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Efficient quantum-key-distribution scheme with nonmaximally entangled states
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We propose an efficient quantum-key-distribution scheme based on entanglement. The sender chooses pairs
of photons in one of the two equivalent nonmaximally entangled states randomly, and sends a sequence of
photons from each pair to the receiver. The sender and receiver choose from the various bases independently
but with substantiallydifferent probabilities, thus reducing the fraction of discarded data, and a significant gain
in efficiency is achieved. We then show that refined data analysis like that proposed by Loet al. ~H. K. Lo, H.
F. Chau, and M. Adrehali, e-print quant-ph/0011056! guarantees the security of our scheme against a biased
eavesdropping strategy. Remarkably, our scheme is more efficient than distillation of singlets out of the
nonmaximally entangled states and biased detection afterward.
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I. INTRODUCTION

Cryptography is the art of providing secure communic
tion over insecure communication channels. To achieve
goal, an algorithm is used to combine a message with s
additional information—known as the ‘‘key’’—to produce
cryptogram. For this reason, secure key distribution is a c
cial problem in cryptography.

Since the publication of the BB84 scheme proposed
Bennett and Brassard in 1984, there has been much int
in using quantum mechanics in cryptography@1–8#. The se-
curity of these quantum-key-distribution~QKD! schemes is
based on the fundamental postulate of quantum physics
‘‘every measurement perturbs a system.’’ Indeed, pas
monitoring of transmitted signals is strictly forbidden
quantum mechanics. The ‘‘quantum no-cloning theore
@9,10# indicates that it is impossible to make an exact copy
an unknown quantum state.

Two well-known concepts for quantum key distributio
are the BB84 scheme@1# and the Ekert scheme@2#. The
BB84 scheme@1# uses single photons transmitted betwe
two parties~commonly called Alice and Bob!. The sender
Alice uses nonorthogonal quantum states to transfer the
to the receiver Bob. Such states cannot be cloned; hence
attempt by an eavesdropper, known as Eve, to get infor
tion on the key disturbs the transmitted signals and indu
noise which will be detected during the second stage of
transmission. Alice and Bob randomly pick a subset of p
tons from those that are measured in correct bases and
licly compare their measurements. For these results, they
timate the average error rateē. If ē turns out to be
unreasonably large, then eavesdropping has occurred, a
data are discarded, and they may restart the whole proce

The Ekert scheme@2# is based on entangled pairs and us
the generalized Bell inequality~Clauser-Horne-Shimony
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Holt inequality! @11,12# to establish security. Both Alice an
Bob receive one particle out of a maximally entangled p
They perform measurements along at least three diffe
directions on each side, where measurements along par
axes are used for key generation and oblique angles use
testing the inequality.

Neither scheme described above based on nonorthog
quantum cryptography has an efficiency more than 50%.
cently, Lo et al. devise a modification@13# that essentially
doubles the efficiency of the BB84 scheme, where Alice a
Bob choose between the two bases independently but
substantiallydifferent probabilitiese and 12e. They also
prove the security of their scheme.

In this paper, we present an efficient QKD scheme w
nonmaximally entangled states. Remarkably, our schem
more efficient than distillation of singlets out of the no
maximally entangled states and biased detection@13# after-
ward. Suppose Alice creates pairs of photons in the nonm
mally entangled stateuAB& which can be transformed to it
equivalent stateuAB&8 with the same Schmidt coefficients b
local unitary transformations. She chooses pairs of phot
in one of the two states randomly, and sends a sequenc
photons out of each pair to Bob. The two users choose t
bases independently with different probabilities and perfo
measurements. Like to the scheme proposed by Loet al.,
here two parties are much more likely to be using the sa
basis, thus reducing the fraction of discarded data, an
significant gain in efficiency is achieved. To ensure that o
scheme is secure, we separate the accepted data into va
subsets according to the basis employed and estimate a
ror rate for each subsetseparately. We show that the refined
error analysis is sufficient to ensure the security of o
scheme against ‘‘a biased eavesdropping attack’’@13#.

