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We presenab initio calculations of the complete gauge invariant set of the two-photon exchange graphs for
the 2p,,,-2s transition energy in Li-like high# ions. The evaluation is carried out to all ordersZir in the
rangeZ=20-100. Results are compared with calculations based on relativistic many-body perturbation theory.
All presently available contributions to the2,-2s transition energy are collected. The resulting theoretical
predictions are compared with experimental data.
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[. INTRODUCTION shell in highZ Li-like ions. In Sec. Ill we discuss some
details of the numerical evaluation. Section IV presents the
Heavy few-electron atoms provide an excellent possibilitynumerical results and their comparison with the approximate
for testing quantum electrodynami¢®ED) in the strong treatment based on the Breit approximation. In the last sec-
Coulomb field of the nucleus. Considerable progress in extion we collect all presently available contributions to the
perimental investigations of these systems has stimulatedpy,-2s transition energy in higtZ Li-like ions and com-
theorists to evaluate the complete set of radiative correctiongare theoretical predictions with available experimental data.

in second order in the fine structure constantSince the Relativistic units are used in this articlé £c=1).
nuclear field is strong, consideration should be given to all
orders in the coupling constadty. The Lamb-shift calcula- Il. DERIVATION OF GENERAL FORMULAS

tion, complete to ordes?, still remains one of the challeng-

ing theoretical problems. Up to now, such a calculation has Our derivation of formulas is based on the two-time
been carried out only for the two-electron contribution to theGreen function (TTGF) method developed by Shabaev
ground-state Lamb shift in He-like ions, which can be mea{20,21]. Here we present only a few basic formulas of the
sured directly by comparing ionization energies of He-likeformalism which we will need in our derivation. For a de-
and H-like ions[1,2]. Two-photon exchange corrections for tailed description of the method we refer to the recent review
these systems were calculated by Blundglal. [3] and by  [22]. The starting point of the TTGF method is the standard
Lindgren and co-workerg4]. The corresponding self-energy N-particle Green function in the mixed energy-coordinate
and vacuum-polarization screening diagrams were evaluategpresentation G(qq, ...,dy;d1, - - - On),  Where

in our investigationg5,6] and by Persson and co-workers =(p?,x;). The Feynman rules for the Green function in the
[7.,8]. An analogous calculation for excited states of He-likemixed representation can be found in R¢21,27. Now we
ions is still under way. In Ref9], we evaluated the vacuum- introduce the so-calletivo-timeGreen function

polarization screening correction for low-lying excited states

of He-like highZ ions. For nonmixed states, the correspond- 9(E X}, ... XX, .. Xn)S(E—E")
ing two-photon exchange correction was calculated recently
by Mohr and Sapirsteifl10]. 2w 1 (= 4 0 410 0
While He-like systems are of experimental interest, the =5 ) dpi-dpydpy-dp'y
best experimental precision is achieved f@-2s transitions
in Li-like ions [11-16. In our previous investigations X S(E—pd—-- - —pY)SE —p'9—--.—p'Y
[17,18 we calculated the two-electron self-energy and , , o 0
vacuum-polarization corrections for thepg,-2s transition XG(dy, - ANy - AN YL N ()

in Li-like high-Z ions. In this paper we report on the evalu-

ation of the last unknown two-electron contribution of orderHere, we integrate over all relative energies of incoming and

«? for the transition under consideration, the two-photon ex-outgoing electrons and add the physical condition of the con-

change correction. The corresponding calculation was preservation of the total energy. In the time representation this

sented recently for some high-ions in Ref.[19]. In the  corresponds to the alignment of the relative time of the in-

present investigation we evaluate the two-photon exchangeoming and outgoing electrons, respectively. An important

correction for a wide interval of the nuclear charge numberstatement is thai(E) contains the full information about the

Z and give a detailed description of the calculation proce€energy levels of the system.

dure. Consider now how to extract the energy of a single level
The plan of the paper is as follows. In the next section wek of an N-electron system frong(E). We are interested in

derive basic formulas for the energy shift arising from thethe energy shiffAE,=E,— E(ko) caused by the interaction

two-photon exchange of the valence electron with the){1 with the quantized electromagnetic field. Here, the unper-
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FIG. 1. The two-photon exchange diagrams.
turbed energ)E(kO) is the sum of the one-electron Dirac en-

ergies,E(”’=¢,+e,+-- - +&y. The energy shift of an iso-
lated levelk is given by

(2mi)~t fﬁFdEAE Ag(E)

AE= , )

1+(27i) L 3€FdEAgkk(E)

where the contout” surrounds only the unperturbed level
E=E and is oriented counterclockwisdE=E—E{",
Ag(E)=gi(E) ~9R(E), gi(E)=(uilg(E)luy), uy is
the unperturbed wave function, agff)(E)=(E—E(®) ' is
the functiong,,(E) in the zeroth-order approximation. By
expanding both the numerator and the denominator ifAq.
in the standard power series én energy corrections of dif-
ferent orders are obtained. We write theexpansion of the
Green functiong(E) as

9(E)=gO(E)+gM(E)+g@(E)+- -, (3)
where the superscript indicates the order an For the
second-order correction we have

1
AEP=— j;FdEAEAg(ki)(E)

_ b 39 dEAE Ag<1>(|z)i 35 dE’ AgP(E")
2i T kk 2i T Kk '

(4)
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wherev denotes the valence electranandb are the elec-
trons in the (k)2 shell, andP is the permutation operator.
For brevity, we will use the following notations in what
follows: I(w)zeza"a”D#,,(w), labed @) =(ab|l (w)|cd),
lab;ca= labcd(Aba) _Lbacd(Aad)a Iab;cd( P)=lapcApatP)
~lpacBaatP), lap;ca=labcdAca) ~labadAda),  and
I'(w)=dl(w)/dw. Here,Ap=c,— ¢, a*=(1l,@) are the
Dirac matrices, an® ,,(w) is the photon propagator. For
simplicity, we restrict our present consideration only to the
Feynman and the Coulomb gauges. In this case the following
symmetry properties of the operatdr are valid: | ()
=1(—w), 1'(0)=0, andl ;pc{ @) =l pagd @). We note also
that the operatot preserves the total angular momentum
projection, i.e., the conditiom,+ u,= .+ pq is valid for
the nonvanishing matrix elemeht,.(®), whereu denotes
the angular-momentum projection of the corresponding
electron.

