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All-multipartite Bell-correlation inequalities for two dichotomic observables per site
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We construct a set of 22
n

independent Bell-correlation inequalities forn-partite systems with two dichotomic
observables each, which is complete in the sense that the inequalities are satisfied if and only if the correlations
considered allow a local classical model. All these inequalities can be summarized in a single, albeit nonlinear
inequality. We show that quantum correlations satisfy this condition provided the state has positive partial
transpose with respect to any grouping of then systems into two subsystems. We also provide an efficient
algorithm for finding the maximal quantum-mechanical violation of each inequality, and show that the maxi-
mum is always attained for the generalized GHZ state.
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I. INTRODUCTION

Entanglement has not only been a key issue in the on
ing debate about the foundations of quantum mechan
started by Einstein, Podolsky, and Rosen in 1935@1#, it also
plays a crucial role in the young field of quantum inform
tion theory. Here entangled states are one of the basic in
dients of quantum information processing, due to their r
as a resource in quantum key distribution, super dense
ing, quantum teleportation, and quantum error correction~cf.
@2#!. Although general structural knowledge about entang
ment has improved dramatically in the last few years, th
are still many open problems. For example, there is still
efficient general method to decide whether a given stat
entangled or not.

The first, and for a long time also the only, mathema
cally sharp criteria for entanglement were the Bell inequ
ties @3#. They provided the first possibility to distinguish e
perimentally between quantum-mechanical predictions
those of local realistic models. But although Bell inequalit
have been known for more than 30 years@4#, our knowledge
about the precise border between the classical and quan
mechanical accessible region is still mainly restricted to
simplest nontrivial cases. Best known is the case of two s
at each of which two dichotomic observables are chos
This is characterizedcompletely by the Clauser-Horne
Shimony-Holt~CHSH! version of Bell’s inequalities@5#, in
the sense that the inequalities are satisfied if and only
local classical model exists@6#. Finding a complete set o
linear inequalities in more complicated situations~more
sites, more observables, more outcomes! turns out to be a
very difficult problem in the sense of computational co
plexity @7#. There is only very little knowledge about Bel
type inequalities beyond the CHSH case@8–12#. Though nu-
merical studies yield a large number of inequalities@13#, for
most of them it is neither known by how much they can
violated in quantum theory nor is there a general charac
ization admitting further investigations.

We were therefore quite surprised ourselves at finding
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infinite sequence of multipartite correlation settings f
which we could develop the theory to be as explicit a
complete as in the CHSH case. Our setting generalizes
CHSH setting to an arbitrary numbern rather than two dif-
ferent sites, but retains the constraints of just two obse
ables per site with just two outcomes each. Thus each of
n participants has the choice of two observables, each
which can take the values11 or 21. For any choice of
observables we then consider the expectation value of
product of alln signs~a ‘‘full’’ correlation function!. A Bell
inequality is a linear constraint on the set of all such exp
tations, which is valid whenever the correlations can be
tained from a local classical model, and which cannot
written as a convex combination of other such constrain
Examples are the CHSH inequality@5# for n52 and their
generalizations going back to Mermin and others@8–11#
leading to a single inequality for arbitraryn.

We remark that this problem setting could be generaliz
to include the expectations not only of the product of aln
signs, but also the products of subsets of signs~ ‘‘restricted’’
correlation functions!. These data would be sufficient to re
construct the full joint probability distributions of signs fo
all choices of observables. However, most of the derivati
in this paper do not generalize to this setting, and it is not
clear which statements would still be valid~maybe with a
different proof!. When we talk of the existence of a classic
model, however, it is understood that such a model wo
also determine all restricted correlation functions. The om
sion of restricted correlation functions from our setting on
means that we do not consider constraints depending
them.

For this class of multipartite correlations we obtained t
following results.

~i! We construct a set of 22
n

Bell inequalities, and show its
completeness: the correlations considered allow a local c
sical model if and only if all these inequalities are satisfi
~Sec. III!.

~ii ! The convex set of collections of classical correlati
functions is a 2n-dimensional hyperoctahedron, which can
described alternatively by a single nonlinear inequality~Sec.
III !.

~iii ! We discuss the symmetries connecting different
©2001 The American Physical Society12-1
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equalities and develop a construction scheme, which yie
all 22n

equalities by successive substitutions into the CH
inequality ~Sec. IV!.

~iv! We reduce the computation of the maximal quant
violations of each Bell inequality to a simple variation
problem with just one free variable per site. The maxima
already attained in qubit systems, more specifically for
n-party generalization of the GHZ state@15#, with a choice of
observables depending on the inequality under considera
~Sec. V!.

~v! We extend this method to a characterization of
convex body of quantum-mechanically attainable correlat
functions in terms of its extreme points, which are also fou
in the generalized GHZ state. These results are analogo
those of Tsirelson@16,17# for the bipartite case.

~vi! We characterize the Mermin inequality as that B
inequality, which can be violated by the widest margin
quantum theory.

~vii ! Section VI settles the relationship between the c
relation Bell inequalities and another important entanglem
property. We show that for states having positive par
transposes with respect to all their subsystems, all 22n

in-
equalities are satisfied, so the correlations in such quan
states can be explained in the context of a local reali
model. This extends our earlier result@18# for Mermin’s in-
equalities, and is further supporting evidence for a rec
conjecture by Peres@19#, namely that positivity of partial
transposes should generally imply the existence of local
alistic models.