In the next section, we give a detailed description of o
efficient QKD scheme with nonmaximally entangled stat
By considering a simple biased eavesdropping strategy
Eve, we apply the idea of refined error analysis proposed
Lo et al. @13# to our scheme to guarantee that it is secure
Sec. III. In Sec. IV, the constraint on the probabilitye is
derived. Finally, we conclude the scheme in Sec. V.
©2001 The American Physical Society05-1
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II. EFFICIENT QKD SCHEME WITH NONMAXIMALLY
ENTANGLED STATES

In our scheme, there are two parties: the sender Alice
the receiver Bob. Alice prepares pairs of photons in the n
maximally entangled state

uAB&5auH&AuH&B1buV&AuV&B , ~1!

whereuau21ubu251, andH andV denote the horizontal an
vertical linear polarization, respectively. Using
spontaneous-down-conversion photon source, the nonm
mally entangled states can be prepared experimentally@14#.
Then, at random, she performs a ‘‘sx’’ operation on each
particles to transform the stateuAB& to its equivalent state

uAB&85buH&AuH&B1auV&AuV&B ~2!

with probability 1
2 . Thesx operation can be implemented b

a Pockels cell. Next, photonB is sent to Bob and photonA is
left for Alice. There are two types of measurement that Al
may perform: She may measure along the rectilinear ba
thus distinguishing between horizontal and vertical photo
Alternatively, she may measure along the diagonal ba
thus distinguishing between the145° and245° photons.
Bob measures the polarizations at the other end. He meas
in one of three bases, obtained by rotating the rectilin
basis by anglesf1(f18)50, f2(f38)5tan21(b/a), f3(f28)
52tan21(b/a). The surperscript prime refers to the case
which Alice choosesuAB&8 as the original state.

The two users are connected by a quantum channel a
classical public channel. The quantum channel consists
ally of an optical fiber. The public channel, however, can
any communication link. So how does this scheme work

~1! Alice and Bob pick a number 0,e<1 and make its
value public. The constraint one will be discussed in Sec
IV.

~2! Alice sends a sequence of photonsB from each pair in
one of the two nonmaximally entangled states (uAB& and
uAB&8) chosen randomly and independently, and leaves
corresponding photonsA. She also records her choice
uAB& or uAB&8.

~3! Alice has two types of measurement. One measu
ment along the rectilinear basis~i.e., $uH&,uV&%) allows her
to distinguish between horizontally and vertically polariz
photons. The other measurement along the diagonal b
@i.e., $(1/A2)(uH&1uV&),(1/A2)(uH&2uV&)%# allows her to
distinguish between photons polarized at145° and245°.
Alice chooses between the two types with probabilities
2e ande, respectively. If she detects photonA in the state
uH& or (1/A2)(uH&1uV&), the result is 0; otherwise, the me
surement can yield the result 1, and potentially reveal one
of information. She writes down her measurement bases
the results of the measurements.

~4! For each photon, Bob performs measurements
registers the outcome of the measurements in one of t
bases, obtained by rotating the rectilinear basis by an
f1(f18)50, f2(f38)5tan21(b/a), and f3(f28)5
2tan21(b/a), i.e., $uH&,uV&%, $auH&1buV&,buH&2auV&%,
and $buH&1auV&,auH&2buV&%, with probabilities 12e,
03230
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e/2, ande/2, respectively. Similar to the measurements p
formed by Alice, each measurement can yield two result
~if he detects photonB in the stateuH&, auH&1buV&, or
buH&1auV&) and 1 ~if he detects photonB in the stateuV&,
buH&2auV&, or auH&2buV&). The ensemble of these bit
registered by both Alice and Bob is the raw key.

~5! After exchanging enough photons, Bob announces
the public channel the sequence of bases he used, but no
results that he obtained.

