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Efficient quantum-key-distribution scheme with nonmaximally entangled states
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We propose an efficient quantum-key-distribution scheme based on entanglement. The sender chooses pairs
of photons in one of the two equivalent nonmaximally entangled states randomly, and sends a sequence of
photons from each pair to the receiver. The sender and receiver choose from the various bases independently
but with substantiallydifferent probabilities, thus reducing the fraction of discarded data, and a significant gain
in efficiency is achieved. We then show that refined data analysis like that proposedebyal ¢H. K. Lo, H.

F. Chau, and M. Adrehali, e-print quant-ph/0011p§6arantees the security of our scheme against a biased
eavesdropping strategy. Remarkably, our scheme is more efficient than distillation of singlets out of the
nonmaximally entangled states and biased detection afterward.
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[. INTRODUCTION Holt inequality) [11,12 to establish security. Both Alice and
Bob receive one particle out of a maximally entangled pair.

Cryptography is the art of providing secure communica-They perform measurements along at least three different
tion over insecure communication channels. To achieve thidirections on each side, where measurements along parallel
goal, an algorithm is used to combine a message with somaxes are used for key generation and oblique angles used for
additional information—known as the “key”—to produce a testing the inequality.
cryptogram. For this reason, secure key distribution is a cru- Neither scheme described above based on nonorthogonal
cial problem in cryptography. quantum cryptography has an efficiency more than 50%. Re-

Since the publication of the BB84 scheme proposed by:ently, Lo et al. devise a modificatiorf13] that essentially
Bennett and Brassard in 1984, there has been much interedubles the efficiency of the BB84 scheme, where Alice and
in using quantum mechanics in cryptograghy-8§]. The se- Bob choose between the two bases independently but with
curity of these quantum-key-distributiglQKD) schemes is substantiallydifferent probabilitiese and 1—e€. They also

based on the fundamental postulate of quantum physics thg{olve rt]he security of their schem? . KD sch i
“every measurement perturbs a system.” Indeed, passive n this paper, we present an efficient QKD scheme wit

monitoring of transmitted signals is strictly forbidden in nonmaximally entangled states. Remarkably, our scheme is

quantum mechanics. The “quantum no-cloning theorem®MOre efficient than distillation of singlets out of the non-

S o . aximally entangled states and biased detedti]j after-
[9.10) indicates that it is impossible to make an exact copy O(Eard. Suppose Alice creates pairs of photons in the nonmaxi-
an unknown quantum state.

... mally entangled statpAB) which can be transformed to its
Two well-known concepts for quantum key distribution o jiajent statgAB)’ with the same Schmidt coefficients by
are the BB84 schemfl] and the Ekert schemi2]. The  |ocq) ynitary transformations. She chooses pairs of photons
BB84 schemd 1] uses single photons transmitted betweenj, one of the two states randomly, and sends a sequence of
two parties(commonly called Alice and Bab The sender yhotons out of each pair to Bob. The two users choose their
Alice uses nonorthogonal quantum states to transfer the keyases independently with different probabilities and perform
attempt by an eavesdropper, known as Eve, to get informayere two parties are much more likely to be using the same
tion on the key disturbs the transmitted signals and inducegasis, thus reducing the fraction of discarded data, and a
noise which will be detected during the second stage of thgjgnificant gain in efficiency is achieved. To ensure that our
transmission. Alice and Bob randomly pick a subset of phoscheme is secure, we separate the accepted data into various
tons from those that are measured in correct bases and pufpsets according to the basis employed and estimate an er-
licly compare their measurements. For these results, they efor rate for each subsseparately We show that the refined
timate the average error rate. If e turns out to be error analysis is sufficient to ensure the security of our
unreasonably large, then eavesdropping has occurred, all tikeheme against “a biased eavesdropping attqig].
data are discarded, and they may restart the whole procedure. In the next section, we give a detailed description of our
The Ekert schemi2] is based on entangled pairs and usesefficient QKD scheme with nonmaximally entangled states.
the generalized Bell inequalityClauser-Horne-Shimony- By considering a simple biased eavesdropping strategy by
Eve, we apply the idea of refined error analysis proposed by
Lo et al.[13] to our scheme to guarantee that it is secure in
*Email address: cfli@ustc.edu.cn Sec. lll. In Sec. 1V, the constraint on the probabiligyis
TEmail address: gcguo@ustc.edu.cn derived. Finally, we conclude the scheme in Sec. V.
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Il. EFFICIENT QKD SCHEME WITH NONMAXIMALLY €/2, ande/2, respectively. Similar to the measurements per-
ENTANGLED STATES formed by Alice, each measurement can yield two results 0