A. Three-electron contribution

First we discuss the three-electron correction. It can be
represented by the diagram shown in Fig) lassuming that
all possible permutations over the incoming and the outgoing
electrons are accounted for. The Feynman r[2ds22 yield

i 4
AGR(E)=2, (—DPOX (2—) fdpldpzdpidpé
PQ n m

1
(Pp1—Uepy)(Ps—Uepy)(E—pi—ps—Ueps)

y 1
(P1—Ueq1)(P2—Ueqg2) (E—p1—pP2—Ueqs)

% Ip2pana(P1t P2~ P1~P2) p1ng102(P1— P1)
P1tP,—pP;—Uen,

(6)

whereu=1-i0, andP andQ are the permutation operators
acting on the outgoing and the incoming electrons, respec-
tively. All integrations here and in what follows are assumed
to extend over the interval{,»), if not stated otherwise.
The integration variablep; in Eq. (6) correspond tqoi0 in

Eq. (1). For brevity, the index of the zeroth component is

In the present investigation we are interested in the twWopmitted here and in what follows. We divide the function

photon exchange corrections. The corresponding Feynma&g(ki) into two portionsAgi(rZ) andAg®?)

req that correspond to

. 2 . .
diagrams forAg(®)(E) are presented in Fig. 1. We refer {0 e jireducible and the reducible parts of the correction, re-

the diagram in Fig. (c) as thethree-electrorcorrection and
to the diagrams in Figs.(&) and 1b) as theladder and the

crossedcontribution, respectively. A detailed analysis of the
two-photon exchange diagrams was presented by Shaba
and Fokeevd?23] for the case of the one-determinant two-
electron wave function. Here we generalize that derivatio
for the three-electron states with one electron outside th

(1s)? shell. In our case the unperturbed wave functigris

N ©)

U=

; (= 1)Ppa(Xy) Ppp(X2) hpy(X3),

spectively. The reducible part is defined as the contribution
in which the energy of the intermediate three-electron state
coincides with the energy of the initial state of the atom. The
f¥educible part is the remainder. The expressionAgf2) is

iven by Eq.(6) where the summation overis restricted by

he conditione,= o1+ £q2— ep1, andAg{?) is the remain-

|eng contribution.

1. Irreducible part

Now we consider the part of the first term in Eg) that
originates from the irreducible three-electron contribution
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sol 1 2 From Eq.(7) it is clear that only a part oAg{? with a
AR =5~ idEAE Ag;”(E). (7)  singularity of order 1/ E)? or higher yields a nonvanishing
contribution toA Esel Therefore, we can rearrange the origi-
While the derivation in this case is relatively simple, we nal expression, droppmg out less singular terms As an illus-
describe it in detail in order to illustrate the technique, whichtration, we consider a typical contrlbutlomkg written in

will be directly applied to other contributions. the compact form
| F(p1,p2)
Ag(E)=|5— Jd d - - —. 8
9(®) (2w) PP b o1 +10) (P o2 +10)(E— s Pz~ s+ 10) ®

Application of the identity

1
x+i0- 1 2T 50 ©
to the factor 1/p;—e,+10) yields
o F(e1,p2)
Ag(E)_EJ dpz(p2_82+i0)(E_81_p2_83+i0)
2 F(p1.p2)
+|=— dp,d . . —. 10
2w)f P1 pz(pl_sl_|O)(p2_82+|0)(E_pl_p2_83+|0) (19

Here, the first term possesses an additional singularw(ko)zsﬁ e,+ &5 as compared to the second term. To prove this,
we note that in the first term the contour of tpe integration is squeezed between two poes=&,xi0 in the limit E
=E(?). This means that a singularity appear&atE(") after the integration ovep, is carried out. The singular factor can be
explicitly separated by using the identity

1 1 1 1

(P27 10)(E—e1-Pp—64110) AE|py—2,110 E—s;—p,—s4+i0)" (1)

where the expression in the parentheses yields a regular functiéinsfdel” after the integration ovep, is carried out. In
the second term of E10) both poles of the, integration are in the same complex half plane, and we can shift the integration
contour away from the poles. This shows that the integrationsmyvandp, do not create any singularities Bt E(ko) in this
case.
In order to separate the contribution of orderAl)? from Agl(rz), we apply the identitie$9) and (11) twice. This yields

i)2 1 1
AgP(E)= 2 (-pFre 3 (2'—77) fdpzdpé( , +

(AE)Z enFeQiteqQaTepy P~ Ueps E_Spl_pé_u&:pg

1 1 )|P2P3nQ3(SQ1+ P2~ &p1— P2)l p1ng102(Ao1p1)

+ + (less singular terms
P2—Ueqx E—&qi—P2—Ueqs €1t P2—ep1—Uey

(12)
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Now the integration oveE in Eq. (7) can be easily per- While just this expression can be used for the numerical
formed. After that, the integrations ovpp and p; are car-  evaluation, it will look more transparent if we write the triple

ried out by employing the identity permutations explicitly:
1 1 2m I 23'n3T1n'12 I 23'n2Tln'13 I 23'anln'23
— + —=—38(P2—£02)- AE3E=D"’ ' 2 & S : ,
p2_8Q2+|0 _p2+8Q2+|0 | (p2 Q2) (13) 2 €2 &p €37 &p 82+83_81_8n
| 13:n3] 2n:  13:n2] 20 13011 20
The final expression for the irreducible part of the three- — A, +13'n2_ s SnL AR
electron contribution is f17&n  E1TE3TE2TEn 37 En
I 12'n3T3n'12 I 12'n2T3n'13 I 12'n1T3n'23
3el_ P + ’ ’ - 4 = '
AEire_;? (-1 Q g1ter,—ez3—egy €17 &p er—en |’
(15
XZ’ I'p2p3nqa(Ap3qa)l pinqio2(Aqip1) N
€01t €2 €p1 &n , where lab;ca= labed(Abd) — Ibacd Aad) and l'ab;cd
(14) =labcd(Aca) ~labdadAda) -
where the prime on the sum indicates that terms with van- 2. Reducible part

ishing denominator should be omitted in the summation. The expression foAg'Z) reads

i\ 1
AgZ)(E)= E( nete Y (—) fdp dp, dp; dp;
Jred en=eqiteqeepy | 2T ' L (P1—Uep1)(P2—Uepy) (E—pi—py—Ueps)
y 1 I p2panga(P1t P2~ P1~ P2) p1ngio2(P1— P1) 16
(P1—Ueq1)(P2—Ueq2)(E—p1—pP2—Ueqa) P1+P2—Pi—&01— €2t ep1ti0 '

We rewrite this expression keeping terms with the singularity of ordekH)¢ and higher, analogously to that for the
irreducible part. Applying identity9) to the factors 146; —uep;) and 1/E—p;—p,—Ueqz), We obtain

i \? , Ip2panga(E—eqz—ep1—P2)
Egc)i(E)—AE E (—1)P*e > (Z) fdpzdpz(p,

en=eQiteqQa—ep1 2—U8p2)(E—8pl—pé_U8p3)

Ip1n0102(E— €03~ €p1—P2)
(E—p2—eq3—Ueqg1)(P2—Ueq)

+ (terms with a singularity of order AE or lowen. (17)

Next, we use Eq(1l) to separate factors AE explicitly and perform the energy integration. The resulting expression is
divided into two parts,

