PHYSICAL REVIEW A, VOLUME 64, 032112
All-multipartite Bell-correlation inequalities for two dichotomic observables per site
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We construct a set of22 independent Bell-correlation inequalities fepartite systems with two dichotomic
observables each, which is complete in the sense that the inequalities are satisfied if and only if the correlations
considered allow a local classical model. All these inequalities can be summarized in a single, albeit nonlinear
inequality. We show that quantum correlations satisfy this condition provided the state has positive partial
transpose with respect to any grouping of theystems into two subsystems. We also provide an efficient
algorithm for finding the maximal quantum-mechanical violation of each inequality, and show that the maxi-
mum is always attained for the generalized GHZ state.
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[. INTRODUCTION infinite sequence of multipartite correlation settings for
which we could develop the theory to be as explicit and
Entanglement has not only been a key issue in the ongaceomplete as in the CHSH case. Our setting generalizes the
ing debate about the foundations of quantum mechanic$CHSH setting to an arbitrary numbarrather than two dif-
started by Einstein, Podolsky, and Rosen in 1pBJit also  ferent sites, but retains the constraints of just two observ-
plays a crucial role in the young field of quantum informa- aples per site with just two outcomes each. Thus each of the
tion theory. Here entangled states are one of the basic ingrer participants has the choice of two observables, each of
dients of quantum information p_rocgss?ng, due to their roleynich can take the values 1 or —1. For any choice of
as a resource in quantum key distribution, super dense cogdiyservables we then consider the expectation value of the

ing, quantum teleportation, and quantum error corredin  .o4,ct of alln signs(a “full” correlation function). A Bell
[2]). Although general structural knowledge about entangles

t has i dd tically in the last f h inequality is a linear constraint on the set of all such expec-
ment has improved dramatically In the fast 1ew years, er‘?ations, which is valid whenever the correlations can be ob-

are still many open problems. For example, there is stll nQ[ained from a local classical model, and which cannot be

efficient general method to decide whether a given state i\?’\/ritten as a convex combination of other such constraints
entangled or not. :

The first, and for a long time also the only, mathemati—Examplf:}S are the _CHSH inequalifs] _for n=2 and their
cally sharp criteria for entanglement were the Bell inequali-9eneralizations going back to Mermin and othégs-11]

ties[3]. They provided the first possibility to distinguish ex- '€ading to a single inequality for arbitrary _
perimentally between quantum-mechanical predictions and We remark that this problem setting could be generalized
those of local realistic models. But although Bell inequalitiesto include the expectations not only of the product ofrll
have been known for more than 30 yepd} our knowledge signs, but also the products of subsets of sigtrestricted”
about the precise border between the classical and quanturgorrelation functions These data would be sufficient to re-
mechanical accessible region is still mainly restricted to the&onstruct the full joint probability distributions of signs for
simplest nontrivial cases. Best known is the case of two sitegll choices of observables. However, most of the derivations
at each of which two dichotomic observables are choserin this paper do not generalize to this setting, and it is not yet
This is characterizedcompletely by the Clauser-Horne- clear which statements would still be valichaybe with a
Shimony-Holt(CHSH) version of Bell's inequalitieg5], in  different prooj. When we talk of the existence of a classical
the sense that the inequalities are satisfied if and only if &nodel, however, it is understood that such a model would
local classical model exists]. Finding a complete set of also determine all restricted correlation functions. The omis-
linear inequalities in more complicated situatiofimore  sion of restricted correlation functions from our setting only
sites, more observables, more outcomesns out to be a Means that we do not consider constraints depending on
very difficult problem in the sense of computational com-them.

plexity [7]. There is only very little knowledge about Bell- For this class of multipartite correlations we obtained the
type inequalities beyond the CHSH cd8e-12. Though nu-  following results.
merical studies yield a large number of inequali{i&3], for (i) We construct a set of2 Bell inequalities, and show its

most of them it is neither known by how much they can becompleteness: the correlations considered allow a local clas-
violated in quantum theory nor is there a general characteisical model if and only if all these inequalities are satisfied
ization admitting further investigations. (Sec. ll.

We were therefore quite surprised ourselves at finding an (ii) The convex set of collections of classical correlation
functions is a 2-dimensional hyperoctahedron, which can be
described alternatively by a single nonlinear inequéiggc.