In our scheme, there are two parties: the sender Alice anglc he detects photqu in the state[H), C,'|H>+'3|V>’ or
the receiver Bob. Alice prepares pairs of photons in the nonB|H)+a|V)) and 1(if he detects photoB in the statqV),

maximally entangled state BIH)Y—«a|V), or a|H)— B|V)). The ensemble of these bits
registered by both Alice and Bob is the raw key.
|AB)=a|H)a|H)g+ B|V)alV)s, (1) (5) After exchanging enough photons, Bob announces on

the public channel the sequence of bases he used, but not the
where|a|?+|B|?=1, andH andV denote the horizontal and esyits that he obtained.
vertical linear  polarization, ~ respectively. Using a (g) Alice compares this sequence with the states that she
spontaneous-down-conversion photon source, the nonMaXijginally chose, and the list of polarizations that she mea-
mally entangled states can be prepired experlmer[tbdlﬂ/ sured. Then she tells Bob on the public channel on which
The_n, at random, she performs ay . opera_tlon on each occasions his measurements were done in the correct bases.
particles to transform the statAB) to its equivalent state Whenever Alice and Bob used the compatible basis, they
|AB)’ = BH)alH)g+ | V) Al V)s ) shquld g_et perfectly correlated bits. prever, due to imper-
fections in the setup, and to a potential eavesdropper, there
with probability 3. The o, operation can be implemented by will be some errors.
a Pockels cell. Next, photdd is sent to Bob and photofis There are two cases in which Alice chooses entangled
left for Alice. There are two types of measurement that Alicestates|AB) and |AB)’, respectively. For either of the two
may perform: She may measure along the rectilinear basigases, both Alice and Bob are much more likely to choose
thus distinguishing between horizontal and vertical photonsthe rectilinear basis and obtain correlated bits, thus achieving
Alternatively, she may measure along the diagonal basis significant gain in efficiency. If Alice chooses the diagonal
thus distinguishing between the45° and —45° photons.  pasis, in order to generate a sifted key, Bob should choose
Bob measures the polarizations at the other end. He measurgsnyeen the basey|H) + 8|V}, 8|H)— a|V)}, and{B|H)
in one of three bases, obtained by rotating the rectiIineagLa|v>,a|H>_B|V>} according to the entangled state cho-
basis bylanglesbl(¢1)=0, ba(h3)=tan (Bla), ¢a(¢2) _ sen by Alice and the polarization of photdn (Otherwise, if
= —tan “(B/@). The surperscript prime refers to the case inpg ses the rectilinear basis, he gets the outcomes 0 and 1
which Alice choosesAB)” as the original state. with probabilities|a|? and | 8|2, respectively. These results

| Thie t‘INO %Tiersharsnc?n_llw_ﬁcted brll/t aﬂ?”ﬂgﬁ:zﬂcggnnsr;gsagg i ort) For example, Alice chooses the sti#eB) and sends
classical public channel. The quantum ¢ hotonB to Bob. Then, if she detects photénpolarized at

ally of an optical fiber. The public channel, however, can b +45° by measuring along the diagonal basis, Bob must

any communication link. So how does this scheme work? :
(1) Alice and Bob pick a numberQe<1 and make its choose the basiga|H) +B|V), B|H) —a|V)} and photor8
will be detected in the state|H)+ g|V). Therefore, they

value public. The constraint oa will be discussed in Sec. ] - 1B
V. can generate a key bit 1 with probabiliy< eX 5. The bases