~6! Alice compares this sequence with the states that
originally chose, and the list of polarizations that she m
sured. Then she tells Bob on the public channel on wh
occasions his measurements were done in the correct b
Whenever Alice and Bob used the compatible basis, t
should get perfectly correlated bits. However, due to imp
fections in the setup, and to a potential eavesdropper, t
will be some errors.

There are two cases in which Alice chooses entang
statesuAB& and uAB&8, respectively. For either of the two
cases, both Alice and Bob are much more likely to choo
the rectilinear basis and obtain correlated bits, thus achiev
a significant gain in efficiency. If Alice chooses the diagon
basis, in order to generate a sifted key, Bob should cho
between the bases$auH&1buV&,buH&2auV&%, and $buH&
1auV&,auH&2buV&% according to the entangled state ch
sen by Alice and the polarization of photonA. ~Otherwise, if
he uses the rectilinear basis, he gets the outcomes 0 a
with probabilitiesuau2 and ubu2, respectively. These result
abort.! For example, Alice chooses the stateuAB& and sends
photonB to Bob. Then, if she detects photonA polarized at
145° by measuring along the diagonal basis, Bob m
choose the basis$auH&1buV&,buH&2auV&% and photonB
will be detected in the stateauH&1buV&. Therefore, they
can generate a key bit 1 with probability1

2 3e3 e
2 . The bases

used by Alice and Bob agree with probability (12e)2

1e2/2 which goes to 1 ase goes to zero.
~7! For each of the two cases in which Alice chooses

entangled stateuAB& or uAB&8, Alice and Bob divide up their
polarization data into 12 cases according to the actual b
used and the bit values yielded~shown in Table I!, respec-
tively. Then they throw away the eight cases when they h
used noncompatible bases. Since the total probabilities
the two users to obtain the results 0 and 1 are equal,
ensemble of these bits of the remaining four cases is a s
key. Hence, the remaining cases are kept for further anal
and to generate the secret key.

~8! Alice and Bob divide up the accepted data into tw
subsets according to the entangled states originally cho
by Alice. From the subset where Alice choosesuAB& as the
prior state, there are three cases. In one case where Alice
Bob both use the rectilinear basis~including two cases
shown in Table I, in each of which the bit value is 0 or 1!,
they randomly pick a fixed number, saym1, of photons and
publicly compare their polarizations. The number of m
matchesr 1 ~here, mismatch means that the polarizations
photons are not correlated! tells them the estimated error ra
e15r 1 /m1. In the case where Alice uses the diagonal ba
5-2
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and Bob uses the basis$auH&1buV&,buH&2auV&%, they
pick a fixed number, saym2, of photons and publicly com
pare their polarizations. The number of mismatchesr 2 gives
the estimated error ratee25r 2 /m2. In the case where Alice
uses the diagonal basis and Bob uses the basis$buH&
1auV&,auH&2buV&%, they pick a fixed number, saym3, of
photons and publicly compare their polarizations. The nu
ber of mismatchesr 3 gives the estimated error ratee3
5r3/m3. Similarly, from the subset where Alice choseuAB&8
as the prior state, there are also three cases. Correspond
the above discussion, we obtain the error ratese185r 18/m18 ,
e285r 28/m28 , ande385r 38/m38 .

Note that, if the test samplesm1 , m18 , m2 , m28 , m3, and
m38 are sufficiently large, the estimated error ratese1 , e18 ,
e2 , e28 , e3, ande38 should be rather accurate@15,16#. Now
Alice and Bob demand thate1 , e18 , e2 , e28 , e3, and e38
,emax where emax is a prescribed maximal tolerable err
rate. If these independent constraints are satisfied, they
ceed to the next steps. Otherwise, they throw away the
larization data and restart the whole procedure. Notice
the constraintse1 , e18 , e2 , e28 , e3, and e38,emax are more

stringent than the original naive prescriptionē,emax ~hereē
is the average error rate!. We will discuss this in detail in
Sec. III.

