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Coherent states for the Kepler motion. II

Tadashi Toyoda*
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

Sumiko Wakayama
Department of Physics, Tokai University, Kitakaname 1117, Hiratsuka, Kanagawa 259-1292, Japan

~Received 18 April 2001; published 16 August 2001!

The coherent states for the quantum Kepler motion proposed in our previous work@Phys. Rev. A59, 1021
~1999!#, which is based on the dynamical SU(2)^ SU(2) symmetry and the Duru-Kleinert auxiliary time, are
improved by making use of the theory of the conserved-charge coherent states formulated by Bhaumiket al.
and by Skagertsam. The expectation values for the angular momentum and the Runge-Lenz-Pauli vector with
respect to the improved Kepler coherent states are also discussed.
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I. INTRODUCTION

In our previous paper@1#, hereinafter referred to as I, w
proposed coherent states for the quantized Kepler motion
the basis of the quantum harmonic oscillator operators
responding to the dynamical SU(2)^ SU(2) symmetry de-
rived by Ravndal and Toyoda@2# as well as the auxiliary
time variable introduced by Duru and Kleinert@3#, who for-
mulated the quantum Kepler problem in terms of the p
integral. In this paper we improve the previously propos
coherent states by making use of the formulation of
conserved-charge coherent states developed by Bha
et al. @4# and by Skagertsam@5–7#. The conserved-charg
coherent states can be lucidly illustrated by considering
one-dimensional harmonic oscillators whose boson opera
are a, a† and b, b†. Their nonvanishing commutators a
@a,a†#5@b,b†#51. Then the conserved-charge cohere
states can be defined as@4,5,8#,

uz;m&5C(
n50

`
zn

A~n1m!!An!
un1m,n&, ~1.1!

whereC is a normalization factor,z is an arbitrary complex
number,m is a fixed non-negative integer, andum,n& are the
eigenkets of the operatorsa†a and b†b, i.e., a†aum,n&
5mum,n& and b†bum,n&5num,n&. The physical signifi-
cance of the conserved-charge coherent states is tha
states are eigenstates of the Abelian chargeQ5a†a2b†b.
By making a superposition of the canonical coherent sta

uz1 ,z2&5exp@z1a†2z1* a1z2b†2z2* b#u0&, ~1.2!

the conserved-charge coherent states~1.1! can also be con-
structed as@8#

uz;m&5C1z1
2mE

2p

p du

2p
eimuue2 iuz1 ,eiuz2&, ~1.3!
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wherez5z1z2 andC1 is a normalization factor depending o
z1 and z2. The above described conserved-charge cohe
states are very similar to the Kepler coherent states propo
in I. In this paper we shall show that the basic idea of t
conserved-charge coherent states can be applied to the
mulation presented in I and leads to improved Kepler coh
ent states.

II. HARMONIC OSCILLATORS

In order to separate the Schro¨dinger equation for the Ke-
pler motion and to find the SU(2)̂SU(2) dynamical sym-
metry @2# we first introduce the squared parabolic coor
natesm, n, andf defined by

x5mn cosf, y5mn sinf, z5
1

2
~m22n2!. ~2.1!

Then, the angle variablef is split into two independen
angle variablesfm and fn . This procedure introduces a
unphysical degree of freedom to the system. With this ad
tional degree of freedom the Schro¨dinger equation for the
Kepler motion can be written as@1#

i\
]

]t
C~m,n,fm ,fn ,t!

5F2\2

2m S ]2

]m2
1

1

m

]

]m
1

1

m2

]2

]fm
2

2
2m

\2
m2E0D

1
2\2

2m S ]2

]n2
1

1

n

]

]n
1

1

n2

]2

]fn
2

2
2m

\2
n2E0D 22e2G

3C~m,n,fm ,fn ,t!, ~2.2!

where the Duru-Kleinert auxiliary time variable@3#

t5
t

m21n2
~2.3!
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has been introduced. Because the Schro¨dinger equation~2.2!
contains an extra degree of freedom due to the angle v
ablesfm andfn , the condition

]

]fm
C~m,n,fm ,fn ,t!5

]

]fn
C~m,n,fm ,fn ,t!

~2.4!

must be imposed on physical states.
The Schro¨dinger equation~2.2! can be mapped on to

dynamical system of four one-dimensional quantum h
monic oscillators, whose operators are defined as

A65
1

2Am\v
F2 i\S ]

]jm
6 i

]

]hm
D2 imv~jm6 ihm!G ,

~2.5!

A6
† 5

1

2Am\v
F2 i\S ]

]jm
7 i

]

]hm
D1 imv~jm7 ihm!G ,

~2.6!

