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Quantum measurement as a driven phase transition: An exactly solvable model
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A model of quantum measurement is proposed, which aims to describe statistical mechanical aspects of this
phenomenon, starting from a purely Hamiltonian formulation. The macroscopic measurement apparatus is
modeled as an ideal Bose gas, the order parameter of which, that is, the amplitude of the condensate, is the
pointer variable. It is shown that properties of irreversibility and ergodicity breaking, which are inherent in the
model apparatus, ensure the appearance of definite results of the measurement, and provide a dynamical
realization of wave-function reduction or collapse. The measurement process takes place in two steps: First, the
reduction of the state of the tested system occurs over a time of order\/(TN1/4), whereT is the temperature
of the apparatus, andN is the number of its degrees of freedom. This decoherence process is governed by the
apparatus-system interaction. During the second step classical correlations are established between the appa-
ratus and the tested system over the much longer time scale of equilibration of the apparatus. The influence of
the parameters of the model on nonideality of the measurement is discussed. Schro¨dinger kittens, EPR setups,
and information transfer are analyzed.
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I. INTRODUCTION

Understanding the specific features of quantum meas
ments has been a long-standing question@1–8#. Discussions
on this subject and its interpretations started in the early d
of the quantum theory@1–5#. Physical and philosophical re
flections on the problem and consideration of its differe
aspects became a source for deep conclusions abou
quantum world and its classical counterpart@2,4#. Also the
current activity in this field@6–11# clearly displays its com-
plexity and multifariousness, and witnesses that its final
tling is not yet close.

The main purpose of this paper is to exhibit the compl
solution of a model for a measurement process, which
show that two main paradigms of modern statistical phys
irreversibility and ergodicity breaking in phase transition
are crucially relevant for the quantum measurement probl
Together with some other conditions they provide all nec
sary ingredients for the realization of ideal quantum m
surements. No additional postulates need to be posed, s
standard quantum statistical physics completely suffices
the self-consistent explanation of this phenomenon.

We will start with a discussion on the problem of quantu
measurement and the main steps which were made in
interpretation and understanding.

A. General measurement

Let us recall the general requirements that a measurem
should satisfy. The quantity to be measured in the syste
under study is represented by a Hermitian operatorx with
eigenvaluesxk . The so-called pointer variableX in the mea-
suring apparatus A may take valuesXk in correspondence
with xk . The observation ofXk provides statistical informa
tion about the state of the system. Moreover, some meas
1050-2947/2001/64~3!/032108~27!/$20.00 64 0321
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ments termed as ideal@7# can be used as filters to prepare t
system in a state wherex takes a well-defined valuexk .

More precisely, we denote byr the density operator of the
system under study, byR that of the apparatus, and byR the
global density operator. To include the possibility of the mo
general descriptions of the system and the apparatus, we
lyze the situation in terms of density operators rather th
pure states. For simplicity we will operate in this secti
with discrete spectra. At the initial timet50 just before mea-
surement, the system is in anunknownstater(0), theappa-
ratus is in a fixed stateR(0) and these states are uncorr
lated, so that the complete state is described by

R~0!5r~0! ^ R~0!. ~1.1!

The uncorrelated character of this state simply reflects
fact that for t,0 the tested system and the apparatus w
not interacting. An evolution operatorT transforms this ini-
tial density operator into the overall density operatorR(u) at
the final timeu of the measurement, which should have t
form

T @r~0! ^ R~0!#[R~u!.(
k

pkRk . ~1.2!

Here T does not depend on the initial state of the syste
which is arbitrary and unknown, though it may depend
the initial state of the apparatusR(0). By . we mean ‘‘as
precise as desired provided that the parameters of the a
ratus are tuned suitably.’’

In a precise and unbiased measurement the final pos
statesRk entering Eq.~1.2! should constitute an orthogona
set,

tr~RkRl !.dkl , ~1.3!
©2001 The American Physical Society08-1
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so as to ensure that they representexclusiveevents to which
ordinary ~nonquantum! probabilities can be assigned. The
may be distinguished from one another by observing
pointer variableX, which takes in eachRk the valueXk with
a negligible statistical fluctuation, namely

tr~RkX!5Xk , tr~R kX
2!.Xk

2 . ~1.4!

Hereafter trA and trS indicate traces in the subspaces of t
apparatus and the system respectively, while tr is reserve
the complete trace.

EachXk occurs in Eq.~1.2! with a probabilitypk , which
is determined by the initial state of the system in the form

pk5trS„r~0!Pk…, ~1.5!

wherePk5uxk&^xku denotes the projection operator onto t
eigenvaluexk of x in the Hilbert space of the system. A
though the statesRk may depend on the initial stater(0) of
the particle, the quantitiesXk do not depend onr(0) for
precise and unbiased measurements, but are determine
the structure of the apparatus only. On the other hand,
probabilitiespk are determined by the initial stater(0) only.