*Electronic address: r.werner@tu-bs.de ).
TElectronic address: mm.wolf@tu-bs.de (iiil) We discuss the symmetries connecting different in-
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equalities and develop a construction scheme, which yieldall half spaces containing it. A half space is completely char-
all 22" equalities by successive substitutions into the CHSHacterized by a linear inequality, so we must look for vectors
inequality (Sec. IV). B such that(B,£)<1 for all £ Q. Since this property can
(iv) We reduce the computation of the maximal quantumbe checked on the extreme points we must look at the
violations of each Bell inequality to a simple variational convex set
problem with just one free variable per site. The maxima are
already attained in qubit systems, more specifically for the B={B|V c:(B,e)<1}, 1)
n-party generalization of the GHZ stdt&5], with a choice of
observables depending on the inequality under consideratiodlso known as theolar of {e}. For eachs e B the inequal-
(Sec. V. ity (B8,£)<1 is thus a necessary condition foe (). More-
(v) We extend this method to a characterization of theover, the bipolar theorerf20] says that the collection of all
convex body of quantum-mechanically attainable correlatiorthese inequalities is also sufficient.
functions in terms of its extreme points, which are also found Luckily, the inequalities are not all independent, since the
in the generalized GHZ state. These results are analogous teequality for a convex combinatio=ZXN\;g;, with g
those of Tsirelso16,17] for the bipartite case. e B already follows from the inequalities for th& . It there-
(vi) We characterize the Mermin inequality as that Bellfore suffices to take only the extreme points 6f For a
inequality, which can be violated by the widest margin inpolytope this has a very intuitive geometrical interpretation:
quantum theory. the half spaces determined by extreme points talcin a
(vii) Section VI settles the relationship between the corface of maximal dimension. Moreover, there are only finitely
relation Bell inequalities and another important entanglemenmany such maximal faces, which is to say tifats also a
property. We show that for states having positive partialpolytope.

transposes with respect to all their subsystems, allig- ' The task of finding all Bell inequalitie's is therefore a spe-
equalities are satisfied, so the correlations in such quantufj@! instance of a standard problem in convex geometry,
states can be explained in the context of a local realistiknown as théhull problem given the extreme pointse} of
model. This extends our earlier res[ai8] for Mermin’s in- @ Polytope(}, find its maximal faces or, equivalently, the
equalities, and is further supporting evidence for a recengXtreme points of its polar.

conjecture by Perefl9], namely that positivity of partial ~ The duality betweers and(} is a generalization of the
transposes should generally imply the existence of local reduality between regular platonic solids, under which dodeca-
alistic models. hedron and the icosahedron, as well as the octahedron and
In the Appendix we will discuss some of the general re-the cube are polars of each other. A generalized
sults obtained in Secs. IlI, IV, and V in more detail for the (d-dimensional octahedron is the unit sphere in a sequence
special cases=3,4. spacel ({1, ... d}). Its polar is the unit sphere in the dual
Banach spacé”({1, ... d}), i.e., ad-dimensional hyper-
II. BELL'S INEQUALITIES AND CONVEX GEOMETRY cube. This is precisely the situation we will find for the clas-

sically accessible region considered in this paper, widere

Before entering the discussion of Bell inequalities in our=2",
special context it is useful to recall some geometric struc- The first to consider the construction of a complete set of
tures of the general problem and basic facts concerning thBell-type inequalities as a problem in convex geometry ap-
duality of convex polytopes. Consider a system decomposeparently was M. Froissarfi21]. Unfortunately, however, a
into n independent subsystems. Suppose further that on eagjeneral solution for allif,m,v) is highly unlikely to exist.
of these subsystems one out mfv-valued observables is To find some extreme points of E) is not so difficult, but
measured. Thus each of th& different experimental setups algorithms providing the complete set are likely to run into
may lead tov" different outcomes, so that the raw experi- serious growth problems already for very smai|rg,v). In
mental data are made up ah()" probabilities. These num- fact, there is a theorem by Pitowsky] to the effect that, in
bers form a vectog lying in a space of dimensiom(v)"  a closely related problem, finding all inequalities would also
(minus a few for normalization constraintElassically, in a  solve some known hard problems in computational complex-
local realistic model,¢ would be generated by specifying ity (this is in fact strongly connected with the notorious
probabilities for each classicabnfiguration i.e., for every NP=P, respectivelyNP=coNP questions Pitowsky and
assignment of one of the values to each of them observ-  Svozil [13] have recently performed an extensive numerical
ables. Here the “local” character of the theory is expressedearch fon=3, and published their result, the coefficients of
by the property that the assignment of a value to an obsens3 856 inequalities on their website. Unfortunately, there is
able at sitek does not depend on the observables chosen atot much generalizable insight coming out of this kind of
other sites. Every configurationalso represents a possible work, but it is nice to see what can be done in this hard
classical(ideally preparefistate, and hence a vecteg of  numerical problem. Moreover, a numerical approach based
probabilities. The classical accessible region, which we willon linear optimization methods for investigating the case
denote by(), is thus the convex hull o™ explicitly  (n,m,v)=(2,2p) without explicitly constructing extremal
known extreme points. Even though the number of configuinequalities was proposed [d4]. For further problems and
rations is large, it is finite, henc@ is a polytope partial results in this genre we refer to the problem pddga

Like every compact convex sef) is the intersection of on our own website. In what follows we will restrict to the
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case (,m,v)=(n,2,2) and “full” correlation functions in i.e., to eachclassical configuration Since the extremal

the sense described in the Introduction. choices of such probabilities just assign probability 1 to one
configuration and zero probability to all others, the extreme
lll. ALL BELL-CORRELATION INEQUALITIES points of are S|r'nply.labeled by the configurations.
One configuratiort is the choice ofc(sy) e {—1,1} for
A. Basic notation all k ands,. Clearly, there are ? such configurations. The

