
PHYSICAL REVIEW A, VOLUME 64, 032109
Evaluation of the two-photon exchange graphs for the 2p1Õ2-2s transition in Li-like ions
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We presentab initio calculations of the complete gauge invariant set of the two-photon exchange graphs for
the 2p1/2-2s transition energy in Li-like high-Z ions. The evaluation is carried out to all orders inZa in the
rangeZ520–100. Results are compared with calculations based on relativistic many-body perturbation theory.
All presently available contributions to the 2p1/2-2s transition energy are collected. The resulting theoretical
predictions are compared with experimental data.
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I. INTRODUCTION

Heavy few-electron atoms provide an excellent possibi
for testing quantum electrodynamics~QED! in the strong
Coulomb field of the nucleus. Considerable progress in
perimental investigations of these systems has stimul
theorists to evaluate the complete set of radiative correct
in second order in the fine structure constanta. Since the
nuclear field is strong, consideration should be given to
orders in the coupling constantZa. The Lamb-shift calcula-
tion, complete to ordera2, still remains one of the challeng
ing theoretical problems. Up to now, such a calculation
been carried out only for the two-electron contribution to t
ground-state Lamb shift in He-like ions, which can be me
sured directly by comparing ionization energies of He-li
and H-like ions@1,2#. Two-photon exchange corrections fo
these systems were calculated by Blundellet al. @3# and by
Lindgren and co-workers@4#. The corresponding self-energ
and vacuum-polarization screening diagrams were evalu
in our investigations@5,6# and by Persson and co-worke
@7,8#. An analogous calculation for excited states of He-li
ions is still under way. In Ref.@9#, we evaluated the vacuum
polarization screening correction for low-lying excited sta
of He-like high-Z ions. For nonmixed states, the correspon
ing two-photon exchange correction was calculated rece
by Mohr and Sapirstein@10#.

While He-like systems are of experimental interest,
best experimental precision is achieved for 2p-2s transitions
in Li-like ions @11–16#. In our previous investigations
@17,18# we calculated the two-electron self-energy a
vacuum-polarization corrections for the 2p1/2-2s transition
in Li-like high-Z ions. In this paper we report on the eval
ation of the last unknown two-electron contribution of ord
a2 for the transition under consideration, the two-photon
change correction. The corresponding calculation was
sented recently for some high-Z ions in Ref. @19#. In the
present investigation we evaluate the two-photon excha
correction for a wide interval of the nuclear charge numb
Z and give a detailed description of the calculation pro
dure.

The plan of the paper is as follows. In the next section
derive basic formulas for the energy shift arising from t
two-photon exchange of the valence electron with the (1s)2
1050-2947/2001/64~3!/032109~15!/$20.00 64 0321
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shell in high-Z Li-like ions. In Sec. III we discuss som
details of the numerical evaluation. Section IV presents
numerical results and their comparison with the approxim
treatment based on the Breit approximation. In the last s
tion we collect all presently available contributions to t
2p1/2-2s transition energy in high-Z Li-like ions and com-
pare theoretical predictions with available experimental da

Relativistic units are used in this article (\5c51).

II. DERIVATION OF GENERAL FORMULAS

Our derivation of formulas is based on the two-tim
Green function ~TTGF! method developed by Shabae
@20,21#. Here we present only a few basic formulas of t
formalism which we will need in our derivation. For a de
tailed description of the method we refer to the recent rev
@22#. The starting point of the TTGF method is the standa
N-particle Green function in the mixed energy-coordina
representation G(q18 , . . . ,qN8 ;q1 , . . . ,qN), where qi

[(pi
0 ,xi). The Feynman rules for the Green function in t

mixed representation can be found in Refs.@21,22#. Now we
introduce the so-calledtwo-timeGreen function

g~E,x18 , . . . ,xN8 ;x1 , . . . ,xN!d~E2E8!

5
2p

i

1

N! E2`

`

dp1
0
•••dpN

0 dp81
0
•••dp8N

0

3d~E2p1
02•••2pN

0 !d~E82p81
02•••2p8N

0 !

3G~q18 , . . . ,qN8 ;q1 , . . . ,qN!g1
0
•••gN

0 . ~1!

Here, we integrate over all relative energies of incoming a
outgoing electrons and add the physical condition of the c
servation of the total energy. In the time representation
corresponds to the alignment of the relative time of the
coming and outgoing electrons, respectively. An import
statement is thatg(E) contains the full information about th
energy levels of the system.

Consider now how to extract the energy of a single le
k of an N-electron system fromg(E). We are interested in
the energy shiftDEk5Ek2Ek

(0) caused by the interaction
with the quantized electromagnetic field. Here, the unp
©2001 The American Physical Society09-1
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V. A. YEROKHIN et al. PHYSICAL REVIEW A 64 032109
turbed energyEk
(0) is the sum of the one-electron Dirac e

ergies,Ek
(0)5«11«21•••1«N . The energy shift of an iso

lated levelk is given by

DEk5

~2p i !21 R
G
dE DE Dgkk~E!

11~2p i !21 R
G
dE Dgkk~E!

, ~2!

where the contourG surrounds only the unperturbed lev
E5Ek

(0) and is oriented counterclockwise,DE5E2Ek
(0) ,

Dgkk(E)5gkk(E)2gkk
(0)(E), gkk(E)5^ukug(E)uuk&, uk is

the unperturbed wave function, andgkk
(0)(E)5(E2Ek

(0))21 is
the functiongkk(E) in the zeroth-order approximation. B
expanding both the numerator and the denominator in Eq~2!
in the standard power series ina, energy corrections of dif-
ferent orders are obtained. We write thea expansion of the
Green functiong(E) as

g~E!5g(0)~E!1g(1)~E!1g(2)~E!1•••, ~3!

where the superscript indicates the order ina. For the
second-order correction we have

DEk
(2)5

1

2p i RG
dE DE Dgkk

(2)~E!

2
1

2p i RG
dE DE Dgkk

(1)~E!
1

2p i RG
dE8 Dgkk

(1)~E8!.

~4!

In the present investigation we are interested in the tw
photon exchange corrections. The corresponding Feyn
diagrams forDg(2)(E) are presented in Fig. 1. We refer
the diagram in Fig. 1~c! as thethree-electroncorrection and
to the diagrams in Figs. 1~a! and 1~b! as theladder and the
crossedcontribution, respectively. A detailed analysis of t
two-photon exchange diagrams was presented by Sha
and Fokeeva@23# for the case of the one-determinant tw
electron wave function. Here we generalize that derivat
for the three-electron states with one electron outside
(1s)2 shell. In our case the unperturbed wave functionuk is

uk5
1

A3!
(
P

~21!PcPa~x1!cPb~x2!cPv~x3!, ~5!

FIG. 1. The two-photon exchange diagrams.
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wherev denotes the valence electron,a andb are the elec-
trons in the (1s)2 shell, andP is the permutation operator.