— § dEAE AgP(E)=AESS+AESS, (18
where
1
?e%'—g 2 —-1)P*Q E [l |,32P3nQ3(AP3Q3)I P1n0102(A01p1) + 1 p2p3no3(Apsgs)! IganlQZ(AQlPl)]v
PQ en=eqQ1tega—ep1 (19
1 i 1
3e|_ _ P+Q _f -
-1 d
red 2 P2 ) sn:st_;anfapl 2 p(p+|0)2

X{[1p2panqa(Apsast P) +1p2pancs(Apsos—P) ]l pingig2(A01p1) + 1 p2pangs(Apsos)
X[Ip1ng102(Aq1p1t P) 1 pingig2(Agipi—P) 1} (20)
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We will show below thatAE3 yields the total reducible
three-electron contribution, wh|IAE3 is completely can-
celled when considered together W|th the second term in Eq
(4) (the disconnectedcontribution and with the reducible

part of the two-electron contribution. To see this, we should @)
write the sum oven and permutation®,Q in Eqgs.(19) and
(20) explicitly. While the result looks rather cumbersome, its  FIG. 2. Feynman diagrams contributing to the disconnected
general structure can be understood from the expression f@grm.
the irreducible partl5). Loosely speaking, the reducible part
corresponds to the terms with vanishing denominator which
are omitted in then summation of Eq(15). We note that the feed' — 2 f p——
number of such terms is different in two cases, if all three Am (p+l0)2
electrons have different energies and in the case under con-
sideration with two electrons of the same energy. X{[1ya;za(P) +lyapal = P) 5500

We will use the notationa andb for the electrons in the —— — (—
(1s)? shell,v for the valence (8 or 2p;,,) electron,e. and v l@a(P) Haa (Pl (29
&, for the energy of the core and the valence electron, rewhere it is taken into account that the operatqreserves
spectively, andu for the projection of the angular momen- the total angular-momentum projection. Herégp.cq
tum. Writing the summation oven in Egs. (19) and (20) =l abed Apd) — pacd Aad)s lab:cd(P) =l apcd{ Apg+ P)
explicitly, we note that the condition, e.g:n=¢, involves — — _ (A_ +p), A=¢e,—e., uy=—p,, and uz=—pu,.
two possibilities:u,=p, (denoted asi=v) andun=—1,  Agwe will show belowAE3¢, andAE® , are exactly can-
(denoted asi=v). After simple but rather tedious manipu- celed when considered together with the disconnected con-

lations, we express EqgL9) and(20) as follows(with AE3¥  tribution [Eq. (31)] and the reduuble part of the ladder con-

divided into two partsAEZS ; and AESS, ): tribution [Eq. (38)]. Therefore, AER; [Eq. (21)] yields the
final expression for the reducible three electron contribution.

3e|
I’ A)(I | +1 M5
Bred= E [1aa () (Tabiab=Touibe) + 21 ay5a(A) a0 B. Disconnected contribution

()], 21) Now we consider the second term in E4), to which we
+ 3l avva vava refer as thedisconnecteadontribution:
AE =— f P———— {1 bu;bo(P) + hu;b0 (= P)] AEdiSC:_i % dEAE Ag(l)(E)i % dE’ Ag{R(E")
red, (p+i 0)2 v, by v, by 2 Jr kk 2@ Jr kk .
(24

X[I au;av+ I ab;ab] + [I au;av(p) +1 av;av( - p)]
_ The Feynman diagrams contributing A" are presented
X[ py-bo T ap-apl T [ ab: +1ap
[busbu*avian] +[abian(P)+lavian( —P)] in Fig. 2. According to the Feynman rul§21,22, we have
X[ ap:avt Tbo:bol}s (22 for the diagram in Fig. @)

i \3 1
Ag(ki)'za(E):; (_1)P(ﬁ) fdpldpidp3m|P1P212(P1_pi)5ps,3

1 1
X .
(p;—Uep1)(E—pj—p3—Uepy) (P1—Ue1)(E—p1—ps—Usy)

(25

(We note that some care should be taken in simplifying the summation over the permutations of the initial and final states in
this separate diagram since the operafqp,;,0p3 3 iS not symmetric with respect to permutations of the electrons. However,

the sum of all diagrams in Fig. 2 is symmetric, which justifies our derivatibhe p; integration in Eq(25) can be carried

out, enclosing the integration contour in the lower half plane. It yields

1 I p1p21d P1— P1)
(pj—&p1+i0)(AE—p)+ep;+i0) (P1—&1TI0)(AE—py+&,+i0)’

i\2
Agl=(E) =2, <—1>P(2'—W) f dp.dp; (26)
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where the operatdP is assumed to permute only two elec-
trons. Having in mind theE’ integration in Eq.(24), we
should keep all terms that are singulaigat E®) . Applying

identity (9) to the factors 16, —ue;) and 1/Q; —uepy), we
obtain
1 .
Ag#(E)= g 2 (-1 )P

fdpuo

X[lp1po1d A1p1—

2(

(AE p+i0)

P)+lp1p21dA1p1+p)]

Pl A
(AE)2 p1p21AA1p1)

+ (terms regular atE=E\%).

(27)

For the remaining diagrams in Fig. 2 we derive similar ex-y

pressions. The integration over the energy is now trivial. It

yields

1
— 3& dEAEAQGHNE)=2 (—1)P[Ip1poidAspy)
2 T P

+1p2paod Apsa)

+1p1p313Apsa) ] (28
1
_ (1)
o § dEAG(E)
= —1)P f
; =1 p( +i 0)2
X{lp1p21dA1p1—P) + 1 p1p21d A1p1 T P)
+1popaod Apaz— P) + 1 p2paod Apsst P)
+1p1p31d Apaz— P) +1p1pa1d Apsst P)}. (29

For AE"SC we have

AEd'SC—Zﬂ_f p 0)2[|1212(p)+|1212( p)

PHYSICAL REVIEW A 64 032109

The rest of the disconnected contribution vanishes when con-
sidered together with the reducible part of the ladder contri-
bution[Eg. (38) and an analogous term from the ladder dia-
gram with both electrons from the §§? shell].

C. Two-electron contribution

Only two electrons are involved in the photon exchange
in Figs. 1@ and ib), and, therefore, the three-electron prob-
lem can be decomposed into three two-electron problems.
The two-electron contribution with both electrons from the
(1s)? shell is the same as for the ground state of a He-like
ion. It was evaluated in Ref$3,4] and does not affect the
2p4>-2s transition energy. We shall be concerned here with
the remaining corrections in which one electron line corre-
sponds to the valence electron and the other one to the core
electron. The ladder contribution is naturally divided into the
irreducible and reducible parts. The reducible part is defined
as the contribution in which the energy of the intermediate
two-electron state coincides with the energy of the initial
state. The irreducible part is the remainder. Often it is con-
venient also to divide these contributions into the direct and
the exchange parts according to the relative alignment of the
ingoing and outcoming states.