The fact that the process which leads fromR(0) to R(u)
describes a measurement is reflected in a specific fea
Due to the exclusiveness property~1.3!, Eq. ~1.2! represents
the occurrence of aclassicalrandom quantityk, with prob-
ability pk . It expresses that after the observation has ta
place, the overall system is left in a stateRk with probability
pk . Indeed, the density operatorR(u) describes a statistica
ensemble of measurementsall performed under similar con
ditions rather than an individual experiment. Since the va
ableX has a definite value in each stateRk , one can count
the frequencies of the differentXk’s and thus recover the
unknown probability distributionpk . It is the specific type of
correlation exhibited for eachk in Eq. ~1.2!, between the
properties~1.4! pertaining to the apparatus and the expr
sion ~1.5! for the probabilitiespk in terms ofr(0), which
allows us to gain information about the tested system.

The crucial problem of quantum measurement is there
to explain how the evolution process of the coupled st
R(t) from R(0) to R(u) can produce a transformationT
which ensures Eq.~1.2!. The subsequent process ofobserva-
tion then merely amounts to theselectionof a single term of
Eq. ~1.2! characterized by the valueXk of the pointer. This
last step is by no means different from the analogous pro
in the classical probabilitytheory @6,8#, as was stressed re
cently by van Kampen and one of us@6#. It should be
stressed additionally that observation and selection refe
the specific type of measurement process which has b
previously performed.

B. Ideal measurement

The above measurement scheme is rather general, a
particular describes situations where the system itself d
not have a definite state after measurement~e.g., a photon is
destroyed when detected by a photomultiplier!.

A theoretically and practically important class of me
surements are the ideal ones, which leave the tested sy
03210
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as weakly perturbed as possible after selection of the re
In an ideal measurement, the possible final statesRk factor-
ize as

Rk~u!5rk^ Rk , ~1.6!

whererk is expressed in terms of the initial stater(0) of the
system as

rk5
1

pk
Pkr~0!Pk , ~1.7!

and where the possible final states of the apparatus, cha
terized by the valueXk of the pointer variable as in Eq.~1.4!,
are orthogonal as in Eq.~1.3!,

tr~RkRl !.dkl , ~1.8!

and are independent of the initial stateR(0). Notice that the
condition~1.8! is stronger than that given by Eq.~1.3!. Later
we will connect it with robustnessof the apparatus as a
information-storing device.

Thus, after observation of the apparatus, and sorting
given outcomeXk , the system ispreparedin the state~1.7!
by means of the so-called ‘‘reduction of the wave packet’’
‘‘collapse of the wave function.’’ Apart from bringing the
system into an eigenstate of the observablex associated with
the eigenvaluexk , the projection~1.7! does not affect its
other degrees of freedom.

A complete measurement theory should provide con
tions under which an apparatus interacting with the tes
system brings it into one among the reduced statesrk .

C. The standard approach

When they deal with quantum measurements, textbo
usually justify the above properties by relying on the co
ventional arguments initiated by Bohr@1,3,12#. Somewhat
qualitative and incomplete, this general line of reasoning
came known as the Copenhagen interpretation. Differ
though closely connected versions were summarized
Rosenfeld@12# and more recently by van Kampen@8# among
others. The first precise discussion on the measurement p
lem was given by von Neumann@5#, who clarified the issues
but was led to consider the properties of quantum meas
ments, in particular the reduction~1.7! as apostulate, which
complements the standard principles of quantum mechan
This additional postulate is, however, not needed as one
show, using consistency arguments, that the reduction of
wave packet can be derived from the standard principles
from natural properties attributed to measurements, in p
ticular, repeatability@6#.

Nevertheless, a complete understanding of a quan
measurement requires its analysis as adynamical process. A
crucial point to be explained is the nonexistence in the fi
state~1.2! of so-called Schro¨dinger cat terms with respect t
the indexk. For simplicity let us specialize on an ideal me
surement. Starting from any initial state of the system,
final density operatorR(u) should commute with both the
measured observablex of the system and the pointer obser
8-2
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QUANTUM MEASUREMENT AS A DRIVEN . . . PHYSICAL REVIEW A64 032108
ableX of the apparatus. This property ensures that the re
of the measurement process can be described in the lang
of classical probability theory. Otherwise, ifR(u) did in-
clude off-diagonal contributions ink, the standard interpreta
tion of the measurement process would fail.

The Copenhagen school of thought overcomes this d
culty by saying that any physically acceptable apparatus
to be a classical system@1,3#. Thus it cannot exist in a stat
with superpositions. More refined Copenhagen-like
proaches@12,13,8# state that the apparatus is a macrosco
system, and therefore coherent superpositions may arise
cannot be detected at least when measuring certain ob
ables. This situation was illustrated by an exactly solva
model @14# ~see also@15# in this context!, where a class of
observables was proposed, which are indeed nonsensitiv
superpositions. Nevertheless, a small modification of
class allows to produce superpositions@16#.