For brevity, we will use the following notations in wha
follows: I (v)5e2amanDmn(v), I abcd(v)5^abuI (v)ucd&,
I ab;cd5I abcd(Dbd)2I bacd(Dad), I ab;cd(p)5I abcd(Dbd1p)
2I bacd(Dad1p), Ĩ ab;cd5I abcd(Dca)2I abdc(Dda), and
I 8(v)5dI(v)/dv. Here,Dab5«a2«b , am5(1,a) are the
Dirac matrices, andDmn(v) is the photon propagator. Fo
simplicity, we restrict our present consideration only to t
Feynman and the Coulomb gauges. In this case the follow
symmetry properties of the operatorI are valid: I (v)
5I (2v), I 8(0)50, andI abcd(v)5I badc(v). We note also
that the operatorI preserves the total angular momentu
projection, i.e., the conditionma1mb5mc1md is valid for
the nonvanishing matrix elementI abcd(v), wherem denotes
the angular-momentum projection of the correspond
electron.

A. Three-electron contribution

First we discuss the three-electron correction. It can
represented by the diagram shown in Fig. 1~c!, assuming that
all possible permutations over the incoming and the outgo
electrons are accounted for. The Feynman rules@21,22# yield

Dgkk
(2)~E!5(

PQ
~21!P1Q(

n
S i

2p D 4E dp1 dp2 dp18 dp28

3
1

~p182u«P1!~p282u«P2!~E2p182p282u«P3!

3
1

~p12u«Q1!~p22u«Q2!~E2p12p22u«Q3!

3
I P2P3nQ3~p11p22p182p28!I P1nQ1Q2~p12p18!

p11p22p182u«n

,

~6!

whereu512 i0, andP andQ are the permutation operator
acting on the outgoing and the incoming electrons, resp
tively. All integrations here and in what follows are assum
to extend over the interval (2`,`), if not stated otherwise
The integration variablespi in Eq. ~6! correspond topi

0 in
Eq. ~1!. For brevity, the index of the zeroth component
omitted here and in what follows. We divide the functio
Dgkk

(2) into two portionsDgir
(2) andDgred

(2) that correspond to
the irreducible and the reducible parts of the correction,
spectively. The reducible part is defined as the contribut
in which the energy of the intermediate three-electron s
coincides with the energy of the initial state of the atom. T
irreducible part is the remainder. The expression forDgred

(2) is
given by Eq.~6! where the summation overn is restricted by
the condition«n5«Q11«Q22«P1, andDgir

(2) is the remain-
ing contribution.

1. Irreducible part

Now we consider the part of the first term in Eq.~4! that
originates from the irreducible three-electron contribution
9-2
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DEir
3el5

1

2p i RG
dE DE Dgir

(2)~E!. ~7!

While the derivation in this case is relatively simple, w
describe it in detail in order to illustrate the technique, wh
will be directly applied to other contributions.
03210
From Eq.~7! it is clear that only a part ofDgir
(2) with a

singularity of order 1/(DE)2 or higher yields a nonvanishing
contribution toDEir

3el. Therefore, we can rearrange the orig
nal expression, dropping out less singular terms. As an il
tration, we consider a typical contribution toDgir

(2) written in
the compact form
is,

e

ation
Dg~E!5S i

2p D 2E dp1 dp2

F~p1 ,p2!

~p12«11 i0!~p22«21 i0!~E2p12p22«31 i0!
. ~8!

Application of the identity

1

x1 i0
5

2p

i
d~x!1

1

x2 i0
~9!

to the factor 1/(p12«11 i0) yields

Dg~E!5
i

2pE dp2

F~«1 ,p2!

~p22«21 i0!~E2«12p22«31 i0!

1S i

2p D 2E dp1 dp2

F~p1 ,p2!

~p12«12 i0!~p22«21 i0!~E2p12p22«31 i0!
. ~10!

Here, the first term possesses an additional singularity atE5Ek
(0)[«11«21«3 as compared to the second term. To prove th

we note that in the first term the contour of thep2 integration is squeezed between two polesp25«26 i0 in the limit E
5Ek

(0) . This means that a singularity appears atE5Ek
(0) after the integration overp2 is carried out. The singular factor can b

explicitly separated by using the identity

1

~p22«21 i0!~E2«12p22«31 i0!
5

1

DE S 1

p22«21 i0
1

1

E2«12p22«31 i0D , ~11!

where the expression in the parentheses yields a regular function ofE insideG after the integration overp2 is carried out. In
the second term of Eq.~10! both poles of thep1 integration are in the same complex half plane, and we can shift the integr
contour away from the poles. This shows that the integrations overp1 andp2 do not create any singularities atE5Ek

(0) in this
case.

In order to separate the contribution of order 1/(DE)2 from Dgir
(2) , we apply the identities~9! and ~11! twice. This yields

Dgir
(2)~E!5

1

~DE!2 (
PQ

~21!P1Q (
«nÞ«Q11«Q22«P1

S i

2p D 2E dp2 dp28S 1

p282u«P2

1
1

E2«P12p282u«P3
D

3S 1

p22u«Q2
1

1

E2«Q12p22u«Q3
D I P2P3nQ3~«Q11p22«P12p28!I P1nQ1Q2~DQ1P1!

«Q11p22«P12u«n
1~ less singular terms!.

~12!
9-3
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Now the integration overE in Eq. ~7! can be easily per-
formed. After that, the integrations overp2 and p28 are car-
ried out by employing the identity

1

p22«Q21 i0
1

1

2p21«Q21 i0
5

2p

i
d~p22«Q2!.

~13!

The final expression for the irreducible part of the thre
electron contribution is

DEir
3el5(

PQ
~21!P1Q

3( 8
n

I P2P3nQ3~DP3Q3!I P1nQ1Q2~DQ1P1!

«Q11«Q22«P12«n
,

~14!

where the prime on the sum indicates that terms with v
ishing denominator should be omitted in the summati
03210
-

-
.

While just this expression can be used for the numer
evaluation, it will look more transparent if we write the trip
permutations explicitly:

DEir
3el5( 8

n
H I 23;n3 Ĩ 1n;12

«22«n
2

I 23;n2 Ĩ 1n;13

«32«n
1

I 23;n1 Ĩ 1n;23

«21«32«12«n

2
I 13;n3 Ĩ 2n;12

«12«n
1

I 13;n2 Ĩ 2n;13

«11«32«22«n
2

I 13;n1 Ĩ 2n;23

«32«n

1
I 12;n3 Ĩ 3n;12

«11«22«32«n
2

I 12;n2 Ĩ 3n;13

«12«n
1

I 12;n1 Ĩ 3n;23

«22«n
J ,

~15!

where I ab;cd5I abcd(Dbd)2I bacd(Dad) and Ĩ ab;cd
5I abcd(Dca)2I abdc(Dda).

2. Reducible part

The expression forDgred
(2) reads
e

n is
Dgred
(2)~E!5(

PQ
~21!P1Q (

«n5«Q11«Q22«P1
S i

2p D 4E dp1 dp2 dp18 dp28
1

~p182u«P1!~p282u«P2!~E2p182p282u«P3!

3
1

~p12u«Q1!~p22u«Q2!~E2p12p22u«Q3!

I P2P3nQ3~p11p22p182p28!I P1nQ1Q2~p12p18!

p11p22p182«Q12«Q21«P11 i0
. ~16!

We rewrite this expression keeping terms with the singularity of order 1/(DE)2 and higher, analogously to that for th
irreducible part. Applying identity~9! to the factors 1/(p182u«P1) and 1/(E2p12p22u«Q3), we obtain

Dgred
(2)~E!5

1

DE (
PQ

~21!P1Q (
«n5«Q11«Q22«P1

S i

2p D 2E dp2 dp28
I P2P3nQ3~E2«Q32«P12p28!