1. Irreducible part

Expressions for the crossed contribution and for the irre-
ducible part of the ladder contribution are essentially the
same as in the case considered in R28]. We write the sum
of these two terms as

2] d“’[(

FIad,e)(wynlnz)
(e,— w—ugnl)(sc-l- w—ugnz)

Flad,ail @,N1N3)
Ec—w— uanl)(sv+ w— uenz)

AE2®=D'

niny

+

Fcr,dir( ®,NqNy)

+
(6c—w—Uep ) (e,

—w—ugnz)

Fcr,ex(w:nlnz)
(Su_ a)_USnl)(SU

(32

|

- w—ugnz)

where

+|13;1;(p)+|13;1;{— P)+123.24P) +123.0d —p)]

X[112:101 113:131 1 23:24]- (30

Finally, we rewrite this expression for the three-electron state

Flad,dil @,N1ny) = >

Mokl 2

(cv[l(w)[ninz)(niny|l(w)]cv),

under consideration, explicitly separating a part canceled by

Eqg. (22,
AEdiSC:_AE3 + J dp;{[lb b (p)
i 2m ) "F (p+in)2t P

+|bu:bv(_ p)]lbuibv
+[|au;av(p)+|au;av(_ p)]lau;av

+[|ab;ab(p)+Iab;ab(_p)]lab;ab}- (31)

(33)
—Flgel®,nin)= > (vc|l(w)|nyny)

MMM

X {(niny|l(w—A)|cv), (34)

> (enyll(w)[nw){nw|l(w)|cny),
Mer1p2
(39)

Fcr dil @,NqNy) =
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_Fcre , = | lad _ I_ ~— ~—
elw,NNy) Mcﬂzlﬂz (vny|l(w)[nyw) AEgq ¢ MC%ME yp da)(w+iO)Z[ICU;CU(w)ICv;Cv(w)
X(nicll(w—A)leny).  (36) +o oo —olt -], (39)

Here c andv denote the core and the valence electron, re- L . . .
spectively: stands for the angular momentum projectien, F_or furt_her evalua’glo_ry it is convenient to rewrite this expres-
indicates the Dirac energy of the corresponding state, angion using the definition€33) and (34)

A=¢g,—e.. The prime on the sum indicates that some terms )

are omitted in the summation. In the first, we restrict the  \ clad :_'_J' do 1 [F g il @,C0)

summation oven, ,n, to exclude states that contribute to the redr 4 (w+i0)2 e

reducible part of the ladder diagram, Sn(;‘?nz)

=(ec&,),(g,8c). Next, we exclude terms with singular in-
frared behavior aﬁnlsnz)=(scsv) from the direct crossed +Flagef @,0C) + - - Ho——w}+---].
contribution and énlenz)z(scsc),(svsv) from the ex- (40)

change crossed part. Some care should be taken of the nearly

degenerate Dirac states. In particular, theeahd the D,,,  Next, we add the terms excluded from the crossed part of Eq.
states are split only by the finite nuclear size effect. It is(32). The resulting contribution we refer to AsErze?:} It reads
convenient to treat these states in the same way. This means

that we understand the above conditiml@nz) =(g,&,) IN
the point-nucleus limit.

+Flag e A —,C0) + Flag gid @ —A,vC)

i
=— | do———[2F¢ gi{ —w,Cv
red A (w+i0)2[ cr,dn( )
2. Reducible part +2F g ef — @+ A,CC)+ 2F ¢y o — 0,00)
The reducible part of the ladder diagram is given by Eq.
(47) of Ref.[23]. Rewriting this expression in our notation +2Fcr el — 0+ Ays,89) ~ 2F g, i @, Cv)
and. introducing the summation over angular-momentum pro- —Flagel®+A,C0) ~Flagef — ©+A,Cv)
jections of the core electron, we have
, L —Flag,gil @ —A,0¢) = Fjaq gi —@—A,vC)
I —
AERA— — | do——— -F c)—F —w,vC 41
red % 8n1+8r§:%+8c 4 (w+i0)2 Iad,exwav ) Iad,e)( w,U )]v (41
wheres denotes the Dirac state separated only by the finite
nuclear size effect from the valence state. It can be shown
(see Ref.[23] for detaily that Fq gi{w,cv) and Fg g
(—w,cv) cancel each other exactly, and that the remaining
contribution is infrared finite if considered as a whole. There-
fore, the resulting expression reads

X [l CU;nlnz( —w)l nlnch(Anzv + )
+1 c:;;nlnz(w)l nanCU(Anzu)

+1 cv;n1n2| nanCU(Anzv —w)

+-Ho——owpt+- -] (37)
i
The sum ovem,,n, is restricted by the conditionngn,) AErze'ﬂ:4— w————[2F e —w+A,c0)
~e~ ~—~ . v ’
=(vc),(cv), whereez=¢,, ec=g., and uj,uz are arbi- (0+i0)
trary. Writing the sum oveny,n, explicitly, we have +2F g el —0,00) +2F o o — 0+ A g,S9)
i -1 —Fladel®+A,cv)—Faqef —@+A,Cv)
AELZ%Z Z iy do - z{lcv;E;(w)lEE;cz;(w) e ade
Heltolte (0+i0) ~Flad,ail@—A,0C) = Fjaq gi —@—A,vC)
e (— o) e (~ o) —Flag e @,0€) = Flag e — ©,0C)]. (42)

Hleviallee(@) Hee(~ o) The final result for the two-photon exchange correction cor-
(@) Flegm(— )15 el (38  responding to the interaction of the valences (@ 2p,,,)

o « electron with the (%)? shell is given by the sum of Egs.
Taking into account that the operatbrpreserves the total (15) (21), (32), and(42).

angular-momentum projection, we see that fhe and ug We note that our formulas reproduce the second-order
summation consists of two termsy{, 1) =(u, . #c) @nd  many-body perturbation theofBPT) result if we neglect

(= mp = mc). When (ug, uz) = (1, , 1), the last two terms  the energy dependence of the photon propagator in the Cou-
of Eq. (38) are canceled by the corresponding contributionjomb gauge and introduce projectors on the positive-energy
from the disconnected termiEq. (31)]. For (u7.,u43)  part of the spectrum. After these assumptions, all reducible
=(—my,— k), the last two terms of Eq38) vanish when  contributions vanish, and the integration in the two-

considered together with Efeﬂz[Eq. (23)]. The remainder is electron part is carried out using Cauchy’s theorem. Now the
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crossed contribution also vanishes, and the ladder part yield
the total two-electron correction within the MBPT approxi-

mation:
, Ic;nn(o)lnnc(o) “")
AE%/I%PT: E R S ) (43 :

R e e en e o of

where the summation over; ,n, is restricted by the condi-
tions en, ten,Fecte,, e0,>0, £,,>0, and the photon
propagators in the Coulomb gauge are assumed. The three- £ 3. The poles and the branch cuts of the integrand for the
electron contribution within the MBPT approximation can be gjrect part of the ladder contribution, and the integration contour
directly obtained from Eq(15). used for the evaluation of this correction.

