP, 0= —1<1. (20)

—= P

dz 0 (15 m
_ ) By using these inequalities and the assumption, made in Sec.
in the whole interval ¢;,£,]. The von Neumann entropy, ||| B, that the derivatives P;/d¢ anddP,,/dé are finite, we
corresponding toq=1, and consequently denoted &g, obtain

reads
I 1+E ( )q 1<dp )1(dpj) 1 (21
im — =1
S1(p)==PrInPrn— 2 PjInP;, (16) gt Pm dé dé
=
and its dependence upon the paramétis given by This simple re;ult impligs thagreat enoughvalues of the
entropy index yield the important property
ds; dP, (Pm> dpP, (Pz)
T 17) dE dpP ds,
dé d¢ dé F om
’( ag |9z | "9 w ) @2

Let us consider, for example, the cate,,/dé<0. As noted

earlier, in this case when the entanglement of the mixed stawhich, in turn, means that increasing entanglement inéthe

is a strictly decreasing function of, the entanglement transformation yields a decreasing entropy, and vice versa.
changeA E- must be negative. However, using E(E5) and After proving the monotonic dependence of the nonexten-
(14) we see that the sign afS; /d¢ depends on the special Sive entropy on the entanglement strength in the asymptotic
values selected for the parametd?s,,P,,P, and for the limit, we now illustrate a recipe necessary to determine the
correspondingé derivatives. Thus it is possible to realize critical entropic index, namely, the value gtbeyond which

either the inequality the monotonic dependence of entropy on entanglement is
insured. More precisely, we provide the recipe for two criti-
dP,, sz Pl Pm cal indexes, rather than one, according to whether we con-
Inj —1, (19 ; ;
dg df P, sider the case of entanglement decrdasse(a)] or increase

[case(b)]. These two critical entropic indexes are denoted by
which would lead to an entropy increase, or the opposit€Q*(&;,&,) and Q**(&1,&,), respectively. This means that
inequality, which would yield an entropy decrease. ThisAS,>0 if AE<0, andAS;<0 if AE>0, provided thag
proves that the sign of the von Neumann entropy change i Q*(&1,&,) andq>Q**(&4,¢,), respectively.
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The critical valuesQ*(&;,&,) and Q**(&,1,&,) are de-
fined as follows:

Q*(é1.€2)= sup {d"(&)}, (23)
§€[§1,§2]

Q**(é1.€2)= sup {g™"(9)}. (24
§elé1.8]

The auxiliary functiongg*(£) andg**(£) are defined by
a*(§)=maxlai(§),as(§),a3(8)},
a** () =maxlaei’(§),a;"(é),a3" ()}

The functionSaj*(g), with the subscripf running from 1 to
3, are functions of the intervgk,,¢&,] given by
“1dP

Pm| ]
Fj) '”(3 d—g) @)

if the conditionsP;(£)>0 anddP;/dé>0 apply. If these
conditions do not apply, we setj*(g)=1. The functions

J

Im 4m
P, d¢

(29)

(26)

dP,

a;(g)El-i- In d_g

-1

dP;
In

dé

if the conditionsP;(£)>0 anddP;/dé<0 apply. If these
conditions do not apply, we set ™ (£) =1. The proof of this

aj**(g)El-f- In

} (28)

PHYSICAL REVIEW A64 032310

and

3
p=PPlenen+ 3, PPlejel, (30
where the sef|ey,),|e;),j=1,2,3 is the Bell basis sd21],
no matter what the order is. It is easy to check that these
guantum states have the following propertigsthey belong
to the setd, (il) Er(py)=Er(pg”) and Er(ps)=Er(pf),
and(iii) Sq(p1) =Sqy(pk”) andSy(p2) =Sy(pE).

