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Nonlocal content of quantum operations
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We show that quantum operations on multiparticle systems have a nonlocal content; this mirrors the nonlocal
content of quantum states. We introduce a general framework for discussing the nonlocal content of quantum
operations, and give a number of examples. Quantitative relations between quantum actions and the entangle-
ment and classical communication resources needed to implement these actions are also described. We also
show how entanglement can catalyze classical communication from a quantum action.
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I. INTRODUCTION

In the past, most of the research on quantum nonloca
has been devoted to the issue of nonlocality ofquantum
states. However, we feel that an equally important issue
that of nonlocality ofquantum evolutions. That is, in parallel
with the understanding of nonlocality of quantum kinemat
one should also develop an understanding of the nonloc
of quantum dynamics.

Let us start with a simple example. Consider two qub
situated far from each other, one held by Alice and the ot
one by Bob. Suppose Alice and Bob would like to impleme
a two-qubit quantum evolution described by the unitary o
eratorU. ~We wish to be able to applyU on any initial state
of the two qubits.! With the exception of the case whenU is
a product of two local unitary operators,U5UA^ UB , U is
nonlocal.

Implementing a unitary operationU that can modify the
degree of entanglement between two remote quantum
tems requires that the two systems interact with each ot
This also means that the implementation takes time~since
the systems are far apart and signals cannot propagate f
than light!. It is our aim to give a quantitative description o
the relevant aspects of this interaction.

The interaction can take place in many different wa
and may be implemented by using different resources.
will restrict ourselves to two resources—classical commu
cation and entanglement. The reason is that these two
sources are a minimal and irreducible set of resources—
unitary evolution can be implemented using them, and h
ing only one of them is insufficient. This framework has al
been put forward by Chefles, Gilson, and Barnett@2#.

The fact that we allow enough time for the classical co
munication suggests that we could equally well use this t
to send quantum bits. But sending qubits is not a resou
independent of using classical communication and entan
ment. Indeed, the exact quantitative relationship betw
these different resources is an important question which
solved in the original teleportation paper@1#.

We emphasize that, although we have largely discus
the role of quantum entanglement above, the role of the c
sical communication is equally important. Understanding
character of a quantum evolution requires knowing both
1050-2947/2001/64~3!/032302~7!/$20.00 64 0323
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amount of entanglement and the amount of classical com
nication needed.

II. GENERAL SUFFICIENCY CONDITIONS

First of all, it is important to note that any unitary evolu
tion can be implemented given enough shared entanglem
and classical communication. Indeed, consider the cas
two qubits, one held by Alice and one by Bob. Any unita
transformationU on these two qubits can be accomplish
by having Alice teleport her qubit to Bob, Bob performU
locally, and finally Bob teleport Alice’s qubit back to Alice
The resources needed for the two teleportation actions
@one e-bit~an e-bit is the entangelement of one singlet! plus
two classical bits transmitted from Alice to Bob for the Alic
to Bob teleportation# plus ~one e-bit plus two classical bit
transmitted from Bob to Alice for the Bob to Alice telepo
tation!. It is obvious now that any unitary operation involv
ing any number of parties and any number of qubits can
accomplished by a similar procedure~teleporting all states to
a single location, performingU locally, and teleporting the
qubits back to their original locations!.

The ‘‘double teleportation’’ procedure shown above
sufficient to implement any quantum evolution. The quest
is, however, whether so many resources are actually nee
We will discuss a number of specific examples below.

III. THE SWAP OPERATION ON TWO QUBITS

The SWAP operation defined by

USWAPuc& ^ uf&5uf& ^ uc& ~1!

is a particularly intriguing case, since, although it takes pr
uct states to product states, it is, as we now show, the m
nonlocal operation possible in the sense described ab
That is, we will prove that in order to implement aSWAP

operation on two qubits it is not only sufficient but als
necessaryto use two e-bits plus two bits of classical com
munication from Alice to Bob plus two bits of classical com
munication from Bob to Alice.

Proof: To prove that theSWAP operation needs as nonloc
resources two e-bits, we will show that if we have an ap
ratus able to implement theSWAP operation we can use it in
order to create two e-bits. Thus, since entanglement ca
©2001 The American Physical Society02-1
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be createdex nihilo, the apparatus that implements theSWAP

must use two e-bits as an internal nonlocal resource.
Let us show how to generate two singlets using theSWAP

operation. First Alice and Bob prepare singlets locally,

↑A↑a1↓A↓a and ↑B↑b1↓B↓b . ~2!