11l. NUMERICAL EVALUATION the lowZ region, care is requil’ed for low values of be-
cause of poles of electron propagators encountered near the
In this section we discuss the numerical evaluation of thentegration contour. This problem is handled by isolating
two-photon exchange correction. As the three-electron patierms with a near-singular behavior and employing a very
of the correction is relatively simple, we concentrate on thegense grid for low values ob. In order to calculate the
calculation of two-electron contributions. direct part of the reducible contribution, we integrate by
The two-photon exchange correction corresponding to th@arts and perform a Wick rotation. This yields an expression
interaction of the valences2or 2p,, electron with the ()2 that can be directly evaluated:
shell is given by the sum of Eg§l5), (21), (32), and (42).
The summation over magnetic substates and the angular in- el 1: 1
tegration can be carried out using standard techniques. The AEreddin=Z[Faga(A,vc)]’
resulting expressions are given in the Appendix. The summa-
tion over the whole spectrum of intermediate states is per- 1 (= ®
formed using the method of thB-spline basis set for the - —f do-=— Go Fradali©,vC),
. . . . . mJo A+ w w
Dirac equatiorf24]. In actual calculations, the basis set typi-
cally contained 50 positive- and 50 negative-energy states (44)
per angular-momentum quantum numkei he finite size of
the nucleus is accounted for by using the spherical distribuwhereF’(A)=(dF(®)/dw), -4 -
tion of the nuclear charge. The infinite partial-wave summa- Let us consider the exchange parts of the ladder and the
tion is terminated typically atx|=10. The remainder of the crossed contribution. Now the branch points of the photon
sum is estimated by polynomial fitting in| . propagators are shifted by=e,—e. with respect to each
The most problematic part of the numerical evaluation isother, as shown in Figs. 5 and 6. As a result, the integration
the integration over the energy of the virtual photenin  contour is squeezed at two poinis=0 andw=A. An addi-
order to avoid strong oscillations arising for large real valuegional complication arises from the presence of poles of elec-
of w, we perform a Wick rotation of the integration contour, tron propagators close to the “squeezed” part of the integra-
following the treatment of Ref[3]. Some care should be tion contour. The numerical evaluation of the exchange
taken for the pole and cut structure of the integrand, which igontribution is the most time consuming part of the calcula-
essentially more elaborate than for thes3 case. We note tion. In order to facilitate this, we divide the exchange con-
that the analytic structure of the integrand in our case idribution into two parts, thérregular part in whichn, or n,
exactly the same as for the lowest excited states of He-likeorresponds to one of thes,12s, 2p,,, (and 2o, for lower-
ions, investigated recently by Mohr and Sapirst¢id].
While the particular choice of integration contours is slightly
different here, the analysis given in that work can be fully
applied in our case as well.

The two-electron contribution is conveniently divided into — .o >@ Q)
the direct and the exchange parts, which are treated seps .
rately. The poles and the branch cuts of the integrand for the —_—

direct part of the ladder and the crossed contribution are
shown in Figs. 3 and 4, respectively. We rotate the integra-
tion contour in the complexo plane from the real to the
imaginary axis, separating pole contributions that arise from
intermediate stataswith 0<e,<g, . For the direct part, the
only complication as compared to thes) case consists in FIG. 4. The poles and the branch cuts of the integrand for the
a different structure of the pole terms, and the evaluation iglirect part of the crossed contribution, and the integration contour
very similar to that for the ground state of He-like ions. In used for the evaluation of this correction.
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For the numerical evaluation of the irregular and regular
parts we employed two contousS;, and C,, which are
shown in Figs. 5 and 6, respectively. While the choice of the

.o . . contour is to some extent arbitrary, we use these two con-

. o tours for the sake of convenience and in order to check the

— ————— consistency of our numerical procedure. In our actual calcu-
e lation the contoulC, was employed for the regular contribu-

tion, andC;, for the irregular one. The conto@;, can be
divided into three partsf —e—i»,—€], [—€,A+€], and
[A+e,A+e+iw]. Here, € is a small positive constant
which is introduced to allow for the numerical evaluation of
FIG. 5. The poles and the branch cuts of the integrand for thdhe principal value of an integral with a singularity at the
exchange part of the ladder contribution, and the integration contoupOintSw=0 or w=A. On the interval —€,A + €] we carry
Ciy - out thew integration of the irregular part before the summa-
tion overn; andn,. In all other cases, the summation over
Z atoms states, and theegular part, the remainder. The the spectrum for a given angular-momentum quantum num-
ger is performed first.
The exchange part of the reducible contribution is calcu-
ed after integration by parts,

Cirr

regular part is the most numerically intensive one, but it doe
not contain any poles near the squeezed part of the integr?-
tion contour. The calculation of the irregular part is more at
elaborate but less time consuming.

Evaluating the irregular part, we should keep the infini-
tesimal imaginary termi0 when a pole is encountered near

AEZ(exch

the integration contour. In this case, the standard identity is = — E[Fcr'e)g(A,cc)JrFC,,e)g(O,vv)JrFcr,e){Avs,SS)]’
used
i * dw
w3 f(w) w2 flw) . +ZPJ j%[Fcr,ex(A"'waCC)"'Fcr,exwavv)
J == f do —imf(Ag) -
w1 AO_H)+|O w1 AO_(,!)

(45) +Fcr,e)(Aus_Fwass)_ZFlad,eivaC)]- (47)

(Aoe[wy,w,]), and the principal value of the integral is [N our implementation the principal value of the integral in
evaluated numerically. As can be seen from Fig. 6, two coEd- (47) is evaluated as follows:
inciding poles can be encountered near the integration con-
tour in the exchanged crossed contribution. In this case, We'_pfm d_"’f,(w)
—w W

rewrite the corresponding integral as 2@
[
f S C) P C L CY S [f(Q)+f(=4)]
o1 (Ag—w+i0)? Ap—wy; Apg—wy
: . fAd“)[f%w) t(—w)]
—Pf o (46) 270 w
w1 AO_ w
1 (= . .
whereAge[wy,o5]. “ 27, —(iw+A)2[f(A+|w)+f(—A—|w)]. (48
The numerical procedure was checked in several different
ways. First, we evaluated all corrections in two gauges, the
Feynman and the Coulomb one. The two calculations agree
. : : very well with each other. We found the direct and the ex-
! change parts of the two-electron contribution and the three-
— EE— electron correction to be separately gauge invariant on the
C. level of the numerical accuracy. As an independent cross-
check, we calculated directly the difference between the full
QED contribution and the second-order MBPT result. To do
this, we observe that the MBPT contribution can be obtained

from the general QED formulas if we neglect the energy

FIG. 6. The poles and the branch cuts of the integrand for thélependence of the photon propagator in the Coulomb gauge
exchange part of the crossed contribution, and the integration corand introduce projection operators on the positive-energy
tour C, . part of the Dirac spectrum. So we evaluate the difference
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TABLE I. Various contributions to the two-photon exchange
correction for the 8 state of Li-like ions, in atomic units.