Now let us introduce the transformatid® [ p§’ ,p&],
defined by

Eg[pg”m@](péﬁ)zPm<§>|em><em|+J§l Pi(&)le)) (e,
(31)
where the¢ evolutions ofP,(§) andP;(§) are given by
Pn(§)=PP+&PE-PY) (32
and
Pj(§)=P{M+ &P —PM), (33)

with j running from 1 to 3, respectively, aridbelonging to
the interval[0,1]. The transformatior=; has the required
properties:(a) it keeps the stat& [ p$",pP1(pg") within
the setJ for every value of¢ belonging to the intervdl0,1],

important recipe is given in the Appendix. Note that we have(b) Z[p”,p21(p8)=p, and (c) Z1[p”,p21(pY)

not discussed the problem of the possible divergence of:p(Bz)_

Note that the function,(&),P1(£),P,(¢), and

Q*(é1,&2) or Q™" (&1,£;). We shall come back to this issue p,(¢) are eigenvalues of the quantum statgs[pg”,
in Sec. IllE, where we shall consider, without losing any ,@1(pMy, and are defined in the intervied, 1]. They fulfill
generality, a special parametrization of the eigenvalueg,e properties of Eq(13), the parameter conditions of Sec.

within which, as we shall see, the critical ind€X{p1,p2)
will be proved to be finite.

E. Search of a critical entropy index as a function of initial
and final states

1B, the relationdP,,/dé>0 in the casePY<P{? and
the relationdP,,/d¢<0 in the casePY>P(?) . This makes
it possible for us to useQ*(¢;,¢,) of Eq. (23) and
Q**(£&1,&,) of Eg. (24), and the relations on which these
quantities rest as well, to deriv@(p4,p»). This is done as

Now let us see how to use the earlier results to makdollows. We write the explicit forms thaQ*(&;,é,) and
predictions in the case where the transformation and the e@**(&1,£,) gain whené; =0 andé,=1. Applying the trans-
suing entanglement change are described only by the initifbrmations of Eqs(32) and(33) to the prescriptions of Egs.
and final statep; andp,, with the density matrices belong- (23)—(28) , we obtain the following expressions:
ing to the sef defined by Eq(11). The main idea is to build . . ) N
up auxiliary statep and pi?), equivalent top, and p,, Q*(0,)= sup max1,pBi(§),B5(§),B3(&)}.
respectively, as far as their entanglement and entropy are telod]
concerned, but fulfilling the condition of being connected theHere the function? (£), with j=1, 2, and 3, is defined as
one to the other by one of thetransformations described in fg|lows. If the constraints
Sec. llIC. This makes these states compatible with earlier
prescriptions, and thus with earlier results. The staigs
andp?) are defined as follows. L&{") ,P{H P andP{
denote the eigenvalues of the density matpix, while

(34)

PA(&)>P{U(&) and P[I+&(P[-P{Y)>0, (39

with j=1,3, hold true, we set

P2 p2) p) andP{?) denote the eigenvalues of the den-

m 1 . 2 .3 - 1 5 P(l)—P(z)
sity matrix p,; we define the auxiliary statqv%) andpfg ) by T I Y
the expressions p@_p)

B(&)=1+ . (39

3

[sICONE & p2)_ p(l))
(1) p®) +S pWle e - o
P =Fm |em><em| = i |ej><ej|

n
P4 (P — ph)

(29
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If the constraints of Eq(35) do not apply, we ser(g)

=1. It is evident that the functionﬁj*(g) are the counter-

parts ofaj*(g) in the particular case of thé transformation
described by Eqg32) and(33).

PHYSICAL REVIEW A64 032310

If the constraints of Eq(39) do not apply, we ser*(g)
=1.

The criterion adopted to define this critical index is the
same as that illustrated earlier to properly define the critical

Note that this mathematical definition must be interpretedndex of Eq.(34). Thus we can prove th&**(0,1) isfinite,

as follows. First we consider a given valuef{belonging to
the interval 0,1]. Then we make the indgxun from 1 to 3,
we select indexesj fulfilling the conditions P}Z)(g)
>PM(¢) and P{V+ £(P{P - PM)>0, and calculates] (£)

using the above definitions. Finally, we take the maximum of

the values of a set whose components are giverﬁmg)

and by 1, and we maké explore all possible values of the
interval [0,1]. Thus we obtain an infinite set of maxima,
from which we select the supremum. The resulting number

defines the critical index of the left hand side of E84).

