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Entanglement is the fundamental quantum property behind the now popular field of quantum transport of
information. This quantum property is incompatible with the separation of a single system into two uncorre-
lated subsystems. Consequently, it does not require the use of an additive form of entropy. We discuss the
problem of the choice of the most convenient entropy indicator, focusing our attention on a system of two
qubits, and on a special set, denoted byI. This set contains both the maximally and partially entangled states
that are described by density matrices diagonal in the Bell basis set. We select this set for the main purpose of
making our work of analysis more straightforward. As a matter of fact, we find that in general the conventional
von Neumann entropy is not a monotonic function of the entanglement strength. This means that the von
Neumann entropy is not a reliable indicator of the departure from the condition of maximum entanglement. We
study the behavior of a form of nonadditive entropy, made popular by the 1988 work by Tsallis@J. Stat. Phys.
52, 479 ~1988!#. We show that in the setI, implying the key condition of nonvanishing entanglement, this
nonadditive entropy indicator turns out to be a strictly monotonic function of the strength of the entanglement,
if entropy indexesq larger than a critical valueQ are adopted. We argue that this might be a consequence of
the nonadditive nature of the Tsallis entropy, implying that the world is quantum and that uncorrelated sub-
systems do not exist.

DOI: 10.1103/PhysRevA.64.032310 PACS number~s!: 03.67.2a, 03.65.Ta, 05.20.2y, 05.30.2d
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I. INTRODUCTION

Entanglement is the fundamental quantum property
hind the interesting process of quantum teleportation p
posed some years ago by Bennettet al. @1#. For this reason it
is important to quantify entanglement@2#. It was also found
that the fidelity of the quantum teleportation is always larg
than that of any classical communication protocol, even
the noisy environment@3#. However, for the teleportation to
take place perfectly, it is necessary for the sender and
recipient@1# to share a maximally entangled state. This ge
erates the need for special purification protocols. On
other hand, a statistical analysis of these protocols sh
deep similarities with the second principle of thermodyna
ics @4–6#.

In spite of the plausible conjecture that there exists a d
connection between quantum teleportation and thermo
namics@4–6#, the entanglement is expressed by means o
entropic structure, the conventional von Neumann entro
only in the case of pure states. In general the definitions
entanglement dictated by the purification protocol are
directly related to entropy indicators. Cerf and Adami@7#
showed that the conditional von Neumann entropy can
come negative, thereby pointing out the nonordinary inf
mation aspects of quantum entanglement. However, the
son for the lack of a direct connection between quant
entanglement of mixed states and the entropy indicato
probably that, as shown in this paper, the von Neumann
tropy is not a reliable indicator of entanglement@7#. The
inadequacy of the Shannon information, and consequentl
the von Neumann entropy as an appropriate quantum ge
alization of Shannon entropy@8#, was already pointed out b
Brukner and Zeilinger@9,10#. It is notable that according to
1050-2947/2001/64~3!/032310~10!/$20.00 64 0323
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these authors a new kind of entropy indicator is made n
essary by the following deep difference between quant
and classical information. In classical measurement
Shannon information is a natural measure of our ignora
about the properties of a system, whose existence is inde
dent of measurement. Quantum measurement, conver
cannot be claimed to reveal the properties of a system
existed before the measurement was made.

In this paper we focus on the earlier mentioned quant
property, essential for teleportation of information: entang
ment. Entanglement implies that a system cannot be divi
into two uncorrelated subsystems; this, in turn, makes u
less the ordinary request for an additive form of entro
Thus in this paper we explore and discuss the possible b
efits stemming from the adoption of the nonadditive entro
indicator advocated years ago by Tsallis@11#. The choice of
the Tsallis form of nonadditive entropy for systems that ca
not be divided in uncorrelated subsystems~the nonextensive
case! was made compelling by recent work of Abe@12#. This
is so because this author proved that the three axioms m
ing the Shannon entropy a unique form of the extensive c
dition can be properly generalized so as to make the Ts
entropy a unique form of the nonextensive case.

The Tsallis entropy is applied to a large number of phy
cal conditions, characterized by the existence of exten
correlation@13#. The use of this form of nonadditive indica
tor in the field of quantum teleportation, to the best of o
knowledge, was discussed in only a few papers@14–17#.
Reference@14# claimed to the realization of a greater sen
tivity to the occurrence of a dephasing process, resulting
the annihilation of any form of entanglement. Referenc
@15–17# pointed out the efficiency of Tsallis entropy for th
detection of the breakdown of local realism. Reference@16#
aimed at proving that the Jaynes principle@18,19#, applied to
©2001 The American Physical Society10-1
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FILIPPO GIRALDI AND PAOLO GRIGOLINI PHYSICAL REVIEW A64 032310
the nonextensive entropy, naturally yields an entangled s
The present paper, although based on an adoption of
Tsallis nonextensive entropy as in Ref.@16#, adopts a quite
different perspective, which does not rest on the adoption
the Jaynes principle.

The outline of the paper is as follows. Section II is d
voted to a concise illustration of the main properties of
nonextensive entropy at work in this paper. Section III, d
voted to the entanglement of formation, shows that the
Neumann entropy, in general, is not a monotonic function
entanglement, while the nonextensive entropy is a monot
cally increasing function of the entanglement for suitab
large values of the entropy index. In Sec. IV we study
entanglement of a de-phasing process, and we extend
monotonic properties of nonextensive entropy to a condit
more general than that of Sec. III. Section IV is devoted
concluding remarks.

II. NONEXTENSIVE ENTROPY

The entropy indicator applied in this paper has the for

Sq~r![Tr
r2rq

q21
. ~1!