Talking about Bell inequalities one usually has in mind Corresponding correlation vectgr e has components
inequalities of the CHSH forb]. These inequalities refer to N
correlation experiments, in which each of two parties has the Ec(S):kH Ci(Sk)- (4)
choice of two*1 valued observables to be measured, i.e., -t
(n,m,v)=(2,2,2). Focusing only on full correlation func- Since we only consider full correlation functiotand not
tions for multiparticle generalizations of such systemsrestricted ones, see the Introductiodifferent classical con-
[(n,m,v)=(n,2,2),nfixed arbitrarily] the raw experimental figurations may give the same extreme pokat For ex-
data are 2 expectation values, each corresponding to a dif-ample, we may choose two different sites, and change the
ferent experimental setup. Each setup is labeled by thgalues of allc,(sy) at these sites simultaneously. Then in Eq.
choice of observables at each site. We parameterize the$#) the sign changes cancel for all This is also apparent
choices by binary variables e {0,1} so thats, indicates the from the factorization
choice of thex1-valued observablé,(s,) at sitek. Each n n
full correlation function is thus the expectation of a product -
M Ac(sy), and is labeled by a bit string= (s, . .. ,S,)- ec(s) (kll Ck(o)) |1;[1 a@ea(s), ®

We will consider these expectations as the component
&(s) of a vectoré in a 2"-dimensional space. Then any Bell
inequality is of the form

ES B(s)&(s)<1, (2)

th which the first factor is just ag-independent sign, and in
the second factor it suffices to choose configurations with
c(0)=1. Thus we can writec,(s,)=(—1)%k with r
€{0,1}. Then

n
where we have normalized the coefficier8sso that the eo(8)==(=1)1", <r75>:k§=:l MicSk (6)
maximal classical value is 1, in accordance with the defini- _ _ _
tion of polars in Sec. Il. The linear combination in E§)  Where the extreme points are now labeled uniquely by the bit

can also be computed under the expectation value, so thatring r=(ry, . 3 rn) and the overall sign. This leaves us
this inequality can be stated as an upper bound on the expewith exactly 2"+ extreme points of).
tation of Our task is now to find the extremal linear inequalit@gs

N characterizing this set, i.e., the extreme point8dfom Eg.
B (1). The bipartite case was indeed completely analyzed by
B_z 'B(S)kll A8 ©®) " Fine [6], who showed that there are only two classes of in-
. _ equalities: one is trivial in the sense that it just requires cor-
We call such expressiorigell polynomials They can be used relations to be irf —1,+1], and the second consists of the
directly in the quantum case, where all variabhggsy) are  CHSH-type inequalities, for which the prototype 8

substituted by operators with I<A,(sy) <1, acting in the —(%,1,1 —1y. Aconstruction of some Bell-type inequalities

Hilbert space of théth site, and the product is taken as the . : ;
tensor product. It is often useful to consider these ponnomi]cor arbitraryn was first proposed by Mermifg] and further

- developed by Ardehali9], Belinskii and Klyshko[10], and

e paher han th st of coefcents, because fen Merbisin and Dectmam-Pasqunuéet]

. . ’ N P PO We will now find all extremal solutionsB to the set of
nomial algebraicallye.qg., by factorizatiop even though this . L

- inequalities
may not be apparent from the coefficients.
Two convex sets in the real@limensional vector space =3 (rs)—

are the subject of our investigation: firstly, the polytdpef —1s< = B(s)(—1)T¥<1, @
correlation vectorg coming from local classical models, and | o o
secondly the se@D Q of such vectors arising from quantum Wherer {0,1}" runs over all bit strings characterizing the

models.Q will be characterized in terms of Bell inequalities configurations. Suppose that of thesei@equalitiesp<2"
in this section,Q will be considered in Sec. V. fixed ones are “tight” in the sense that the sum takes one of

the extreme values 1. This will be consistent with a plane
(affine manifold of vectorsB of dimension at least 2-p.
We can now construct convex decompositionsgofn an

In a local classical model every observaldlg(s,) is @ open neighborhood g8 in this plane, since each one of the
random variable in its own right, i.e., it is a function of the remaining sums is continuous  and there is a finite mar-
“hidden variable” which does not depend on the choises gin before another inequality becomes violated. This contra-
of observables at other siteés k. A model must assign prob- dicts extremality, so we conclude that the inequality must be
abilities to any collection of values for these observablestight for all r. Thus we have 2signsf(r) e {+1,— 1} with

B. Construction and completeness
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Obviously, this nonlinear inequality is nothing but the char-
> BS)(—D)F=1(r). (8)  acterization of the hyperoctahedron i @imensions as the
® unit sphere of the Banach spalde
, . From this simple characterization 6f it might seem that
Now we can read Ed8) as a Fourier transform with respect o, problem is essentially trivial. However, the vast symme-
to the group ofn-tuples of{0,1} with addition modulo 2. group of ), which includes among other transformations
Therefore, we easily obtain the entire set of extre@dly  {he set of (2)! permutations of the coordinates is mislead-
applying tnhe inverse transformation to the set of vectors g pecause these are not really symmetries of the underly-
e{-11%: ing problem of finding all correlations within a classical
model. This is apparent from the observation that the Bell
B(S)zZ’“E f(r)(— 1), (9) po!ynor_nials associate_d with the _extreme_points_ may look
T quite different algebraically. That is, the' 2imensions are
not really equivalent, but carry some structure coming from
the division of the system inta sites. This is even more
jobvious when looking at the set of quantum correlations,
which has a much lower symmetry. Nevertheless, the under-
|ying problem has a large symmetry group, which will be
studied in the next section.