In the Appendix we will discuss some of the general
sults obtained in Secs. III, IV, and V in more detail for th
special casesn53,4.

II. BELL’S INEQUALITIES AND CONVEX GEOMETRY

Before entering the discussion of Bell inequalities in o
special context it is useful to recall some geometric str
tures of the general problem and basic facts concerning
duality of convex polytopes. Consider a system decompo
into n independent subsystems. Suppose further that on
of these subsystems one out ofm v-valued observables i
measured. Thus each of themn different experimental setup
may lead tovn different outcomes, so that the raw expe
mental data are made up of (mv)n probabilities. These num
bers form a vectorj lying in a space of dimension (mv)n

~minus a few for normalization constraints!. Classically, in a
local realistic model,j would be generated by specifyin
probabilities for each classicalconfiguration, i.e., for every
assignment of one of thev values to each of thenm observ-
ables. Here the ‘‘local’’ character of the theory is express
by the property that the assignment of a value to an obs
able at sitek does not depend on the observables chose
other sites. Every configurationc also represents a possib
classical~ideally prepared! state, and hence a vectorec of
probabilities. The classical accessible region, which we w
denote byV, is thus the convex hull ofv (nm) explicitly
known extreme points. Even though the number of confi
rations is large, it is finite, henceV is a polytope.

Like every compact convex set,V is the intersection of
03211
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all half spaces containing it. A half space is completely ch
acterized by a linear inequality, so we must look for vecto
b such that̂ b,j&<1 for all jPV. Since this property can
be checked on the extreme pointsec we must look at the
convex set

B5$bu; c:^b,ec&<1%, ~1!

also known as thepolar of $ec%. For eachbPB the inequal-
ity ^b,j&<1 is thus a necessary condition forjPV. More-
over, the bipolar theorem@20# says that the collection of al
these inequalities is also sufficient.

Luckily, the inequalities are not all independent, since
inequality for a convex combinationb5(l ib i , with b i
PB already follows from the inequalities for theb i . It there-
fore suffices to take only the extreme points ofB. For a
polytope this has a very intuitive geometrical interpretatio
the half spaces determined by extreme points touchV in a
face of maximal dimension. Moreover, there are only finite
many such maximal faces, which is to say thatB is also a
polytope.

The task of finding all Bell inequalities is therefore a sp
cial instance of a standard problem in convex geome
known as thehull problem: given the extreme points$ec% of
a polytopeV, find its maximal faces or, equivalently, th
extreme points of its polar.

The duality betweenB and V is a generalization of the
duality between regular platonic solids, under which dode
hedron and the icosahedron, as well as the octahedron
the cube are polars of each other. A generaliz
(d-dimensional! octahedron is the unit sphere in a sequen
spacel 1($1, . . . ,d%). Its polar is the unit sphere in the dua
Banach spacel `($1, . . . ,d%), i.e., a d-dimensional hyper-
cube. This is precisely the situation we will find for the cla
sically accessible region considered in this paper, wherd
52n.

The first to consider the construction of a complete se
Bell-type inequalities as a problem in convex geometry
parently was M. Froissart@21#. Unfortunately, however, a
general solution for all (n,m,v) is highly unlikely to exist.
To find some extreme points of Eq.~1! is not so difficult, but
algorithms providing the complete set are likely to run in
serious growth problems already for very small (n,m,v). In
fact, there is a theorem by Pitowsky@7# to the effect that, in
a closely related problem, finding all inequalities would al
solve some known hard problems in computational compl
ity ~this is in fact strongly connected with the notoriou
NP5P, respectivelyNP5coNP questions!. Pitowsky and
Svozil @13# have recently performed an extensive numeri
search forn53, and published their result, the coefficients
53 856 inequalities on their website. Unfortunately, there
not much generalizable insight coming out of this kind
work, but it is nice to see what can be done in this ha
numerical problem. Moreover, a numerical approach ba
on linear optimization methods for investigating the ca
(n,m,v)5(2,2,v) without explicitly constructing extrema
inequalities was proposed in@14#. For further problems and
partial results in this genre we refer to the problem page@12#
on our own website. In what follows we will restrict to th
2-2
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ALL-MULTIPARTITE BELL-CORRELATION . . . PHYSICAL REVIEW A 64 032112
case (n,m,v)5(n,2,2) and ‘‘full’’ correlation functions in
the sense described in the Introduction.

III. ALL BELL-CORRELATION INEQUALITIES

A. Basic notation

Talking about Bell inequalities one usually has in mi
inequalities of the CHSH form@5#. These inequalities refer to
correlation experiments, in which each of two parties has
choice of two61 valued observables to be measured, i
(n,m,v)5(2,2,2). Focusing only on full correlation func
tions for multiparticle generalizations of such syste
@(n,m,v)5(n,2,2), n fixed arbitrarily# the raw experimenta
data are 2n expectation values, each corresponding to a
ferent experimental setup. Each setup is labeled by
choice of observables at each site. We parameterize t
choices by binary variablesskP$0,1% so thatsk indicates the
choice of the61-valued observableAk(sk) at sitek. Each
full correlation function is thus the expectation of a produ
)kAk(sk), and is labeled by a bit strings5(s1 , . . . ,sn).