This form was originally proposed by Tsallis@11# for the
purpose of establishing the most convenient thermodyna
perspective for fractal processes. It is worth remarking t
this is a generalization of the conventional Gibbs-Shan
entropy indicator, whose explicit form is recovered from E
~1! in the limiting caseq→1. This entropy indicator does no
fit the additivity condition, namely, the requirement that t
entropy of a systemA1B, consisting of two statistically in-
dependent subsystemsA andB, be the sum of the entropie
of these two subsystems. In fact, the definition of Eq.~1!
yields, in this case, the equality

Sq~A1B!5Sq~A!1Sq~B!1~12q!Sq~A!Sq~B!, ~2!

making it evident that the additive property is recovered o
in the caseq51, which, as noted earlier, makes the none
tensive entropy of Eq.~1! become equivalent to the usu
Shannon entropy.

According to Tsallis and to advocates of this nonextens
entropy indicator~for a review, see Ref.@13#!, the violation
of the additive condition turns into a benefit when this e
tropy indicator is used to study cases where the ideal co
tion of statistical independence is prevented by the natur
the processes under study@13#. Notable examples are pro
cesses with long-range correlation@13#. We believe that
quantum entanglement, which is the basic property for te
portation@1#, is probably the most evident example of a co
dition incompatible with the existence of uncorrelated su
systems. For this reason, the additivity condition can
safely renounced, and the adoption of an entropy indeq
Þ1 might turn out to be beneficial. This paper is devoted
discussing to what extent this conjecture proves
be correct.
03231
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III. TSALLIS ENTROPY AT WORK: ENTANGLEMENT
OF FORMATION

In this section we derive the central result of this pap
We show that in the case of initial and final states, both w
nonvanishing entanglement, and described by a statis
density matrix diagonal in the Bell basis, the Tsallis entro
decreases upon an increase of the entanglement of forma
The results of this section refer to the entanglement of f
mation @20# of a system of two qubits. Thus, to make th
paper as self contained as possible, here we give a con
illustration of this key measure of entanglement. The m
point is that the entanglement property is defined without a
ambiguity for pure states@1#. The entanglement of formation
extends to the statistical case the ordinary definition as
lows. Let us denote byr the statistical density matrix for the
mixed state of a spaceS1/2

(1)3S1/2
(2) of two spin-1/2 particles.

The entanglement of formation@21#, denoted by the symbo
EF throughout, is defined as the minimum average entan
ment of every ensemble of pure states that representsr,

EF~r!5 min
r5( i Pi ua i &^a i u

(
i

PiE~ ua i&), ~3!

where E(ua i&) denotes the entanglement of a pure sta
which is defined according to the usual prescription@1# by
the expression

E~ ua&)52Tr~rA log2 rA!52 Tr~rB log2 rB!, ~4!

with

rA[Tr2 r, rB[Tr1 r. ~5!

Wootters, in an enlightening paper@20#, derived an ex-
plicit formula for the entanglement of formation of any arb
trary mixed state of a system of two qubits. This formu
reads

EF~r!5hS 11A12C2~r!

2 D , ~6!

where

h~x![2x log2 x2~12x!log2~12x!. ~7!

The quantityC(r), referred to by Wootters asconcurrence,
is defined by

C~r![max$0,lm2l12l22l3%, ~8!

wherelm , l1 , l2, andl3 are the square roots of eigenva
ues of the matrixrr̃, set in a decreasing order, withlm being
the maximum eigenvalue. The matrixr̃ denotes a spin-
flipped state:

r̃[~sy^ sy!r* ~sy^ sy!. ~9!

The values of the entanglement of formation range from 0
1. Furthermore,EF is a monotonically increasing function o
0-2
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QUANTUM ENTANGLEMENT AND ENTROPY PHYSICAL REVIEW A64 032310
C. The values of the concurrenceC, in turn, range from 0 to
1, as the values ofEF do. Consequently, the concurren
itself can be considered as a proper measure of the enta
ment of formation. Note that the entanglement of format
is the only kind of entanglement studied in the present pa
For simplicity, we shall often refer to it simply as entangl
ment.

A. On I, the working basis set for a system of two qubits

The most general expression@22# of a mixed stater of the
spaceS1/2

(1)
^ S1/2

(2) is

r5
1

16H 1^ 11S (
i 51

3

r is i D ^ 111^ S (
i 51

3

sis i D
1(

i 51

3

(
j 51

3

t i j s i ^ s j J , ~10!

wherer i ,si , andt i j are real parameters. Due to the excess
number of involved parameters, the direct use of this exp
sion would make the calculation too complicated. For t
reason we decided to limit our investigation to a set defin
by

I[$r:C~r!52Pm21.0%, ~11!

wherePm denotes the greatest eigenvalue of the density
trix r describing the quantum state. On behalf of future
velopments, we remark that the conditionPm.1/2 makes
this maximum value unique. The adoption of the setI, as our
working set, does not rule out the possibility of consideri
physical conditions of interest for the field of quantum te
portation. In fact, the setI contains states with positive en
tanglement of formation@EF(r).0# that are described by
density matrices corresponding to the solution of the eq
tion

rr̃5r2. ~12!

These density matrices, recently used by Bennettet al. @21#
~also see Ref.@23#!, become diagonal when expressed in t
Bell basis set. The setI contains entangled Werner stat
@24# as well as maximally entangled states. We also note
any mixed state can be brought into a diagonal form in
Bell basis set by random bilateral rotations@21#. This implies
that, in spite of the simplification made, our discussion is s
rather general. The problem under discussion here is the
nificance of the Tsallis entropy as a measure of entan
ment. The working set of states that we select,I, does not
conflict with the possibility of discussing this issue with re
erence to one of the relevant physical conditions rece
examined by investigators in this field of research@21,23#. In
fact, we shall study the change of the Tsallis entropy indi
tor upon the entanglement change of a given pair of partic
This change might be the result of a purification process s
as that studied by Bennett and co-workers@21,23#. These
authors discussed the purification of a pair of Werner sta
showing how to increase the entanglement of formation
one pair at the price of decreasing that of another. Here
03231
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discuss the problem of detecting this increased entanglem
with the Tsallis entropy. We found it to be relatively easy
establish this important result within the setI. However, we
cannot rule out the possibility that this property is shared
any other set of states, resulting in the concurrence bein
increasing function ofPm . In all these cases we might fin
the same property of the entropy being proportional to
inverse of the entanglement.