B65
1

2Am\v
F2 i\S ]

]jn
6 i

]

]hn
D2 imv~jn6 ihn!G ,

~2.7!

and

B6
† 5

1

2Am\v
F2 i\S ]

]jn
7 i

]

]hn
D1 imv~jn7 ihn!G .

~2.8!

These operators satisfy the following commutation relatio

@A1 ,A1
† #5@A2 ,A2

† #5@B1 ,B1
† #5@B2 ,B2

† #51.
~2.9!

The four harmonic oscillators are not independent due to
condition ~2.4!. The physical states must satisfy

~A1
† A12A2

† A22B1
† B11B2

† B2!uphysical&50.
~2.10!

If we define the basic eigenkets for the system of four h
monic oscillators such that

A6
† A6um1 ,m2 ,n1 ,n2&5um1 ,m2 ,n1 ,n2&m6 ,

~2.11!

B6
† B6um1 ,m2 ,n1 ,n2&5um1 ,m2 ,n1 ,n2&n6 ,

~2.12!

then the condition~2.10! can be expressed asn15m1

1n22m2 . Therefore the physical sector of the Hilbe
space is spanned byum1 ,m2 ,m11n22m2 ,n2&.

III. IMPROVED KEPLER COHERENT STATES

Canonical coherent states for the four one-dimensio
harmonic oscillators defined in the previous section can
03211
ri-

r-

:
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r-
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e

straightforwardly constructed by introducing the Weyl ope
tor

W~a1 ,a2 ,b1 ,b2!

5exp~a1A1
† 2a1* A11a2A2

† 2a2* A21b1B1
†

2b1* B11b2B2
† 2b2* B2! ~3.1!

wherea6 andb6 are arbitrary complex numbers. Imposin
this Weyl operator on the ground state of the harmonic
cillators u0,0,0,0&, we obtain

W~a1 ,a2 ,b1 ,b2!u0,0,0,0&

5N0 (
m150

`

(
m250

`

(
n150

`

(
n250

` a
1

m1

Am1!

a
2

m2

Am2!

b
1

n1

An1!

b
2

n2

An2!

3um1 ,m2 ,n1 ,n2&

[uCC~a1 ,a2 ,b1 ,b2!&, ~3.2!

whereN0 is the normalization constant,

N05N0~a1 ,a2 ,b1 ,b2!

5expF2
1

2
~ ua1u21ua2u21ub1u21ub2u2!G . ~3.3!

However, this canonical coherent state does not satisfy
physical state condition given by Eq.~2.10!. We now apply
the general formulation of the conserved-charge cohe
states shown in Eqs.~1.1!–~1.3! to modify the above canoni
cal coherent states so that the physical state condition~2.10!
can be satisfied. Constructing a linear superposition of
canonical coherent states similar to Eq.~1.3! we can make
coherent states that satisfy the physical state condition,

N1E
2p

p du

2p
uCC~e2 iua1 ,eiua2 ,eiub1 ,e2 iub2!&

5N1N0E
2p

p du

2p (
m150

`

(
m250

`

(
n150

`

(
n250

`

3e2 i (m12m22n11n2)u
a

1

m1

Am1!

a
2

m2

Am2!

b
1

n1

An1!

b
2

n2

An2!

3um1 ,m2 ,n1 ,n2&

5N1N0 (
m150

`

(
m250

`

(
n250

` a
1

m1

Am1!

a
2

m2

Am2!

3
b

1

(m11n22m2)

A~m11n22m2!!

b
2

n2

An2!

3um1 ,m2 ,m11n22m2 ,n2&, ~3.4!

whereN1 is a normalization constant to be determined lat
To avoid redundancy of parameters, let us define
0-2
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a1b15a, b1b25b, a2b1
215g, N1N05N.

~3.5!

Then Kepler coherent states can be defined such that

uC~a,b;g!&5N (
m150

`

(
n250

`

(
m250

`
1

A~m11n22m2!!

3
am1

Am1!

bn2

An2!

gm2

Am2!

3um1 ,m2 ,m11n22m2 ,n2&. ~3.6!

The normalization factor can be straightforwardly calculat

N225 (
m150

`

(
n250

`

(
m250

`
1

~m11n22m2!!

3
uau2m1

m1!

ubu2n2

n2!

ugu2m2

m2!

5I 0~k!, ~3.7!

whereI 0 is the modified Bessel function of the first kind an
k is defined as

k52A~ uau21ubu2!~ ugu211!. ~3.8!

Equation~3.6! defines the improved Kepler coherent stat
The differences between the improved Kepler coherent st
and the coherent states introduced in I are the extra fa
@(m11n22m2)! #21/2 and the normalization factor. Clearl
the improved Kepler coherent states satisfy the physical s
condition ~2.10!. It should be remarked that the improve
coherent states are the eigenkets ofA2A1 and ofB2B1 ,

A2A1uC~a,b;g!&5uC~a,b;g!&ag ~3.9!

and

B2B1uC~a,b;g!&5uC~a,b;g!&b. ~3.10!