We will consider these expectations as the compone
j(s) of a vectorj in a 2n-dimensional space. Then any Be
inequality is of the form

(
s

b~s!j~s!<1, ~2!

where we have normalized the coefficientsb so that the
maximal classical value is 1, in accordance with the defi
tion of polars in Sec. II. The linear combination in Eq.~2!
can also be computed under the expectation value, so
this inequality can be stated as an upper bound on the ex
tation of

B5(
s

b~s!)
k51

n

Ak~sk!. ~3!

We call such expressionsBell polynomials. They can be used
directly in the quantum case, where all variablesAk(sk) are
substituted by operators with21<Ak(sk)<1, acting in the
Hilbert space of thekth site, and the product is taken as t
tensor product. It is often useful to consider these polyno
als rather than the set of coefficients, because often m
coefficients are zero, and we can sometimes simplify a p
nomial algebraically~e.g., by factorization!, even though this
may not be apparent from the coefficients.

Two convex sets in the real 2n-dimensional vector spac
are the subject of our investigation: firstly, the polytopeV of
correlation vectorsj coming from local classical models, an
secondly the setQ.V of such vectors arising from quantum
models.V will be characterized in terms of Bell inequalitie
in this section,Q will be considered in Sec. V.

B. Construction and completeness

In a local classical model every observableAk(sk) is a
random variable in its own right, i.e., it is a function of th
‘‘hidden variable’’ which does not depend on the choicessl
of observables at other siteslÞk. A model must assign prob
abilities to any collection of values for these observabl
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i.e., to eachclassical configuration. Since the extrema
choices of such probabilities just assign probability 1 to o
configuration and zero probability to all others, the extre
points ofV are simply labeled by the configurations.

One configurationc is the choice ofck(sk)P$21,1% for
all k andsk . Clearly, there are 22n such configurations. The
corresponding correlation vectorj[ec has components

ec~s!5)
k51

n

ck~sk!. ~4!

Since we only consider full correlation functions~and not
restricted ones, see the Introduction!, different classical con-
figurations may give the same extreme pointec . For ex-
ample, we may choose two different sites, and change
values of allck(sk) at these sites simultaneously. Then in E
~4! the sign changes cancel for alls. This is also apparen
from the factorization

ec~s!5S )
k51

n

ck~0!D)
l 51

n

cl~0!cl~sl !, ~5!

in which the first factor is just ans-independent sign, and in
the second factor it suffices to choose configurations w
ck(0)51. Thus we can writeck(sk)5(21)skr k with r k
P$0,1%. Then

ec~s!56~21!^r ,s&, ^r ,s&5 (
k51

n

r ksk , ~6!

where the extreme points are now labeled uniquely by the
string r 5(r 1 , . . . ,r n) and the overall sign. This leaves u
with exactly 2n11 extreme points ofV.

Our task is now to find the extremal linear inequalitiesb,
characterizing this set, i.e., the extreme points ofB from Eq.
~1!. The bipartite case was indeed completely analyzed
Fine @6#, who showed that there are only two classes of
equalities: one is trivial in the sense that it just requires c
relations to be in@21,11#, and the second consists of th
CHSH-type inequalities, for which the prototype isb

5( 1
2 , 1

2 , 1
2 ,2 1

2 ). A construction of some Bell-type inequalitie
for arbitraryn was first proposed by Mermin@8# and further
developed by Ardehali@9#, Belinskii and Klyshko@10#, and
Gisin and Bechmann-Pasquinucci@11#.

We will now find all extremal solutionsb to the set of
inequalities

21<(
s

b~s!~21!^r ,s&<1, ~7!

where r P$0,1%n runs over all bit strings characterizing th
configurations. Suppose that of these 2n inequalitiesp,2n

fixed ones are ‘‘tight’’ in the sense that the sum takes one
the extreme values61. This will be consistent with a plane
~affine manifold! of vectorsb of dimension at least 2n2p.
We can now construct convex decompositions ofb in an
open neighborhood ofb in this plane, since each one of th
remaining sums is continuous inb, and there is a finite mar
gin before another inequality becomes violated. This con
dicts extremality, so we conclude that the inequality must
tight for all r. Thus we have 2n signs f (r )P$11,21% with
2-3
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(
s

b~s!~21!^r ,s&5 f ~r !. ~8!

Now we can read Eq.~8! as a Fourier transform with respe
to the group ofn-tuples of $0,1% with addition modulo 2.
Therefore, we easily obtain the entire set of extremalb by
applying the inverse transformation to the set of vectorf

P$21,1%2n
:

b~s!522n(
r

f ~r !~21!^r ,s&. ~9!

These are the coefficients of the complete set of 22n
extremal

Bell inequalities specifying the range of expectations of f
correlation functions for any local realistic model.

The inequalities constructed in this way have a natu
numbering, defined by the following procedure: For a
number between 0 to 22n

21, write the binary expansion
with ‘‘digits’’ 61 to get f, and perform the inverse Fourie
transform~9!. Fromb compute the polynomial~3!, which is
often the best form of writing the inequality, because one
apply algebraic simplifications. For examples of this numb
ing, see the Appendix. The converse procedure is similar.
example, theMATHEMATICA package available from our web
site @12# finds that Mermin’s inequality forn56 has the
number 1 692 930 046 964 590 721.