~9!. The last step is reconciliation and privacy amplific
tion ~see Refs.@1,13#!.

III. REFINED ERROR ANALYSIS

For each photon, the eavesdropper Eve does not k
which nonmaximally entangled state it is chosen from.

TABLE I. Example of the case where Alice choosesuAB& as the
original state. The measurement bases are presented as the
by which the rectilinear basis is rotated@hereu5tan21(b/a)#. The
two users choose a basis with a certain probability to measure
particles and register the bit value~0 or 1!. The ensemble of thes
bits is the raw key. Alice tells Bob on the public channel on whi
occasions his measurements have been done in the correct b
and they keep only the bits corresponding to the compatible ba
This is the sifted key.

A basis 0 0 0 0 0 0 p

4
p

4
p

4
p

4
p

4
p

4
A bit value 0 0 0 1 1 1 0 0 0 1 1 1
B basis 0 u 2u 0 u 2u 0 u 2u 0 u 2u
B bit value 0 1/0 1/0 1 1/0 1/0 1/0 0 1/0 1/0 1/0 1
Compatible? y n n y n n n y n n n y
Sifted key 0 1 0 1
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for Eve, each photon is in an entangled mixed state. She
eavesdropping attack as below.

~i! With a probability p1 she measures polarization o
each photon along the rectilinear basis and resends a ph
according to the result of her measurement to Bob.

~ii ! With a probability p2 she measures polarization o
each photon along the basis$auH&1buV&,buH&2auV&% and
resends a photon according to the result of her measurem
to Bob.

~iii ! With a probability p3 she measures polarization o
each photon along the basis$buH&1auV&,auH&2biV&%
and resends a photon according to the result of her meas
ment to Bob.

~iv! With a probability 12p12p22p3 she does nothing.
Eve obtains a whole set of eavesdropping strategies

varying the values ofp1 , p2, andp3. Any of the strategies in
this set is called ‘‘a biased eavesdropping attack’’@13#.

Consider the error ratee1 (e18) for the case when both
Alice and Bob use the rectilinear basis. For the biased ea
dropping strategy under current consideration, errors oc
only if Eve uses the other two bases. This happens wit
conditional probabilityp21p3. In this case, the polarization
of the photon is randomized, thus giving an error rate

e1~e18!52a2b2~p21p3!. ~3!

Errors for the case where Alice uses the diagonal basis
Bob uses the basis$auH&1buV&,buH&2auV&% occur only if
Eve is measuring along the rectilinear basis or the ba
$buH&1auV&,auH&2buV&%. This happens with a condi
tional probability p11p3 and when it happens the photo
polarization is randomized. Thus, the error rate for this c
is

e2~e38!52a2b2p118a2b2~a22b2!2p3 . ~4!

Similarly, errors for the case where Alice uses the diago
basis and Bob uses the basis$buH&1auV&,auH&2buV&%
occur only if Eve is measuring along the rectilinear basis
the basis$auH&1buV&,buH&2auV&%. This happens with a
conditional probabilityp11p2. In this case, the error rate i
given as

e3~e28!52a2b2p118a2b2~a22b2!2p2 . ~5!

Therefore, Alice and Bob will find that, for a biased eave
dropping attack, the average error rate

gles

eir

ses,
s.
ē5
~12e!2~e11e18!1~e2/4!~e21e31e281e38!

2@~12e!21e2/2#

5
a2b2@2~12e!2~p21p3!1e2p112e2~a22b2!2~p21p3!#

~12e!21e2/2
. ~6!
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Suppose Eve always eavesdrops only along the rectilin
basis~i.e., p151, p25p350), then

ē5
a2b2e2

~12e!21e2/2
→0 ~7!

as e tends to 0, which is similar to the result of Ref.@13#.
This means that, if Eve is always eavesdropping along
dominant basis, with a naive error analysis prescribed aē
,emax Alice and Bob will fail to detect eavesdropping b
Eve.