The resulting critical index is finite. To prove this impor-

adopting a procedure analogous to that used¥t(0,1). In
this case we arrive at the inequality

P p@) |17+
min { —,——
=123 Pj(l) PJ(Z)

I

which shows in fact that als@**(0,1) isfinite.
At this stage we can finally define the critical value

In

i=1,2,3

Q™ (0,)= max| 1+

PJ(l)_ Plgz)

In(S
P

X R
2 1
=P

(41)

tant property we proceed as follows. We note that the ternb(p1 p,). This is given by

that could makeéQ*(0,1) diverge is

PR+ (PR — Ph)
P(V+ £(P{—ph)

We denote this term by(¢&). The special condition resulting

in the divergence of the critical index would be given hy
—1". We observe thag(&) is either an increasin@ecreas-

ing) or constant function of depending on whether the

quantity P{IP(Z)— PP s positive(negative or equal to
0. So the minimum value of(£) is y(0)=P{/P{M in the

case ofdy/dé>0, and y(1)=P{/P{ in the case of
dy/dé<0. In the remaining casgy/dé=0, the two minima

Q(pl1p2)EmaX{Q*(O!]-)!Q**(Ovl)}' (42)

On the basis of the theoretical treatment described earlier, we
conclude thaQ(p4,p») is finite and that for any initial and
final statesp, and p,, respectively, belonging to the sgt

with different entanglementEr(p;) #Eg(p,), the corre-
sponding entropy changeS; is positive or negative, accord-
ing to whetherAE<O or AE>0. Note that we foundt «
>Q(p1,p2)=1. As a consequence of the pseudoadditivity of
Eq. (2), the adoption of a value of the entropy index larger
than the unity makes the entropy of the whole system smaller
than the sum of the entropies of the two parts. However, in
this paper we never make a direct use of this property, since,

obtain the same value. From these properties we obtain thes stressed earlier, our treatment is valid only in the case of

inequality

j=1,2,3

s

proving thatQ*(0,1) isfinite.
As for Q**(0,1), we obtain

Q**(0,)= sup max1,81"(£).B85"(£).B3"(£)}. (39

£e[0,1]

P p@) |17
Q*(0,)< maxi 1+|In[ min{—=,—%
=123 ij sz)

PJ(Z)_P]_(l)

X . S
1 2
p—p2)

[

If the constraints

PO(&)>PP(¢) and PP+ gPP—PM)>0
(39

hold true, we set

( PEl)_PJ(Z))

In| 3—0—=
2

p(2)_ pg)

m

B (&=1+ (40)

[ PR+ EPR - Pﬁ?)) |
PD+ g(P(P)— p(h)

nonvanishing entanglement, which rules out the possibility
of realizing the factorized condition behind B®).

F. From the nonextensive entropy to the entanglement
of formation

As a purpose of this subsection, we try to prove a property
that is the reverse of that discussed in Sec. Il E. Ideally, the
reverse of the property of Sec. Ill E should be expressed as
follows. Let us focus our attention on a transformation from
an initial statep, to a final statep,, both belonging to the set
J. Let us consider a case where this transformation causes
the nonextensive entrofy, to increasgdecreasge Then the
entanglement decreasémcreases if an entropy indexq
larger than the critical valu® is adopted. Unfortunately, we
cannot prove this property in this attractive form, but only
under weaker conditions. This is so because a transformation
resulting in an entropy change does note necessarily imply
an entanglement change. We note that the entanglement, ex-
pressed in the sét, is a function of the eigenvalue,, only,
while the nonextensive entropy is a function of all four ei-
genvalues. Thus the entropy can change without implying a
corresponding entanglement change. The same difficulty is
shared by the nonextensive entropy. However, upon an in-
crease of the entropy indexthe dependence of the nonex-
tensive entropy on the other three eigenvalues becomes
weaker and weaker. In the caseemfough greavalues of the
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entropy indexg the nonextensive entropy becomes virtually 2 4
independent of the other three eigenvalues. This is the reason EC(p)= —arctar{ > G)( P—> Pk)
why in Sec. lll E we could find a way to make the nonexten- m =1 ki
sive entropy become a monotonic function of the entangle-
ment. We want to remark that in general the entropy critical X
index is not the same as that used in Sec. Il E.

