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Coherent states for the Kepler motion. Il
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The coherent states for the quantum Kepler motion proposed in our previougRgr&. Rev. A59, 1021
(1999, which is based on the dynamical SUR$U(2) symmetry and the Duru-Kleinert auxiliary time, are
improved by making use of the theory of the conserved-charge coherent states formulated by Bftaalmik
and by Skagertsam. The expectation values for the angular momentum and the Runge-Lenz-Pauli vector with
respect to the improved Kepler coherent states are also discussed.
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[. INTRODUCTION wherez=z,z, andC, is a normalization factor depending on
z, and z,. The above described conserved-charge coherent
In our previous pap€rl], hereinafter referred to as |, we states are very similar to the Kepler coherent states proposed
proposed coherent states for the quantized Kepler motion oim I. In this paper we shall show that the basic idea of the
the basis of the quantum harmonic oscillator operators coreonserved-charge coherent states can be applied to the for-
responding to the dynamical SU@BU(2) symmetry de- mulation presented in | and leads to improved Kepler coher-
rived by Ravndal and Toyodf2] as well as the auxiliary ent states.
time variable introduced by Duru and Klein¢&], who for-
mulated the quantum Kepler problem in terms of the path
integral. In this paper we improve the previously proposed
coherent states by making use of the formulation of the In order to separate the Schlinger equation for the Ke-
conserved-charge coherent states developed by Bhaumgier motion and to find the SU(Z)SU(2) dynamical sym-
etal. [4] and by Skagertsarfb—7]. The conserved-charge metry [2] we first introduce the squared parabolic coordi-
coherent states can be lucidly illustrated by considering tWaatesu, v, and ¢ defined by
one-dimensional harmonic oscillators whose boson operators
area, a' and b, b'. Their nonvanishing commutators are 1
[a,a']=[b,b’]=1. Then the conserved-charge coherent  x=puvcosd, y=pvsing, z==(u?—v?). (2.1
states can be defined p&5,9, 2

II. HARMONIC OSCILLATORS

- z" Then, the angle variable is split into two independent
|z m>=CnZO m|n+m,n>, (LD angle variablesp,, and ¢,. This procedure introduces an
T unphysical degree of freedom to the system. With this addi-

whereC is a normalization factorz is an arbitrary complex tional degree of freedom the Schlinger equation for the
number,mis a fixed non-negative integer, aht,n) are the ~ Kepler motion can be written g4
eigenkets of the operatora’a and b'b, i.e., a'ajm,n)
=m|m,n) and b'b|m,n)=n|m,n). The physical signifi- =
cance of the conserved-charge coherent states is that th@zq’(ﬂv”vﬁbw%’ﬂ
states are eigenstates of the Abelian cha@gea’a—b'b.

By making a superposition of the canonical coherent states —42( 52 . 1 9 1 92 2m )
N om |l T 2 S, T o2 oMo
|z,,2,)=exd z;a’ -z a+z,b"—-Z5b]|0), (1.2 2m \ gu? o u? ags  h*
the conserved-charge coherent stdtie$) can also be con- + —h? (9_2+ 1 i+ 1 f7_2_ 2—mv2E g2
structed ag8] 2m\ 52 vav 24 ¢}2} 52 0

~do
|z;m>=0121_mf 5-e™ez,6',), (1.9 XW (v, by by, 7), (2.2

where the Duru-Kleinert auxiliary time variab8]
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has been introduced. Because the Sdimger equatior{2.2) straightforwardly constructed by introducing the Weyl opera-
contains an extra degree of freedom due to the angle vartor
ables¢, and ¢, , the condition

P P W(a+,a_,,8+,,8_)
W\I,(M’V!¢[LY¢VYT): t9¢ "I’(M’V’¢/,L’¢V’T) =exp(a+A1—aiA++a,At—a’iA,+B+Bi
© v
(2.4 —p*B.+p_B' —p*B.) (3.0

must be imposed on physical states.