~p282u«P2!~E2«P12p282u«P3!

3
I P1nQ1Q2~E2«Q32«P12p2!

~E2p22«Q32u«Q1!~p22u«Q2!
1~ terms with a singularity of order 1/DE or lower!. ~17!

Next, we use Eq.~11! to separate factors 1/DE explicitly and perform the energy integration. The resulting expressio
divided into two parts,

1

2p i RG
dE DE Dgred

(2)~E!5DEred
3el1DẼred

3el, ~18!

where

DEred
3el5

1

2 (
PQ

~21!P1Q (
«n5«Q11«Q22«P1

@ I P2P3nQ38 ~DP3Q3!I P1nQ1Q2~DQ1P1!1I P2P3nQ3~DP3Q3!I P1nQ1Q28 ~DQ1P1!#,

~19!

DẼred
3el52

1

2 (
PQ

~21!P1Q (
«n5«Q11«Q22«P1

i

2pE dp
1

~p1 i0!2

3$@ I P2P3nQ3~DP3Q31p!1I P2P3nQ3~DP3Q32p!#I P1nQ1Q2~DQ1P1!1I P2P3nQ3~DP3Q3!

3@ I P1nQ1Q2~DQ1P11p!1I P1nQ1Q2~DQ1P12p!#%. ~20!
9-4
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We will show below thatDEred
3el yields the total reducible

three-electron contribution, whileDẼred
3el is completely can-

celled when considered together with the second term in
~4! ~the disconnectedcontribution! and with the reducible
part of the two-electron contribution. To see this, we sho
write the sum overn and permutationsP,Q in Eqs.~19! and
~20! explicitly. While the result looks rather cumbersome,
general structure can be understood from the expression
the irreducible part~15!. Loosely speaking, the reducible pa
corresponds to the terms with vanishing denominator wh
are omitted in then summation of Eq.~15!. We note that the
number of such terms is different in two cases, if all thr
electrons have different energies and in the case under
sideration with two electrons of the same energy.

We will use the notationsa andb for the electrons in the
(1s)2 shell,v for the valence (2s or 2p1/2) electron,«c and
«v for the energy of the core and the valence electron,
spectively, andm for the projection of the angular momen
tum. Writing the summation overn in Eqs. ~19! and ~20!
explicitly, we note that the condition, e.g.,«n5«v involves
two possibilities:mn5mv ~denoted asn5v) andmn52mv

~denoted asn5 v̄). After simple but rather tedious manipu
lations, we express Eqs.~19! and~20! as follows~with DẼred

3el

divided into two parts,DẼred,1
3el andDẼred,2

3el ):

DEred
3el5(

ma

@ I vaav8 ~D!~ I ab;ab2I bv;bv!1 1
2 I avva

8 ~D!I av;av

1 1
2 I avva

8 ~D!I va;va#, ~21!

DẼred,1
3el 52

i

2pE dp
1

~p1 i0!2
$@ I bv;bv~p!1I bv;bv~2p!#

3@ I av;av1I ab;ab#1@ I av;av~p!1I av;av~2p!#

3@ I bv;bv1I ab;ab#1@ I ab;ab~p!1I ab;ab~2p!#

3@ I av;av1I bv;bv#%, ~22!
03210
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DẼred,2
3el 5(

ma

i

4pE dp
1

~p1 i0!2

3$@ I va;va~p!1I va;va~2p!#I av;av

1I va;va@ I av;av~p!1I av;av~2p!#%, ~23!

where it is taken into account that the operatorI preserves
the total angular-momentum projection. Here,I ab;cd
5I abcd(Dbd)2I bacd(Dad), I ab;cd(p)5I abcd(Dbd1p)
2I bacd(Dad1p), D5«v2«c , m v̄52mv , and m ā52ma .
As we will show below,DẼred,1

3el andDẼred,2
3el are exactly can-

celed when considered together with the disconnected c
tribution @Eq. ~31!# and the reducible part of the ladder co
tribution @Eq. ~38!#. Therefore,DEred

3el @Eq. ~21!# yields the
final expression for the reducible three-electron contributi

B. Disconnected contribution

Now we consider the second term in Eq.~4!, to which we
refer as thedisconnectedcontribution:

DEdisc52
1

2p i RG
dE DE Dgkk

(1)~E!
1

2p i RG
dE8 Dgkk

(1)~E8!.

~24!

The Feynman diagrams contributing toDg(1) are presented
in Fig. 2. According to the Feynman rules@21,22#, we have
for the diagram in Fig. 2~a!

FIG. 2. Feynman diagrams contributing to the disconnec
term.
tates in
ver,
Dgkk
(1),2a~E!5(

P
~21!PS i

2p D 3E dp1 dp18 dp3

1

p32u«3
I P1P212~p12p18!dP3,3

3
1

~p182u«P1!~E2p182p32u«P2!

1

~p12u«1!~E2p12p32u«2!
. ~25!

~We note that some care should be taken in simplifying the summation over the permutations of the initial and final s
this separate diagram since the operatorI P1P212dP3,3 is not symmetric with respect to permutations of the electrons. Howe
the sum of all diagrams in Fig. 2 is symmetric, which justifies our derivation.! The p3 integration in Eq.~25! can be carried
out, enclosing the integration contour in the lower half plane. It yields

Dgkk
(1),2a~E!5(

P
~21!PS i

2p D 2E dp1 dp18
1

~p182«P11 i0!~DE2p181«P11 i0!

I P1P212~p12p18!

~p12«11 i0!~DE2p11«11 i0!
, ~26!
9-5
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where the operatorP is assumed to permute only two ele
trons. Having in mind theE8 integration in Eq.~24!, we
should keep all terms that are singular atE5Ek

(0) . Applying
identity ~9! to the factors 1/(p12u«1) and 1/(p182u«P1), we
obtain

Dgkk
(1),2a~E!5

1

DE (
P

~21!P
i

2p

3E dp
1

~p2 i0!~DE2p1 i0!

3@ I P1P212~D1P12p!1I P1P212~D1P11p!#

1
1

~DE!2 (
P

~21!PI P1P212~D1P1!

1~ terms regular atE5Ek
(0)!. ~27!

For the remaining diagrams in Fig. 2 we derive similar e
pressions. The integration over the energy is now trivial
yields

1

2p i RG
dE DE Dgkk

(1)~E!5(
P

~21!P@ I P1P212~D1P1!

1I P2P323~DP33!

1I P1P313~DP33!#, ~28!

1

2p i RG
dE Dgkk

(1)~E!

5(
P

~21!P
i

2pE dp
21

~p1 i0!2

3$I P1P212~D1P12p!1I P1P212~D1P11p!

1I P2P323~DP332p!1I P2P323~DP331p!

1I P1P313~DP332p!1I P1P313~DP331p!%. ~29!

For DEdisc we have

DEdisc5
i

2pE dp
1

~p1 i0!2
@ I 12;12~p!1I 12;12~2p!

1I 13;13~p!1I 13;13~2p!1I 23;23~p!1I 23;23~2p!#

3@ I 12;121I 13;131I 23;23#. ~30!