Alice’s spins are labeledA and a and Bob’sB and b and
↑ (↓) represents a spin polarized in the positive~negative!
direction along thez axis ~here and in what follows we will
leave out normalization factors for states!. Now perform the
SWAP operation on spinsA andB:

~↑A↑a1↓A↓a!~↑B↑b1↓B↓b!

°~↑B↑a1↓B↓a!~↑A↑b1↓A↓b!. ~3!

This state contains two singlets held between Alice and B
To find the classical communication resources neede

implement theSWAP operation we will adapt an argumen
first given in@1#. We show that if we have an apparatus ab
to implement theSWAP operation we can use it in order t
communicate two bits from Alice to Bob plus two bits fro
Bob to Alice. From this it follows that it must be the cas
that theSWAP apparatus uses two bits of classical commu
cation from Alice to Bob plus two bits of classical comm
nication from Bob to Alice as an internal resource, otherw
Alice could receive information from Bob transmitted fast
than light.

Suppose that there is aSWAP protocol that requires fewe
than four bits of classical communication~two bits each
way!. Alice and Bob can produce an instantaneousSWAP op-
eration that works correctly with probability greater th
one-sixteenth in the following way. Alice and Bob run th
supposedSWAP protocol, but, instead of waiting for classic
communication from each other, they simply guess the
that they would have received and perform the associa
actions immediately. Since we have assumed that the g
SWAP protocol requires fewer than four bits, the probabil
that Alice and Bob guess correctly is greater than o
sixteenth and hence theSWAP operation also succeeds wit
probability greater than one-sixteenth.

Thus using the protocol described previously we can n
use this imperfect, but instantaneousSWAP to communicate
four bits instantaneously. The bits arrive correctly when
SWAP is implemented correctly. Hence the probability th
four bits arrive correctly is larger than one-sixteenth; fo
bits communicated correctly with probability greater th
one-sixteenth represents a nonzero amount of informat
Thus Alice and Bob have managed to convey some infor
tion to each other instantaneously. We conclude there
that theSWAP operation cannot be done with fewer that fo
bits of classical communication; otherwise it allows comm
nication faster than the speed of light.

Earlier in this section we showed that theSWAP operation
can be used to generate two singlets. We now show tha
SWAP operation can also be used to perform four bits
classical communication~two bits each way!: the main idea
is that of ‘‘superdense coding’’@3#. Suppose that initially
Alice and Bob share two singlets:
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↑A↑B1↓A↓B and ↑a↑b1↓a↓b . ~4!

Now Alice chooses one of four local unitary operations
~identity!, sx , sy , sz and performs it on her spinA. This
causes the first singlet to be in one of the four Bell stat
Bob also, independently, chooses one of these four lo
unitaries and performs it on his spinb, putting the second
singlet into one of the Bell states. Then theSWAP operation is
performed on spinsA andb. Now both Bob and Alice have
one of the Bell states locally; which one they have depe
on which operation the other performed. By measurem
they can work out which of the four unitaries the other p
formed. Thus theSWAP operation has enabled two bits o
classical communication to be performed each way.

IV. THE CONTROLLED-NOT OPERATION
ON TWO QUBITS

Another important quantum operation is controlledNOT

~CNOT!, defined as

↑↑°↑↑, ~5!

↑↓°↑↓, ~6!

↓↑°↓↓, ~7!

↓↓°↓↑. ~8!

As we prove below, the necessary and sufficient resou
for the CNOT operation are one e-bit plus one bit of classic
communication from Alice to Bob plus one bit of classic
communication from Bob to Alice.

Proof: Constructing aCNOToperation. We now show how
to construct theCNOT operation using one singlet and tw
bits of classical communication. We then show how to ge
erate one singlet or perform two bits of classical commu
cation using theCNOT.

First we will show how, using one singlet and one bit
classical communication each way, we can perform aCNOT

operation on the state

~a↑A1b↓A!~g↑B1d↓B!, ~9!

i.e., transform it to

a↑A~g↑B1d↓B!1b↓A~g↓B1d↑B!. ~10!