(2) Alice sends a sequence of photd&om each pairin  used by A“Ce and Bob agree with probability %)
one of the two nonmaximally entangled statéAR) and +€°/2 which goes to 1 as goes to zero.
|AB)’) chosen randomly and independently, and leaves the (7) For each of the two cases in which Alice chooses the
corresponding photoné. She also records her choice of entangled statgAB) or [AB)’, Alice and Bob divide up their
|AB) or |AB)’. polarization data into 12 cases according to the actual bases

(3) Alice has two types of measurement. One measuredsed and the bit values yieldéghown in Table ), respec-
ment along the rectilinear basise., {|H),|V)}) allows her tively. Then they throw away the eight cases when they have
to distinguish between horizontally and vertically polarizedused noncompatible bases. Since the total probabilities for
photons. The other measurement along the diagonal basilse two users to obtain the results 0 and 1 are equal, the
li.e., {(1V2)(IH)+]V)),(1N2)([H)—|V))}] allows her to  ensemble of these bits of the remaining four cases is a sifted
distinguish between photons polarized-a#5° and—45°.  key. Hence, the remaining cases are kept for further analysis
Alice chooses between the two types with probabilities land to generate the secret key.
— € ande, respectively. If she detects photdnin the state (8) Alice and Bob divide up the accepted data into two
[H) or (11/2)(|H)+|V)), the result is 0; otherwise, the mea- subsets according to the entangled states originally chosen
surement can yield the result 1, and potentially reveal one biby Alice. From the subset where Alice choo$@®8) as the
of information. She writes down her measurement bases angtior state, there are three cases. In one case where Alice and
the results of the measurements. Bob both use the rectilinear basigcluding two cases

(4) For each photon, Bob performs measurements anghown in Table I, in each of which the bit value is 0 9y 1
registers the outcome of the measurements in one of thra@ey randomly pick a fixed number, say,, of photons and
bases, obtained by rotating the rectilinear basis by anglgsublicly compare their polarizations. The number of mis-
b1(h)=0, dy(py)=tan Y(Bla), and ¢s(ps)= matchesr; (here, mismatch means that the polarizations of
—tan }(Bla), i.e.,{|H),|V)}, {a|H)+B|V),B8/H)—a|V)},  photons are not correlatgtlls them the estimated error rate
and {B|H)+ a|V),a|H)— B|V)}, with probabilites *-e, e,;=r;/m;. In the case where Alice uses the diagonal basis
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TABLE I. Example of the case where Alice choo$és8) as the  for Eve, each photon is in an entangled mixed state. She has
original state. The measurement bases are presented as the anges/esdropping attack as below.
by which the rectilinear basis is fOtatﬁl_Ibreﬁzta_n__l(B/a)]- The (i) with a probability p, she measures polarization of
two users choose a basis with a certain probability to measure theggch photon along the rectilinear basis and resends a photon
particles and register the bit valg@ or 1). The ensemble of these according to the result of her measurement to Bob.
bits is the raw key. Alice tells Bob on the public channel on which (i) With a probability p, she measures polarization of
occasions his measurements have been done in the correct basgach photon along the bagis|H) + 8|V}, 8|H)— a|V)} and
and they keep only the bits corresponding to the compatible basepcen s a photon according to the result of her measurement
This is the sifted key. to Bob

(iii) With a probability p; she measures polarization of

A basis 0 0 00 O O
22 Z Z Z X each photon along the bas(g|H)+a|V),alH)—B|V)}

_ 4 4 4 4 4 4 :
Abitvaue 0 0 0 1 1 1 0 0 O 1 1 1 andresends a photon according to the result of her measure-
B basis 06 -60 6 —6 0 6 -0 0 6 —¢ menttoBob. N _
Bhitvalue 0 1/0 1/0 1 1/0 1/0 1/0 0 1/0 1/0 1/0 1 (iv) With a probability 1-p;—p,— ps she does nothing.
Compatble? y n n y n n ny n n n y Eve obtains a whole set of eavesdropping strategies by
Sifted key 0 1 0 1 varying the values gp,, p,, andps. Any of the strategies in

this set is called “a biased eavesdropping attalck3].