We believe that one of the benefits resulting from the
adoption of the sefi, and of very large entropy indices as
well, is that the margin of entanglement dependence on thwhich establishes a direct connection between entanglement
entropy is significantly reduced. Nevertheless, we are force@nd entropy. The quantitig{*'? is “equivalent” to the en-
to make a weaker request for the reverse of the propertianglement, in the sense that it increases or decreases upon
discussed in Sec. lIE. We shall show, in fact, that if thean increase or decrease of the entanglement strength. Fur-
entropy increase@lecreasesand the entanglement changes thermore, it is equal to 1 when the entanglement is 1, and
then the entanglement decreasi@ereasey for entropy in-  tends to vanish with the entanglement measure tending to
dicesq larger than a critical valu®‘®, not necessarily equal zero. The key ingredient of this heuristic formula is the term
to Q. The conditions emphasized by the adoption of italicsarctan, and the factorEle@(Pi—Ek¢iPk)(3—4SZ(p)
make the property weaker than we would wish. Even in this—43,.;P2). Without arctan, the conditio®,,— 1~ would
case we have to assume the entropy index to be larger thanganerate divergencies. Furthermore with— (1/2)" the in-
critical value. We denote this critical value with the symbol verse of the entropy would tend to a minimum which would
Q™ because, as mentioned earlier, we cannot prove that it ise different from 0, which is the right value. With the factor
identical to the critical entropy inde® of an Sec. I!I E. Ef:1®(Pi—Ek¢iPk)[3—4Sz(P)—4Ek¢ipﬁ]- we dispose of

In th_e case of an entropy Increase, by expressing the nofhe divergencies and we succeed in ensuring that the quantity
extensive entropy as a function of its four eigenvalues, W@éeff) tends to vanish with the entanglement tending to zero.

3—482(p)—4g Pﬁ)sql], (45)

obtain Note that thisad hocfactor is nothing but the square of the
(@) 3 (1)) 9 )\ d concurrence. In pringiple, one could express the concurrence
m) o1+ S i _| 0 43 terms ofS,, but this would not afford the attractive con-
P =\ Pl pb dition of the entanglement being a monotonically increasing

function of the inverse of the nonextensive entropy.

] ] ) In conclusion, we find that entanglement increase implies
Since the two eigenstates have different entanglements, Whtropy decrease, and vice versa. This property must be com-
haveP(/P{)# 1. The inequality of Eq(43) must hold true  pared with the results of the work of Abe and Rajagdal.
in the case of entropy indices arbitrarily larger th@iY, and  These authors adopted the principle of entropy maximization
consequently must hold true also for values much larger thagnder suitable constraints to infer a plausible form of physi-
the unity. As a consequence we reach the conclusion thaf| state, and concluded that the entangled states are the im-
P@<P(, an inequality that in the sel is equivalent to  portant result of this maximization process. Here we adopt a
AEg<0. The opposite conclusion would be reached in thedifferent perspective, based on the fact that the definition of
case of a negativA S . entanglement of formation is already inspired to statistical