The Schrdinger equation2.2) can be mapped on to a
dynamical system of four one-dimensional quantum har
monic oscillators, whose operators are defined as

wherew . andB. are arbitrary complex numbers. Imposing
this Weyl operator on the ground state of the harmonic os-
cillators|0,0,0,0, we obtain

W(a+ poa !B+ 1,8—)|0,0'qu

1 d d |
A= —ifi| =——*i—|—im *i ,
" vmhal (afﬂ m) ) NSRS
29 -~ mom o nZon 2o ym, ! ym_t Jn,! Yn_!
1 J J | X _ -
AT_._Z _Iﬁ<£:lﬂ_ +imw(§ﬂiinﬂ), |m+,m sl >
2Vymiwl © M : =|Ve(ay,a_,B,8.)), (3.2
(2.6)
1 J ; whereNg is the normalization constant,
B.= —ih +ti—|—imw(¢,*in,)|,
* 2 mho (ﬁﬁy am) ol 7’)} No=No(ars B ,B-)
2.7 L
- _Z 2 2 2 2
. oxt — 5l 418,418 ). 63
- 1 'h( g 4d ) . )} However, this canonical coherent state does not satisfy the
L= i = Fi— | Fimw({,Fin,)|. i iti i
= e g, o, (§,in physical state condition given by E.10. We now apply

2.9 the general formulation of the conserved-charge coherent
' states shown in Eq$1.1)—(1.3) to modify the above canoni-
These operators satisfy the following commutation relations€@! coherent states so that the physical state condi#idr)
can be satisfied. Constructing a linear superposition of the
(A, ,AL]:[A_ ,Ai]=[8+ ,BL]Z[B_ ,B’L]zl_ canonical coherent states similar to Ef.3) we can make
(2.9 coherent states that satisfy the physical state condition,

The four harmonic oscillators are not independent due to the = dé i » " Lin
condition (2.4). The physical states must satisfy 1f_wﬂ|‘1’c(e a. €% ,e’B,.e'B))
(ATA,—ATA_—B' B, +B"B_)|physica}=0. s do =

(2.10 =N1Nof — > i i

If we define the basic eigenkets for the system of four har-

monic oscillators such that . alt o™ gl g
Xe—|(m+—m,—n++n,)0
N I/ 4/ [ |
ATA.|Im, ,m_,n_,n_)=|m,,m_,n,,n_dm., Me> VM- VA2 VN
(2.1 X|m, ,m_,n.,n_)
BIB.|m,,m_,n.,n_)=|m,,m_,n;,n_)n., i i é at o™
=N;N
(212 ! Om+=0 m_=0n_=0 ym,! ym_!
then the condition(2.10 can be expressed as,=m, (M. +n_—m_) n
+n_—m_. Therefore the physical sector of the Hilbert 5¢ By B
space is spanned Byn,. ,m_,m,+n_—m_,n_). Jimi+n_—m_)! {n_!
Ill. IMPROVED KEPLER COHERENT STATES x[m,,m_,m,+n_—m_,n_), 3.4

Canonical coherent states for the four one-dimensionalvhereN; is a normalization constant to be determined later.
harmonic oscillators defined in the previous section can b&o avoid redundancy of parameters, let us define
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afi=a, B.B-=B, a_Bi'=y, NiNo=N. [E..E_]1=Eo, [EoE.]=<E (3.13
(3.9
and
Then Kepler coherent states can be defined such that
[G+,G_]=Gy, [Gy,G]==G... (3.19

oo

These equation&3.13 and(3.14) show that each set of op-
erators{E.. ,Eo} and {G. ,Gy} forms the Lie algebra of
SU(2). They commute with each other:

Gol=[G+ ,Eol=[E,,G

O 1
[P (a,8;7))=N 2 >

m,=0n_=0m_=0 \/(m++n_—m_)!

" am+ ’Bn_ ,ym_
vm,! \/F ym_!

X|m, ,m_,m,+n_—m_,n_).

[Eiret]:[Eia 0]20.

(3.195

Therefore, it can be stated that the improved Kepler coherent
The normalization factor can be straightforwardly calculatedstate defined by Ed3.6) are associated with the Lie algebra
of SU(2)®SU(2) in the sense of Ref9]. The time evolu-
1 tion of the improved Kepler coherent states is almost equiva-
+n_—m_)! lent to that of the Kepler coherent states discussed in I. Using
the time evolution operator defined in I, we obtain

i
eX[{—%TF

i
:exp[ - %T{ﬁw(A1A++AT_A_+ B'B,+B'B_+2)

(3.6)

_:mi i i(m

0on_ +

il 7

m+! n_! m_!
=lo(x), (3.7

wherel q is the modified Bessel function of the first kind and
x is defined as

k=2(|al*+|B*)(|y]*+1).

|V (a,B;7))

—-2¢e?