TABLE lll. Individual contributions to the two-photon ex-
change correction for thes2and 2p,,, states of Li-like Sn Z
=50) in the Feynman and Coulomb gauges, in atomic units.

z AE?®(dir)  AE?®(exch) AES® Total
20 —0.16567 0.03293  —0.12545 —0.25819 zs 2Pz

Feynman  Coulomb  Feynman  Coulomb
30 —0.17053 0.03213  —0.12975 —0.26815
40 ~0.17768 0.03104  —0.13605 -—0.28269  AE;5{dir) ~ —0.18094 -0.18081 -0.30672 —0.30668
50 —0.18759 0.029068  —0.14468 —0.30259  AEZ*(din) —0.00699 —0.00678 —0.01650 —0.01647
60 —0.20100 0.02811  —0.15614 —0.32903  AEZ(dir) 0.00034  0.00000  0.00005 —0.00002
70 —0.21904 0.02644  —0.17117 -0.36377  AEZ2*(exch) 0.02648  0.02595  0.02200  0.02572
80 —0.24353 0.02484  —0.19097 —0.40966  AEZ2%(exch) 0.00320 —0.00028  0.00328 —0.00043
83 —0.25254 0.02441  —0.19808 —0.42621  AE3® —0.14574 —0.14461 —0.19718 —0.19454
90 —0.27748 0.02361 —0.21736 —0.47123  AE39 0.00106 —0.00007  0.00268  0.00005
92 —0.28582 0.02345  —0.22368 —0.48605  Total —0.30259 —0.30259 —0.49239 -—0.49237
100 —0.32635 0.02332  —0.25356 —0.55659

the direct part of the two-electron irreducible contribution
between the QED and the MBPT correction by performingoriginating from the integration over the imaginary axis, and
the term-by-term subtraction first, and thentegration after AEggl'e(dir) is the corresponding pole contribution.
that. The MBPT contribution can be calculated separately up Our results can be compared with the latest evaluations by
to very high accuracy after the integration is carried out Andreevet al. [25] for Z=30, 70, 80, and 92, and by Sa-
analytically. pirstein and Cheng26] for Z=83. Fair agreement is ob-
served in all cases except one, namely, tipg,2state and
Z=70. In that case, our calculation yields17.546(3) eV,
compared to-17.450(3) eV obtained in Ref25]. The rea-

Numerical results for the two-photon exchange correcson for this discrepancy is not known at present.

tion, which corresponds to the interaction of the valence Now we discuss the relation between our rigorous QED
electron with the (%) shell in highZ Li-like ions, are pre- evaluation and traditional methods based on the treatment of
sented in Tables | and Il for thes2and 2p4,, valence states, the electron-electron interaction within the Breit approxima-
respectively. The total numerical uncertainty is estimated tdion. Strictly speaking, the second-ord@gn 1/Z) Breit ap-
be less than 810°° a.u. for Z=30-83, less than 4 proximation is valid up to orderZa)?, and, thereforea
X107 % a.u. for Z=20, 90, and 92, and less than 5 priori it is unclear whether it can be successfully applied for
X10°° a.u. forZ=100. In the tables, the two-photon ex- high-Z ions. The relativistic MBPT treatment is also based
change correction is divided into the direct, the exchangeon the Breit approximation and, correspondingly, is valid up
and the three-electron parts. Each of these is found to b® order €a)?. However, it includes some higher-order
separately gauge invariant within the quoted error bars. Theerms also. Although one might think that keeping terms of
actual evaluation was carried out in two gauges, the Feynerder higher thanZ«)? is excessive within this approxima-
man and the Coulomb one. In Table Il we present the indition, for atoms with one electron outside thesj4 shell the
vidual contributions of the calculation for Li-like SnZ( MBPT treatment yields an approximation that is essentially
=50) in these two gauges. In the tableE2°|(dir) denotes better than the two first terms of tiZax expansion. To order

(Za)? the two-photon exchange correction can be written as

TABLE Il. Various contributions to the two-photon exchange

correction for the p,,, state of Li-like ions, in atomic units.

IV. NUMERICAL RESULTS AND DISCUSSION

(2)= 2
z AE?(dif)  AE%(exch)  AE3® Total AET=Eort (2a)"(Eart Bz, “9
20 —0.77562 0.04211 0.34519 —0.38832 where Ey(2s) = —0.250498 andEy,(2p4;) =—0.370911
30 —0.45972 0.03838 0.01026 —0.41108 [27,28; E,x(2s)=—0.2427, B,,(2s)=—0.1129,
40 —0.35858 0.03286 —0.11926 —0.44498  E,,(2p,,)=—0.5265, andB,2py,) = — 0.2734[28].
50 —0.32316 0.02528 —0.19450 —0.49238 Different approaches to the evaluation of the two-photon
60 —0.31775 0.01516 —0.25444 —0.55703 exchange correction are compared in Table IV and in Fig. 7.
70 —0.33168 0.00176 —0.31490 —0.64482 The second-order MBPT contribution can be divided into
80 —-0.36309 —0.01608 —0.38624 —0.76541 three parts corresponding to the exchange by two Coulomb
83 -0.37629  —0.02256  —0.41133 —0.81018 photons C), by one Coulomb and one Breit unretarded pho-
90 —0.41535  —0.04029 —0.47959 —0.93523 ton (B), and by two unretarded Breit photonB X B). The
92 —0.42902 —0.04616 —0.50224 —0.97742 most notable feature of our consideration is that effects ne-
100 —0.49837 —0.07429 —061231 —1.18497 glected in the MBPT consideration are remarkably small in

our case. For the2,,-2s transition in Li-like uranium, the
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TABLE V. Comparison of rigorous QED calculations of the

two-photon exchange correction for th 2s transition in Li- .
like ti)ms with the tw% first terms of théa@éﬁ)ansion and with the 0.0081 —e— with BxB term
second-order MBPT results. C denotes the second-order MBPT . 1 ---=-- without BxB term
contribution due to the exchange of two Coulomb photons, B cor- 7 0.006 o
responds to the exchange of one Coulomb and one Breit photon,', | /
anq BXB stands for the exchange of two Breit photons. B 0.0044 K
Units are a.u. % | /
z QED (Za)®+(Za)? C+B  C+B+(BXB) A 0.0024