C. Structure of the classical region

From the preceding section it is clear that the class
regionV is a polytope ind52n dimensions with 2d extreme
points and 2d maximal faces. This suggests thatV should be
a hyperoctahedron, whose polarB is a hypercube. Indeed
from the parametrization of the inequalities byd values
f (r )561, the latter statement is rather obvious. ThatV is
an octahedron is not so apparent in the coordinates lab
by s as above. However, we can choose a basis transfo
tion making this geometric identification ofV more obvious.
The necessary transformation is, of course, just the Fou
transform. With the notation

ĵ~r !522n(
s

~21!^r ,s&j~s!, ~10!

we can summarize the findings of the preceding section
saying thatjPV if and only if

; f P$21,1%2n
:(

r
f ~r !ĵ~r !<1. ~11!

The expression in Eq.~11! reaches its maximum with respe
to f if f (r ) is just the sign ofĵ(r ). Therefore, the whole se
of 22n

linear inequalities~or the statementjPV) is equiva-
lent to the single nonlinear inequality

(
r

u ĵ~r !u<1. ~12!
03211
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Obviously, this nonlinear inequality is nothing but the cha
acterization of the hyperoctahedron in 2n dimensions as the
unit sphere of the Banach spacel 1.

From this simple characterization ofV it might seem that
our problem is essentially trivial. However, the vast symm
try group ofV, which includes among other transformatio
the set of (2n)! permutations of the coordinates is mislea
ing, because these are not really symmetries of the unde
ing problem of finding all correlations within a classic
model. This is apparent from the observation that the B
polynomials associated with the extreme points may lo
quite different algebraically. That is, the 2n dimensions are
not really equivalent, but carry some structure coming fro
the division of the system inton sites. This is even more
obvious when looking at the set of quantum correlatio
which has a much lower symmetry. Nevertheless, the un
lying problem has a large symmetry group, which will b
studied in the next section.

IV. SYMMETRIES AND SUBSTITUTIONS

Browsing through the complete set of linear correlati
inequalities one quickly gets the feeling that there are m
rather similar ones, and also some inequalities which can
obtained in a rather trivial way~e.g., as a product! from
lower-order ones. In this section we will describe the grou
ing of the inequalities into ‘‘essentially different ones,’’ an
also how they can be obtained by an efficient construct
for composing higher-order inequalities from lower-ord
ones. Both ways of structuring the set of inequalities ma
sense for more general cases (n,m,v) ~see Sec. II!, but for
the moment we only apply them to our restricted class.

A. Symmetry group

Some symmetries acting on Bell inequalities are obvio
and, in fact, present in any problem of this type, involvin
any number of outcomes and observables. The basic sym
tries leading to equivalent inequalities are as follows.

~i! Changing the labeling of the observables at each s
~ii ! Changing the names of the outcomes of each obs

able.
~iii ! Permuting subsystems.
Since we have two observables per site, there are 2n ways

of swapping the labels of observables at each site. Swap
the61 outcomes of an observableAk(sk) at sitek results in
a sign in all correlation functions involving this observab
We have already utilized the fact that swapping bothAk(0)
andAk(1) only results in an overall sign, so it is enough
consider sign changes forAk(1) only. Clearly, there are 2n

such sign changes. Expressed in terms of the functionf these
transformations amount to

f ~r !°~21!^s0 ,r & f ~r 1r 0!, ~13!

wherer ,s0 ,r 0 all lie in $0,1%n, andr 0 ands0 are the param-
eters describing the sign changes and observable swap
spectively. Together with the global sign change and then!
permutations we thus find the groupG of symmetry transfor-
mations in our case to have the order
2-4



he
ns

th
e

rb
is

en

b

ly.
ts
ies

th

st

ll

tin
sit

o

l

e

me
e

o-
its
ry.
g

uc-
is
o-
el-
re-

y
in-
sti-

ent
ne

q.

s
les

al,
d by

e
first

ALL-MULTIPARTITE BELL-CORRELATION . . . PHYSICAL REVIEW A 64 032112
uGu5n! 22n11. ~14!

Theorbit of a given inequality is defined as the set of all t
inequalities generated from it by symmetry transformatio
The number of elements in an orbit isuGu, divided by the
order of the group of symmetries leaving an element of
orbit invariant. The number of different orbits is the numb
of ‘‘essentially different’’ inequalities. Obviously, Eq.~14! is
an upper bound on the number of elements in each o
Since the union of all orbits is the set of all inequalities, th
leads to a lower bound on the number of essentially differ
inequalities.

Note thatuGu increases much more slowly than 22n
, the

total number of extremal inequalities. Therefore, for largen
the classification up to symmetry hardly reduces the num
of cases. Explicitly, we find

n Inequalities uGu Orbits

2 16 64 2

3 256 768 5

4 65 536 12 288 39

5 4 294 967 296 245 760 >17 476

For n up to 4, the number of orbits was obtained explicit
However, forn>5 the lower bound on the number of orbi
makes it clear that listing all essentially different inequalit
is not going to be useful. More detailed results up ton54
will be shown in the Appendix.

B. Generating new inequalities by substitution

A simple way of generating inequalities for highern is to
partition then sites into two subsets of sizesn1 and n25n
2n1 and to take arbitrary Bell polynomials forn1 and n2
sites, appropriately rename the variables, and to multiply
two expressions. For example, the polynomial

1

2
~a1b11a1b21a2b12b1b2!c1 ~15!

is obtained by multiplying a CHSH polynomial for the fir
two sites with the trivial polynomial ‘‘c1’’ on the third @note
that for the sake of clarity we have substitutedA1(0),A2(1)
with a1 ,b2, etc.#. It is clear that this gives an extremal Be
inequality for three sites.