Finally, we rewrite this expression for the three-electron st
under consideration, explicitly separating a part canceled
Eq. ~22!,

DEdisc52DẼred,1
3el 1

i

2pE dp
1

~p1 i0!2
$@ I bv;bv~p!

1I bv;bv~2p!#I bv;bv

1@ I av;av~p!1I av;av~2p!#I av;av

1@ I ab;ab~p!1I ab;ab~2p!#I ab;ab%. ~31!
03210
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The rest of the disconnected contribution vanishes when c
sidered together with the reducible part of the ladder con
bution @Eq. ~38! and an analogous term from the ladder d
gram with both electrons from the (1s)2 shell#.

C. Two-electron contribution

Only two electrons are involved in the photon exchan
in Figs. 1~a! and 1~b!, and, therefore, the three-electron pro
lem can be decomposed into three two-electron proble
The two-electron contribution with both electrons from t
(1s)2 shell is the same as for the ground state of a He-l
ion. It was evaluated in Refs.@3,4# and does not affect the
2p1/2-2s transition energy. We shall be concerned here w
the remaining corrections in which one electron line cor
sponds to the valence electron and the other one to the
electron. The ladder contribution is naturally divided into t
irreducible and reducible parts. The reducible part is defin
as the contribution in which the energy of the intermedi
two-electron state coincides with the energy of the init
state. The irreducible part is the remainder. Often it is c
venient also to divide these contributions into the direct a
the exchange parts according to the relative alignment of
ingoing and outcoming states.

1. Irreducible part

Expressions for the crossed contribution and for the ir
ducible part of the ladder contribution are essentially
same as in the case considered in Ref.@23#. We write the sum
of these two terms as

DEir
2el5 ( 8

n1n2

i

2pE dvH F lad,dir~v,n1n2!

~«c2v2u«n1
!~«v1v2u«n2

!

1
F lad,ex~v,n1n2!

~«v2v2u«n1
!~«c1v2u«n2

!

1
Fcr,dir~v,n1n2!

~«c2v2u«n1
!~«v2v2u«n2

!

1
Fcr,ex~v,n1n2!

~«v2v2u«n1
!~«v2v2u«n2

!J , ~32!

where

F lad,dir~v,n1n2!5 (
mcm1m2

^cvuI ~v!un1n2&^n1n2uI ~v!ucv&,

~33!

2F lad,ex~v,n1n2!5 (
mcm1m2

^vcuI ~v!un1n2&

3^n1n2uI ~v2D!ucv&, ~34!

Fcr,dir~v,n1n2!5 (
mcm1m2

^cn2uI ~v!un1v&^n1vuI ~v!ucn2&,

~35!
9-6
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2Fcr,ex~v,n1n2!5 (
mcm1m2

^vn2uI ~v!un1v&

3^n1cuI ~v2D!ucn2&. ~36!

Here c and v denote the core and the valence electron,
spectively;m stands for the angular momentum projection«
indicates the Dirac energy of the corresponding state,
D5«v2«c . The prime on the sum indicates that some ter
are omitted in the summation. In the first, we restrict t
summation overn1 ,n2 to exclude states that contribute to th
reducible part of the ladder diagram, («n1

«n2
)

5(«c«v),(«v«c). Next, we exclude terms with singular in
frared behavior («n1

«n2
)5(«c«v) from the direct crossed

contribution and («n1
«n2

)5(«c«c),(«v«v) from the ex-
change crossed part. Some care should be taken of the n
degenerate Dirac states. In particular, the 2s and the 2p1/2
states are split only by the finite nuclear size effect. It
convenient to treat these states in the same way. This m
that we understand the above condition («n1

«n2
)5(«v«v) in

the point-nucleus limit.

2. Reducible part

The reducible part of the ladder diagram is given by E
~47! of Ref. @23#. Rewriting this expression in our notatio
and introducing the summation over angular-momentum p
jections of the core electron, we have

DEred
lad5(

mc
(

«n1
1«n2

5«v1«c

i

4pE dv
21

~v1 i0!2

3@ I cv;n1n2
~2v!I n1n2cv~Dn2v1v!

1I cv;n1n2
~v!I n1n2cv~Dn2v!

1I cv;n1n2
I n1n2cv~Dn2v2v!

1•••1$v→2v%1•••#. ~37!

The sum overn1 ,n2 is restricted by the condition (n1n2)
5( ṽ c̃),(c̃ṽ), where« ṽ5«v , « c̃5«c , and m ṽ ,m c̃ are arbi-
trary. Writing the sum overn1 ,n2 explicitly, we have

DEred
lad5 (

mcm ṽm c̃

i

4pE dv
21

~v1 i0!2
$I cv; c̃ṽ~v!I c̃ṽ;cv~v!

1I cv; c̃ṽ~2v!I c̃ṽ;cv~2v!

1I cv; c̃ṽ@ I c̃ṽ;cv~v!1I c̃ṽ;cv~2v!#

1@ I cv; c̃ṽ~v!1I cv; c̃ṽ~2v!#I c̃ṽ;cv%. ~38!

Taking into account that the operatorI preserves the tota
angular-momentum projection, we see that them ṽ and m c̃
summation consists of two terms, (m ṽ ,m c̃)5(mv ,mc) and
(2mv ,2mc). When (m ṽ ,m c̃)5(mv ,mc), the last two terms
of Eq. ~38! are canceled by the corresponding contribut
from the disconnected term@Eq. ~31!#. For (m ṽ ,m c̃)
5(2mv ,2mc), the last two terms of Eq.~38! vanish when
considered together withDẼred,2

3el @Eq. ~23!#. The remainder is
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DEred,r
lad 5 (

mcm ṽm c̃

i

4pE dv
21

~v1 i0!2
@ I cv; c̃ṽ~v!I c̃ṽ;cv~v!

1•••1$v→2v%1•••#. ~39!

For further evaluation it is convenient to rewrite this expre
sion using the definitions~33! and ~34!

DEred,r
lad 52

i

4pE dv
1

~v1 i0!2
@F lad,dir~v,cv !

1F lad,ex~D2v,cv !1F lad,dir~v2D,vc!

1F lad,ex~v,vc!1•••1$v→2v%1•••#.

~40!

Next, we add the terms excluded from the crossed part of
~32!. The resulting contribution we refer to asDEred

2el. It reads

DEred
2el5

i

4pE dv
1

~v1 i0!2
@2Fcr,dir~2v,cv !

12Fcr,ex~2v1D,cc!12Fcr,ex~2v,vv !

12Fcr,ex~2v1Dvs ,ss!22F lad,dir~v,cv !

2F lad,ex~v1D,cv !2F lad,ex~2v1D,cv !

2F lad,dir~v2D,vc!2F lad,dir~2v2D,vc!

2F lad,ex~v,vc!2F lad,ex~2v,vc!#, ~41!

wheres denotes the Dirac state separated only by the fin
nuclear size effect from the valence state. It can be sho
~see Ref. @23# for details! that F lad,dir(v,cv) and Fcr,dir
(2v,cv) cancel each other exactly, and that the remain
contribution is infrared finite if considered as a whole. The
fore, the resulting expression reads

DEred
2el5

i

4pE dv
1

~v1 i0!2
@2Fcr,ex~2v1D,cc!