It is worth anticipating an aspect of fundamental impo
tance. The plausible reason why, as we shall see, the inv
of the Tsallis entropy indicator is a successful measure
entanglement, in the setI, is the following fundamental fact
The nonextensive nature of Tsallis entropy would ma
sense only in a world where it were impossible to cre
uncorrelated systems, and consequently, a vanishing
tanglement. In fact, the Tsallis entropy is not the sum of
entropies of the parts, not even when these parts are un
related. The condition that we set, of nonvanishing entan
ment, as stated earlier, is equivalent to ruling out the occ
rence of a splitting of the system into two uncorrelated pa
Therefore, it corresponds to an ideal condition for the ap
cation of the Tsallis entropy. We shall come back to th
important issue in Sec. IV.

B. Parametrization of the eigenvalues of the statistical
density matrix

Here we adopt a perspective of thermodynamic kind,
spired by the lines proposed by Plenio and Vedral@4#. We
assume that a purification protocol yields an entanglem
changeDEF . We aim at establishing a change of the none
tensive entropy corresponding to the same ‘‘thermodynam
transformation. To solve this delicate problem we imag
the statistical density matrixr, belonging to the setI, to be
a function of a real parameterj, belonging to an interval
@j1 ,j2#, which can be thought of as playing the same role
that of variables like pressure, temperature, and volume
the state transformations in ordinary thermodynamics.
assume that the initial and final conditions correspond
r(j1) and r(j2), respectively, so thatDEF[EF„r(j2)…
2EF„r(j1)…. We set the dependence ofr on j in such a way
as to fulfill the constraint imposed by the norm conservat
Tr r51, and, among the infinitely large number of possib
ties fitting these conditions, we select the form most con
nient for the purpose of evaluatingDSq[Sq„r(j2)…
2Sq„r(j1)…. Let Pm be the largest of the four eigenvalues
the statistical density matrixr, and let us denote the othe
three eigenvalues byP1 ,P2, andP3. These eigenvalues ar
assumed to be functions of the parameterj with the follow-
ing condition: in the whole interval@j1 ,j2#, we have

Pm~j!. 1
2 . ~13!

The derivativesdPm /dj anddPj /dj, with j ranging from 1
to 3, are assumed to be finite. The norm-conservation c
straint enforces the condition

dPm

dj
52

dP1

dj
2

dP2

dj
2

dP3

dj
. ~14!
0-3
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FILIPPO GIRALDI AND PAOLO GRIGOLINI PHYSICAL REVIEW A64 032310
As pointed out earlier,concurrenceis equivalent to the
entanglement of formation and, in the setI, concurrence is a
strictly increasing monotonic function ofPm . Thus the
change ofPm will be either positive or negative according
whether the entanglement change is positive or negative

We shall assume that in the whole interval@j1 ,j2# the
derivativedPm /dj is either always positive or always neg
tive. As stressed earlier, this convenient choice is legitimi
by the fact that, as in ordinary thermodynamics, we are c
sidering a state transformation, consequently both the
tanglement and entropy changes depend only on the in
and final states, and are independent of the paths use
connect these two states.

C. Failure of the von Neumann entropy

Here we show that the von Neumann entropy, namely,
quantum version of the Shannon information, turns out to
inadequate as an entanglement indicator. This is so beca
as we see, the von Neumann entropy can either increas
decrease, corresponding to the entanglement changeDEF ,
regardless of whether the entanglement change is positiv
negative. This conclusion agrees with the remarks in the
cent work by Brukner and Zeilinger@9#.

We note that to prove the inadequacy of the von Neum
entropy as an indicator of entanglement, it is enough to fi
a case where the sign of the entropy change is not str
determined by that of the entanglement change. Thus le
consider the special physical condition corresponding to

dP3

dj
50 ~15!

in the whole interval@j1 ,j2#. The von Neumann entropy
corresponding toq51, and consequently denoted asS1,
reads

S1~r!52Pm ln Pm2(
j 51

3

Pj ln Pj , ~16!

and its dependence upon the parameterj is given by

dS1

dj
52

dPm

dj
lnS Pm

P1
D1

dP2

dj
lnS P2

P1
D . ~17!

Let us consider, for example, the casedPm /dj,0. As noted
earlier, in this case when the entanglement of the mixed s
is a strictly decreasing function ofj, the entanglemen
changeDEF must be negative. However, using Eqs.~15! and
~14! we see that the sign ofdS1 /dj depends on the specia
values selected for the parametersPm ,P1 ,P2 and for the
correspondingj derivatives. Thus it is possible to realiz
either the inequality

dPm

dj
,

dP2

dj
lnS P1

P2
D Y lnS Pm

P1
D , ~18!

which would lead to an entropy increase, or the oppo
inequality, which would yield an entropy decrease. T
proves that the sign of the von Neumann entropy chang
03231
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not correlated to that of the entanglement, and that con
quently the von Neumann entropy is not an adequate
tanglement indicator.

D. Search of critical entropy indexes as a function of thej
transformation of the statistical density matrix

eigenvalues

The theoretical developments of this subsection show
the failure of the von Neumann entropy is a consequenc
the fact that the von Neumann entropy meansq51, and this
entropy index is smaller than, or equal to, a critical val
Q(r1 ,r2), wherer1 and r2 denote initial and final states
respectively. In Sec. III E we shall show, in fact, that forq
.Q(r1 ,r2) the nonextensive entropy becomes a monoto
function of the entanglement strength, inversely proportio
to it: the conditionDEF.0 yieldsDSq,0, while the condi-
tion DEF,0 yieldsDSq.0.