Since the operation behaves linearly, the protocol perfo
theCNOT operation on any input state~i.e., even if the qubits
are entangled with each other or with other systems!.

Step 1. The first step is to append a singlet held betwe
Alice and Bob to the state~9!:

~a↑A1b↓A!~↑a↑b1↓a↓b!~g↑B1d↓B!; ~11!

then Alice measures the absolute value of the total spin
her spinsA and a along thez axis. If the absolute value o
this total spin along thez axis is 1, then the state becomes

~a↑A↑a↑b1b↓A↓a↓b!~g↑B1d↓B!. ~12!
2-2
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Now Alice disentangles the singlet spin by performing t
following ~local! operation:

↑A↑a°↑A↑a , ↓A↓a°↓A↑a , ~13!

and the state becomes

~a↑A↑b1b↓A↓b! ~g↑B1d↓B!↑a . ~14!

If the absolute value of the total spin along thez axis is zero,
then rather than~12! the state becomes

~a↑A↓a↓b1b↓A↑a↑b!~g↑B1d↓B!. ~15!

In this case Alice can disentangle thea spin by

↑A↓a°↑A↑a , ↓A↑a°↓A↑a , ~16!

leading to

~a↑A↓b1b↓A↑b!~g↑B1d↓B!↑a . ~17!

In order to get this state in the correct form, Bob needs
invert his b spin. Thus Alice must communicate one bit
Bob to tell him whether she found the absolute value of
total spin 1 or zero, and thus whether he needs to invert
spin or not.

After these operations, the state is

~a↑A↑b1b↓A↓b!~g↑B1d↓B!↑a . ~18!

Step 2. Now Bob performs aCNOT operation on theb and
B spins; thus the total state is

@a↑A↑b~g↑B1d↓B!1b↓A↓b~g↓B1d↑B!#↑a . ~19!

Step 3. Bob now measuressx on his part of the singletb.
The state becomes either

@a↑A~g↑B1d↓B!1b↓A~g↓B1d↑B!# ^ ↑a~↑b1↓b!
~20!

or

@a↑A~g↑B1d↓B!2b↓A~g↓B1d↑B!# ^ ↑a~↑b2↓b!.
~21!

In the former case~i.e., thex component of spin was1! we
have performed the protocol as desired. In the latter, A
needs to perform asz rotation by p. Thus Bob needs to
communicate one bit to Alice to tell her whether or not
perform the rotation.

We have thus shown how to perform aCNOT operation
using one singlet and one bit of classical communicat
each way.

Creating entanglement byCNOT operation. We show now
that a CNOT apparatus can be used to create one e-bit
tween Alice and Bob; thus~since entanglement cannot b
increased by local operations! one e-bit is a necessary re
source for constructing aCNOT operation.

Creating one e-bit by aCNOT operation is straightforward

~↑A1↓A!↑B°↑A↑B1↓A↓B . ~22!
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Classical communication byCNOT operation. Suppose
that Alice and Bob have an apparatus that implement
CNOT operation and they also share one e-bit. They can
these resources to communicateat the same timeone classi-
cal bit from Alice to Bob and one classical bit from Bob
Alice. This proves~see the preceding section! that commu-
nicating one classical bit each way is a necessary reso
for constructing aCNOT apparatus.

Suppose the initial state is

↑a↑b1↓a↓b . ~23!

Alice can encode a ‘‘0’’ by not doing anything to the sta
and a ‘‘1’’ by flipping her qubit. Bob can encode a ‘‘0’’ by
not doing anything to the state and a ‘‘1’’ by changing t
phase as follows:↑→↑ and↓→2↓. The four states corre
sponding to the different bit combinations are thus

↑a↑b1↓a↓b corresponds to 0A0B , ~24!

↓a↑b1↑a↓b corresponds to 1A0B , ~25!

↑a↑b2↓a↓b corresponds to 0A1B , ~26!

↓a↑b2↑a↓b corresponds to 1A1B , ~27!

After encoding their bits, Alice and Bob apply theCNOT

operation. This results in the corresponding four states:

↑a↑b1↓a↑b5~↑a1↓a!↑b corresponds to 0A0B ,
~28!