These are the coefficients of the complete set®ofextremal
Bell inequalities specifying the range of expectations of ful
correlation functions for any local realistic model.

The inequalities constructed in this way have a natura
numbering, defined by the following procedure: For any

number between 0 to2—1, write the binary expansion
with “digits” *+1 to getf, and perform the inverse Fourier IV. SYMMETRIES AND SUBSTITUTIONS

transform(9). From 8 compute the polynomiaB), which is Browsing through the complete set of linear correlation

often the best form of writing the inequality, because one Car?nequalities one quickly gets the feeling that there are many

apply algebraic simplifications. For examples of this numberyiher similar ones, and also some inequalities which can be

ing, see the Appendix. The converse pr_ocedure is similar. FOhtained in a rather trivial waye.g., as a produgtfrom
example, thenATHEMATICA package available from our web- 1,61 order ones. In this section we will describe the group-
site [12] finds that Mermin's inequality fon=6 has the j 4 of the inequalities into “essentially different ones,” and
number 1 692930 046 964 590 721. also how they can be obtained by an efficient construction
for composing higher-order inequalities from lower-order
C. Structure of the classical region ones. Both ways of structuring the set of inequalities make
ense for more general casesn,v) (see Sec. )| but for

From the preceding section it is clear that the classica )
he moment we only apply them to our restricted class.

region(} is a polytope ind=2" dimensions with & extreme
points and 2 maximal faces. This suggests tfatshould be
a hyperoctahedron, whose polBris a hypercube. Indeed A. Symmetry group

from the parametrization of the inequalities llyvalues Some symmetries acting on Bell inequalities are obvious
f(r)==1, the latter statement is rather obvious. TRais  and, in fact, present in any problem of this type, involving

an octahedron is not so apparent in the coordinates labeleghy number of outcomes and observables. The basic symme-
by s as above. However, we can choose a basis transformgies leading to equivalent inequalities are as follows.

tion making this geometric identification 6f more obvious. (i) Changing the labeling of the observables at each site.
The necessary transformation is, of course, just the Fourier (ji) Changing the names of the outcomes of each observ-
transform. With the notation able.

A .9 (iii ) Permuting subsystems.

&(r)=2 2;4 (=1)T¥E(s), (10 Since we have two observables per site, there aned/s

of swapping the labels of observables at each site. Swapping
e =1 outcomes of an observabig(s,) at sitek results in
sign in all correlation functions involving this observable.
We have already utilized the fact that swapping bA{{(0)
. R andA,(1) only results in an overall sign, so it is enough to

Vie{—1,02"> f(r&r)=<1. (11)  consider sign changes f@x (1) only. Clearly, there are™

' such sign changes. Expressed in terms of the funétibase
transformations amount to

The expression in Eq11) reaE:hes its maximum with respect F(r)—>(—1)%0Df(r+ry), (13)
tofif f(r) is just the sign of(r). Therefore, the whole set

of 22" linear inequalitiegor the statemeng e ) is equiva-  wherer,sy,r all lie in {0,1}", andr, ands, are the param-

. - . . th
we can summarize the findings of the preceding section b&
saying that¢ e Q) if and only if

lent to the single nonlinear inequality eters describing the sign changes and observable swaps, re-
spectively. Together with the global sign change andrthe
2 |§(r)| <1. (12) permutations we thus find the gro@of symmetry transfor-
-

mations in our case to have the order
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|G|=n! 22"*1, (14) we substituted extremal Bell polynomials. But then the same
argument on the level & sites shows that the value will be

1.

We will say that a Bell polynomial ilementaryif it

tannot be obtained by substitution from lower order polyno-

Theorbit of a given inequality is defined as the set of all the =
inequalities generated from it by symmetry transformations

The number of elements in an orbit |iS|‘ divided by the mials. Obviously, if an inequality is elementary, so is its
order of the group of symmetries leaving an element of thgntire orbit. Clearly, the CHSH inequality is elementary.
orbit invariant. The number of different orbits is the number;qreover. it is known that it is a good tool for generating
of “essentially different” inequalities. Obviously, Eq14) is  pigher-order inequalities by substitution: one of the construc-
an upper bound on the number of elements in each orbitions [10,11] of the Mermin's inequalities is based on this
Since the union of all orbits is the set of all inequalities, thisidea. But in view of the rapid increase of the double expo-
leads to a lower bound on the number of essentially differenhential one might think that there must be many more el-
inequalities. ementary inequalities. However, we have the following re-
Note that|G| increases much more slowly tha 2the  sult. - _ o
total number of extremal inequalities. Therefore, for lange _ Proposition.The CHSH inequality is the only elementary

the classification up to symmetry hardly reduces the numbeell inequality in the class we consider, i.e., all these in-
of cases. Explicitly, we find equalities forn>2 can be constructed by successive substi-

tutions into the CHSH inequality.
It is an interesting open problem, whether this statement