This procedure can be generalized considerably by no
that the product operation corresponds to the trivial two-
Bell polynomial ‘‘a1b1,’’ but nothing restricts us to using a
trivial expression here. So in general, consider a partition
the sites intoK subsets of sizesnk , (k51

K nk5n. Then pick
an extremal Bell polynomial forK sites, written out in vari-
ables A1(0),A1(1), . . . ,AK(1). Now substitute for each
Ak(sk) an extremal Bell polynomial fornk sites. We claim
that the resulting polynomial inn variables is an extrema
Bell polynomial.

Indeed, if we substitute for each of the variables eith
11 or 21, we will get Ak(sk)561 for eachk,sk because
03211
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we substituted extremal Bell polynomials. But then the sa
argument on the level ofK sites shows that the value will b
61.

We will say that a Bell polynomial iselementaryif it
cannot be obtained by substitution from lower order polyn
mials. Obviously, if an inequality is elementary, so is
entire orbit. Clearly, the CHSH inequality is elementa
Moreover, it is known that it is a good tool for generatin
higher-order inequalities by substitution: one of the constr
tions @10,11# of the Mermin’s inequalities is based on th
idea. But in view of the rapid increase of the double exp
nential one might think that there must be many more
ementary inequalities. However, we have the following
sult.

Proposition.The CHSH inequality is the only elementar
Bell inequality in the class we consider, i.e., all these
equalities forn.2 can be constructed by successive sub
tutions into the CHSH inequality.

It is an interesting open problem, whether this statem
holds for other families of Bell inequalities, e.g., the o
tabulated in@13#.

We start the proof on the level of vectorsf P$21,1%2n

parametrizing an arbitrary extremal Bell inequality forn
sites. We decompose the system into a partition ofK52
subsets of sizen21, 1 and rewrite

~16!

The respective coefficientsb(s) of the n-site inequality are
then obtained via Fourier transformation according to E
~9!, and we get

b~s!522n(
r

f ~r !~21!^r ,s&

5
1

2
b0~ s̃!(

r n

~21!snr nd r n,01
1

2
b1~ s̃!(

r n

~21!snr nd r n,1

5
1

2
@b0~ s̃!1~21!snb1~ s̃!#, ~17!

where bk( s̃) are coefficients for extremal Bell inequalitie
for n21 sites. If we now add the respective observab
Ak(sk) and write out the corresponding Bell polynomial

B5(
s

b~s!)
k51

n

Ak~sk!

5
1

2
B0@An~0!1An~1!#1

1

2
B1@An~0!2An~1!#,

~18!

we immediately see that this is just a CHSH polynomi
where the observables of one site have been substitute
Bell polynomialsB0 andB1 for n21 sites.

V. QUANTUM VIOLATIONS

Provided with a huge number of Bell-type inequalities w
now go beyond the classical accessible region. The
2-5
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question to arise is of course whether or not and to w
extent quantum systems can violate these inequalities
answer this question we will first provide an effective var
tional method for computing the maximal quantum vio
tions and show, that they are bounded by those obtained
Mermin’s inequalities. In Secs. V A and V B we will the
briefly discuss the structure of the underlying quantum
main, and prove that the generalized GHZ state maxim
violates any of the correlation inequalities.

A. Obtaining the maximal violations

In order to compute the maximal quantum violation
any correlation inequality we have to vary over one dens
operatorr on a tensor product ofn factors, and two operator
in each factor. Assuming all tensor factors to have dimens
d, this meansd2n parameters for the density operator a
2nd2 for the observables. Hence the numerical solution
this variational problem is not feasible, except for the m
trivial cases~and even impossible, becaused is, in principle,
a free parameter!. Fortunately, however, it turns out tha
computing the overall maximum is much easier than co
puting the maximal violation for a fixed state: we will redu
the computation to a variational formula in justn variables.

First we have to recall some basic notions. In quant
mechanics expectations of61-valued observables are d
scribed by Hermitian operatorsAk(sk) with spectrum in
@21,11#. Since we are only interested in maximal corre
tions, we may as well take the observables extremal in
convex set of Hermitian operators with21<A<1, i.e., we
may assume the observables to be unitary and thusA251.

The general form of a Bell inequality for ann-partite
quantum system, which is characterized by a density op
tor r, is then

tr~rB!ªtrFr(
s

b~s! ^ k51
n Ak~sk!G<1, ~19!

where we will refer toB as theBell operator, which is just
the quantum counterpart of the Bell polynomial defined
Eq. ~3!. Of course, every expectation value~19! larger than 1
is called a violation of Bell’s inequality.

In order to derive the maximal quantum violation, whic
is nothing but the operator norm of the Bell operator, we fi
define another operatorC by

CªB^ k51
n Ak~0!5(

s
b~s! ^ k51

n Ck
sk , ~20!

where we have setCk5Ak(1)Ak(0) andCk
051. Since theCk

are commuting unitary operators, all summands ofC can be
diagonalized simultaneously, and the eigenvectors ofC are
tensor products of eigenvectors of theCk . Every eigenvalue
g of C is therefore of the form

g5(
s

b~s!)
k51

n

gk
sk , ~21!

wheregk is an eigenvalue ofCk . It is clear from the above
remarks thatC commutes with its adjoint, soiCi is just the
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modulus of the largest eigenvalue. Now we utilize the fa
that iB* Bi5iC* Ci , i.e., iBi5iCi and obtain

iBi5sup
$gk%

U(
s

b~s!)
k51

n

gk
skU, ~22!

where each gk runs over the eigenvalues ofCk
5Ak(1)Ak(0). This formula allows us to compute the larg
est expectation tr(rB) for fixed real coefficientsb ~coming
from a Bell inequality or not! and a fixed choice of observ
ablesAk(sk), but withr chosen without further constraints t
maximize the expectation.