↓a↓b1↑a↓b5~↑a1↓a!↓b corresponds to 1A0B ,
~29!

↑a↑b2↓a↑b5~↑a2↓a!↑b corresponds to 0A1B ,
~30!

↓a↓b2↑a↓b5~↓a2↑a!↓b corresponds to 1A1B .
~31!

Bob can now find out Alice’s bit by measuring his qubit
the $↑b , ↓b% basis while Alice can find out Bob’s bit by
measuring her qubit in the$↑a1↓a , ↑a2↓a% basis.

V. THE DOUBLE CONTROLLED-NOT OPERATION
ON TWO QUBITS

One might have thought that theSWAP operation was the
uniquemaximally nonlocal operation, at least in the term
used in this paper. We here demonstrate that there is ano
maximally nonlocal operator, which is the doubleCNOT or
DCNOT gate, formed by performing aCNOT operation from
particle 1 onto particle 2, and then a secondCNOT operation
from particle 2 onto particle 1. It is defined by

↑↑°↑↑, ~32!

↑↓°↓↓, ~33!

↓↑°↑↓, ~34!

↓↓°↓↑. ~35!
2-3
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First we note that that theDCNOT operation is genuinely
different from theSWAP operation even under local transfo
mations. This is because, although theSWAP operation takes
all product states to product states, it is easy to find prod
states that theDCNOT operation takes to entangled states.

To show that theDCNOT operation is maximally nonlocal
we shall first demonstrate that it can be used to create
e-bits. We shall then show that it can be used to commu
cate two bits of information from Alice to Bob, and simulta
neously to send two bits from Bob to Alice. The argume
used for theSWAP operation then proves that to build aDC-

NOT operation we need two e-bits plus two bits of classi
communication from Alice to Bob plus two bits of classic
communication from Bob to Alice. Since any transformati
on two qubits can be performed using these resources
teleportation, we will then have shown that theDCNOT op-
eration is maximally nonlocal, in terms of resources.

Creating two e-bits is easy. Alice and Bob prepare sing
locally, and then perform theDCNOT operation on spinsA
andB:

~↑A↑a1↓A↓a!~↑B↑b1↓B↓b!°↑A↑a↑B↑b1↓A↑a↓B↓b

1↑A↓a↓B↑b1↓A↓a↑B↓b .
~36!

We now have a Schmidt decomposition of rank 4, i.e., a t
party state that is locally equivalent to two e-bits transmit
between Alice and Bob.

Transmitting two bits of information in both directions
the same time is a little more tricky. Alice and Bob need
have two e-bits in addition to theDCNOT operation. They first
transform their e-bits~locally! into the state

↑A↑a↑B↑b1↓A↑a↑B↓b1↓A↓a↓B↑b1↑A↓a↓B↓b . ~37!

Alice now encodes one bit of information in the state
either applying or not applyingsz^ sz to her two spins. She
encodes a second bit of information by applying or not
plying sx to her first spinA. Bob similarly encodes two bits
of information, using the transformationsz on spin B to
encode his first bit, andsx^ sx to encode his second bit.

Having encoded the information, they make it locally a
cessible by applying theDCNOT operation to spinsA andB. It
is not obvious, but simple to check, that Alice and Bob n
each have one of the four Bell states locally, and that Alic
particular state corresponds to Bob’s encoded bits, and
versa.

VI. MULTIPARTITE OPERATIONS

In the previous sections we studied different bipartite o
erations. What about multipartite operations, such as the
foli or Fredkin gates on three qubits? As we showed in S
II, they can all be implemented by using the ‘‘double te
portation’’ method. On the other hand, finding the necess
resources is far more difficult than in the bipartite case;
deed it is not possible at present. The reason is that t
exist different inequivalent types of multipartite entang
ment @4,5#. For example, it is known that singlets and GH
03230
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states are inequivalent in the sense that they cannot be
versibly transformed into each other, not even in t
asymptotic limit. Although GHZ states~like all other en-
tangled states! can be built out of singlets, such a procedu
is wasteful. Hence, when investigating the minimal entang
ment resources needed to implement multipartite quan
operations, we have to use the different inequivalent type
entanglement. Unfortunately, at present multipartite
tanglement is far from being fully understood.