12Fcr,ex~2v,vv !12Fcr,ex~2v1Dvs ,ss!

2F lad,ex~v1D,cv !2F lad,ex~2v1D,cv !

2F lad,dir~v2D,vc!2F lad,dir~2v2D,vc!

2F lad,ex~v,vc!2F lad,ex~2v,vc!#. ~42!

The final result for the two-photon exchange correction c
responding to the interaction of the valence (2s or 2p1/2)
electron with the (1s)2 shell is given by the sum of Eqs
~15!, ~21!, ~32!, and~42!.

We note that our formulas reproduce the second-or
many-body perturbation theory~MBPT! result if we neglect
the energy dependence of the photon propagator in the C
lomb gauge and introduce projectors on the positive-ene
part of the spectrum. After these assumptions, all reduc
contributions vanish, and thev integration in the two-
electron part is carried out using Cauchy’s theorem. Now
9-7
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crossed contribution also vanishes, and the ladder part yi
the total two-electron correction within the MBPT approx
mation:

DEMBPT
2el 5(

mc
( 8
n1n2

I cv;n1n2
~0!I n1n2cv~0!

«c1«v2«n1
2«n2

, ~43!

where the summation overn1 ,n2 is restricted by the condi
tions «n1

1«n2
Þ«c1«v , «n1

.0, «n2
.0, and the photon

propagators in the Coulomb gauge are assumed. The th
electron contribution within the MBPT approximation can
directly obtained from Eq.~15!.

III. NUMERICAL EVALUATION

In this section we discuss the numerical evaluation of
two-photon exchange correction. As the three-electron
of the correction is relatively simple, we concentrate on
calculation of two-electron contributions.

The two-photon exchange correction corresponding to
interaction of the valence 2s or 2p1/2 electron with the (1s)2

shell is given by the sum of Eqs.~15!, ~21!, ~32!, and ~42!.
The summation over magnetic substates and the angula
tegration can be carried out using standard techniques.
resulting expressions are given in the Appendix. The sum
tion over the whole spectrum of intermediate states is p
formed using the method of theB-spline basis set for the
Dirac equation@24#. In actual calculations, the basis set typ
cally contained 50 positive- and 50 negative-energy sta
per angular-momentum quantum numberk. The finite size of
the nucleus is accounted for by using the spherical distr
tion of the nuclear charge. The infinite partial-wave summ
tion is terminated typically atuku510. The remainder of the
sum is estimated by polynomial fitting in 1/uku.

The most problematic part of the numerical evaluation
the integration over the energy of the virtual photonv. In
order to avoid strong oscillations arising for large real valu
of v, we perform a Wick rotation of the integration contou
following the treatment of Ref.@3#. Some care should b
taken for the pole and cut structure of the integrand, whic
essentially more elaborate than for the (1s)2 case. We note
that the analytic structure of the integrand in our case
exactly the same as for the lowest excited states of He-
ions, investigated recently by Mohr and Sapirstein@10#.
While the particular choice of integration contours is sligh
different here, the analysis given in that work can be fu
applied in our case as well.

The two-electron contribution is conveniently divided in
the direct and the exchange parts, which are treated s
rately. The poles and the branch cuts of the integrand for
direct part of the ladder and the crossed contribution
shown in Figs. 3 and 4, respectively. We rotate the integ
tion contour in the complexv plane from the real to the
imaginary axis, separating pole contributions that arise fr
intermediate statesn with 0,«n<«v . For the direct part, the
only complication as compared to the (1s)2 case consists in
a different structure of the pole terms, and the evaluatio
very similar to that for the ground state of He-like ions.
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the low-Z region, care is required for low values ofv be-
cause of poles of electron propagators encountered nea
integration contour. This problem is handled by isolati
terms with a near-singular behavior and employing a v
dense grid for low values ofv. In order to calculate the
direct part of the reducible contribution, we integrate
parts and perform a Wick rotation. This yields an express
that can be directly evaluated:

DEred
2el~dir!5

1

2
@F lad,dir~D,vc!#8

2
1

pE0

`

dv
v

D21v2

d

dv
F lad,dir~ iv,vc!,

~44!

whereF8(D)5„dF(v)/dv…v5D .
Let us consider the exchange parts of the ladder and

crossed contribution. Now the branch points of the pho
propagators are shifted byD5«v2«c with respect to each
other, as shown in Figs. 5 and 6. As a result, the integra
contour is squeezed at two pointsv50 andv5D. An addi-
tional complication arises from the presence of poles of e
tron propagators close to the ‘‘squeezed’’ part of the integ
tion contour. The numerical evaluation of the exchan
contribution is the most time consuming part of the calcu
tion. In order to facilitate this, we divide the exchange co
tribution into two parts, theirregular part in whichn1 or n2
corresponds to one of the 1s, 2s, 2p1/2 ~and 2p3/2 for lower-

FIG. 3. The poles and the branch cuts of the integrand for
direct part of the ladder contribution, and the integration cont
used for the evaluation of this correction.

FIG. 4. The poles and the branch cuts of the integrand for
direct part of the crossed contribution, and the integration cont
used for the evaluation of this correction.
9-8
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Z atoms! states, and theregular part, the remainder. The
regular part is the most numerically intensive one, but it d
not contain any poles near the squeezed part of the inte
tion contour. The calculation of the irregular part is mo
elaborate but less time consuming.

Evaluating the irregular part, we should keep the infi
tesimal imaginary termi0 when a pole is encountered ne
the integration contour. In this case, the standard identit
used

E
v1

v2
dv

f ~v!

D02v1 i0
5PE

v1

v2
dv

f ~v!

D02v
2 ip f ~D0!

~45!

(D0P@v1 ,v2#), and the principal value of the integral
evaluated numerically. As can be seen from Fig. 6, two
inciding poles can be encountered near the integration c
tour in the exchanged crossed contribution. In this case,
rewrite the corresponding integral as

E
v1

v2
dv

f ~v!

~D02v1 i0!2
5 ip f 8~D0!1

f ~v2!

D02v2
2

f ~v1!

D02v1

2PE
v1

v2
dv

f 8~v!

D02v
, ~46!

whereD0P@v1 ,v2#.

FIG. 5. The poles and the branch cuts of the integrand for
exchange part of the ladder contribution, and the integration con
Cirr .

FIG. 6. The poles and the branch cuts of the integrand for
exchange part of the crossed contribution, and the integration
tour Cr .
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For the numerical evaluation of the irregular and regu
parts we employed two contoursCirr and Cr , which are
shown in Figs. 5 and 6, respectively. While the choice of
contour is to some extent arbitrary, we use these two c
tours for the sake of convenience and in order to check
consistency of our numerical procedure. In our actual cal
lation the contourCr was employed for the regular contribu
tion, andCirr for the irregular one. The contourCirr can be
divided into three parts:@2e2 i`,2e#, @2e,D1e#, and
@D1e,D1e1 i`#. Here, e is a small positive constan
which is introduced to allow for the numerical evaluation
the principal value of an integral with a singularity at th
pointsv50 or v5D. On the interval@2e,D1e# we carry
out thev integration of the irregular part before the summ
tion overn1 andn2. In all other cases, the summation ov
the spectrum for a given angular-momentum quantum nu
ber is performed first.