First, we show that the property that we plan to prove i
plausible property. For this purpose, let us study thej de-
rivative of the nonextensive entropy. This quantity reads

dSq

dj
52

qPm
q21

q21

dPm

dj H 11(
j 51

3 S dPm

dj D 21S Pj

Pm
D q21 dPj

dj J .

~19!

We remind the reader thatPm is the largest eigenvalue ofr,
thereby implying the property

0<
Pj

Pm
,1. ~20!

By using these inequalities and the assumption, made in
III B, that the derivativesdPj /dj anddPm /dj are finite, we
obtain

lim
q→1`

F11(
j 51

3 S Pj

Pm
D q21S dPm

dj D 21S dPj

dj D G51. ~21!

This simple result implies thatgreat enoughvalues of the
entropy index yield the important property

sgnS dEF

dj D5sgnS dPm

dj D52sgnS dSq

dj D , ~22!

which, in turn, means that increasing entanglement in thj
transformation yields a decreasing entropy, and vice vers

After proving the monotonic dependence of the nonext
sive entropy on the entanglement strength in the asympt
limit, we now illustrate a recipe necessary to determine
critical entropic index, namely, the value ofq beyond which
the monotonic dependence of entropy on entanglemen
insured. More precisely, we provide the recipe for two cr
cal indexes, rather than one, according to whether we c
sider the case of entanglement decrease@case~a!# or increase
@case~b!#. These two critical entropic indexes are denoted
Q!(j1 ,j2) and Q!!(j1 ,j2), respectively. This means tha
DSq.0 if DE,0, andDSq,0 if DE.0, provided thatq
.Q!(j1 ,j2) andq.Q!!(j1 ,j2), respectively.
0-4
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The critical valuesQ!(j1 ,j2) and Q!!(j1 ,j2) are de-
fined as follows:

Q!~j1 ,j2![ sup
jP[ j1 ,j2]

$q!~j!%, ~23!

Q!!~j1 ,j2![ sup
jP[ j1 ,j2]

$q!!~j!%. ~24!

The auxiliary functionsq!(j) andq!!(j) are defined by

q!~j![max$1,a1
!~j!,a2

!~j!,a3
!~j!%, ~25!

q!!~j![max$1,a1
!!~j!,a2

!!~j!,a3
!!~j!%. ~26!

The functionsa j
!(j), with the subscriptj running from 1 to

3, are functions of the interval@j1 ,j2# given by

a j
!~j![11F lnS Pm

Pj
D G21

lnS 3UdPm

dj U21 dPj

dj D ~27!

if the conditionsPj (j).0 and dPj /dj.0 apply. If these
conditions do not apply, we seta j

!(j)51. The functions
a j

!!(j) are given by

a j
!!~j![11F lnS Pm

Pj
D G21

lnF3S dPm

dj D 21UdPj

dj UG ~28!

if the conditionsPj (j).0 and dPj /dj,0 apply. If these
conditions do not apply, we seta j

!!(j)51. The proof of this
important recipe is given in the Appendix. Note that we ha
not discussed the problem of the possible divergence
Q!(j1 ,j2) or Q!!(j1 ,j2). We shall come back to this issu
in Sec. III E, where we shall consider, without losing a
generality, a special parametrization of the eigenval
within which, as we shall see, the critical indexQ(r1 ,r2)
will be proved to be finite.

E. Search of a critical entropy index as a function of initial
and final states

Now let us see how to use the earlier results to m
predictions in the case where the transformation and the
suing entanglement change are described only by the in
and final statesr1 andr2, with the density matrices belong
ing to the setI defined by Eq.~11!. The main idea is to build
up auxiliary statesrB

(1) and rB
(2) , equivalent tor1 and r2,

respectively, as far as their entanglement and entropy
concerned, but fulfilling the condition of being connected t
one to the other by one of thej transformations described i
Sec. III C. This makes these states compatible with ea
prescriptions, and thus with earlier results. The statesrB

(1)

andrB
(2) are defined as follows. LetPm

(1) ,P1
(1) ,P2

(1) , andP3
(1)

denote the eigenvalues of the density matrixr1, while
Pm

(2) ,P1
(2) ,P2

(2) , andP3
(2) denote the eigenvalues of the de

sity matrixr2; we define the auxiliary statesrB
(1) andrB

(2) by
the expressions

rB
(1)[Pm

(1)uem&^emu1(
j 51

3

Pj
(1)uej&^ej u ~29!
03231
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(2)[Pm

(2)uem&^emu1(
j 51

3

Pj
(2)uej&^ej u, ~30!

where the set$uem&,uej&, j 51,2,3% is the Bell basis set@21#,
no matter what the order is. It is easy to check that th
quantum states have the following properties:~i! they belong
to the setI, ~ii ! EF(r1)5EF(rB

(1)) and EF(r2)5EF(rB
(2)),

and ~iii ! Sq(r1)5Sq(rB
(1)) andSq(r2)5Sq(rB

(2)).
Now let us introduce the transformationJj@rB

(1) ,rB
(2)#,

defined by

Jj@rB
(1) ,rB

(2)#~rB
(1)![Pm~j!uem&^emu1(

j 51

3

Pj~j!uej&^ej u,

~31!

where thej evolutions ofPm(j) andPj (j) are given by

Pm~j![Pm
(1)1j~Pm

(2)2Pm
(1)! ~32!

and

Pj~j![Pj
(1)1j~Pj

(2)2Pj
(1)!, ~33!

with j running from 1 to 3, respectively, andj belonging to
the interval@0,1#. The transformationJj has the required
properties:~a! it keeps the stateJj@rB

(1) ,rB
(2)#(rB

(1)) within
the setI for every value ofj belonging to the interval@0,1#,
~b! J0@rB