In spite of earlier restrictions, we can use the obtainednechanicq20]. Within this perspective the state of maxi-
results to illustrate one of the most interesting findings of thismum entanglement corresponds to the minimum amount of
work. This is as follows. Let us consider a generic subset information necessary to describe the state. Within this same
of setJ, fulfilling only the request of containing &inite  perspective, the amount of information necessary to describe
number of states, withifferententanglements. Then we can the state becomes increasingly larger upon reducing the en-
conclude that these entanglements egeivalentto thein-  tanglement strength. From an intuitive point of view, the oc-
verseof the nonextensive entropy, provided that entropy in-currence of decoherence, is judged by many autf@kto
dicesq are larger than a given vali@,, , which is given by  be the key condition to derive classical from quantum phys-
the following formula: ics, implies a significant entropy increase. However, decoher-
ence, as a form of real wave-function collapgé|, implies
the breakdown, in the long-time limit, of the entanglement
condition, and, as a consequence, the breakdown of the
theory itself of the present paper. The result of this paper has
In the setd’ for entropy indices larger than the critical value to be considered within this perspective. As it appears from
the ordering in the direction of increasiidecreasingen-  the literature on this new and exciting subject, the thermody-
tanglement is equivalent to ordering in the direction of de-namic significance of the processes of quantum teleportation
creasing(increasing entropy. A significant consequence of is a very delicate and difficult issue. We are inclined to be-
this is that entropy minimization yields a maximally en- lieve that the adoption of a nonextensive form of entropy
tangled state and entropy maximization yields a minimallymight be of some relevance, under specific restrictions. The

Qy=maxQ(pi,pj),Ypi,pjed  i#j}. (44)

entangled state. first is that real wave-function collapses are ignored, and the
An attractive, albeit heuristic way, of illustrating the same second is that, in a world dominated by quantum entangle-
conclusions is given by the formula ment, the condition of maximum entanglement is perceived
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as that requiring the minimum amount of information. In S,(Dg)=S,(p). (53
other words, increasing entanglement means smaller, rather
than larger, entropy values. The dephasing process makes it possible for us to gener-
alize the results of Sec. lll. Let us consider a transformation
IV. TSALLIS ENTROPY AT WORK: DEPHASING from an initial state described by a generic density matrix. As
PROCESSES IN THE BELL BASIS SET to the final state, we set the condition that it belongs to the

_ _ o _ _ setJ. Let p{*) be the maximum of the diagonal elements of
Before ending this paper, it is convenient to illustrate anne initial statep®, expressed in the Bell basis set. Let us

other interesting result that does not require a restriction tq suppose thqnfj) is larger than the maximum eigenvalue
the setJ. This has to do with an important result obtained by ¢ density matrixo®, referring to the final state. This

Bennett et al. [21]. These authors §tud|ed entanglementCondition is expressed by the relation
changes as a function of a dephasing process. More pre-

cisely, they focused their attention on the transformation M= max [p(l)]“>P(2)>% (54)
m m "
i=1,2,34
3
1 i
DB:Z ;0 UipUi, (46) As a consequence of this relation, we have

1 (1) 2
which brings the initial condition described by the density Er(p! ))ZEF(DB )>Ee(p?)>0. (55)

matrix p, expressed in the Bell basis, into the diagonal formThis is a transformation with a decreasing entanglement. On

[Dgli=6:[pli (47) the basis of the results of Sec. Ill and of E§3), we are in
e TR a position to find values of the entropy inde»such that the
where the operators;, i=0,1,2,3 ard, B,B,, B,B,, and nonextensive entropy of the final state is larger than that of

BZBZ respective|y an(Bi is the bilateral rotation ofr/2 the initial state. This is done as follows. We move from the
' . e . . it i 1 ;
around theith axis of the spac&{Lx S{2). This bilateral initial condition p™ to D, through the dephasing process

rotation was defined by these auth{)zs_] as earlier described. As we have seen, with the adoption of
natural values, larger than the unity, for the entropy indices,
Bi=3(loxo—ioi)(loxo—iop). (48 the entropy does not decrease. This means that
Note that the matriyDg of Eq. (47) is the “diagonal” of the Sy (D=5, (p™M). (56)

statistical density matriy expressed in the Bell basis, and . _ L
that it results from a random application of four local unitary According to our assumption®§” and p® belong to the
transformations, so that moving from the initial stat®) to  setJ. Thus we know, on the basis of the results of Sec. Ill,

the state described Hy$" the entanglement cannot increasethat there exists a critical value of the entropy index,