A further issue is that certain multipartite operations c
be performed with different nonlocal resources. For exam
the controlled controlledNOT gate ~the Toffoli gate! acting
on three parties can be performed using two singlets betw
the three parties in three different configurations, one fromA
to C and another fromB to C; it can also be performed usin
two singlets in a different configuration, one fromA to C and
one fromA to B; or with singlets fromA to B and fromB to
C. To see this, simply note that the controlled spin can
either A, B, or C depending on which basis the gate is d
scribed in. The Toffoli gate is, however, impossible to pr
duce with a single singlet.

VII. ‘‘CONSERVATION’’ RELATIONS

In studying the nonlocality of quantum states a most i
portant issue is that of ‘‘manipulating’’ entanglement, i.e.,
transforming some states into others@6#. Similarly we can
ask: Given a unitary evolution, can we use it to impleme
some other unitary evolution?

In particular, for pure quantum states we haveconserva-
tion relations@6,7#. For example, when Alice and Bob sha
a large numbern of pairs of particles, each pair in the sam
stateC, they could use these pairs to generate some o
numberk of pairs in some other stateF. In the limit of large
n, this transformation can be performed reversibly, mean
that the total amount of nonlocality contained in then copies
of the stateC is the same as the total amount of nonlocal
contained in thek copies of the stateF. Is something similar
taking place for unitary transformations?

For unitary transformations we have not yet studied
case of the asymptotic limit, i.e., performing the same tra
formation U on many pairs of particles. However, an inte
esting pattern emerges even at the level of a single copy

Consider first the case of theSWAP operation. We know
what the minimal resources needed to implement aSWAP

operation are. But suppose now that we are given a de
that implements aSWAP operation. Could we could use it t
get back the original resources needed to create theSWAP

device?
The balance of resources needed to implement aSWAP

apparatus can be written as

2 e-bits 1 2 bitsA→B 1 2 bitsB→A ⇒ SWAP. ~38!

The question is whether

SWAP ⇒ 2 e-bits1 2 bitsA→B 1 2 bitsB→A? ~39!

The answer is ‘‘No.’’ That is, combining entangleme
and classical communication resources to yield aSWAP op-
2-4
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NONLOCAL CONTENT OF QUANTUM OPERATIONS PHYSICAL REVIEW A64 032302
eration is an irreversible process—we cannot use theSWAP

operation to get the resources back.
To work out what we can produce from aSWAP operation,

we consider it to be composed of the two operations of Al
sending a qubit to Bob and Bob sending a qubit to Alice.
know that we cannot recover more than one e-bit from se
ing a qubit, and so to regain all the resources neede
implement aSWAP operation we need to use the qubit
create one e-bit, and also to send some classical comm
cation. Now, suppose we can use sending a qubit to do
following ~we allow for catalysis byz e-bits!:

1 qubit 1 z e-bits⇒ x bitsA→B 1 ~11z! e-bits.
~40!

Then, using superdense coding, we could do the followin

z e-bits1 ~1111z! qubits⇒ @x12~11z!# bitsA→B .
~41!

Now the final mutual information between Alice and Bo
is at mostz1(21z): the initial entanglement between the
~contributingz) plus the (21z) transmitted qubits. By Hole-
vo’s theorem, the mutual information is an upper bound
the number of classical bits that can be transmitted. Thu

2z121x<z1~21z!, ~42!

and so

x<0. ~43!

Thus if we use theSWAP operation to produce two e-bits, w
cannot use it to send any classical communication.

On the other hand, looking back to the proof of the
sources needed for theSWAP operation, we see that we ca
write the following tight ‘‘implications:’’

2 e-bits1 2 bitsA→B 1 2 bitsB→A ⇒ 1 SWAP, ~44!

2 e-bits1 1 SWAP ⇒ 2 bitsA→B 1 2 bitsB→A , ~45!

1 SWAP ⇒ 2 e-bits. ~46!

The first of these three implications is to be read
‘‘given two e-bits and two bitsA→B and two bitsA→B we can
produce theSWAP operation; also, if we wish to produce th
SWAP operation with e-bits and bits communicated from A
ice to Bob and vice versa, we cannot do so with fewer th
two e-bits and two bitsA→B and 2 bitsA→B . ’’

The second and third implications have a slightly differe
meaning. For example, we read the second implication
‘‘given one SWAP operation and two e-bits, we can comm
nicate four classical bits~two each way!; also, we cannot
communicate more than four classical bits~two each way!.’’
On the other hand, it does not mean that ‘‘oneSWAP opera-
tion and two e-bits are necessary for communicating f
classical bits~two each way!’’—for example, we can imple-
ment this classical communication with twoSWAP opera-
tions.