(3.8 |V (a,B;7))

Equation(3.6) defines the improved Kepler coherent states. i

The differences between the improved Kepler coherent states = ex;{ - —1{2h w(AJr A, +B'B_+1)- 2e%
and the coherent states introduced in | are the extra factor

[((m,+n_—m_)!]~ 12 and the normalization factor. Clearly X|¥(a,B;7)). (3.16
the improved Kepler coherent states satisfy the physical state

condition (2.10. It should be remarked that the improved Following the same procedure given in |, it can be readily

coherent states are the eigenket®dofA, and ofB_B
A_AL Y (@, B;7) =V (e, B; )y (3.9
and
B_B.|V(a,B;7)=|V(a.B;7))B. (3.10

These operators actually belong to the Lie algebra of25U
If we define

[ i
E,=—=A'A"T, E_.=—A_A,,

V2 V2
1 T T
Eo=5(ALA, +ATA_+1) (3.1D
and
G, = | BIBT, G_= | B B
+ \/E + - — \/E -+
1 T T
Go=5(BL B, +BIB_+1), (3.12

then these operators satisfy

shown that the improved Kepler coherent states are labeled
by two complex numbers which have the time dependence

(3.17

a(1)=ae 207

and

B(r)=pe 12", (318
This result shows clearly that the coherent state defined by
Eqg. (3.6) does not change its shape during time evolution
with respect to the Duru-Kleinert auxiliary time variable.

IV. ANGULAR MOMENTUM AND RUNGE-LENZ-PAULI
VECTORS

The complex eigenvalues of the improved Kepler coher-
ent statesg, B, andvy, are related to the physical quantities
that characterize the classical Kepler motion. Among those
quantities here we consider the angular momentum and the
Runge-Lenz-Pauli vectors, which are both constants of mo-
tion. Their symmetry properties are closely connected to the
harmonic oscillators defined in EqR.5—(2.8) [2]. In fact
the angular momentum and the Runge-Lenz-Pauli vectors
can be explicitly expressed in terms of the harmonic oscilla-
tor operatord2]. If we put7Z =1, then angular momentum
operatord,, L, andL, can be expressed as
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LX=%{ALB,+A+BT,— B'A_-B,A"}, (4.2 (V(a,B;7)|A¥(a,B;y))= %Cos(d)— 6)coq ¢+ 6),

(4.13
1
Ly:E{AL B.—-A,B"-BTA_+B,A"}, (42  where the angle parametefsand ¢ are defined as
1 tan¢=@ tan67=i (4.14
LZ:E{A1A+—BT_B_+ B'B,—ATA_}, (43 la]’ [y '

and the Runge-Lenz-Pauli vectof, A,, andA, can be ]Icf (A,)=0, then the expectation valuyg,) has the simple
expressed as orm

M
AX=%{AT+B_+A+ BT +BlA_+B,A"}, (4.9 (V(a, ;7L W (e, Biy)) =~ co926). (4.19

1 The other components of the angular momentum as well as
Ay=E{AZB,—A+B‘:+BT+A,—B+AT,}, (4.5  the Runge-Lenz-Pauli vectors can also be calculated simi-
larly. Here we have demonstrated the method of calculating
the expectation values by explicitly showing the calculation
_Loat t t t of (A) and(L,)
A=5{AlA,-BIB_-BlB.+AlA_}. (46 z 2)-

The vectorA= (A, ,A,,A,) corresponds to the Runge-Lenz- V. CONCLUDING REMARKS
Pauli vector{2] We have shown that the theory of conserved-charge co-
1 2 herent states can be applied to the quantum Kepler problem
A=A\ /.M {—(LXp—pX L)+ er _ (477 ~ and leads to the improved Kepler coherent states defined by
2E(2m r Eg. (3.6). Equations(3.9) and (3.10 clearly show that the