(1) ,rB
(2)#(rB

(1))5rB
(1) , and ~c! J1@rB

(1) ,rB
(2)#(rB

(1))
5rB

(2) . Note that the functionsPm(j),P1(j),P2(j), and
P3(j) are eigenvalues of the quantum statesJj@rB

(1) ,
rB

(2)#(rB
(1)), and are defined in the interval@0,1#. They fulfill

the properties of Eq.~13!, the parameter conditions of Se
III B, the relation dPm /dj.0 in the casePm

(1),Pm
(2) , and

the relationdPm /dj,0 in the casePm
(1).Pm

(2) . This makes
it possible for us to useQ!(j1 ,j2) of Eq. ~23! and
Q!!(j1 ,j2) of Eq. ~24!, and the relations on which thes
quantities rest as well, to deriveQ(r1 ,r2). This is done as
follows. We write the explicit forms thatQ!(j1 ,j2) and
Q!!(j1 ,j2) gain whenj150 andj251. Applying the trans-
formations of Eqs.~32! and~33! to the prescriptions of Eqs
~23!–~28! , we obtain the following expressions:

Q!~0,1![ sup
jP@0,1#

max$1,b1
!~j!,b2

!~j!,b3
!~j!%. ~34!

Here the functionb j
!(j), with j 51, 2, and 3, is defined a

follows. If the constraints

Pj
(2)~j!.Pj

(1)~j! and Pj
(1)1j~Pj

(2)2Pj
(1)!.0, ~35!

with j 51,3, hold true, we set

b j
!~j![11

lnS 3
Pj

(1)2Pj
(2)

Pm
(2)2Pm

(1)D
lnS Pm

(1)1j~Pm
(2)2Pm

(1)!

Pj
(1)1j~Pj

(2)2Pj
(1)!

D . ~36!
0-5
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If the constraints of Eq.~35! do not apply, we setb j
!(j)

51. It is evident that the functionsb j
!(j) are the counter-

parts ofa j
!(j) in the particular case of thej transformation

described by Eqs.~32! and ~33!.
Note that this mathematical definition must be interpre

as follows. First we consider a given value ofj belonging to
the interval@0,1#. Then we make the indexj run from 1 to 3,
we select indexesj fulfilling the conditions Pj

(2)(j)
.Pj

(1)(j) andPj
(1)1j(Pj

(2)2Pj
(1)).0, and calculateb j

!(j)
using the above definitions. Finally, we take the maximum
the values of a set whose components are given byb j

!(j)
and by 1, and we makej explore all possible values of th
interval @0,1#. Thus we obtain an infinite set of maxim
from which we select the supremum. The resulting num
defines the critical index of the left hand side of Eq.~34!.

The resulting critical index is finite. To prove this impo
tant property we proceed as follows. We note that the te
that could makeQ!(0,1) diverge is

Pm
(1)1j~Pm

(2)2Pm
(1)!

Pj
(1)1j~Pj

(2)2Pj
(1)!

.

We denote this term byg(j). The special condition resulting
in the divergence of the critical index would be given byg
→11. We observe thatg(j) is either an increasing~decreas-
ing! or constant function ofj depending on whether th
quantityPj

(1)Pm
(2)2Pm

(1)Pj
(2) is positive~negative! or equal to

0. So the minimum value ofg(j) is g(0)5Pm
(1)/Pj

(1) in the
case of dg/dj.0, and g(1)5Pm

(2)/Pj
(2) in the case of

dg/dj,0. In the remaining casedg/dj50, the two minima
obtain the same value. From these properties we obtain
inequality

Q!~0,1!< max
j 51,2,3

H 11F lnS min
j 51,2,3

H Pm
(1)

Pj
(1)

,
Pm

(2)

Pj
(2)J D G21

3U lnS 3U Pj
(2)2Pj

(1)

Pm
(1)2Pm

(2)U D UJ , ~37!

proving thatQ!(0,1) isfinite.
As for Q!!(0,1), we obtain

Q!!~0,1![ sup
jP@0,1#

max$1,b1
!!~j!,b2

!!~j!,b3
!!~j!%. ~38!

If the constraints

Pj
(1)~j!.Pj

(2)~j! and Pj
(1)1j~Pj

(2)2Pj
(1)!.0

~39!

hold true, we set

b j
!!~j![11

lnS 3
Pj

(1)2Pj
(2)

Pm
(2)2Pm

(1)D
lnS Pm

(1)1j~Pm
(2)2Pm

(1)!

Pj
(1)1j~Pj

(2)2Pj
(1)!

D . ~40!
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If the constraints of Eq.~39! do not apply, we setb j
!!(j)

51.
The criterion adopted to define this critical index is t

same as that illustrated earlier to properly define the crit
index of Eq.~34!. Thus we can prove thatQ!!(0,1) isfinite,
adopting a procedure analogous to that used forQ!(0,1). In
this case we arrive at the inequality

Q!!~0,1!< max
j 51,2,3

H 11F lnS min
j 51,2,3

H Pm
(1)

Pj
(1)

,
Pm

(2)

Pj
(2)J D G21

3U lnS 3U Pj
(1)2Pj

(2)

Pm
(2)2Pm

(1)U D UJ , ~41!

which shows in fact that alsoQ!!(0,1) isfinite.
At this stage we can finally define the critical valu

Q(r1 ,r2). This is given by

Q~r1 ,r2![max$Q!~0,1!,Q!!~0,1!%. ~42!

On the basis of the theoretical treatment described earlier
conclude thatQ(r1 ,r2) is finite and that for any initial and
final statesr1 and r2, respectively, belonging to the setI,
with different entanglement,EF(r1)ÞEF(r2), the corre-
sponding entropy changeDSq is positive or negative, accord
ing to whetherDE,0 or DE.0. Note that we found1`
.Q(r1 ,r2)>1. As a consequence of the pseudoadditivity
Eq. ~2!, the adoption of a value of the entropy index larg
than the unity makes the entropy of the whole system sma
than the sum of the entropies of the two parts. However
this paper we never make a direct use of this property, sin
as stressed earlier, our treatment is valid only in the cas
nonvanishing entanglement, which rules out the possibi
of realizing the factorized condition behind Eq.~2!.