Consider the error rate; (e;) for the case when both
and Bob uses the basist|H)+ B|V),B8|H)—«|V)}, they  Alice and Bob use the rectilinear basis. For the biased eaves-
pick a fixed number, sagn,, of photons and publicly com- dropping strategy under current consideration, errors occur
pare their polarizations. The number of mismatchggives  only if Eve uses the other two bases. This happens with a
the estimated error ra@,=r,/m,. In the case where Alice conditional probabilityp,+ ps. In this case, the polarization
uses the diagonal basis and Bob uses the bpgjsl) of the photon is randomized, thus giving an error rate
+a|V),a|H)— B|V)}, they pick a fixed number, says;, of
photons and publicly compare their polarizations. The num- ei(e])=2a?B2(p,+Ps3). 3)
ber of mismatches; gives the estimated error rate;
=r3/mjz. Similarly, from the subset where Alice chg#eB)’ E

rrors for the case where Alice uses the diagonal basis and
8b uses the basjg:|H) + B|V), B|H) — a|V)} occur only if
Eve is measuring along the rectilinear basis or the basis

as the prior state, there are also three cases. Corresponding
the above discussion, we obtain the error ragsri/my,

€;=r/M,, ande;=ry/m;. , , {B|H)+a|V),a|H)— B|V)}. This happens with a condi-
Note that, if the test samples,, my, m,, my, ms, a’nd tional probability p;+ps and when it happens the photon
m; are sufficiently large, the estimated error raégs e,,  polarization is randomized. Thus, the error rate for this case

e,, €,, €3, andej should be rather accurafé5,16. Now s

Alice and Bob demand tha¢,, e;, e,, €5, e, ande;

<emax Where e,y is a prescribed maximal tolerable error e,(e5)=2a’B%p,+8a?B%(a’— B?)%p;. (4
rate. If these independent constraints are satisfied, they pro-

ceed to the next steps. Otherwise, they throw away the po-

larization data and restart the whole procedure. Notice th %lm_narly, degof for th?hcasbe vyheHre+AI|c\? use: tlwe %agonal
the constraint®;, €], €,, €}, 3, andej<ena are more ~asiS and boOb Uses he adig|H) + a|V),a|H) - BIV)}

. - . 2 — — occur only if Eve is measuring along the rectilinear basis or
stringent than the original naive Prescriplion emay (herge_ the basis{a|H)+ 8|V),8|H)— a|V)}. This happens with a
is the average error rateWe will discuss this in detail in ¢ongitional probabilityp, + .. In this case, the error rate is

Sec. Il given as
(9). The last step is reconciliation and privacy amplifica-

tion (see Refs[1,13)).
IIl. REFINED ERROR ANALYSIS

es(ey) =2a°B%p; +8a’B(a’— B?)?p,. ®

For each photon, the eavesdropper Eve does not knowherefore, Alice and Bob will find that, for a biased eaves-
which nonmaximally entangled state it is chosen from. Sodropping attack, the average error rate

— (1—e)%(ey+e))+(e%d) (e, +e;+es+ep)
e:
2[(1— €)%+ €°12]

_ a?BA2(1—€)*(pa+p3) + €2py+2€%(a?— BA%(Pa+p3)]
(1— €)%+ €212 '