The exchange part of the reducible contribution is cal
lated after integration by parts,

DEred
2el~exch!

52
1

2
@Fcr,ex~D,cc!1Fcr,ex~0,vv !1Fcr,ex~Dvs ,ss!#8

1
i

2p
PE

2`

` dv

v

d

dv
@Fcr,ex~D1v,cc!1Fcr,ex~v,vv !

1Fcr,ex~Dvs1v,ss!22F lad,ex~v,vc!#. ~47!

In our implementation the principal value of the integral
Eq. ~47! is evaluated as follows:

i

2p
PE

2`

` dv

v
f 8~v!

52
i

2pD
@ f ~D!1 f ~2D!#

1
i

2pE0

Ddv

v
@ f 8~v!2 f 8~2v!#

2
1

2pE0

` dv

~ iv1D!2
@ f ~D1 iv!1 f ~2D2 iv!#. ~48!

The numerical procedure was checked in several differ
ways. First, we evaluated all corrections in two gauges,
Feynman and the Coulomb one. The two calculations ag
very well with each other. We found the direct and the e
change parts of the two-electron contribution and the thr
electron correction to be separately gauge invariant on
level of the numerical accuracy. As an independent cro
check, we calculated directly the difference between the
QED contribution and the second-order MBPT result. To
this, we observe that the MBPT contribution can be obtain
from the general QED formulas if we neglect the ener
dependence of the photon propagator in the Coulomb ga
and introduce projection operators on the positive-ene
part of the Dirac spectrum. So we evaluate the differen

e
ur

e
n-
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V. A. YEROKHIN et al. PHYSICAL REVIEW A 64 032109
between the QED and the MBPT correction by perform
the term-by-term subtraction first, and thev integration after
that. The MBPT contribution can be calculated separately
to very high accuracy after thev integration is carried ou
analytically.

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical results for the two-photon exchange corr
tion, which corresponds to the interaction of the valen
electron with the (1s)2 shell in high-Z Li-like ions, are pre-
sented in Tables I and II for the 2s and 2p1/2 valence states
respectively. The total numerical uncertainty is estimated
be less than 331025 a.u. for Z530–83, less than 4
31025 a.u. for Z520, 90, and 92, and less than
31025 a.u. for Z5100. In the tables, the two-photon e
change correction is divided into the direct, the exchan
and the three-electron parts. Each of these is found to
separately gauge invariant within the quoted error bars.
actual evaluation was carried out in two gauges, the Fe
man and the Coulomb one. In Table III we present the in
vidual contributions of the calculation for Li-like Sn (Z
550) in these two gauges. In the table,DEir

2el(dir) denotes

TABLE I. Various contributions to the two-photon exchang
correction for the 2s state of Li-like ions, in atomic units.

Z DE2el(dir) DE2el(exch) DE3el Total

20 20.16567 0.03293 20.12545 20.25819
30 20.17053 0.03213 20.12975 20.26815
40 20.17768 0.03104 20.13605 20.28269
50 20.18759 0.02968 20.14468 20.30259
60 20.20100 0.02811 20.15614 20.32903
70 20.21904 0.02644 20.17117 20.36377
80 20.24353 0.02484 20.19097 20.40966
83 20.25254 0.02441 20.19808 20.42621
90 20.27748 0.02361 20.21736 20.47123
92 20.28582 0.02345 20.22368 20.48605
100 20.32635 0.02332 20.25356 20.55659

TABLE II. Various contributions to the two-photon exchang
correction for the 2p1/2 state of Li-like ions, in atomic units.

Z DE2el(dir) DE2el(exch) DE3el Total

20 20.77562 0.04211 0.34519 20.38832
30 20.45972 0.03838 0.01026 20.41108
40 20.35858 0.03286 20.11926 20.44498
50 20.32316 0.02528 20.19450 20.49238
60 20.31775 0.01516 20.25444 20.55703
70 20.33168 0.00176 20.31490 20.64482
80 20.36309 20.01608 20.38624 20.76541
83 20.37629 20.02256 20.41133 20.81018
90 20.41535 20.04029 20.47959 20.93523
92 20.42902 20.04616 20.50224 20.97742
100 20.49837 20.07429 20.61231 21.18497
03210
p
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the direct part of the two-electron irreducible contributio
originating from the integration over the imaginary axis, a
DEpole

2el (dir) is the corresponding pole contribution.
Our results can be compared with the latest evaluations

Andreevet al. @25# for Z530, 70, 80, and 92, and by Sa
pirstein and Cheng@26# for Z583. Fair agreement is ob
served in all cases except one, namely, the 2p1/2 state and
Z570. In that case, our calculation yields217.546(3) eV,
compared to217.450(3) eV obtained in Ref.@25#. The rea-
son for this discrepancy is not known at present.

Now we discuss the relation between our rigorous Q
evaluation and traditional methods based on the treatmen
the electron-electron interaction within the Breit approxim
tion. Strictly speaking, the second-order~in 1/Z) Breit ap-
proximation is valid up to order (Za)2, and, therefore,a
priori it is unclear whether it can be successfully applied
high-Z ions. The relativistic MBPT treatment is also bas
on the Breit approximation and, correspondingly, is valid
to order (Za)2. However, it includes some higher-orde
terms also. Although one might think that keeping terms
order higher than (Za)2 is excessive within this approxima
tion, for atoms with one electron outside the (1s)2 shell the
MBPT treatment yields an approximation that is essentia
better than the two first terms of theZa expansion. To order
(Za)2 the two-photon exchange correction can be written

DE(2)5E021~Za!2~E221B22!, ~49!

where E02(2s)520.250 498 andE02(2p1/2)520.370 911
@27,28#; E22(2s)520.2427, B22(2s)520.1129,
E22(2p1/2)520.5265, andB22(2p1/2)520.2734@28#.

Different approaches to the evaluation of the two-pho
exchange correction are compared in Table IV and in Fig
The second-order MBPT contribution can be divided in
three parts corresponding to the exchange by two Coulo
photons (C), by one Coulomb and one Breit unretarded ph
ton (B), and by two unretarded Breit photons (B3B). The
most notable feature of our consideration is that effects
glected in the MBPT consideration are remarkably small
our case. For the 2p1/2-2s transition in Li-like uranium, the

TABLE III. Individual contributions to the two-photon ex
change correction for the 2s and 2p1/2 states of Li-like Sn (Z
550) in the Feynman and Coulomb gauges, in atomic units.

2s 2p1/2

Feynman Coulomb Feynman Coulomb

DEpole
2el (dir) 20.18094 20.18081 20.30672 20.30668

DEir
2el(dir) 20.00699 20.00678 20.01650 20.01647

DEred
2el(dir) 0.00034 0.00000 0.00005 20.00002

DEir
2el(exch) 0.02648 0.02595 0.02200 0.02572

DEred
2el(exch) 0.00320 20.00028 0.00328 20.00043

DEir
3el 20.14574 20.14461 20.19718 20.19454

DEred
3el 0.00106 20.00007 0.00268 0.00005

Total 20.30259 20.30259 20.49239 20.49237
9-10



e

ra
nc
in
le
n
-
te

P
tw
c-
er
a

ou
’’
g
e
e

to

om
le
ize
s

us

by
Bi,
re
ble
cer-
by
en
al-

o-

the
out

e

BP
o
to
s.
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extra physics contributes to about 1.3% if theB3B term is
included into the MBPT treatment, and about 0.3% oth
wise. A similar conclusion was drawn in Ref.@10# for non-
degenerate excited states of He-like ions. This is in cont
to the ground-state case of He-like ions, where the differe
of the QED and the MBPT results is on the level of 10%
the high-Z region@3#. Our comparison also shows that, whi
the B3B term is of the same order of magnitude as no
trivial QED contributions omitted in the MBPT approxima
tion, adding this term makes the MBPT result devia
slightly more from the rigorous QED treatment.

