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Generalized measurements on atoms in microtraps
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Neutral atoms can be trapped in microscopic potentials resulting from electric and magnetic fields. These
microtraps might be used to build simple quantum devices, and ultimately be combined to networks for
performing quantum computation. Considering quantum information applications, it is of interest to be able to
perform generalized measurements on qubits. A scheme to accomplish this when the qubits are carried by
neutral atoms in microtraps is suggested.
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I. INTRODUCTION

There has recently been growing experimental interes
constructing microscopic traps, where neutral atoms
trapped by means of electric and magnetic forces; see
example,@1–4#. The microtraps may be integrated on a s
face to form ‘‘atom chips’’@3#, an atom-optics analog o
semiconductor heterostructures. Simple devices such
beam splitters have already been realized@5,6#, and one can
envisage building networks leading to more complica
structures for quantum information applications@7#. Cold
collisions @8–10# and induced dipole interactions@11# have
been proposed as means to achieve entanglement and
tum logic gates for atoms trapped in optical lattices or
magnetic microtraps. The advantage with neutral atom
that they couple weakly to the environment, which impli
less decoherence. In previous work, we have investiga
possible uses of microtrap networks, in particular, mec
nisms to achieve conditional logic@12–14#.

Any quantum communication protocol or quantum co
putational task involves a final measurement. An ideal v
Neumann measurement@15# is a projection onto the orthogo
nal eigenstates of some observable, and is not sufficien
optimally adressing all physical measurement situations.
amples include the simultaneous measurement of nonc
muting observables@16,17# and distinguishing between non
orthogonal states@18–21#. For example, given a quantum
system prepared in one of two nonorthogonal states
asked in which one it is, it is possible to perform a mo
general kind of measurement with three outcomes. Two
them will correspond to each one of the states, telling us w
certainty that the system was in this state. In addition, th
will always be a finite probability for the third outcome
which provides no information at all. This procedure is
example of a probability operator measure~POM! strategy,
also referred to as a positive operator-valued meas
~POVM! strategy@22,23#. An important difference betwee
von Neumann measurements and generalized measurem
is that the number of outcomes need not be the same a
number of available preparations, or the same as the dim
sionality of the Hilbert space of the system to be measur
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In principle, a generalized measurement can always
realized by introducing auxiliary degrees of freedom, a
then performing a von Neumann measurement on the c
bined system. How to realize this in practice is another qu
tion. Actual experiments implementing generalized measu
ment protocols have so far only been performed on phot
@24–27#. An experimental realization when the qubit stat
are different internal states of ions or atoms is suggeste
@28#. This paper considers generalized measurements
atomic particles trapped in microtraps. A brief introduction
generalized measurements is offered in the next section.
tion II outlines the measurement procedure on atoms in
crotraps. An explicit example, distinguishing between th
linearly dependent states, is given in Sec. III, followed
conclusions.

II. GENERALIZED MEASUREMENTS

A POM measurement can be carried out via a coupling
an auxiliary system, followed by a von Neumann measu
ment on the combined system@23#. Let r i be the density
matrix of the initial system prepared in statei, andraux that
of the auxiliary system, prepared in a known state. The
ferent outcomes, labeled byj, of the measurement on th
combined system correspond to orthogonal project
P̂ j

comb. These operators act in the combined Hilbert spa
The probability to obtain resultj after preparationi is

Pj5Tr@P̂ j
comb~r i ^ raux!#

5 (
mr,ns

~P̂ j
comb!mr,ns~r i !nm~raux!sr . ~1!

If we now define

~P̂ j !mn5(
rs

~P̂ j
comb!mr,ns~raux!sr , ~2!

then the probabilityPj to obtain the result labeled byj is
given by

Pj5Tr~P̂ j r̂ i !, ~3!

where each possible outcomej of the generalized measure
ment is associated with a Hermitian operatorP̂ j acting on
s,
©2001 The American Physical Society03-1
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the original system, referred to as the elements of the PO
For a von Neumann measurement, these operators are
projectors onto the orthonormal eigenstates of the observ
to be measured, and there is no need for an auxiliary sys
In general,P̂ j are neither orthogonal nor normalized, but t
following conditions will always hold: All the eigenvalues o
P̂ j are positive or zero, andP̂ j form a decomposition of the
identity operator, that is,( jP̂ j51̂.