F. From the nonextensive entropy to the entanglement
of formation

As a purpose of this subsection, we try to prove a prope
that is the reverse of that discussed in Sec. III E. Ideally,
reverse of the property of Sec. III E should be expressed
follows. Let us focus our attention on a transformation fro
an initial stater1 to a final stater2, both belonging to the se
I. Let us consider a case where this transformation cau
the nonextensive entropySq to increase~decrease!. Then the
entanglement decreases~increases! if an entropy indexq
larger than the critical valueQ is adopted. Unfortunately, we
cannot prove this property in this attractive form, but on
under weaker conditions. This is so because a transforma
resulting in an entropy change does note necessarily im
an entanglement change. We note that the entanglement
pressed in the setI, is a function of the eigenvaluePm only,
while the nonextensive entropy is a function of all four e
genvalues. Thus the entropy can change without implyin
corresponding entanglement change. The same difficult
shared by the nonextensive entropy. However, upon an
crease of the entropy indexq the dependence of the none
tensive entropy on the other three eigenvalues beco
weaker and weaker. In the case ofenough greatvalues of the
0-6
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QUANTUM ENTANGLEMENT AND ENTROPY PHYSICAL REVIEW A64 032310
entropy indexq the nonextensive entropy becomes virtua
independent of the other three eigenvalues. This is the re
why in Sec. III E we could find a way to make the nonexte
sive entropy become a monotonic function of the entang
ment. We want to remark that in general the entropy criti
index is not the same as that used in Sec. III E.

We believe that one of the benefits resulting from t
adoption of the setI, and of very large entropy indices a
well, is that the margin of entanglement dependence on
entropy is significantly reduced. Nevertheless, we are for
to make a weaker request for the reverse of the prop
discussed in Sec. III E. We shall show, in fact, that if t
entropy increases~decreases!, and the entanglement change,
then the entanglement decreases~increases!, for entropy in-
dicesq larger than a critical valueQ(S), not necessarily equa
to Q. The conditions emphasized by the adoption of ital
make the property weaker than we would wish. Even in t
case we have to assume the entropy index to be larger th
critical value. We denote this critical value with the symb
Q(S) because, as mentioned earlier, we cannot prove that
identical to the critical entropy indexQ of an Sec. III E.

In the case of an entropy increase, by expressing the n
extensive entropy as a function of its four eigenvalues,
obtain

S Pm
(2)

Pm
(1)D q

,11(
j 51

3 F S Pj
(1)

Pm
(1)D q

2S Pj
(2)

Pm
(1)D qG . ~43!

Since the two eigenstates have different entanglements
havePm

(2)/Pm
(1)Þ1. The inequality of Eq.~43! must hold true

in the case of entropy indices arbitrarily larger thanQ(S), and
consequently must hold true also for values much larger t
the unity. As a consequence we reach the conclusion
Pm

(2),Pm
(1) , an inequality that in the setI is equivalent to

DEF,0. The opposite conclusion would be reached in
case of a negativeDSq .

In spite of earlier restrictions, we can use the obtain
results to illustrate one of the most interesting findings of t
work. This is as follows. Let us consider a generic subsetI8,
of set I, fulfilling only the request of containing afinite
number of states, withdifferententanglements. Then we ca
conclude that these entanglements areequivalentto the in-
verseof the nonextensive entropy, provided that entropy
dicesq are larger than a given valueQI8 , which is given by
the following formula:

QI8[max$Q~r i ,r j !,;r i ,r jPI8,iÞ j %. ~44!

In the setI8 for entropy indices larger than the critical valu
the ordering in the direction of increasing~decreasing! en-
tanglement is equivalent to ordering in the direction of d
creasing~increasing! entropy. A significant consequence
this is that entropy minimization yields a maximally e
tangled state and entropy maximization yields a minima
entangled state.

An attractive, albeit heuristic way, of illustrating the sam
conclusions is given by the formula
03231
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(e f f)~r![

2

p
arctanH (

i 51

4

QS Pi2(
kÞ i

PkD
3S 324S2~r!24(

kÞ i
Pk

2DSq
21J , ~45!

which establishes a direct connection between entanglem
and entropy. The quantityEq

(e f f) is ‘‘equivalent’’ to the en-
tanglement, in the sense that it increases or decreases
an increase or decrease of the entanglement strength.
thermore, it is equal to 1 when the entanglement is 1,
tends to vanish with the entanglement measure tendin
zero. The key ingredient of this heuristic formula is the te
arctan, and the factor( i 51

4 Q(Pi2(kÞ i Pk)(324S2(r)
24(kÞ i Pk

2). Without arctan, the conditionPm→12 would
generate divergencies. Furthermore withPm→(1/2)1 the in-
verse of the entropy would tend to a minimum which wou
be different from 0, which is the right value. With the fact
( i 51

4 Q(Pi2(kÞ i Pk)@324S2(r)24(kÞ i Pk
2#, we dispose of

the divergencies and we succeed in ensuring that the qua
Eq

(e f f) tends to vanish with the entanglement tending to ze
Note that thisad hocfactor is nothing but the square of th
concurrence. In principle, one could express the concurre
in terms ofS2, but this would not afford the attractive con
dition of the entanglement being a monotonically increas
function of the inverse of the nonextensive entropy.