Exactly the same implications apply for theDCNOT opera-
tion:
03230
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2 e-bits1 2 bitsA→B 1 2 bitsB→A ⇒ 1 DCNOT, ~47!

2 e-bits1 1 DCNOT ⇒ 2 bitsA→B 1 2 bitsB→A ,
~48!

1 DCNOT ⇒ 2 e-bits. ~49!

Furthermore, very similar implications can be written f
the CNOT operation:

1 e-bit 1 1 bitA→B 11 bitB→A ⇒ 1 CNOT, ~50!

1 e-bit11 CNOT ⇒ 1 bitA→B11 bitB→A , ~51!

1 CNOT ⇒ 1 e-bit. ~52!

In fact these implications are very similar to the implic
tions that describe teleportation and superdense cod
which appear, together with many other similar implicatio
on Bennett’s famous transparency presented at almos
early quantum information conferences~see also@8#! as fol-
lows:

1 e-bit 12 bitsA→B ⇒1 qubit, ~53!

1 e-bit11 qubit ⇒ 2 bitsA→B , ~54!

1 qubit ⇒1 e-bit. ~55!

The above three implications~53!, ~54!, and~55! are gen-
erally thought to describe relations between classical in
mation, quantum information, and entanglement. Howev
we would like to argue that their true meaning may be m
closely related to dynamics, and that a more illuminati
form is probably

1 e-bit 12 bitsA→B ⇒1 teleportationA→B , ~56!

1 e-bit 11 teleportationA→B ⇒ 2 bitsA→B , ~57!

1 teleportationA→B ⇒ 1 e-bit. ~58!

We conjecture that similar relations hold between a
quantum action and the resources needed to implemen
that is,

entanglement1 classical communication⇒ action,
~59!

entanglement1 action⇒ classical communication,
~60!

action⇒ entanglement. ~61!

It may be that these relations hold, in general, only in
asymptotic limit of many copies of the quantum action.

VIII. DIFFERENT WAYS OF ACHIEVING
THE SAME TASK

It is interesting to note that, although the transformati
from resources to unitary actions is irreversible, sometim
2-5



ay
t

’’
it
’’

n
li
on

nd

a
al
b

e
ce
m
th

he

t

ma-
s-

n;
t-
a
se
sly,

es
es.

y

not
on-

we

gi-
assi-

uct

e
is
-

e
-

DANIEL COLLINS, NOAH LINDEN, AND SANDU POPESCU PHYSICAL REVIEW A64 032302
the same end product can be achieved in two different w
For example, there are two alternative ways to implemen

2 CNOT operations⇒1 bitA→B11 bitB→A . ~62!

The first way is to use oneCNOT operation to transmit one
classical bit from Alice to Bob and the otherCNOT operation
to transmit one classical bit from Bob to Alice, i.e.,

1 CNOT ⇒1 bitA→B ~63!

and

1 CNOT ⇒1 bitB→A . ~64!

Another possibility is to use first oneCNOT operation to
create one e-bit~52! and then the otherCNOT operation plus
the e-bit to transmit the two classical bits~51!, i.e.,

2 CNOT operations⇒1 e-bit 11 CNOT

⇒1 bitA→B 11 bitB→A . ~65!

IX. CATALYZING CLASSICAL COMMUNICATION

A very interesting phenomenon is that of ‘‘catalyzing
classical communication. This phenomenon is similar in
spirit to that of ‘‘catalyzing entanglement manipulation
@9,4#. An example is the following.