A. Implementation via auxiliary states

Let us assume that we can extend the Hilbert space o
original system by adding auxiliary basis states. Given
projectorsP̂ j , it is always possible to find a set of orthog
nal projectors in the extended space, such thatP̂ j results
from projecting these operators back onto the original H
bert space@23#. In order to haveN different outcomes, we
need to map the original system, withM<N dimensions,
onto N orthogonal states of an extended system.

It can be proven that for most relevant measurement ta
there always exists an optimal POM consisting of ran
matricesP̂ j5uC j&^C j u @29#. Hence, we can consider th
orthonormal extended states

uC j8&5uC j&1uf j&, ~4!

where uC j& are linear combinations of theM original basis
states, anduf j& are linear combinations of theN2M auxil-
iary basis states. These statesuC j8& are always possible to
find and span the whole extendedN-dimensional Hilbert
space. The generalized measurement can be implement
a projection onto the statesuC j8& in the extended Hilbert
space @23#. Sometimes the original quantum system h
states available for this extension, otherwise, it is neces
to introduce an ancillary system.

We can construct the unitary operator

Û5(
j 51

N

u j &^C j8u, ~5!

which, applied to an initial stateuf& in the Hilbert space of
the original system, yields

Ûuf&5(
j 51

N

u j &^C j8uf&5(
j 51

N

u j &^C j uf&. ~6!

This means that the probability to find the system in stateu j &
is exactlyPj5Tr(P̂ j r̂), with P̂ j given by uC j&^C j u. In or-
der to effect the desired POM measurement we only nee
apply this unitary transformation, coupling original and au
iliary degrees of freedom, and then to measure the fi
population in the basis states.

III. REALIZATION WITH ATOMS IN A MICROTRAP
NETWORK

A network of microtraps could be used to build quantu
devices and possibly for performing quantum computatio
03230
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tasks. One possibility is to let each atom represent a qu
with the ground states of the different channels being
qubit basis states, so that each qubit occupies, for exam
two neighboring channels. The atoms then travel through
network, interacting with the device potential and each oth
As an alternative to moving through a network of channe
the atoms could be stored in time-dependent microtraps.

To perform a generalized measurement on an atomic q
in a microtrap network, the auxiliary states would be ex
channels. The atom whose state is to be measured is inc
in a superposition of the ground states of channels 1 toM
and the auxiliary input portsM11 to N are unused. The
qubit basis modes and the auxiliary modes are then coup
effecting the unitary transformÛ in Eq. ~5!, and the readout
is done by detecting at which of theN output ports the atom
emerges.

For measurements on a single qubit, only single-qubit
erations are needed. Phase shifts on individual qubits ma
achieved with appropriate differences in path length or sh
of the trapping potential. When atoms are trapped with m
netic fields arising from current-carrying structures, for e
ample, along wires, the trapping potential is typically var
ing a few milliKelvin on the length scale of a few
micrometers @7#. Thus, with additional current-carrying
structures, it would be possible to shift the potential with
DE on the milliKelvin scale@30#. Since Df5DEt/\, a
phase shift ofp would require the atom to experience th
energy shift for about 1028 s. Again, the distance where th
potential is varying is of the order of some micromete
hence, this implies that the velocity of an atom pass
through the region where the phase shift occurs should
less than 102 m/s. In experiments, the longitudinal velocit
of the cold atoms is much less, implying that much sma
additional energy shifts would already be sufficient for t
desired phase shifts.

Two channels belonging to the same qubit may also
coupled by bringing them close together, so that a part
could tunnel from one channel to the other@12#. Using the
WKB approximation, we find that particle in a one
dimensional double-well potentialU(x) will tunnel across
the barrier with a rate

T'expH 2EA2m

\2 @U~x!2E#dxJ , ~7!

where the integral should be evaluated over the poten
barrier separating the two wells. The coupling can be und
stood in terms of the eigenfunctions of the double-well p
tential. The ground state is symmetric,cS , with energyES ,
and the first excited state is antisymmetric,cA , with energy
EA . We define the tunneling frequency 2V according to

EA5Ē1\V,
~8!

ES5Ē2\V.

The time evolution of any initial state can easily be fou
using the eigenstates. We are interested in where the par
is localized; thus we form the states
3-2
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ufL&5
1

A2
~ ucS&1ucA&),

~9!

ufR&5
1

A2
~ ucS&2ucA&),

where the subscriptsL ~R! denote left~right! localization.
The time-evolution operator is then given by

Û~ t !5cosVt~ ufL&^fLu1ufR&^fRu!