To ensure the security of our scheme, it is crucial to e
ploy a refined data analysis: the accepted data are fur
divided into various subsets according to the actual b
used by Alice and Bob and the error rate of each subse
computed separately. In Sec. II, we have already compu
the error ratese1 , e18 , e2 , e28 , e3, ande38,emax whereemax

is a prescribed maximal tolerable error rate. From Eqs.~3!–
~5!, we can see that these error ratese1 , e18 , e2 , e28 , e3, and
e38 depend on Eve’s eavesdropping strategy and the degre
entanglement of the original state, but not on the value oe.
So the refined data analysis guarantees the security o
present scheme.

IV. THE CONSTRAINT ON e

From the above discussion, we know that the value oe
should be small but cannot be zero. Ife were actually zero,
the scheme would be insecure. The main constraint one is
that there should be enough photons for an accurate est
tion of the six error ratese1 , e18 , e2 , e28 , e3, and e38 . We
assume thatN entangled pairs are chosen by Alice, i.e.,N
photons are transmitted from Alice to Bob. On average,
uAB& or uAB&8 only Ne2/8 photons belong to each of the tw
cases where Alice uses the diagonal basis and Bob use
basis $auH&1buV&,buH&2auV&% or the basis $buH&
1auV&,auH&2buV&%. To estimatee2 , e28 , e3, ande38 rea-
sonably accurately, the numberNe2/8 should be larger than
some fixed number, saym5max(m2,m28 ,m3,m38). The num-
bersm2 , m28 , m3, andm38 are the photon numbers needed f
the refined error analysis, which can be computed from c
sical statistical analysis. So

Ne2/8>m, ~8!

e>2A2m/N.
Pr

et

m
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As N tends to`, e can tend to zero, but never reach it, a
the efficiency of this scheme is asymptotically 100%.

V. DISCUSSION AND CONCLUSION

From the refined error analysis, we find that the error ra
depend not only on Eve’s eavesdropping strategy but also
the degree of entanglement of the original state. For a bia
eavesdropping attack, the error ratesei andei8 ( i 51,2,3) are
functions of ab, the probabilitye, and the eavesdroppin
strategy of Eve@see Eqs.~3!–~5!#. If Alice uses a product
state as the original state, i.e.,ab50, whatever the probabil-
ity e and Eve’s eavesdropping strategy are, the error rateei
andei8 equal zero. That is, Alice and Bob will never dete
eavesdropping by Eve whatever she does. In other word
ab50, the scheme is easily broken by an eavesdropper.
security of our scheme relies on the degree of entanglem
of the original state. Ifuabu5 1

2 , this scheme is equivalent t
an efficient ‘‘simplified Einstein-Podolsky-Rosen~EPR!
scheme’’@3#.

Of course, the QKD with nonmaximally entangled stat
may also be completed in another way. At first, the nonma
mally entangled stateuAB&5au00&1bu11& ~here ubu,uau)
can be concentrated to an EPR state@17,18# with probability
2ubu2 @19#. If the concentration fails, EPR pairs are aba
doned; otherwise, they are used in an efficient simplifi
EPR scheme@3#. Obviously, the total efficiency of this QKD
process should be no more than 2ubu2.

In summary, we propose a quantum-key-distributi
scheme based on entanglement, where Alice and Bob ch
between various bases independently with substantially
ferent probabilities. Since the two parties are much m
likely to be using the same basis, thus reducing the frac
of discarded data, a significant gain in efficiency is achiev
The efficiency can tend to 100%, as the value ofe tends to
zero ~but cannot reach it accurately!.

To make the scheme secure against a dominant b
eavesdropping attack, it is crucial to have a refined er
analysis@13# in place of a naive error analysis. We separa
the accepted data into various subsets according to the b
employed and estimate an error rate for each subset s
rately. It is only when all error rates are small enough that
security of transmission is accepted.
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