n Inequalities G Orbits > - o
d cl holds for other families of Bell inequalities, e.g., the one
2 16 64 2 tabulated in13].
3 256 768 5 We start the proof on the level of vectofs: {—1,1}2"
4 65536 12288 39 parametrizing an arbitrary extremal Bell inequality for
5 4 294 967 296 245760 =17 476 sites. We decompose the system into a partitiorKef2
subsets of siza—1, 1 and rewrite
Forn up to 4, the number of orbits was obtained explicitly. fri, ooy r)=f(7,0)8, o+f(7,1)6, ;.
However, forn=5 the lower bound on the number of orbits ~ ! !
makes it clear that listing all essentially different inequalities " (16)

is not going to be useful. More detailed results umte4  The respective coefficienig(s) of the n-site inequality are
will be shown in the Appendix. then obtained via Fourier transformation according to Eq.
(9), and we get
B(s)=2""2 f(r) (-1

r

B. Generating new inequalities by substitution

A simple way of generating inequalities for highers to
partition then sites into two subsets of sizeg andn,=n 1 1
—n, and to take arbitrary Bell polynomials far; andn, —Z8.(3 — )5S, =B (3 —1)5ng
sites, appropriately rename the variables, and to multiply the ZBO( ),En (=1 Tn0 231( ),En (=1 ol
two expressions. For example, the polynomial

1
(15) :E[BO(S)+(_1)Snﬁl(S)]! (17)

1
z(alb1+ a;b,+ab;—bqby)c,y

where B,(s) are coefficients for extremal Bell inequalities

is obtained by multiplying a CHSH polynomial for the first for n—1 sites. If we now add the respective observables
two sites with the trivial polynomial ¢,” on the third [note  A,(s,) and write out the corresponding Bell polynomial
that for the sake of clarity we have substituteg(0),A,(1) n
with a; ,b,, etc). It is clear that this gives an extremal Bell B=> B(s)]] Adsp
inequality for three sites. s k=1

This procedure can be generalized considerably by noting 1 1
that the product operation corresponds to the trivial two-site = =Bo[Ay(0)+AL(1)]+ =B [AL(0)—A(1)],
Bell polynomial “a;b,,” but nothing restricts us to using a 2 2
trivial expression here. So in general, consider a partition of (18
the sites intoK subsets of sizeg,, E{lenkzn. Then pick

an extremal Bell polynomial foK sites, written out in vari- W€ immediately see that this is just a CHSH polynomial,
ables A,(0),A,(1), ... Ac(1). Now substitute for each where the observables of one site have been substituted by

A(s,) an extremal Bell polynomial fon, sites. We claim  Bell polynomialsB, andB, for n—1 sites.

that the resulting polynomial im variables is an extremal
Bell polynomial.

Indeed, if we substitute for each of the variables either Provided with a huge number of Bell-type inequalities we
+1 or —1, we will getAy(s)==1 for eachk,s, because now go beyond the classical accessible region. The first

V. QUANTUM VIOLATIONS
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guestion to arise is of course whether or not and to whamodulus of the largest eigenvalue. Now we utilize the fact
extent quantum systems can violate these inequalities. Tthat|B*B||=|/C*C]|, i.e.,||B|=]|C|| and obtain

answer this question we will first provide an effective varia- n
tional method for computing the maximal quantum viola- IBl=sup| > B(s)I] 7Y, (22)
tions and show, that they are bounded by those obtained for {nmg | S k=1

Mermin’s inequalities. In Secs. VA and VB we will then

briefly discuss the structure of the underlying quantum dowhere each y, runs over the eigenvalues ofCy
main, and prove that the generalized GHZ state maximally= Ak(1)A(0). This formula allows us to compute the larg-
violates any of the correlation inequalities. est expectation ty(B) for fixed real coefficient3 (coming
from a Bell inequality or ngtand a fixed choice of observ-
ablesA(s,), but with p chosen without further constraints to
maximize the expectation.

In order to compute the maximal quantum violation of  \What we are now interested in is the maximum also with
any correlation inequality we have to vary over one densitytespect to theA,(sy). Since formula(22) depends only on
operatorp on a tensor product af factors, and two operators the eigenvalues, this will be given by the same expression,
in each factor. Assuming all tensor factors to have dimensiomyt with y, running not just over the eigenvalues of a par-
d, this meansd®" parameters for the density operator andijcular operatoiC, but over ally, which can be eigenvalues
2nd? for the observables. Hence the numerical solution ofof products of unitary and Hermitian operators. Since such a
this variational problem is not feasible, except for the mosiproduct is again unitary, we have,|=1. Moreover, as is
trivial cases(and even impossible, becausés, in principle,  easily seen in X2 examples, this is the only constraint in
a free parameter Fortunately, however, it turns out that any Hilbert space dimensiosee also Sec. V D Hence for

computing the overall maximum is much easier than comany choice of real coefficient®(s) and observables-1
puting the maximal violation for a fixed state: we will reduce <A (s,)<1, we have, as the best possible bound,
the computation to a variational formula in justvariables. n