In conclusion, we find that entanglement increase imp
entropy decrease, and vice versa. This property must be c
pared with the results of the work of Abe and Rajagopal@15#.
These authors adopted the principle of entropy maximiza
under suitable constraints to infer a plausible form of phy
cal state, and concluded that the entangled states are th
portant result of this maximization process. Here we adop
different perspective, based on the fact that the definition
entanglement of formation is already inspired to statisti
mechanics@20#. Within this perspective the state of max
mum entanglement corresponds to the minimum amoun
information necessary to describe the state. Within this sa
perspective, the amount of information necessary to desc
the state becomes increasingly larger upon reducing the
tanglement strength. From an intuitive point of view, the o
currence of decoherence, is judged by many authors@25# to
be the key condition to derive classical from quantum ph
ics, implies a significant entropy increase. However, decoh
ence, as a form of real wave-function collapse@26#, implies
the breakdown, in the long-time limit, of the entangleme
condition, and, as a consequence, the breakdown of
theory itself of the present paper. The result of this paper
to be considered within this perspective. As it appears fr
the literature on this new and exciting subject, the thermo
namic significance of the processes of quantum teleporta
is a very delicate and difficult issue. We are inclined to b
lieve that the adoption of a nonextensive form of entro
might be of some relevance, under specific restrictions.
first is that real wave-function collapses are ignored, and
second is that, in a world dominated by quantum entang
ment, the condition of maximum entanglement is perceiv
0-7
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as that requiring the minimum amount of information.
other words, increasing entanglement means smaller, ra
than larger, entropy values.

IV. TSALLIS ENTROPY AT WORK: DEPHASING
PROCESSES IN THE BELL BASIS SET

Before ending this paper, it is convenient to illustrate a
other interesting result that does not require a restriction
the setI. This has to do with an important result obtained
Bennett et al. @21#. These authors studied entangleme
changes as a function of a dephasing process. More
cisely, they focused their attention on the transformation

DB5
1

4 (
i 50

3

Ui
†rUi , ~46!

which brings the initial condition described by the dens
matrix r, expressed in the Bell basis, into the diagonal fo

@DB# i j [d i j @r# i j , ~47!

where the operatorsUi , i 50,1,2,3 areI , BxBx , ByBy , and
BzBz , respectively, andBi is the bilateral rotation ofp/2
around thei th axis of the spaceS1/2

(1)3S1/2
(2) . This bilateral

rotation was defined by these authors@21# as

Bi5
1
2 ~ I 2322 is1i !~ I 2322 is2i !. ~48!

Note that the matrixDB of Eq. ~47! is the ‘‘diagonal’’ of the
statistical density matrixr expressed in the Bell basis, an
that it results from a random application of four local unita
transformations, so that moving from the initial stater (1) to
the state described byDB

(1) the entanglement cannot increa
@27#. Consequently, we have

EF~r (1)!>EF~DB
(1)!. ~49!

We shall analyze these theoretical results by means
nonextensive entropy. The first analysis is made by focus
our attention on the natural valuesn.1 of the entropy index
q. In this special case the nonextensive entropy reads as
lows:

Sn~r!5
12Tr~UrU†!n

n21
5 Tr

r2rn

n21
. ~50!

Let us define the auxiliary function

gn~x![
x2xn

n21
. ~51!

We note that this is a concave function. On the other ha
several years ago Wehrl@28# note this in that case we ca
write

Tr gn~DB!> Tr gn~r!. ~52!

We note thatSn(r)5 Tr gn(r) and Sn(DB)5 Tr gn(DB).
Consequently, we can write
03231
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Sn~DB!>Sn~r!. ~53!

The dephasing process makes it possible for us to ge
alize the results of Sec. III. Let us consider a transformat
from an initial state described by a generic density matrix.
to the final state, we set the condition that it belongs to
setI. Let pm

(1) be the maximum of the diagonal elements
the initial stater (1), expressed in the Bell basis set. Let
also suppose thatpm

(1) is larger than the maximum eigenvalu
of the density matrixr (2), referring to the final state. This
condition is expressed by the relation

pm
(1)[ max

i 51,2,3,4
@r (1)# i i .Pm

(2). 1
2 . ~54!

As a consequence of this relation, we have

EF~r (1)!>EF~DB
(1)!.EF~r (2)!.0. ~55!

This is a transformation with a decreasing entanglement.
the basis of the results of Sec. III and of Eq.~53!, we are in
a position to find values of the entropy indexq such that the
nonextensive entropy of the final state is larger than tha
the initial state. This is done as follows. We move from t
initial condition r (1) to DB

(1) , through the dephasing proces
earlier described. As we have seen, with the adoption
natural values, larger than the unity, for the entropy indic
the entropy does not decrease. This means that

Sn~DB
(1)!>Sn~r (1)!. ~56!

According to our assumptions,DB
(1) and r (2) belong to the

setI. Thus we know, on the basis of the results of Sec.
that there exists a critical value of the entropy inde
Q(DB

(1) ,r (2)), beyond which the nonextensive entropy i
creases. If we choose critical values of the entropy index
are natural numbers larger than

N[@Q~DB
(1) ,r (2)!#, ~57!

we conclude that the nonextensive entropy increases. As
lier anticipated, this has the effect of making more gene
the results of Sec. III.

V. CONCLUSIONS

This paper shows that in the setI, enforcing the important
condition of a nonvanishing entanglement, the Tsallis
tropy is a monotonic and decreasing function of the incre
ing entanglement. The entanglement is, in turn, a monoto
and decreasing function of the increasing entropy under
key restriction of transformations yielding an entanglem
change. This conclusion was reached adopting a perspe
taking the warning of a recent paper by Horodeckiet al. @27#
into account. As a matter of fact, these authors showed
the principle of entropy maximization yields fake entang
ment, and consequently becomes questionable. We shar
conviction of these authors and adopt in fact an appro
that does not rest on the Jaynes principle@18,19#. Thus we
establish a comparison between entanglement and none
0-8
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sive entropy without invoking the Jaynes principle. We
not need to maximize entropy after minimizing entang
ment, as in Ref.@27#, and the monotonic dependence of e
tropy on entanglement is a natural consequence of the a
tion of suitably large entropy indices.