(6
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Suppose Eve always eavesdrops only along the rectilineaks N tends tox, € can tend to zero, but never reach it, and

basis(i.e., p1=1, p,=p3=0), then the efficiency of this scheme is asymptotically 100%.
_ azlngz V. DISCUSSION AND CONCLUSION
=—F————0 7
(1— €)%+ 62/2_) @) From the refined error analysis, we find that the error rates

depend not only on Eve’s eavesdropping strategy but also on
as e tends to 0, which is similar to the result of R¢L3]. the degree of entanglement of the original state. For a biased
This means that, if Eve is always eavesdropping along theavesdropping attack, the error raggsinde; (i=1,2,3) are

dominant basis, with a naive error analysis prescribeé as functions of a, the probabilitye, and the eavesdropping
<enax Alice and Bob will fail to detect eavesdropping by strategy of Eve[see Eqs(3)—(5)]. If Alice uses a product
Eve. state as the original state, i.e.3=0, whatever the probabil-

To ensure the security of our scheme, it is crucial to emity € and Eve’s eavesdropping strategy are, the error gtes
ploy a refined data analysis: the accepted data are furth@nd€’ equal zero. That is, Alice and Bob will never detect
divided into various subsets according to the actual basi§avesdropping by Eve whatever she does. In other words, if
used by Alice and Bob and the error rate of each subset {€8=0, the scheme is easily broken by an eavesdropper. The
computed separately. In Sec. Il, we have already computed€curity of our scheme rellels on the degree of entanglement
the error rate®;, €], €,, €}, €5, ande,< eya, Whereema, of the original “st.ate._lfa,8| =3, this scheme is equivalent to
is a prescribed maximal tolerable error rate. From ggs. ~ an efficient “simplified Einstein-Podolsky-Rose(EPR

, / scheme”[3].
(5,)’ we can see that these error ratgs €, , €, €, 3, and Of course, the QKD with nonmaximally entangled states
€3 depend on Eve's eaye_sdropplng strategy and the degree r%fay also be completed in another way. At first, the nonmaxi-
entanglem_ent of the ongma! state, but not on the vaI_ue. of mally entangled stateAB) = |00) + 8|11) (here|B|<|a])
So the refined data analysis guarantees the security of trl:%n be concentrated to an EPR s{dté 18 with probability
present scheme. 2| 8|2 [19]. If the concentration fails, EPR pairs are aban-

doned; otherwise, they are used in an efficient simplified

IV. THE CONSTRAINT ON € EPR schemg3]. Obviously, the total efficiency of this QKD
From the above discussion, we know that the value of Process should be no more thafg?. S
should be small but cannot be zero.elfvere actually zero, In summary, we propose a quantum-key-distribution

the scheme would be insecure. The main constrainté i1  Scheme based on entanglement, where Alice and Bob choose

that there should be enough photons for an accurate estimB€tween various bases independently with substantially dif-
tion of the six error rateg;, e}, e,, e}, €3, ande}. We ferent probabilities. Since the two parties are much more

assume thaN entangled pairs are chosen by Alice, i K., likely to be using the same basis, thus reducing the fraction

photons are transmitted from Alice to Bob. On average, fon disca_lrc_ied data, a significant gain in efficiency is achieved.
|AB) or |AB)’ only Ne/8 photons belong to each of the two The efficiency can tend to 100%, as the valuesdgénds to

cases where Alice uses the diagonal basis and Bob uses tR8"C (Put cannot reach it accuratgly . .
basis {a|H)+B|V),BH)—a|V)} or the basis {8|H) To make the scheme secure against a dominant basis
*alV) a|H>—,8|V>’} To estimatee. €' e.. ande. rea- eavesdropping attack, it is crucial to have a refined error
sonabl),/ accurately t.he AUMbAE2 /82 ,Shtz);,ﬂ d3,be Iargger than analysis[13] in place of a naive error analysis. We separate
come fixed numbér San=max(my,mj,ms,m). The num- the accepted data into various subsets according to the basis

employed and estimate an error rate for each subset sepa-
bersm,, m;, ms, andm; are the photon numbers needed for poy P

2 - ) rately. It is only when all error rates are small enough that the
the refined error analysis, which can be computed from Claséecurity of transmission is accepted.

sical statistical analysis. So
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