2 B 7

A. Obtaining the maximal violations

First we have to recall some basic notions. In quantum n
mechanics expectations of 1-valued observables are de- ule Zs AlS) @k=rAl ) g?;i}p s ’
scribed by Hermitian operator&,(s,) with spectrum in (23
[—1,+1]. Since we are only interested in maximal correla-
tions, we may as well take the observables extremal in thwhere the supremum runs over &, ... ,y,} with |y
convex set of Hermitian operators withl<A<1, i.e., we =1. Moreover, the bound does not change with Hilbert
may assume the observables to be unitary and Musl. space dimension, as long as all factors are nontrivial. A more

The general form of a Bell inequality for an-partite ~ detailed discussion of quantum violations utilizing E22)
quantum system, which is characterized by a density operdor the special cases=3,4 can be found in the Appendix.
tor p, is then

B. Mermin’s inequalities and the overall maximum

= n = . . . .
tr(pB)=tr p}S: B ®i=aAd S | <1, (19 Asking for the overall maximal quantum violation we

may additionally vary over the set of inequalities. In utilizing
where we will refer toB as theBell operator which is just  the result obtained in the preceding section, we are able to
the quantum counterpart of the Bell polynomial defined inexpress the norm of a Bell operator in terms of lower-order
Eq. (3). Of course, every expectation val(9) larger than 1 Bell operators. Moreover, it suffices to consider qubit sys-
is called a violation of Bell's inequality. tems and we may therefore s&t(s,) = a.(sy) o, wherea is

_ In o_rder to derive the maximal quantum violation, Whiph the vector of Pauli matrices arﬁi(sk) is a normalized vec-
is nothing but the operator norm of the Bell operator, we first, in g3.

define another operat@ by Squaring Eq(18) this leads to
B2 L 2 ..
C==B®E=1Ak(0)=§S) B(s)@p_1CY, (20) B2=—7 ®[1+a,(0)an(1)]+ - ®[1-ay(0)ay(1)]

where we have s&,=A,(1)A(0) andC®=1. Since theC,
are commuting unitary operators, all summand€afan be

diagonalized simultaneously, and the eigenvectorg a@fre . .
tensor products of eigenvectors of #8¢. Every eigenvalue Without loss of generality we now assume thap|<||B|

+[Bo,By]® 514,(0)Xa,(1)]5. (29

y of C is therefore of the form and estimate by induction
n IB[I?=[B?[|<2||Byf><2""*. (25)
_ Sk
= S , 21 ) o . N
4 2s Al )kﬂl Yk @) This bound is indeed saturated by the set of inequalities

going back to Mermiri8—11], which thus provides the over-
wherey, is an eigenvalue o€, . It is clear from the above all maximal quantum violation. In fact, we will show that the
remarks thaC commutes with its adjoint, spC|| is just the  converse is also true, so that we have the following.
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Proposition. The orbit corresponding to Mermin’s in- H=80_, H= 2@ H(k“)EGB ®kH(Dtk). (29)
equality is the only one for which the maximal violation - “ #1-+%n k

“)2 :
20" D2is attained. Then withp= & A (¥p(®) which is a density operator acting

Before we continue proving the claimed uniqueness, W) ihe “diagonal subspace”
emphasize, however, that this does not, in general, imply that (a)
for a fixed quantum state Mermin’s inequality is more D,@kH i CH, (30
strongly violated than any other.

We begin our proof with noting that the maximal norm of
the Bell operator in Eq(24) requires orthogonality of the .

; . a proper element 0. Hence,Q is convex.

observables, such that the respective phases ii22have Now let us return to the result obtained in Sec. V B. Fol-

to be +i. Without loss of generality we can thereby restrictI wing Eq.(22) w A write the maximal ntum violation
to the caseti since the remaining sings just correspond to aowing £q. We can write the maximal quantu olatio
f an arbitrary inequality3 as

transformation between two inequalities of the same orbif .
according to Eq(13). Hence, Eq(22) leads to
sup 2 B(s)Re voll % (3D)
n -

and Ak(sk)=éBaA(k")(sk) we are given a state and observ-
ables such, that the convex combination in E8) is indeed

n
IBmal =27 2 fna 1) L1 (= 1)k
r,s k=1
, = sup 2 B(9)é(0, - ¢, (32
=277 frpn ] [1+i(-1)
r k=1 where we have sef(¢g, - . . ,¢n) =COS(Eo+ =k S). Now
n by the bipolar theorerf20] the convex se@ is just given by
=272 f ()] [€HA-2r0] the convex hull of these vectors:
’ - Q=co{&(¢o, - - - n)}- (33
_o-ni2 i
=2" Z Fmad(1)( I)Ek AR (26) D. Generalized GHZ states

. It is a well-known fact that the generalized GHZ state
If we now wantB,, to saturate the bound in E®5), then  j4fined by g

following Eq. (26) we are left with four possible choice for
fmax: lke fradr)=1 for (—i)*Kk=1 andf,{r)=—1 oth-
erwise. Since these four inequalities again belong to the
same orbit, the correlation inequality leading to the overall
maximal quantum violation is indeed uniquely determinedmaximally violates Mermin’s inequalitie$10]. Astonish-

1
|\I,GHZ>:E(|OO"O>+|11'“1>) (34)

(up to equivalence transformations within one orbit ingly this is also true for any other of the?2correlation
inequalities.
C. Structure of the quantum domain Proposition.Any extreme point of the convex set of quan-