These operators actually belong to the Lie algebra of SU~2!.
If we define

E15
i

A2
A1

† A2
† , E25

i

A2
A2A1 ,

E05
1

2
~A1

† A11A2
† A211! ~3.11!

and

G15
i

A2
B1

† B2
† , G25

i

A2
B2B1 ,

G05
1

2
~B1

† B11B2
† B211!, ~3.12!

then these operators satisfy
03211
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@E1 ,E2#5E0 , @E0 ,E6#56E6 ~3.13!

and

@G1 ,G2#5G0 , @G0 ,G6#56G6 . ~3.14!

These equations~3.13! and ~3.14! show that each set of op
erators $E6 ,E0% and $G6 ,G0% forms the Lie algebra of
SU~2!. They commute with each other:

@E6 ,G6#5@E6 ,G0#5@G6 ,E0#5@E0 ,G0#50.
~3.15!

Therefore, it can be stated that the improved Kepler cohe
state defined by Eq.~3.6! are associated with the Lie algeb
of SU(2)^ SU(2) in the sense of Ref.@9#. The time evolu-
tion of the improved Kepler coherent states is almost equ
lent to that of the Kepler coherent states discussed in I. Us
the time evolution operator defined in I, we obtain

expF2
i

\
tF G uC~a,b;g!&

5expF2
i

\
t$\v~A1

† A11A2
† A21B1

† B11B2
† B212!

22e2%G uC~a,b;g!&

5expF2
i

\
t$2\v~A1

† A11B2
† B211!22e2%G

3uC~a,b;g!&. ~3.16!

Following the same procedure given in I, it can be read
shown that the improved Kepler coherent states are lab
by two complex numbers which have the time dependen

a~t!5ae2 i2vt ~3.17!

and

b~t!5be2 i2vt. ~3.18!

This result shows clearly that the coherent state defined
Eq. ~3.6! does not change its shape during time evolut
with respect to the Duru-Kleinert auxiliary time variable.

IV. ANGULAR MOMENTUM AND RUNGE-LENZ-PAULI
VECTORS

The complex eigenvalues of the improved Kepler coh
ent states,a, b, andg, are related to the physical quantitie
that characterize the classical Kepler motion. Among th
quantities here we consider the angular momentum and
Runge-Lenz-Pauli vectors, which are both constants of m
tion. Their symmetry properties are closely connected to
harmonic oscillators defined in Eqs.~2.5!–~2.8! @2#. In fact
the angular momentum and the Runge-Lenz-Pauli vec
can be explicitly expressed in terms of the harmonic osci
tor operators@2#. If we put \51, then angular momentum
operatorsLx , Ly , andLz can be expressed as
0-3
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Lx5
1

2
$A1

† B21A1B2
† 2B1

† A22B1A2
† %, ~4.1!

Ly5
1

2i
$A1

† B22A1B2
† 2B1

† A21B1A2
† %, ~4.2!

Lz5
1

2
$A1

† A12B2
† B21B1

† B12A2
† A2%, ~4.3!

and the Runge-Lenz-Pauli vectorsAx , Ay , and Az can be
expressed as

Ax5
1

2
$A1

† B21A1B2
† 1B1

† A21B1A2
† %, ~4.4!

Ay5
1

2i
$A1

† B22A1B2
† 1B1

† A22B1A2
† %, ~4.5!

Az5
1

2
$A1

† A12B2
† B22B1

† B11A2
† A2%. ~4.6!

The vectorA5(Ax ,Ay ,Az) corresponds to the Runge-Len
Pauli vector@2#

A5A m

22EH 1

2m
~L3p2p3L !1

e2r

r J . ~4.7!

Let us now calculate the expectation values of thez compo-
nents of these vectors with respect to the improved Ke
coherent states. We have obtained

^C~a,b;g!uAzuC~a,b;g!&5
2I 1~k!

kI 0~k!
~ uau2ugu22ubu2!

~4.8!

and

^C~a,b;g!uLzuC~a,b;g!&5
2I 1~k!

kI 0~k!
~ uau22ubu2ugu2!,

~4.9!

whereI 1 andI 0 are the modified Bessel functions of the fir
kind andk has been defined by Eq.~3.8!. The calculations
are given in the Appendix. If we define

M[^C~a,b;g!uF0uC~a,b;g!&5
kI 1~k!

I 0~k!
~4.10!

with

F05A1
† A11A2

† A21B1
† B11B2

† B2 , ~4.11!

then the expectation values can be written as

^C~a,b;g!uLzuC~a,b;g!&5
M

2
sin~u1f!sin~u2f!