] o _m---uETTEEL
20 —0.13013 —0.12988 —0.13012  —0.13011 o Tt -
30 -0.14293 —0.14171 —0.14300 —0.14298 0.0004  w——s—""
40 —0.16229 —0.15827 —0.16246 —0.16245 2'0 4'0 6'0 8'0 160
50 —0.18979 —0.17956 —0.19017 —0.19029
60 —0.22800 —0.20559 —0.22870 —0.22913 1
70 —0.28105 —0.23635 —0.28211 —0.28322 — 0.01 e
80 -0.35575 —0.27183 —0.35710  —0.35946 *  -0.2- AU e
83 —0.38397 —0.28340 —0.38536 —0.38825 A  -0.4] \'...
90 —0.46400 —0.31206 —0.46539 —0.46990 8
92  —0.49137 —0.32067 —0.49268  —0.49778 N \
100 —0.62838 —0.35701 —0.62919 —0.63731 E -0.8+ ®

gL N

Q o,
extra physics contributes to about 1.3% if B B term is & -1-21 \..
included into the MBPT treatment, and about 0.3% other-~" -1.44 .
wise. A similar conclusion was drawn in R¢fL0] for non- ]
degenerate excited states of He-like ions. This is in contras 20 40 60 80 100

to the ground-state case of He-like ions, where the difference

of the QED and the MBPT results is on the level of 10% in

the highZ region[3]. Our comparison also shows that, while  FIG. 7. Deviation of the rigorous QED treatment of the two-

the BXB term is of the same order of magnitude as non-photon exchange correction for thepg-2s transition energy in

trivial QED contributions omitted in the MBPT approxima- Li-like ions from the second-order MBPT results. The solid and the

tion, adding this term makes the MBPT result deviatedashed lines correspond to the MBPT correction with and without

slightly more from the rigorous QED treatment. the BX B term (the exchange by two Breit photonsespectively.
Summarizing, we can conclude that in our case MBPT

yields an approximation that is essentially better than the two

first terms of theZa expansion. This means that in an effec- where the parametexis fixed to bea=2.3/(4 In 3) fm. The

tive way MBPT can incorporate a certain part of the higher-parameterg andN are expressed in terms of the rms radius

order contributions. It is important to note, however, that(see, e.g., Re{.34]),

some care should be taken in dividing results of the rigorous

QED treatment into the MBPT part and the “beyond MBPT”

Nuclear charge number Z

part. The reason is that the MBPT contribution is not gauge 2 O, 1L,
invariant[it can be shown to be gauge invariant up to order c =§(r )~ 3a 7, (51)
(Za)? only], and it is often defined in different ways in the
literature.
V. 2P,»-2S TRANSITION ENERGY IN Li-LIKE IONS N <1+ W2a2> 1_ 52
4¢3 c?

In Table V we collect all contributions calculated up to
now for the 2p4/,-2s transition energy in higlz Li-like ions.
The values of rms radii used in the calculation are taken fronThe uncertainty of the nuclear-size effect was estimated by
Refs.[29—33 and listed in the second column of the table.the 1% variation of the rms radius for all ions except Pb, B,
The splitting of the Dirac levels due to the finite nuclear sizeTh, and U. For the latter ions, rms radii are known more
and the one-photon exchange correction are calculated usifjecisely. Their errors are obtained by averaging available
the Fermi model of the nuclear charge distribution, data and given in the second column of the table. The uncer-
tainty of the nuclear-size effect in this case is estimated by
varying the rms radii and by taking the difference between
the correction calculated within the Fermi- and the spherical-
distribution models with the same rms radius.

p(r):1+exp[(r—c)/a]’ (50
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TABLE V. Individual contributions to the @,,,-2s transition energy in Li-like ions. The first error ascribed to the total results originates
from uncertainties of the individual contributions listed in the table. The second error arises from unknown one-efeQEin effects and
three-photon SE and VP screening corrections. Fin.nucl., finite nuclear size; 1ph, one-photon exchange, f8&t-order self-energy and
vacuum polarization; 2gMBPT), second-order MBPT; 2gQED), difference between the QED and the MBPT results for the two-photon
exchange correction; 3ph, three-photon exchange; Scr.SE, screened self-energy; Scr.VP, screened vacuum polarization; Nucl.rec., nucleal
recoil. Units are eV.

Element (r3¥2  Fin.nucl. 1ph SE VP 2phMBPT) 2phQED) 3ph Scr.SE  Scr.VP Nucl.rec. Total
p
onr 3.427 —0.001 35570 —0.157 —3.489 0.000 -0.075(3) 0.028 —0.002 —0.010 31.8683)(1)
jCa  3.478 —0.002 39.769 —0.226 —3.540 0.000 —0.064(3) 0.036 —0.002 —0.012 35.96(B)(2)
SONi 3.776 —0.010 57.455 —0.716 —3.807 0.000 —0.034(4) 0.084 —0.006 —0.015 52.95M)(4)
Szn  3.928 —-0.014 62.147 —0.906 —3.890 0.001 —0.029(4) 0.100 —0.008 —0.016 57.384)(4)
BGe  4.072 —-0.021 66.967 —1.129 —3.981 0.001 -0.023(5) 0.117 —0.010 —0.016 61.9065)(4)
aozr 4.270 —-0.07 87.76  —241  —4.42 0.00 -0.00(1) 0.20 —0.02 -0.02  81.081)(1)
1075 4.544 -0.18 108.43  —4.17 —4.92 0.01 0.0) 0.30 -0.03 -0.02 99.481)(1)
47 AQ
205n  4.655 -0.27 118.17 —5.14 —5.18 0.01 0.0p) 0.35 -0.04 -—0.03 107.901)(2)
50
B2xe 4787 —-0.44(1) 13211 —6.69 —5.56 0.02 0.08) 043 —0.05 -0.03 119.82)(2)
UNd  4.914 —0.89(2) 155.44 —9.59 —6.24 0.03 0.0) 056 —0.07 -0.03 139.283)(4)
60
Dy  5.224 —1.87(3) 18231 —1332 —7.06 0.05 0.08) 071 -0.11 -—0.03 160.74)(5)
I'%p  5.317 -2.92(5) 202.61 -1633 —7.71 0.06 0.0B) 0.82 —0.13 —0.04 176.446)(7)
70
84y 5.373 —4.49(8) 22521 —19.83 —8.45 0.07 0.08) 094 -0.16 -—0.04 193.38)(8)
74
AU 5.437 —7.68(12) 257.2d) —24.95 —9.54 0.10 0.1(G) 1.10 —-0.20 -0.05 216.1713)(11)
2%Hg  5.467 —8.59(14) 264.3(0) —26.09 -9.78 0.10 0.1(66) 1.13 —-0.21 -0.05 220.9815)(11)
2%pp  5.5044) —10.67(2) 278.99 —28.47 —10.29 0.11 0.166) 120 —0.24 —0.05 230.68)(13
29%Bi  5.53320) —11.94(7) 286.68 —29.72 —10.56 0.12 0.16) 123 -0.25 -0.05 235.609)(13)
22rh  5.8024) —26.63(9) 348.29 —39.68 —12.79 0.16 0.1¢) 146 —0.33 —0.07 270.6001)(18)?
23 5.8602) —33.35(7) 368.83 —42.93 —13.55 0.17 0.1®8) 152 -0.36 —0.07 280.48.1)(20)"°
92
Z%rm  5.886 —79.0(1.0) 468.6@) —57.88 —17.34 0.24 0.242 168 —046 —0.11 316.01.0(0.3

4ncludes 0.02 eV from nuclear polarization.
PIncludes 0.03 eV from nuclear polarization.