In the same manner as we did for the classical case wi/M correlation functions as defined in E@7) is already
may ask for the structure of the region in the space of correobt@ined for the generalized GHZ state. In particular, this
lations, which is accessible within the framework of quantumiMPplies that GHZ states maximally violate any of the pre-
mechanics. One of the first to investigate this question jrs€nted correlation inequalities.
more detail apparently was Tsirelsfi6,17, while studying We have to show that for any set of angles, . .. .¢n}
quantum generalizations of Bell's inequalities. there are suitable observables such, that

Let us begin with defining the quantum counterpart of the n
classical accessible regidd, introduced in Sec. Il (Yonzl @ k=1A(S |V gHz) =Co <P0+2k ©KSk | -
Q:={¢| &=t p@_1A(s) ]}CR?, (27) (35)

where{A,} are suitable observables apds a quantum state Therefore we choose observabkegs,) =5k(sk)c} with
in arbitrary dimension. The structure @ is much more
complicated than that dd C Q. In particular, it is not a poly-
tope. Nevertheless, we can explicitly parametrize its extreme ék(l):[cos{ckar a),sin( ¢+ a),0]. (36)
points. For the sake of completeness we will first prove con-

vexity of Q, although this follows closely the work of These observables simply swap the basis vectors providing
Tsirel'son[17]. them with an additional phase factor, i.e.,

a,(0)=(cosa,sine,0)

Consider a convex combination of vectors - > . i .
@ asoaliy=exfi(—Di(a+ gsolliel), (37
(a) g(a) (a)
; ANEEE, geQ (28) wherej=0,1 and® means addition modulo 2. Hence, for
the left-hand side of Eq35) two terms occur, which are just
and an associated Hilbert space complex conjugates of each other, and we get
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<WGHZ|®E=1AK(SK)|‘PGHZ>:Re[eianeiE ‘Pksk], (38) (trpB)2:(trpTTBT7)2$tr[pTT(BTT)2]Stl’{p[(BTT)Z]TT}‘
‘ (40
. ) Since we suppose that ~=0V 7 this holds for any partial
so that it just remains to set= ¢o/n. transposition, and we may take the average with respect to
all subsetsr, and have therefore to estimate the expectation
VI. STATES WITH POSITIVE PARTIAL TRANSPOSES of the operator

1
The violation of one of the inequalities, which can be >n 2 2 BS)B(S) Ok  Ak(SIAK(SH @ ke - Ar(SI) Al(SK)

derived from Eq.(9), is a rather physical entanglement cri- Toss

terion, since we can at least in principal decide it experimen- 1

tally by measuring the respective correlations. However, the =, ﬁ(S)B(S,)®E=1§{Ak(sk)1Ak(S|’<)}+ ; (41)
difficulty in doing so is the choice of the observables, and s’

optimizing them for a fixed state leads in general to a verywhere{-, -}, denotes the anticommutator. Note that in the
high dimensional variational problem. An entanglement cri-first line of Eq.(41) we have rearranged the tensor product
terion, which is in contrast easy to compute, is petial and made use of

transposeproposed by Peres if22]. Before we settle the [ASH) TA(S)TT = An(SOAS]). (42)
relationship between these two entanglement criteria, we will
briefly recall some basic notions. SinceA’=1 ands,,s, {0,1} only two different operators

The partial transposeof an operator on a twofold tensor can arise in every tensor factor in Ed41): either

product of Hilbert spaces(;®H, is defined by 2{A(0),Ac (1)}, or the identity operator. These two obvi-
T, ously commute, and we can therefore simultaneously diago-
(2 Cj®Dj) => CJ-T® D, (39)  halize all the summands. What remains to be done is to sub-

j j stantiate our intuition that “if everything commutes, then we
are in the classical regime.” For this purpose note that eigen-

whereCjT on the right-hand side is the ordinary transpositionvalues of the operatd#1) are of the form

of matrices with respect to a fixed basis. The generalization D ﬂ(s)ﬂ(s’)ﬁ Xk Sk Sk 43)

of this definition to am-fold tensor product is straight for- o k=1 | 1, se=s¢)’

ward, and we will denote the transposition of all sites be- ) ) )

longing to a set-C{1, ... n} by the superscript . f(_)r swtable—1$xk§1. But since we can always find clas-
Recall further that a state is calledparableor classically ~ Sical observable§ with correlations

correlatedif it can be written as a convex combination of (C(0)C(1)) = Xk (44)

tensor product states—otherwise, it is calledtangled A
necessary condition for separability, which also turned out t

be sufficient in the case of two qub[t&3], but not in general o . .
. o ; . probability theory, such that E¢43) is the expectation of the
(cf. [24]), is the positivity of all partial transposes with re- square of the respective Bell polynomial. However, due to

spect to all subgyste_ms. More_over, there _is a conjecture b%e defining properties of the Bell inequalities, this is indeed
Pereqd19] that this might even imply the existence of a locall bounded by unity, which proves our claim that all the con-

realistic model. Ir] 18] we showed that the set of inequalities sidered Bell inequalities are satisfied for states having posi-

going b_ack to_ !\/Iermn{S] is indeed fqullleq. for states satis- tive partial transposes with respect to all their subsystems.
fying this positive partial transpose condition. In the follow-