[27]. Consequently, we have Q(DY,p®), beyond which the nonextensive entropy in-
creases. If we choose critical values of the entropy index that
Ec(pM)=E(DY). (49)  are natural numbers larger than
We shall analyze these theoretical results by means of NE[Q(Dgl),p(Z))], (57)

nonextensive entropy. The first analysis is made by focusing
our attention on the natural values>1 of the entropy index we conclude that the nonextensive entropy increases. As ear-
g. In this special case the nonextensive entropy reads as fdier anticipated, this has the effect of making more general

lows: the results of Sec. Ill.
S.(p)= 1-Tr(Upu"h" PP 50 V. CONCLUSIONS
P n—1 n—1- _ _ _ _
This paper shows that in the sgtenforcing the important
Let us define the auxiliary function condition of a nonvanishing entanglement, the Tsallis en-
tropy is a monotonic and decreasing function of the increas-
x—x" ing entanglement. The entanglement is, in turn, a monotonic
9n(X)=1—7" (51)  and decreasing function of the increasing entropy under the

key restriction of transformations yielding an entanglement

We note that this is a concave function. On the other handchange. This conclusion was reached adopting a perspective

several years ago Weh28] note this in that case we can taking the warning of a recent paper by Horodeetkal.[27]
write into account. As a matter of fact, these authors showed that

the principle of entropy maximization yields fake entangle-
Trgn(Dg)= Trgn(p). (52 ment, and consequently becomes questionable. We share the
conviction of these authors and adopt in fact an approach
We note thatS,(p)= Trg,(p) and S,(Dg)= Trg,(Dg). that does not rest on the Jaynes princidl8,19. Thus we
Consequently, we can write establish a comparison between entanglement and nonexten-
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a (el 13

sive entropy without invoking the Jaynes principle. We do 3
not need to maximize entropy after minimizing entangle- 1+E
ment, as in Ref[27], and the monotonic dependence of en- =1
tropy on entanglement is a natural consequence of the adop-
tion of suitably large entropy indices.

This means that we share the view of Rajagopal and Ab

This critical valueqg*(¢) fulfilling the condition of Eq.
Al) is also not unique. We therefore adopt a criterion to

. stimate one of the possible critical values. This will imply
[15] that a nonextensive form of entropy can prove to be 8hat the resultingQ(p,,p,) is not unique, but, as shown

convenient tool to study quantum teleportation. In this Sens&,.iow. we shall be able to find at least one of the values

this paper contributes to deepening our understanding of thﬁllfilling the earlier mentioned properties Gf(py,p,). The

significance of the Tsallis entropy. This entropy indicator .pqice that we adopt to find one of the possiplés)’s is as
does not split into the sum of two independent contributionssg|iows. We set the inequality

when applied to a system consisting of two uncorrelated sub-

systems. This suggests that this kind of entropy might be a dp,|t P, q—ldpj 1

proper theoretical tool only when applied to cases where a g (P_> d_§<§ (A2)
repartition into two uncorrelated systems is impossible. m

Quantum-mechanical systems, in principle, are significanf, every value of the subscrigtrunning from 1 to 3. We
examples where this condition applies, if environmental de'assume that this property holds true for aqyq*(£). This
coherence, or other kind of decoherence processes, is igat of conditions. after easy algebra, yields

nored. In this condition the Tsallis entropy, according to the ’ ’

main result of this paper, seems to work properly, provided (Ey=maxX la*(&). a(&). at ) (A3)
that the warning of Ref[27] is taken into account. This is @ {La(§) az(8) a3(6)}