This means that we share the view of Rajagopal and A
@15# that a nonextensive form of entropy can prove to b
convenient tool to study quantum teleportation. In this sen
this paper contributes to deepening our understanding of
significance of the Tsallis entropy. This entropy indica
does not split into the sum of two independent contributio
when applied to a system consisting of two uncorrelated s
systems. This suggests that this kind of entropy might b
proper theoretical tool only when applied to cases wher
repartition into two uncorrelated systems is impossib
Quantum-mechanical systems, in principle, are signific
examples where this condition applies, if environmental
coherence, or other kind of decoherence processes, is
nored. In this condition the Tsallis entropy, according to
main result of this paper, seems to work properly, provid
that the warning of Ref.@27# is taken into account. This is
where our procedure departs from the point of view of R
jagopal and Abe@15#. Their approach was still based on th
Jaynes principle, supplemented by the choice of a suita
additional constraint, concerning the fluctuations around
average, as well as the ordinary constraint on the mean v
~also see Ref.@29#!. This procedure yields convincing, a
though nongeneral conclusions. Our approach, which un
tunately shares the lack of generality of Ref.@15#, is based on
a different perspective, aiming at identifying the inverse
entanglement with the non-extensive entropy.

We think the alternative perspective adopted in
present paper might contribute, as Refs.@15,29# do, to a bet-
ter understanding of the thermodynamic nature of entan
ment. We are afraid that the nonextensive entropy might
come inefficient when we leave the physical condition wh
the no-cloning theorem and the principle of no-increas
entanglement, recently found by Horodecki and Horode
@30#, is broken. According to these authors the occurrenc
real wave-function collapses, incompatible with the restr
tion of adopting unitary transformations, provokes a bre
down of this equivalence. In our opinion, the occurrence
real wave-function collapses is incompatible with the rest
tion of working on the setI, which enforces the condition o
a nonvanishing entanglement. Thus we expect that in
case the theory of this paper, and with it the nonextens
entropy, does not work. To explore the uncertain border
tween quantum and classical mechanics we probably nee
adopt a still more advanced perspective.

APPENDIX

This appendix is devoted to proving the crucial propert
of the critical values defined by Eqs.~23!–~28!. Let us con-
sider case~a! first. As a consequence ofdEF /dj,0, from
the limit of Eq. ~21! we naturally obtain that an auxiliar
function,q!(j) in Eq. ~25!, exists such thatq.q!(j) yields
03231
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j 51

3 S dPm

dj D 21S Pj

Pm
D q21S dPj

dj D.0. ~A1!

This critical valueq!(j) fulfilling the condition of Eq.
~A1! is also not unique. We therefore adopt a criterion
estimate one of the possible critical values. This will imp
that the resultingQ(r1 ,r2) is not unique, but, as show
below, we shall be able to find at least one of the valu
fulfilling the earlier mentioned properties ofQ(r1 ,r2). The
choice that we adopt to find one of the possibleq!(j)’s is as
follows. We set the inequality

UdPm

dj U21S Pj

Pm
D q21 dPj

dj
,

1

3
~A2!

for every value of the subscriptj running from 1 to 3. We
assume that this property holds true for anyq.q!(j). This
set of conditions, after easy algebra, yields

q!~j!5max$1,a1
!~j!,a2

!~j!,a3
!~j!%. ~A3!

As for the definition ofa j
!(j), with the subscriptj running

from 1 to 3, we must distinguish two cases. The first is
case when the constraints

Pj~j!.0 and dPj /dj.0 ~A4!

hold true. In this case, we set

a j
!~j![11F lnS Pm

Pj
D G21

lnS 3UdPm

dj U21 dPj

dj D . ~A5!

If the constraints of Eq.~A4! do not apply, i.e., either
Pj (j)50 or dPj /dj<0 applies, we seta j

!(j)51, in accor-
dance with the inequality~A2! which is true for every value
of the entropic indexq different from unity. The conclusion
of this procedure is that we built up the auxiliary functio
q!(j) in such a way that for anyq.q!(j) the condition

d

dj
EF~j!,0 ~A6!

yields

d

dj
Sq~j!.0. ~A7!

On the basis of this result, the functionQ!(j1 ,j2), defined in
Eq. ~23!,

Q!~j1 ,j2![ sup
jP[ j1 ,j2]

$q!~j!%, ~A8!

has the properties described in Sec. III D. In fact, using
~A6! and the ensuing inequality fordSq /dj, we immediately
conclude that for any q fulfilling the inequality q
.Q!(j1 ,j2) the conditionDEF,0 yields DSq.0. This is
0-9



th

ties

FILIPPO GIRALDI AND PAOLO GRIGOLINI PHYSICAL REVIEW A64 032310
so because in this casesDEF andDSq can be written under
the form of integrals in the interval@j1 ,j2# with integrands
always negative and positive, respectively. In case~b! we
adopt the same procedure which yields, in this case,
auxiliary function of Eq.~26!:

q!!~j![max$1,a1
!!~j!,a2

!!~j!,a3
!!~j!%. ~A9!

As to the terma j
!!(j), in the case where the constraints

Pj~j!.0 and dPj /dj,0 ~A10!

hold true, we set
d

v.

t

03231
e

a j
!!~j![11F lnS Pm

Pj
D G21

lnF3S dPm

dj D 21UdPj

dj UG .
~A11!

If the constraints of the Eq.~A10! do not apply, we set
a j

!!(j)51. The counterpart of Eq.~23! becomes Eq.~24!:

Q!!~j1 ,j2![ sup
jP[ j1 ,j2]

$q!!~j!%. ~A12!

In this case, forq.Q!!(j1 ,j2) the conditionDEF.0 yields
DSq,0. This concludes the demonstrations of the proper
described in Sec. III D.
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