Summarizing, we can conclude that in our case MB
yields an approximation that is essentially better than the
first terms of theZa expansion. This means that in an effe
tive way MBPT can incorporate a certain part of the high
order contributions. It is important to note, however, th
some care should be taken in dividing results of the rigor
QED treatment into the MBPT part and the ‘‘beyond MBPT
part. The reason is that the MBPT contribution is not gau
invariant @it can be shown to be gauge invariant up to ord
(Za)2 only#, and it is often defined in different ways in th
literature.

V. 2P1Õ2-2S TRANSITION ENERGY IN Li-LIKE IONS

In Table V we collect all contributions calculated up
now for the 2p1/2-2s transition energy in high-Z Li-like ions.
The values of rms radii used in the calculation are taken fr
Refs. @29–33# and listed in the second column of the tab
The splitting of the Dirac levels due to the finite nuclear s
and the one-photon exchange correction are calculated u
the Fermi model of the nuclear charge distribution,

r~r !5
N

11exp@~r 2c!/a#
, ~50!

TABLE IV. Comparison of rigorous QED calculations of th
two-photon exchange correction for the 2p1/2-2s transition in Li-
like ions with the two first terms of theZa expansion and with the
second-order MBPT results. C denotes the second-order M
contribution due to the exchange of two Coulomb photons, B c
responds to the exchange of one Coulomb and one Breit pho
and B3B stands for the exchange of two Breit photon
Units are a.u.

Z QED (Za)01(Za)2 C1B C1B1(B3B)

20 20.13013 20.12988 20.13012 20.13011
30 20.14293 20.14171 20.14300 20.14298
40 20.16229 20.15827 20.16246 20.16245
50 20.18979 20.17956 20.19017 20.19029
60 20.22800 20.20559 20.22870 20.22913
70 20.28105 20.23635 20.28211 20.28322
80 20.35575 20.27183 20.35710 20.35946
83 20.38397 20.28340 20.38536 20.38825
90 20.46400 20.31206 20.46539 20.46990
92 20.49137 20.32067 20.49268 20.49778
100 20.62838 20.35701 20.62919 20.63731
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where the parametera is fixed to bea52.3/(4 ln 3) fm. The
parametersc andN are expressed in terms of the rms radi
~see, e.g., Ref.@34#!,

c25
5

3
^r 2&2

7

3
a2p2, ~51!

N5
3

4pc3 S 11
p2a2

c2 D 21

. ~52!

The uncertainty of the nuclear-size effect was estimated
the 1% variation of the rms radius for all ions except Pb,
Th, and U. For the latter ions, rms radii are known mo
precisely. Their errors are obtained by averaging availa
data and given in the second column of the table. The un
tainty of the nuclear-size effect in this case is estimated
varying the rms radii and by taking the difference betwe
the correction calculated within the Fermi- and the spheric
distribution models with the same rms radius.

FIG. 7. Deviation of the rigorous QED treatment of the tw
photon exchange correction for the 2p1/2-2s transition energy in
Li-like ions from the second-order MBPT results. The solid and
dashed lines correspond to the MBPT correction with and with
the B3B term ~the exchange by two Breit photons!, respectively.
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TABLE V. Individual contributions to the 2p1/2-2s transition energy in Li-like ions. The first error ascribed to the total results origin
from uncertainties of the individual contributions listed in the table. The second error arises from unknown one-electrona2 QED effects and
three-photon SE and VP screening corrections. Fin.nucl., finite nuclear size; 1ph, one-photon exchange; SE1VP, first-order self-energy and
vacuum polarization; 2ph~MBPT!, second-order MBPT; 2ph~QED!, difference between the QED and the MBPT results for the two-pho
exchange correction; 3ph, three-photon exchange; Scr.SE, screened self-energy; Scr.VP, screened vacuum polarization; Nucl.r
recoil. Units are eV.

Element ^r 2&1/2 Fin.nucl. 1ph SE1VP 2ph~MBPT! 2ph~QED! 3ph Scr.SE Scr.VP Nucl.rec. Total

18
40Ar 3.427 20.001 35.570 20.157 23.489 0.000 20.075(3) 0.028 20.002 20.010 31.865~3!~1!

20
40Ca 3.478 20.002 39.769 20.226 23.540 0.000 20.064(3) 0.036 20.002 20.012 35.960~3!~2!

28
58Ni 3.776 20.010 57.455 20.716 23.807 0.000 20.034(4) 0.084 20.006 20.015 52.951~4!~4!

30
64Zn 3.928 20.014 62.147 20.906 23.890 0.001 20.029(4) 0.100 20.008 20.016 57.384~4!~4!

32
74Ge 4.072 20.021 66.967 21.129 23.981 0.001 20.023(5) 0.117 20.010 20.016 61.906~5!~4!

40
90Zr 4.270 20.07 87.76 22.41 24.42 0.00 20.00(1) 0.20 20.02 20.02 81.03~1!~1!

47
107Ag 4.544 20.18 108.43 24.17 24.92 0.01 0.01~1! 0.30 20.03 20.02 99.43~1!~1!

50
120Sn 4.655 20.27 118.17 25.14 25.18 0.01 0.02~1! 0.35 20.04 20.03 107.90~1!~2!

54
132Xe 4.787 20.44(1) 132.11 26.69 25.56 0.02 0.03~1! 0.43 20.05 20.03 119.82~2!~2!

60
142Nd 4.914 20.89(2) 155.44 29.59 26.24 0.03 0.04~2! 0.56 20.07 20.03 139.25~3!~4!

66
164Dy 5.224 21.87(3) 182.31 213.32 27.06 0.05 0.06~3! 0.71 20.11 20.03 160.74~4!~5!

70
174Yb 5.317 22.92(5) 202.61 216.33 27.71 0.06 0.07~3! 0.82 20.13 20.04 176.44~6!~7!

74
184W 5.373 24.49(8) 225.21 219.83 28.45 0.07 0.08~4! 0.94 20.16 20.04 193.33~9!~8!

79
197Au 5.437 27.68(12) 257.29~1! 224.95 29.54 0.10 0.10~5! 1.10 20.20 20.05 216.17~13!~11!

80
202Hg 5.467 28.59(14) 264.30~1! 226.09 29.78 0.10 0.10~5! 1.13 20.21 20.05 220.93~15!~11!

82
208Pb 5.504~4! 210.67(2) 278.99 228.47 210.29 0.11 0.11~6! 1.20 20.24 20.05 230.68~6!~13!

83
209Bi 5.533~20! 211.94(7) 286.68 229.72 210.56 0.12 0.12~6! 1.23 20.25 20.05 235.62~9!~13!