~4.12!

and
03211
r

^C~a,b;g!uAzuC~a,b;g!&5
M

2
cos~f2u!cos~f1u!,

~4.13!

where the angle parametersf andu are defined as

tanf5
ubu
uau

, tanu5
1

ugu
. ~4.14!

If ^Az&50, then the expectation valuêLz& has the simple
form

^C~a,b;g!uLzuC~a,b;g!&52
M

2
cos~2u!. ~4.15!

The other components of the angular momentum as wel
the Runge-Lenz-Pauli vectors can also be calculated s
larly. Here we have demonstrated the method of calcula
the expectation values by explicitly showing the calculati
of ^Az& and ^Lz&.

V. CONCLUDING REMARKS

We have shown that the theory of conserved-charge
herent states can be applied to the quantum Kepler prob
and leads to the improved Kepler coherent states define
Eq. ~3.6!. Equations~3.9! and ~3.10! clearly show that the
improved Kepler coherent states are indeed the eigenke
the operatorsE2 and G2 belonging to the Lie algebras o
SU~2!. That is, they are the coherent states associated
the Lie algebra of SU(2)̂ SU(2) in the sense discussed b
Barut and Girardello@9#. The Kepler coherent states pro
posed in I do not have such properties. It is desirable
define similar coherent states associated directly with the
gular momentum and the Runge-Lenz-Pauli vectors beca
of their physical significance. However, it seems impossi
because the operators associated with them do not com
as shown in Ref.@2#.

It has been shown that the operators,E6 , E0 , G6 , G0 ,
L , andA can be simply expressed in terms of the harmo
oscillator operators defined by Eqs.~2.5!–~2.8!. This fact
seems to imply the fundamental significance of these h
monic oscillators in the quantum Kepler problem@10#. The
relevant physical quantities in the Kepler motion can be
pressed in terms of these harmonic oscillator operators. T
the calculation procedures for the expectation values ill
trated in the last section can be applied to various phys
quantities. Numerical analysis of the improved Kepler coh
ent states based on such expectation values to analyze
periments on the Rydberg atom@11# will be discussed in a
forthcoming paper.
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APPENDIX

The expectation values for the operator products can
straightforwardly calculated:

^C~a,b;g!uA1
† A1uC~a,b;g!&5uau2uNu2Z~a,b,g;1 !,

~A1!

^C~a,b;g!uB2
† B2uC~a,b;g!&5ubu2uNu2Z~a,b,g;1 !,

~A2!

^C~a,b;g!uA2
† A2uC~a,b;g!&5ugu2uNu2Z~a,b,g;2 !,

~A3!

^C~a,b;g!uB1
† B1uC~a,b;g!&5uNu2Z~a,b,g;2 !,

~A4!

whereZ is defined as
03211
e

Z~a,b,g;6 !

[ (
m150

`

(
m250

`

(
n250

` uau2m1ubu2n2ugu2m2

~m12m21n261!!m1!n2!m2!
.

~A5!

This sum can be straightforwardly calculated. We obtain

Z~a,b,g;1 !5
2

k
~ ugu211!I 1~k! ~A6!

and

Z~a,b,g;2 !5
2

k
~ uau21ubu2!I 1~k!, ~A7!

where k has been defined by Eq.~3.8!. Combining these
results and using Eqs.~4.3! and ~4.6!, we obtain Eqs.~4.8!
and ~4.9!.
m

n

@1# T. Toyoda and S. Wakayama, Phys. Rev. A59, 1021~1999!.
@2# F. Ravndal and T. Toyoda, Nucl. Phys. B3, 312 ~1967!.
@3# I.H. Duru and H. Kleinert, Phys. Lett.84B, 185 ~1979!.
@4# D. Bhaumik, K. Bhaumik, and B. Dutta-Roy, J. Phys. A9,

1507 ~1976!.
@5# B.-S.K. Skagerstam, Phys. Lett.69A, 76 ~1978!.
@6# B.-S.K. Skagerstam, Phys. Rev. D19, 2471~1979!.
@7# K.-E. Eriksson and B.-S.K. Skagerstam, J. Phys. A12, 2175

~1976!.
@8# Coherent States, edited by J. R. Klauder and B.-S. Skagersta
~World Scientific, Singapore, 1985!.

@9# A.O. Barut and L. Girardello, Commun. Math. Phys.21, 41
~1971!.

@10# M. J. Englefield,Group Theory and the Coulomb Problem
~John Wiley & Sons, New York, 1972!.

@11# A. ten Wolde, L.D. Noordam, A. Lagendijk, and H.B. va
Linden van den Heuvell, Phys. Rev. Lett.61, 2099~1988!.
0-5