-1
dP,

In d_f

where our procedure departs from the point of view of Ra-ag for the definition ofa(£), with the subscripj running
jagopal and Abg15]. Their approach was still based on the ¢, 1 t 3, we must dijstinguish two cases. The first is the
Jaynes principle, supplemented by the choice of a suitablg;se \when the constraints
additional constraint, concerning the fluctuations around the
average, as well as the ordinary constraint on the mean value Pi(§)>0 and dP;/dé>0 (A4)
(also see Ref[29]). This procedure yields convincing, al-
though nongeneral conclusions. Our approach, which unfomgld true. In this case, we set
tunately shares the lack of generality of Rdf5], is based on
a different perspective, aiming at identifying the inverse of . Pml] 7t dpP,
entanglement with the non-extensive entropy. aj(§)=1+ P_” |n(3d—§ ) (A5)

We think the alternative perspective adopted in the '
present paper might contribute, as R¢15,29 do, to abet- |t the constraints of Eq(A4) do not apply, i.e., either
ter understanding of the thermodynamic nature of entanglepj(f)zo ordP;/dé<0 applies, we st (£)=1, in accor-
ment. We are afraid that the nonextensive entropy might beégance with the inequalityA2) which is true for every value
come inefficient when we leave the physical condition wheré the entropic index different from unity. The conclusion
the no-cloning theorem and the principle of no-increasingsf this procedure is that we built up the auxiliary function
entanglement, recently found by Horodecki and Horodeckly*(¢) in such a way that for ang>q*(&) the condition
[30], is broken. According to these authors the occurrence o
real wave-function collapses, incompatible with the restric- d
tion of adopting unitary transformations, provokes a break- d_gEF(§)<O (AB)
down of this equivalence. In our opinion, the occurrence of
real wave-function collapses is incompatible with the restric- .
tion of working on the se¥, which enforces the condition of yields
a nonvanishing entanglement. Thus we expect that in this

case the theory of this paper, and with it the nonextensive iSq(§)>O. (A7)
entropy, does not work. To explore the uncertain border be- d¢
tween quantum and classical mechanics we probably need to
adopt a still more advanced perspective. On the basis of this result, the functi@(¢,,&,), defined in
Eqg. (23),
APPENDIX Q*(é1.62)= sup {q*(é)}, (A8)

£elé1.60]
This appendix is devoted to proving the crucial properties
of the critical values defined by Eq®3)—(28). Let us con- has the properties described in Sec. IlID. In fact, using Eq.
sider casd@) first. As a consequence ofEg/dé<0, from  (A6) and the ensuing inequality farS,/d¢, we immediately
the limit of Eqg. (21) we naturally obtain that an auxiliary conclude that for anyq fulfilling the inequality q
function,q*(£) in Eq. (25), exists such thag>q*(¢) yields  >Q*(£;,&;) the conditionAEL<0 yields AS,>0. This is
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so because in this cas@d€r andAS, can be written under » Pml] 7t dP,\ ! dP;
the form of integrals in the intervgk, ,£,] with integrands a; (§)=1+ In(ﬁ> In 3(d_§) e }
always negative and positive, respectively. In cédsewe ! (A11)
adopt the same procedure which vyields, in this case, the
auxiliary function of Eq.(26): If the constraints of the Eq/A10) do not apply, we set
» » » a;*(¢)=1. The counterpart of E¢23) becomes Eq(24):
g (&) =maxlai™(§),a; (§),a37(§)}.  (A9)
Q**(£1,6)= sup {q"*(&)}. (A12)
As to the termaj**(g), in the case where the constraints Eelé,60]
Pi(6)>0 and dP;/dé<0 (A10)  Inthis case, fog>Q**(£1,£,) the conditionAEL>0 yields
AS,;<0. This concludes the demonstrations of the properties
hold true, we set described in Sec. Il D.
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