What we are now interested in is the maximum also w
respect to theAk(sk). Since formula~22! depends only on
the eigenvaluesgk this will be given by the same expressio
but with gk running not just over the eigenvalues of a pa
ticular operatorCk but over allgk which can be eigenvalue
of products of unitary and Hermitian operators. Since suc
product is again unitary, we haveugku51. Moreover, as is
easily seen in 232 examples, this is the only constraint
any Hilbert space dimension~see also Sec. V D!. Hence for
any choice of real coefficientsb(s) and observables21
<Ak(sk)<1, we have, as the best possible bound,

trFr(
s

b~s! ^ k51
n Ak~sk!G<sup

$gk%
U(

s
b~s!)

k51

n

gk
skU,

~23!

where the supremum runs over all$g1 , . . . ,gn% with ugku
51. Moreover, the bound does not change with Hilb
space dimension, as long as all factors are nontrivial. A m
detailed discussion of quantum violations utilizing Eq.~22!
for the special casesn53,4 can be found in the Appendix.

B. Mermin’s inequalities and the overall maximum

Asking for the overall maximal quantum violation w
may additionally vary over the set of inequalities. In utilizin
the result obtained in the preceding section, we are abl
express the norm of a Bell operator in terms of lower-ord
Bell operators. Moreover, it suffices to consider qubit s
tems and we may therefore setAk(sk)5aW k(sk)sW , wheresW is
the vector of Pauli matrices andaW k(sk) is a normalized vec-
tor in R3.

Squaring Eq.~18! this leads to

B25
B0

2

2
^ @11aW n~0!aW n~1!#1

B1
2

2
^ @12aW n~0!aW n~1!#

1@B0 ,B1# ^
i

2
@aW n~0!3aW n~1!#sW . ~24!

Without loss of generality we now assume thatiB0i<iB1i
and estimate by induction

iBi25iB2i<2iB1i2<2n21. ~25!

This bound is indeed saturated by the set of inequali
going back to Mermin@8–11#, which thus provides the over
all maximal quantum violation. In fact, we will show that th
converse is also true, so that we have the following.
2-6
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Proposition. The orbit corresponding to Mermin’s in
equality is the only one for which the maximal violatio
2(n21)/2 is attained.

Before we continue proving the claimed uniqueness,
emphasize, however, that this does not, in general, imply
for a fixed quantum state Mermin’s inequality is mo
strongly violated than any other.

We begin our proof with noting that the maximal norm
the Bell operator in Eq.~24! requires orthogonality of the
observables, such that the respective phases in Eq.~22! have
to be6 i . Without loss of generality we can thereby restr
to the case1 i since the remaining sings just correspond t
transformation between two inequalities of the same o
according to Eq.~13!. Hence, Eq.~22! leads to

iBmaxi522nU(
r ,s

f max~r !)
k51

n

~21!skr ki skU
522nU(

r
f max~r !)

k51

n

@11 i ~21!r k#U
522n/2U(

r
f max~r !)

k51

n

@ei (p/4)(122r k)#U
522n/2U(

r
f max~r !~2 i !(

k
r kU. ~26!

If we now wantBmax to saturate the bound in Eq.~25!, then
following Eq. ~26! we are left with four possible choice fo
f max, like f max(r)51 for (2 i )(kr k51,i and f max(r)521 oth-
erwise. Since these four inequalities again belong to
same orbit, the correlation inequality leading to the ove
maximal quantum violation is indeed uniquely determin
~up to equivalence transformations within one orbit!.

C. Structure of the quantum domain

In the same manner as we did for the classical case
may ask for the structure of the region in the space of co
lations, which is accessible within the framework of quantu
mechanics. One of the first to investigate this question
more detail apparently was Tsirelson@16,17#, while studying
quantum generalizations of Bell’s inequalities.

Let us begin with defining the quantum counterpart of
classical accessible regionV, introduced in Sec. II,

Qª$jujs5tr@r ^ k51
n Ak~sk!#%,R2n

, ~27!

where$Ak% are suitable observables andr is a quantum state
in arbitrary dimension. The structure ofQ is much more
complicated than that ofV,Q. In particular, it is not a poly-
tope. Nevertheless, we can explicitly parametrize its extre
points. For the sake of completeness we will first prove c
vexity of Q, although this follows closely the work o
Tsirel’son @17#.

Consider a convex combination of vectors inQ

(
a

l (a)j (a), j (a)PQ ~28!

and an associated Hilbert space
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H5 ^ k51
n Hk5 ^ k% aH k

(a)> % a1 . . . an
^ kH k

(ak) . ~29!

Then withr5 % al (a)r (a), which is a density operator actin
on the ‘‘diagonal subspace’’

% a ^ kH k
(a),H, ~30!

and Ak(sk)5 % aAk
(a)(sk) we are given a state and obser

ables such, that the convex combination in Eq.~28! is indeed
a proper element ofQ. Hence,Q is convex.