1 i sinVt~ ufL&^fRu1ufR&^fLu!. ~10!

This is equivalent to an optical-fibre coupler or a beam sp
ter. Together with phase shifts on single channels, it
enough for realizing any unitary single-qubit operation.
varying the distance between the channels, thus altering
tunneling frequencyV, and by changing the tunneling time
making the interaction region longer or shorter, the transm
sion and reflection coefficients can be tuned. In reality,V is
of course not constant when the channels approach; the
of Vt is played by*Vdt. This changes nothing in the qual
tative description, and for simplicity, we picture the ca
with a constantV.

This kind of beam-splitter configuration, with magnet
fields guiding an atomic cloud, has recently been reali
experimentally@6#. Also, somewhat related, for cesium a
oms, oscillations between the two localized states in
double-well potential in a far off-resonant optical lattice ha
been observed@31#.

To go one step further and perform joint generalized m
surements on many qubits, one needs to be able to im
ment a universal two-qubit gate, such as the quan
controlled-NOT gate. Cold collisions@8–10# and induced di-
pole interactions@11# have been proposed as means
achieve entanglement and conditional quantum logic for
oms trapped in optical lattices and magnetic microtraps.
gether with single-qubit operations, a universal two-qu
gate is enough for implementing any unitary transformÛ,
coupling qubit states and auxiliary states. The measurem
result is then obtained by detecting in which output states
atoms emerge. On photons, only single-qubit generali
measurements have been performed. In contrast to this
oms do interact, making a joint generalized measuremen
many qubits possible.

Questions that have to be solved experimentally are h
to achieve single-mode propagation of single atoms, and
to control the trapping potentials very accurately. Steps
wards loading of Bose-condensed atoms into microtraps
taken @32#. The atom cloud to be guided on an atom ch
typically containing 106 atoms, is usually trapped in
magneto-optical trap~MOT! and subsequently loaded int
the guiding structures. A MOT may, however, also be use
trap small numbers of atoms@33–35#. These very few atoms
in a MOT may be loaded into an optical dipole trap wi
100% efficiency@36#. At the output ports, the single atom
might be detected by ionization.
03230
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IV. DISTINGUISHING THREE LINEARLY DEPENDENT
STATES

In the following, we will consider an explicit example o
a POM strategy and how it could be realized on atoms i
network of microtraps. Assume that a qubit is prepared
one of the three nonorthogonal symmetric states

uf1&52
1

2
~ u1&1A3u2&),

uf2&52
1

2
~ u1&2A3u2&), ~11!

uf3&5u1&

referred to as the trine states@37–39#, and that we are inter-
ested to know in which one. The statesu1& and u2& are or-
thonormal basis states.

Due to the finite overlap between the trine states, it is
possible to perfectly distinguish them without errors. T
optimal measurement requires three possible outcomes,
is not a straightforward von Neumann projection. If th
statesuf j& are equiprobable, it can be shown that the PO
strategy maximizing the probability to obtain a correct res
has the elements@22#

P̂ j5uC j&^C j u5
2
3 uf j&^f j u. ~12!

The probability to obtain the correct result is 2/3, and t
probability to obtain either one of the erroneous results
1/6.

We will now explicitly show how it is possible to perform
this measurement by enlarging the Hilbert space of the s
tem. Let us refer to the statesuC j& as

uC j&5A2

3
uf j&5aj ,1u1&1aj ,2u2& ~13!

and denote an auxiliary state withu3&. It is now possible to
‘‘extend’’ the statesuC j&,

uC j8&5aj ,1u1&1aj ,2u2&1bj ,3u3&5uC j&1A1

3
u3&, ~14!

so that the statesuC j8&, living in the Hilbert space of the
combined system, are orthonormal. Consider the unit
transformation

Û5u1&^C18u1u2&^C28u1u3&^C38u. ~15!