On its own, theSWAP operation can only send one bit i
each direction at the same time, and cannot be used for A
to send two bits to Bob, even if Bob sends no informati
whatsoever. That is,

1 SWAP ⇒” 2 bitsA→B . ~66!

However, if Alice and Bob share one e-bit, Alice can se
two bits to Bobwithout destroyingthe e-bit, i.e.,

1 SWAP 11 e-bit ⇒ 2 bitsA→B 11 e-bit. ~67!

This may be done as follows. Initially Alice and Bob share
nonlocal singlet; Bob also prepares a second singlet loc
Alice encodes the two bits she wishes to send to Bob
performing one of the four rotations 1,sx , sy , sz on her
half of the nonlocal singlet. By performing theSWAP opera-
tion on Alice’s particle from the nonlocal singlet and on
particle of the singlet that Bob has prepared locally, Ali
and Bob end up with a nonlocal singlet held between the
also Bob can find out the two bits by measurements on
local singlet he now holds. Specifically, we begin with t
state

~↑A↑b11↓A↓b1!~↑B↑b21↓B↓b2!, ~68!

where A is Alice’s particle, andB, b1, and b2 are Bob’s
particles. Alice performs one of the rotations 1,sx , sy , sz
on her particle. They then perform theSWAP operation on
particlesA andB, and get~if Alice performed 1!

~↑B↑b11↓B↓b1!~↑A↑b21↓A↓b2!. ~69!
03230
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If Alice performed one of the other rotations, Bob will ge
one of the other Bell states in system (B, b1). Bob now
measures that system in the Bell basis to extract the infor
tion, and Alice and Bob are left with a singlet between sy
temsA andb2.

In effect theSWAPoperation acts as a double teleportatio
one from Alice to Bob and one from Bob to Alice. Telepor
ing Alice’s qubit, in conjunction with the e-bit, implements
transmission of two bits from Alice to Bob using superden
coding; it destroys the e-bit in the process. Simultaneou
the Bob to Alice teleportation restores the e-bit.

X. TRADING ONE TYPE OF ACTION FOR ANOTHER

An interesting question is the following. There are cas
in which two different actions require the same resourc
For example the resources needed for oneSWAPoperation are
the same as for twoCNOT operations, i.e., 2 e-bits
12 bitsA→B12 bitsB→A . Now, suppose we had alread
used the resources to build twoCNOT operations, but we
wanted to change our mind and do oneSWAP operation in-
stead. Due to the irreversibility discussed above, we can
simply get back the original resources and use them to c
struct theSWAP operation. Is it possible, however, to godi-
rectly from two CNOT operations to oneSWAP operation,
without going back to the original resources? As far as
are aware, the answer is ‘‘No.’’

It turns out, however, that if we have manyCNOT opera-
tion it is nevertheless useful to build aSWAP apparatus from
CNOT operations directly rather than going back to the ori
nal resources. Indeed, to obtain the entanglement and cl
cal communication resources needed for oneSWAP operation,
i.e., 2 e-bits12 bitsA→B12 bitsB→A , we need fourCNOT

operations. However, it is well known that one can constr
oneSWAP operation directly from threeCNOT operations. In-
deed, we do not even need threeCNOT operations, but can
realize aSWAP operation by

2 CNOT operations11 bitA→B 11 bitB→A ⇒1 SWAP,
~70!

which uses fewer nonlocal resources than threeCNOT opera-
tions. To see this, it suffices to note that

1 CNOT 11 bitA→B ⇒1 teleportationA→B ~71!

and similarly

1 CNOT 11 bitB→A ⇒1 teleportationB→A . ~72!

To implement~71! Alice starts with her qubit in the stat
C5a↑1b↓ which has to be teleported and Bob with h
qubit in the state↑. After the CNOT operation the state be
comes

C↑5~a↑1b↓ !↑°a↑↑1b↓↓. ~73!

Alice then measures her qubit in theu1&5(1/A2)(↑
1↓) and u2&5(1/A2)(↑2↓) basis and communicates th
result to Bob. If (1) then Bob’s qubit is already in the re
quired stateC5a↑1b↓; if ( 2) then Bob’s qubit is in the
2-6
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stateC85a↑2b↓ and Bob can obtainC by changing the
relative phase between↑ and↓ by p.

While completing this work, we became aware of close
related work by Eisert, Jacobs, Papadopoulos, and Pl
, a

nt

A

an

03230
io

@10#. Also we became aware of@11# in which a protocol for
creating aCNOT gate using a singlet was presented that
similar to that given in Sec. IV; however, its optimality wa
not discussed.
her,
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