Now let us return to the result obtained in Sec. V B. F
lowing Eq.~22! we can write the maximal quantum violatio
of an arbitrary inequalityb as

sup
g0 . . . gn

(
s

b~s!ReS g0)
k51

n

gk
skD ~31!

5 sup
w0 . . . wn

(
s

b~s!js~w0 , . . . ,wn!, ~32!

where we have setjs(w0 , . . . ,wn)5cos(w01(kwksk). Now
by the bipolar theorem@20# the convex setQ is just given by
the convex hull of these vectors:

Q5co$j~w0 , . . . ,wn!%. ~33!

D. Generalized GHZ states

It is a well-known fact that the generalized GHZ sta
defined by

uCGHZ&5
1

A2
~ u00̄ 0&1u11̄ 1&) ~34!

maximally violates Mermin’s inequalities@10#. Astonish-
ingly this is also true for any other of the 22n

correlation
inequalities.

Proposition.Any extreme point of the convex set of qua
tum correlation functions as defined in Eq.~27! is already
obtained for the generalized GHZ state. In particular, t
implies that GHZ states maximally violate any of the pr
sented correlation inequalities.

We have to show that for any set of angles$w0 , . . . ,wn%
there are suitable observables such, that

^CGHZu ^ k51
n Ak~sk!uCGHZ&5cosS w01(

k
wkskD .

~35!

Therefore we choose observablesAk(sk)5aW k(sk)sW with

aW k~0!5~cosa,sina,0!

aW k~1!5@cos~wk1a!,sin~wk1a!,0#. ~36!

These observables simply swap the basis vectors provi
them with an additional phase factor, i.e.,

aW k~sk!sW u j &5exp@ i ~21! j~a1wksk!#u j % 1&, ~37!

where j 50,1 and% means addition modulo 2. Hence, fo
the left-hand side of Eq.~35! two terms occur, which are jus
complex conjugates of each other, and we get
2-7
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^CGHZu ^ k51
n Ak~sk!uCGHZ&5ReHeianei(

k
wkskJ , ~38!

so that it just remains to seta5w0 /n.

VI. STATES WITH POSITIVE PARTIAL TRANSPOSES

The violation of one of the inequalities, which can b
derived from Eq.~9!, is a rather physical entanglement c
terion, since we can at least in principal decide it experim
tally by measuring the respective correlations. However,
difficulty in doing so is the choice of the observables, a
optimizing them for a fixed state leads in general to a v
high dimensional variational problem. An entanglement c
terion, which is in contrast easy to compute, is thepartial
transposeproposed by Peres in@22#. Before we settle the
relationship between these two entanglement criteria, we
briefly recall some basic notions.

The partial transposeof an operator on a twofold tenso
product of Hilbert spacesH1^ H2 is defined by

S (
j

Cj ^ D j D T1

5(
j

Cj
T

^ D j , ~39!

whereCj
T on the right-hand side is the ordinary transpositi

of matrices with respect to a fixed basis. The generaliza
of this definition to ann-fold tensor product is straight for
ward, and we will denote the transposition of all sites b
longing to a sett,$1, . . . ,n% by the superscriptTt .

Recall further that a state is calledseparableor classically
correlated if it can be written as a convex combination
tensor product states—otherwise, it is calledentangled. A
necessary condition for separability, which also turned ou
be sufficient in the case of two qubits@23#, but not in general
~cf. @24#!, is the positivity of all partial transposes with re
spect to all subsystems. Moreover, there is a conjecture
Peres@19# that this might even imply the existence of a loc
realistic model. In@18# we showed that the set of inequalitie
going back to Mermin@8# is indeed fulfilled for states satis
fying this positive partial transpose condition. In the follow
ing we will show that this implication is not due to a spec
property of these inequalities, but holds for any Bell-ty
inequality in Eq.~19!, as long as we consider expectations
full n-site correlations. This leads to the main result of t
section.

Proposition.Consider ann-partite quantum system, wher
each of the parties has the choice of two dichotomic obs
ables to be measured. Assume further, that the partial tr
poses with respect to all subsystems of the correspon
density operator are again positive semidefinite operat
Then all the 2n correlations can be described in the conte
of a local realistic model.

In particular, this implies that if a state is biseparable w
respect to all partitions, all the inequalities are satisfied e
if there exists no convex decomposition inton-fold product
states. In order to prove this proposition and to derive
upper bound for the expectation of the Bell operator, we fi
apply the variance inequality torTt andBTt,
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~ tr rB!25~ tr rTtBTt!2<tr@rTt~BTt!2#<tr$r@~BTt!2#Tt%.

~40!

Since we suppose thatrTt>0;t this holds for any partial
transposition, and we may take the average with respec
all subsetst, and have therefore to estimate the expectat
of the operator
1

2n (
t

(
s,s8

b~s!b~s8! ^ kPt Ak~sk!Ak~sk8! ^ k¹t Ak~sk8!Ak~sk!

5(
s,s8

b~s!b~s8! ^ k51
n 1

2
$Ak~sk!,Ak~sk8!%1 , ~41!

where$•,•%1 denotes the anticommutator. Note that in t
first line of Eq. ~41! we have rearranged the tensor produ
and made use of

@Ak~sk8!TAk~sk!
T#T5Ak~sk!Ak~sk8!. ~42!