90
232Th 5.802~4! 226.63(9) 348.29 239.68 212.79 0.16 0.16~7! 1.46 20.33 20.07 270.60~11!~18!a

92
238U 5.860~2! 233.35(7) 368.83 242.93 213.55 0.17 0.17~8! 1.52 20.36 20.07 280.48~11!~20!b

100
257Fm 5.886 279.0(1.0) 468.63~3! 257.88 217.34 0.24 0.24~12! 1.68 20.46 20.11 316.0~1.0!~0.3!

aIncludes 0.02 eV from nuclear polarization.
bIncludes 0.03 eV from nuclear polarization.
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The one-electron self-energy~SE! correction and the
Wichman-Kroll part of the one-electron vacuum-polarizati
~VP! correction are taken from recent tabulations@35,36#.
The Uehling part of the one-electron VP correction is cal
lated using the Fermi model of the nuclear charge distri
tion. Two-electron SE and VP corrections are taken from
previous evaluations@17,18#. The nuclear recoil correction
was calculated by Artemyevet al. @37#, and the nuclear-
polarization correction for thorium and uranium was stud
by Plunienet al. @38# and by Nefiodovet al. @39#. The total
correction due to the two-photon exchange, evaluated in
work, is divided into two parts, the second-order MBPT co
tribution and the difference between the exact QED and
MBPT results. The MBPT contribution is obtained by n
glecting the energy dependence of the photon propagato
the Coulomb gauge in the general formulas of Sec. II, a
introducing projectors on the positive-energy part of t
spectrum. It consists of theC, B, andB3B terms.

Corrections involving an exchange by three photons
suppressed roughly by a factor of 1/Z as compared to the
two-photon contribution and, therefore, are small but
negligible. In Ref.@40# we evaluated the three-photon e
change correction within the Breit approximation, by taki
the difference between the relativistic configuratio
interaction result obtained with hydrogenlike wave functio
03210
-
-
r

d

is
-
e

in
d

e

t

-
s

and the sum of the zeroth-, first-, and second-order~in 1/Z)
contributions calculated with the same hydrogenlike basis
this work we reevaluate this correction with an increas
number of configurations. It is worthwhile to note that th
Breit interaction is responsible for the dominant part of t
three-electron correction in the high-Z region. So the pure
Coulomb part of the three-photon exchange contribut
amounts to 0.04 eV for bismuth and 0.06 eV for uraniu
while the total correction is about three times larger and c
tributes 0.12 eV and 0.17 eV, respectively. Taking into a
count the restricted nature of the Breit approximation,
ascribe the uncertainty of about 50% to the three-photon
change correction in the high-Z region.

For the lowest values ofZ considered here, the accurac
of our calculation of the three-photon exchange correction
not high enough. Taking into account that in this region t
difference between the QED and the MBPT results for
two-photon exchange correction is negligible on the level
the total numerical accuracy, the data presented in the t
for the three-photon exchange forZ<32 were obtained from
the MBPT calculations@45,46#.

As the second-order one-electron QED corrections are
yet completely calculated, they are not included in the tab
The recent status of these calculations has been discuss
Ref. @41#. The calculation of the last remaining correction
9-12
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TABLE VI. Comparison between theoretical calculations and experimental results for the 2p1/2-2s tran-
sition energy in Li-like ions~in eV!.

Z This paper Ref.@47# Ref. @48# Ref. @49# Ref. @25# Experiment Reference

18 31.865~3!~1! 31.868~1! 31.866~1! @50#

20 35.960~3!~2! 35.964~1! 35.963 35.962~2! @51#

28 52.951~4!~4! 52.950~2! @52#

52.950~1! @53#

52.947~4! @13#

30 57.384~4!~4! 57.389~2! 57.34~1! 57.384~3! @13#

32 61.906~5!~4! 61.911~2! 61.907 61.902~4! @52#

61.901~2! @54#

40 81.03~1!~1! 81.04
47 99.43~1!~1! 99.438~7! @14#

50 107.90~1!~2! 107.92~1! 107.911~8! @15#

54 119.82~2!~2! 119.84~1! 119.82 119.97~10! @55#

119.820~8! @15#

60 139.25~3!~4! 139.29~1!

70 176.44~6!~7! 176.56~2! 176.52~10!

74 193.33~9!~8! 193.33
80 220.93~15!~11! 220.99~3! 220.92~20!

82 230.68~6!~13! 230.70
90 270.60~11!~18! 270.72~5! 270.69a

92 280.48~11!~20! 280.68~10!a 280.58a 280.54~15! 280.36~21! 280.59~9! @11#

aCorrected for the recent value of the nuclear-polarization effect@38,39#.
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order a2, the two-loop self-energy, is still in progress@42–
44#. Radiative corrections of ordera3 can be estimated a
the two-photon SE and VP screening corrections suppre
by a factor of 1/Z. Our rough estimate of the second-ord
one-electron and higher-order QED effects is represente
the second error ascribed to the total result in the table.
first error corresponds to the other sources of uncerta
which are quoted in the table.

Table VI presents the comparison of the present eva
tion of the 2p1/2-2s transition energy in Li-like atoms with
previous calculations and available experimental results
compared to our previous compilation@17#, in the present
paper we reduce the total uncertainty of the predictions,
to the rigorously calculated effect of the two-photon e
change. Still, a direct calculation of the second-order o
electron QED contribution is desirable in order to ascrib
well-defined error to the theoretical predictions.

In summary, with this paper we conclude the series of
investigations on the two- and three-electron corrections
order a2. We have evaluated all these contributions to
2p1/2-2s transition energy in Li-like high-Z ions. In this pa-
per we presented a rigorous QED calculation of the tw
photon exchange diagrams and an evaluation of the th
photon exchange correction within the Breit approximatio
We collected all presently available contributions to t
2p1/2-2s transition energy and compared the resulting p
dictions with the experimental results. While the total acc
racy of the theoretical predictions is significantly improved
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rigorous calculation of the second-order one-electron Q
effects is still required.
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APPENDIX

The summation over the magnetic substates in Eqs.~33!–
~36! yields

F lad,dir
n1n2 ~v!5a2 (

L1L2

RL1
~v,cvn1n2!RL2

~v,cvn1n2!

3
~21!L11L2

2 j v11 (
k

~2k11!H j 1 L2 j c

L1 j 2 j v

j c j v k J ,

~A1!
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F lad,ex
n1n2 ~v!5a2 (

L1L2

RL1
~v,vcn1n2!RL2

~v2D,cvn1n2!

3
1

2 j v11 H j c j 1 L1

j v j 2 L2J , ~A2!

Fcr,dir
n1n2~v!5a2 (

L1L2

RL1
~v,cn2n1v !RL2

~v,cn2n1v !

3
1

2 j v11 (
k

~2k11!H j 1 L2 j c

L1 j 2 j v

j c j v k J ,

~A3!
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Fcr,ex
n1n2~v!5a2 (

L1L2

RL1
~v,vn2n1v !RL2

~v2D,cn2n1c!

3
~21! j v2 j c

2 j v11 (
k

~21!k~2k11!

3H j 1 L2 j c

L1 j 2 j v

j v j c k J . ~A4!

The explicit expression for the radial integralRL(v,abcd)
can be found in Ref.@17#.
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