Applying Û to an initial stateuf& in the $u1&,u2&% sub-
space we get

Ûuf&5u1&^C1uf&1u2&^C2uf&1u3&^C3uf&, ~16!

and the probabilities to find the system in the statesu1&, u2&,
andu3& now are exactlyPj5Tr(P̂ j r̂), with r̂5uf&^fu. This
means that the POM strategy can be implemented using
3-3
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ERIKA ANDERSSON PHYSICAL REVIEW A 64 032303
unitary transformÛ followed by a von Neumann projectio
on the states of the composite three-dimensional system

The unitary operatorÛ can be realized via a series o
two-by-two beam splitters and phase shifts. Here we w
decomposeÛ following Recket al. @40#. Let us consider the
matrix

U5F a1,1* a1,2* b1,3*

a2,1* a2,2* b2,3*

a3,1* a3,2* b3,3*
G5F 21/A6 21/A2 1/A3

21/A6 1/A2 1/A3

A2/3 0 1/A3
G ,

~17!

with the coefficients of the statesuC j8& as elements. A gen
eral N3N matrix will requireN(N21)/2 two-by-two trans-
formations, but because of the zero element in position~3,2!,
we will get around with only two subtransformations. Wit

R13
† 5F 1/A3 0 2A2/3

0 1 0

2A2/3 0 21/A3
G , ~18!

which couples the first and third components, we obtain

UR13
† 5F 21/A2 21/A2 0

21/A2 1/A2 0

0 0 21
G . ~19!

The effective dimension of the matrixU is reduced by 1, so
thatUR13

† performs a transformation on the two-dimension
subspace formed by the first two components only. With

R12
† 5F 1/A2 1/A2 0

1/A2 21/A2 0

0 0 1
G , ~20!

we obtain

UR13
† R12

† 5F 21 0 0

0 21 0

0 0 21
G ~21!

FIG. 1. The generalized meaurement, which distinguishes o
mally between the trine states, can be implemented by coupling
channels two at a time. The state to be measured is inciden
channels 1 and 2; the auxiliary channel 3 is needed in order to h
three outcomes corresponding to outputs 1, 2, and 3. The sq
boxes indicate phase shifts of6 i , andT13 andT12 are beam-splitter
transformations as explained in Sec. III.
03230
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l

and the whole transformationU is decomposed as

U5@R13
† R12

† ~2I !#2152IR12R13. ~22!

We have to effect the transformsR13 andR12 with phase
shifts and beam splitters as in Eq.~10!. R13 is obtained by
letting channels 1 and 3 approach each other, with cosVt
equal to21/A3 and sinVt equal toA2/3, and performing a
phase shift ofi on both input and output port number 1:

R135F 1/A3 0 2A2/3

0 1 0

2A2/3 0 21/A3
G5P1~ i !T13P1~ i ! ~23!

5F i 0 0

0 1 0

0 0 1
GF 21/A3 0 iA2/3

0 1 0

iA2/3 0 21/A3
G

3F i 0 0

0 1 0

0 0 1
G . ~24!

R12 is effected by coupling channels 1 and 2 and lettin
2cosVt5sinVt51/A2, and again adding phase shifts o
2 i on port one before and after the coupling,

R125F 1/A2 1/A2 0

1/A2 21/A2 0

0 0 1
G5P1~2 i !T12P1~2 i ! ~25!

5F 2 i 0 0

0 1 0

0 0 1
GF 21/A2 i /A2 0

i /A2 21/A2 0

0 0 1
G

3F 2 i 0 0

0 1 0

0 0 1
G . ~26!

As U52IR12R13, the middle phase shifts of2 i and i can-
cel. The whole transformationU is illustrated in Fig. 1,
where the overall phase shift resulting in the factor21 has
been dropped since it is not needed for the realization of
generalized measurement.

The actual realization might not allow the channels
cross as in the figure; this is the case for present realiza
of atom chips. The two channels that are to be coupled
still effectively be brought next to each other by ‘‘swapping
neighboring channels using beam-splitter transformation
in Eq. ~10! with Vt56p. Effectively, this amounts to reor
dering the channels. If the experiment allows for layer
channels, one or more bus channels in a second layer c
be used.
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V. CONCLUSIONS

We have described a scheme for realizing generali
measurements on atomic qubits in microtrap networks, w
the basis states are the ground states of different chan
Many experimental challenges remain to be solved, incl
ing the preparation and detection of atoms, and the pre
control of the network potential. Even though the experim
tal challenges are major, progress in the field is rapid. In
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future, it may well be possible to use neutral-atom m
crotraps for quantum-information applications, including t
generalized measurements outlined in this paper.
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