SinceA251 and sk ,sk8P$0,1% only two different operators
can arise in every tensor factor in Eq.~41!: either

2$Ak(0),Ak(1)%1 or the identity operator. These two obv
ously commute, and we can therefore simultaneously dia
nalize all the summands. What remains to be done is to s
stantiate our intuition that ‘‘if everything commutes, then w
are in the classical regime.’’ For this purpose note that eig
values of the operator~41! are of the form

(
s,s8

b~s!b~s8!)
k51

n H xk , skÞsk8

1, sk5sk8
J , ~43!

for suitable21<xk<1. But since we can always find clas
sical observablesC with correlations

^Ck~0!Ck~1!&5xk , ~44!

we are able to construct a system which is classical in
sense that it may be described in the context of class
probability theory, such that Eq.~43! is the expectation of the
square of the respective Bell polynomial. However, due
the defining properties of the Bell inequalities, this is inde
bounded by unity, which proves our claim that all the co
sidered Bell inequalities are satisfied for states having p
tive partial transposes with respect to all their subsystem

VII. CONCLUSION

We provided two approaches for constructing the en
set of multipartite correlation Bell inequalities for two d
chotomic observables per site: the Fourier transformation
a 2n-digit binary number and nesting CHSH inequalitie
This set of inequalities led us to a single nonlinear inequal
which detects the existence of a local classical model w
respect to the considered correlations. We were able to s
plify the variational problem of obtaining the maximal qua
tum violation of the linear correlation inequalities, in partic
lar showing, that these are attained for generalized G
states, and proved, that ‘‘ppt states’’ satisfy all these 22n

in-
equalities.

One crucial assumption was that each site has the o
choice of two dichotomic observables to be measured. P
mitting more observables per site, more outcomes per
servable, or even the choice of ‘‘not measuring,’’ i.e., inclu
2-8
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ing restricted correlation functions, would lead
noncommuting terms, and most of the arguments would
So this is obviously a starting point for further investigation
In particular, one may think of applying the mechanism
substitution~Sec. IV! in order to derive new classes of Be
inequalities.

Another open question concerns the hierarchy of the
equalities with respect to their quantum violations. That is
a given inequality is violated for a fixed quantum state,
there a set of inequivalent inequalities that have to be v
lated as well?

Finally, we want to mention that there is recent work
Scarani and Gisin@25# pointing out that there might be
close relation between the quantum violation of multipar
Bell inequalities and the security ofn-partner quantum com
munication.

Note added.Recently a closely related paper@30# was
posted by Zukowski and Brukner. They also study co
straints on correlation functions and obtain the inequali
we presented in Sec. III.
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APPENDIX

Recently more and more attention has turned to tri- a
four-partite states, especially to symmetric states as lab
tories for multipartite entanglement~cf. @26–28#!. Therefore
we will provide the complete set of Bell inequalities fo
these cases in a more explicit form and additionally give
maximal quantum violations, which we have numerica
@29# obtained utilizing the method presented in Sec. V.

1. Inequalities for three sites

For n53 Eq.~9! leads to the five essentially different Be
polynomials @for the sake of legibility we again substitut
A1(0),A2(1) with a1 ,b2 etc.#,

a1b1c1 , ~A1!

1

4 (
k,l ,m

akblcm2a1b1c1 , ~A2!

1

2
@a1~b11b2!1a2~b12b2!#c1 , ~A3!

1

2
@a1b1~c11c2!2a2b2~c12c2!#, ~A4!

1

2
~a1b1c21a1b2c11a2b1c12a2b2c2!. ~A5!

Polynomials ~A1! and ~A3! are just trivial extensions o
lower-order inequalities, and polynomial~A5! belongs to the
set developed by Mermin@8#. The maximal quantum viola
tions, the number of the first inequality of each of the fi
orbits, and the sizes of the respective orbits are stated in
following table:
03211
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Inequality uOrbitu
Quantum
violation

Polynomial

0 16 1 ~A1!
1 128 5/3 ~A2!
3 48 A2 ~A3!
6 48 A2 ~A4!
23 16 2 ~A5!

2. Inequalities for four sites

For n54 we just give the number of the first inequality o
each of the 39 orbits, its size, and the respective maxi
quantum violations. The indexp labels orbits, including an
element which is invariant under permutations of the s
systems, andf indicates factorizing Bell polynomials@like
polynomials~A1! and ~A3! for tripartite systems#.

Inequality uOrbitu
Quantum
violation

0p, f 32 1
1p 512 1.843
3 f 1024 5/3
6 1536 5/3
7 3072 1.932
15f 192 A2
22 2048 1.932
23 1024 A5
24 1024 2
25 6144 A3
27 3072 A3
30 3072 A3
60f 384 A2
105 128 A2
278p 256 A5
279p 512 2.556
280 3072 2.139
281 1536 1.819
282 3072 1.819
283 6144 2.078
286 1536 2.078
287 1536 2.326
300 3072 2
301 6144 5/3
303 3072 1.819
317 3072 2
318 1536 2
319 2048 2.139
360 1024 2.326
363 1536 A3
367 1536 A3
383p 256 2
831f 128 2
854f 96 2
857 384 A2
874 384 2
1632 96 A2
1647 192 2
6014p 32 2A2

The number of the inequality representing the orbit of M
min’s inequality is 6014.
2-9
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