The one-electron self-energ{SE) correction and the and the sum of the zeroth-, first-, and second-ofded/Z)
Wichman-Kroll part of the one-electron vacuum-polarizationcontributions calculated with the same hydrogenlike basis. In
(VP) correction are taken from recent tabulatidis,36). this work we reevaluate this correction with an increased
The Uehling part of the one-electron VP correction is calcu-number of configurations. It is worthwhile to note that the
lated using the Fermi model of the nuclear charge distribuBreit interaction is responsible for the dominant part of the
tion. Two-electron SE and VP corrections are taken from outhree-electron correction in the high+tegion. So the pure
previous evaluation§17,18. The nuclear recoil correction Coulomb part of the three-photon exchange contribution
was calculated by Artemyeet al. [37], and the nuclear- amounts to 0.04 eV for bismuth and 0.06 eV for uranium,
polarization correction for thorium and uranium was studiedwhile the total correction is about three times larger and con-
by Plunienet al.[38] and by Nefiodowt al. [39]. The total  tributes 0.12 eV and 0.17 eV, respectively. Taking into ac-
correction due to the two-photon exchange, evaluated in thisount the restricted nature of the Breit approximation, we
work, is divided into two parts, the second-order MBPT con-ascribe the uncertainty of about 50% to the three-photon ex-
tribution and the difference between the exact QED and thehange correction in the high—region.

MBPT results. The MBPT contribution is obtained by ne-  For the lowest values of considered here, the accuracy

glecting the energy dependence of the photon propagator iof our calculation of the three-photon exchange correction is
the Coulomb gauge in the general formulas of Sec. Il, andhot high enough. Taking into account that in this region the
introducing projectors on the positive-energy part of thedifference between the QED and the MBPT results for the
spectrum. It consists of thg, B, andBX B terms. two-photon exchange correction is negligible on the level of

Corrections involving an exchange by three photons ar¢he total numerical accuracy, the data presented in the table
suppressed roughly by a factor ofZlAs compared to the for the three-photon exchange fa 32 were obtained from
two-photon contribution and, therefore, are small but nothe MBPT calculation$45,46.
negligible. In Ref.[40] we evaluated the three-photon ex-  As the second-order one-electron QED corrections are not
change correction within the Breit approximation, by takingyet completely calculated, they are not included in the table.
the difference between the relativistic configuration-The recent status of these calculations has been discussed in
interaction result obtained with hydrogenlike wave functionsRef.[41]. The calculation of the last remaining correction of
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TABLE VI. Comparison between theoretical calculations and experimental results fop{he28 tran-
sition energy in Li-like iongin eV).

Z This paper Ref[47] Ref.[48] Ref.[49] Ref.[25] Experiment Reference
18 31.86%3)(1) 31.8681) 31.8661) [50]
20 35.9603)(2) 35.9641) 35.963 35.96R2) [51]
28 52.9514)(4) 52.95@2) [52]

52.95q1)  [53]
52.9474)  [13]

30 57.3844)(4) 57.3892) 57.341)  57.3843)  [13]

32 61.9065)(4) 61.9112) 61.907 61.902)  [52]
61.9012)  [54]

40  81.031)(1) 81.04

47 99.431)(1) 99.4387)  [14]

50  107.901)(2) 107.921) 107.9118)  [15]

54  119.822)(2) 119.841) 119.82 119.9m0  [55]
119.8208)  [15]

60 139.2%3)(4) 139.291)

70 176.446)(7) 176.562) 176.5210)

74 193.389)(8) 193.33

80  220.9815)(11) 220.993) 220.9220)

82  230.686)(13) 230.70

90  270.6011)(18) 270.725) 270.6%

92 280.4811)(20) 280.6810%  280.58* 280.5415 280.3621) 280.539) [11]

&Corrected for the recent value of the nuclear-polarization effé;39.

order a2, the two-loop self-energy, is still in progrep42—  rigorous calculation of the second-order one-electron QED
44]. Radiative corrections of ordet® can be estimated as effects is still required.
the two-photon SE and VP screening corrections suppressed
by a factor of 1Z. Our rough estimate of the second-order ACKNOWLEDGMENTS
one-electron and higher-order QED effects is represented by \\e thank J. Sapirstein and K. T. Cheng for providing us
the second error ascribed to the total result in the table. Th@ith their results before publication. Valuable discussions
first error corresponds to the other sources of uncertaintyyith L. N. Labzowsky, Th. Beier, and G. Plunien are grate-
which are quoted in the table. fully acknowledged. This work was supported in part by the

Table VI presents the comparison of the present evaluaRussian Foundation for Basic Reseaf@rant No. 01-02-
tion of the 2p,,,-2s transition energy in Li-like atoms with 17248 and by the program “Russian Universities: Basic Re-
previous calculations and available experimental results. Asearch”(Project No. 393D Support by GSI, by the BMBF,
compared to our previous compilatiga7], in the present and by DFG is also acknowledged.
paper we reduce the total uncertainty of the predictions, due
to the rigorously calculated effect of the two-photon ex- APPENDIX
change. Still, a direct calculation of the second-order one- 1o summation over the magnetic substates in B@—
electron QED contribution is desirable in order to ascribe q36) yields
well-defined error to the theoretical predictions.

In summary, with this paper we conclude the series of our
investigations on the two- and three-electron corrections of
order a?. We have evaluated all these contributions to the

2py/»-2s transition energy in Li-like higt ions. In this pa- F.’;ﬂ‘,gir(w)=a22 R, (w,cuoniny) R (w,cuniny)

per we presented a rigorous QED calculation of the two- Lik2

photon exchange diagrams and an evaluation of the three- i1 Ly e
photon exchange correction within the Breit approximation. (—1)latte Lo

We collected all presently available contributions to the —E (2k+1) 12 b
2p»-2s transition energy and compared the resulting pre- 2l je J, k
dictions with the experimental results. While the total accu-

racy of the theoretical predictions is significantly improved, a (A1)
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Flr;ldrjzeiw)Zalesz RLl(w,vcnlnz)RLz(w—A,Cvnlnz) Fzrlyr;i(w)=a2|_12l_2 R,_l(w,vnznlv)RLz(w—A,annlc)
i i —1\Viv—le
1 e J1 L1 ><( 1)k S (- 152K+ 1)
ijv—+1 i, iz Lo (A2) 2j,t1 <%
jl I-2 jc
Fzrlzizr(a))=a22 R (w,cnynw)R_(w,cnynqv) «{Lbi 2 L} (A4)
, 4T, 1 2 . .
. _ o de K
J1 L2 ¢
I-1 j2 jv
3T ; (2k+1)¢ ! :
le Jo

The explicit expression for the radial integid} (w,abcd)
(A3)  can be found in Ref17].
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