) improved Kepler coherent states are indeed the eigenkets of
Let us now calculate the expectation values of Zlmpo- 4 operator€€_ and G_ belonging to the Lie algebras of

nents of these vectors with respect to the improved Keplegy) That is, they are the coherent states associated with

coherent states. We have obtained the Lie algebra of SU(2) SU(2) in the sense discussed by
20,(x) Barut qnd Girardelld9]. The Kepler c.oheren_t states pro-
(¥ (a,B,7)|A)¥(a,B;y))= ! (|e?y12=1B8|% posed in | do not have such properties. It is desirable to
klo(k) define similar coherent states associated directly with the an-

(4.9 gular momentum and the Runge-Lenz-Pauli vectors because
of their physical significance. However, it seems impossible

and because the operators associated with them do not commute
21 4(x) as shown in Ref[2].
(V(a,B;7)|L ¥ (a,B;y))= (lal?=18137%, It has been shown that the operatdgs,, Eq, G-, Gg,
wlo(k) 9 L, andA can be simply expressed in terms of the harmonic

oscillator operators defined by Eq&.5—(2.8). This fact

wherel; andl, are the modified Bessel functions of the first S€€MS to imply the fundamental significance of these har-

kind and x has been defined by E3.8. The calculations Monic oscillators in the quantum Kepler problgf0]. The
are given in the Appendix. If we define relevant physical quantities in the Kepler motion can be ex-

pressed in terms of these harmonic oscillator operators. Thus

Kkl 1(K) the calculation procedures for the expectation values illus-
M=(¥(a,B;7)|Fol¥(a,B;7))= To(r) (4.10 trated in the last section can be applied to various physical
0 quantities. Numerical analysis of the improved Kepler coher-

with ent states based on such expectation values to analyze ex-
periments on the Rydberg atoffil] will be discussed in a
Fo=ATA,+ATA_+B'B,+B'B_, (4.1 forthcoming paper.
then the expectation values can be written as ACKNOWLEDGMENTS
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APPENDIX

The expectation values for the operator products can be o o o

straightforwardly calculated:

(U(a,B;7)|ALAL W (a8 7)) =|a|)NI?Z(a,B,7;+),
(A1)

(V(a,B;7)|BLB_|W(a,B;7))=|84NI?Z(a,B,7;+),
(A2)

(V(e,B;7)|ALA_|W (@, 8;7))=|7I?N|?Z(a, B, ; —(),3
A

(V(a,B;7)|BLB.|V(a,B;%)=INI?Z(a,8,7—),
(Ad)

whereZ is defined as

PHYSICAL REVIEW 84 032110

Z(a,B,v;*)
a2 B2 |y
my=0m=0n-=o (My—m_+n_*xL)Im,In_Im_!"
(A5)
This sum can be straightforwardly calculated. We obtain

2
Z(a B,y )= (1P D) (A6)

and

2
Z(a.B,yi=)=—(lal?+[BP)1(0), (A7)
where k has been defined by E@3.8). Combining these
results and using Eq$4.3) and (4.6), we obtain Eqs(4.8)
and(4.9).

[1] T. Toyoda and S. Wakayama, Phys. Re\b% 1021(1999.

[2] F. Ravndal and T. Toyoda, Nucl. Phys.33312(1967.

[3] I.LH. Duru and H. Kleinert, Phys. Let84B, 185(1979.

[4] D. Bhaumik, K. Bhaumik, and B. Dutta-Roy, J. Phys.9A
1507(1976.

[5] B.-S.K. Skagerstam, Phys. Le@9A, 76 (1978.

[6] B.-S.K. Skagerstam, Phys. Rev.19, 2471(1979.

[7] K.-E. Eriksson and B.-S.K. Skagerstam, J. Physl2A 2175
(1976.

[8] Coherent Statesdited by J. R. Klauder and B.-S. Skagerstam
(World Scientific, Singapore, 1985
[9] A.O. Barut and L. Girardello, Commun. Math. Phy&l, 41
(1972).
[10] M. J. Englefield,Group Theory and the Coulomb Problem
(John Wiley & Sons, New York, 1972
[11] A. ten Wolde, L.D. Noordam, A. Lagendijk, and H.B. van
Linden van den Heuvell, Phys. Rev. Leftl, 2099(1988.

032110-5