ing we will show that this implication is not due to a special VIl. CONCLUSION
property of these inequalities, but holds for any Bell-type
inequality in Eq.(19), as long as we consider expectations of We provided two approaches for constructing the entire
full n-site correlations. This leads to the main result of thisset of multipartite correlation Bell inequalities for two di-
section. chotomic observables per site: the Fourier transformation of
Proposition.Consider am-partite quantum system, where @ 2'-digit binary number and nesting CHSH inequalities.
each of the parties has the choice of two dichotomic observThis set of inequalities led us to a single nonlinear inequality,
ables to be measured. Assume further, that the partial tran¥¢hich detects the existence of a local classical model with
poses with respect to all subsystems of the correspondinggspect to the considered correlations. We were able to sim-
density operator are again positive semidefinite operatorglify the variational problem of obtaining the maximal quan-
Then all the 2 correlations can be described in the contexttum violation of the linear correlation inequalities, in particu-
of a local realistic model. lar showing, that these are attained for generalized GHZ
In particular, this implies that if a state is biseparable withstates, and proved, that “ppt states” satisfy all thede i@-
respect to all partitions, all the inequalities are satisfied everqualities.
if there exists no convex decomposition intdold product One crucial assumption was that each site has the only
states. In order to prove this proposition and to derive arthoice of two dichotomic observables to be measured. Per-
upper bound for the expectation of the Bell operator, we firsinitting more observables per site, more outcomes per ob-
apply the variance inequality to'- andB'r, servable, or even the choice of “not measuring,” i.e., includ-

Jve are able to construct a system which is classical in the
sense that it may be described in the context of classical
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ing restricted correlation functions, would lead to Quantum Polynomial

noncommuting terms, and most of the arguments would faillnequality |Orbit violation

So this is obviously a starting point for further investigations. 16 1 (A1)

In partlcglar, one may think of applymg the mechanism of 128 5/3 (A2)

substitution(Sec. 1V) in order to derive new classes of Bell 3 48 V2 (A3)

inequalities. 6 48 2 (A4)
Another open question concerns the hierarchy of the ino3 16 2 (A5)

equalities with respect to their quantum violations. That is, if

a given inequality is violated for a fixed quantum state, is 2. Inequalities for four sites

there a set of inequivalent inequalities that have to be vio-
lated as well?

Finally, we want to mention that there is recent work by
Scarani and Gisini25] pointing out that there might be a
close relation between the quantum violation of multipartite
Bell inequalities and the security ofpartner quantum com-
munication.

Note added.Recently a closely related papg30] was

Forn=4 we just give the number of the first inequality of
each of the 39 orbits, its size, and the respective maximal
quantum violations. The indep labels orbits, including an
element which is invariant under permutations of the sub-
systems, and indicates factorizing Bell polynomiallike
polynomials(Al) and(A3) for tripartite systemp

posted by Zukowski and Brukner. They also study CON~y o quali ; Q-uan-tum
X : - ) : - quality |Orbit| violation
straints on correlation functions and obtain the inequalities
we presented in Sec. Ill. Op, ¢ 32 1
1, 512 1.843
ACKNOWLEDGMENTS 3 1024 5/3
6 1536 5/3
Funding by the European Union project EQUBontract 7 3072 1.932
No. IST-1999-1105B and financial support from the DFG 1% 192 V2
(Bonn) are gratefully acknowledged. 22 2048 1.932
23 1024 J5
APPENDIX 24 1024 2
25 6144 V3
Recently more and more attention has turned to tri- anct7 3072 J3
four-partite states, especially to symmetric states as labor&0 3072 J3
tories for multipartite entanglemeff. [26—28). Therefore 60 384 V2
we will provide the complete set of Bell inequalities for 105 128 2
these cases in a more explicit form and additionally give the278§, 256 5
maximal quantum violations, which we have numerically 279 512 2.556
[29] obtained utilizing the method presented in Sec. V. 280 3072 2.139
281 1536 1.819
o . 282 3072 1.819
1. Inequalities for three sites 83 6144 5078
Forn=3 Eq.(9) leads to the five essentially different Bell 286 1536 2.078
polynomials[for the sake of legibility we again substitute 287 1536 2.326
A1(0),A,(1) with a;,b, etcl, 300 3072 2
1 a7 2072 Ea
2 k;m abiCm—a1bsCy, (A2) 318 1536 2
1 319 2048 2.139
Slau(by+by)+ag(by—by) ey, (A3 Se Tood 2320
1 367 1536 J3
5laiby(Cy+cy) —azba(cyi—co) (A4) ggiﬂ igg ;
1 854, 96 2
5(1b1Co+a1b,C; +a,h;01— 5b,C;). (A5) 857 384 V2
874 384 2
Polynomials (A1) and (A3) are just trivial extensions of 1632 96 N
lower-order inequalities, and polynomig5) belongs to the 1647 192 2
set developed by Mermif8]. The maximal quantum viola- 6014 32 22

tions, the number of the first inequality of each of the five
orbits, and the sizes of the respective orbits are stated in thiEhe number of the inequality representing the orbit of Mer-
following table: min’s inequality is 6014.
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