In the von Neumann–Wigner approach@2,5# the states of
the apparatus are pure, asR(0)5uC&^Cu, and Rk
5uCk&^Cku, and the evolution is characterized by the ma
ping

uck&uC&°uck&uCk& ~1.9!

between initial and final states of the compound system
this evolution is applied to a coherent initial state of t
tested system such as

r~0!5S (
k

akuck& D S (
k8

ak8
* ^ck8u D , ~1.10!

then one finally gets the following stateR̃(u) associated
with r(0):

R̃~u!5(
k,k8

akuck&uCk&ak8
* ^ck8u^Ck8u, ~1.11!

whereas the desired stateR(u) in Eq. ~1.2! involves only the
diagonal elements ofR̃(u):

R~u!5(
k

uaku2uck&uCk&^cku^Cku. ~1.12!

Partial traces ofR̃ and R over either the apparatus or th
system subspace are equal, but we should explain why
off-diagonal terms ofR̃ are never seen. Indeed, one has
the partial density matrix of the particle

r~u!5trAR̃~u!5trAR~u!5(
k

uaku2 uck&^cku.

~1.13!

However, the situation described byR̃(u) does not corre-
spond to any measurement, since the apparatus and the t
system cannot be in definite states with definite probabilit
Actually, since with modern experimental equipments one
able to detect mesoscopic and evenmacroscopicsuperposi-
tions ~see, e.g.,@17,18# where recent results are reported
the context of charge and flux macroscopic superposition
03210
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Josephson junctions!, the question remains open and can
formulated in the following form: What are the concre
properties of a system, that make it usable as a measu
apparatus characterized by the collapsed state Eqs.~1.1!–
~1.7!?

D. Irreversibility

An important requirement for the realization of Eq
~1.1!–~1.7! is the existence ofirreversibility. Whereas Eq.
~1.11! is a pure state, we expect the pointer variable to ta
some well-defined valueXk with the classical probabilitypk ,
and this implies the final state to be the mixture~1.12!. In
other words, the von Neumann entropySvN„R(u)…5
2trR(u)ln R(u) of the stateR(u) in Eq. ~1.12! is positive,
while SvN„R̃(u)…50. More generally the von Neumann en
tropy of Eq.~1.2! can be shown to be different from that o
Eq. ~1.1!, due to the elimination of the coherent terms in t
final state. This implies aloss of informationabout the co-
herence, a loss which is required to ensure the classica
terpretation of the measurement and the reduction of
wave packet.

A measurement process should therefore be analyze
the same way as an irreversible process in quantum statis
mechanics, a second reason for using density operators.
size of the apparatus should be sufficiently large, so t
irreversibility and relaxation emerge from the microscop
reversible evolution. Otherwise measurements could no
ideal. The fact that the condition~1.2! cannot be realized
with a unitary transformation from any initial state~1.1! is
nowadays well established with different degrees of gen
alization @2,19#. To understand this in simple terms, let u
write down the ideal measurement transformation for t
different initial statesr (s)(0), s51,2 of the system,

T @r (s)~0! ^ R~0!#5R (s)~u!.(
k

pk
(s)rk^ Rk ,

~1.14!

and assume for simplicity that the spectrum ofx is nonde-
generate: Pk5uxk&^xku. Then unitarity of T requires
trS@r (1)(0)r (2)(0)#5tr@R (1)(u)R (2)(u)#, and conditions
~1.7! and ~1.8! imply

trSr
(1)~0!r (2)~0![(

k,l
^xkur (1)~0!uxl&^xl ur (2)~0!uxk&

.(
k

^xkur (1)~0!uxk&^xkur (2)~0!uxk&

~1.15!

and hence

(
k5” l

^xkur (1)~0!uxl&^xl ur (2)~0!uxk&.0, ~1.16!

which cannot be true for arbitraryr (1)(0) andr (2)(0). Thus,
the unitarity ofT has to be disguised. Actually, the situatio
is the same as in any relaxation process: The ove
8-3
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system is isolated, and the evolution ofR(t) is in principle
governed by Hamiltonian dynamics, but on suitable tim
scales irreversibility occurs owing to the presence of a la
number of degrees of freedom, which act as an external b
Statistical physics is needed to explain this behavior,
which microscopic reversible equations of motion result
macroscopic irreversible ones. Just the same approach
followed recently by two of us, to discover that the standa
issue of Brownian motion leads to incompatibilities wi
thermodynamics in the regime of quantum entanglem
@20#.

E. Ergodic and decoherence approaches to quantum
measurements

A first application of statistical physics in support of th
Copenhagen interpretation was given by Daneri, Long
and Prosperi@13,12#. Somewhat related~but not equivalent!
approaches are reviewed in Ref.@10#. After considering the
measuring apparatus and measured system together as aiso-
lated system, one attributes the absence of macroscopic
perpositions to inevitable statistical uncertainties, which
present in macroscopic bodies. Mathematically this is
flected in different kinds of ergodic assumptions, which a
reasonably creditable for those systems. However, these
proaches have several drawbacks, which, in particular, o
nate from the fact that they do not provide dynamical mec
nisms for the realization of quantum measuremen
Extensive criticism of them can be found in@9#.

There is another, nowadays not less influential, schoo
thought which we shall follow. It attempts to handle th
problem also involving certain arguments from statisti
physics@21,22,9,11#. In this decoherenceapproach the loss
of coherence is viewed as a process established by an e
nal environment, which is generally understood as a col
tion of uncontrollable and unobservable degrees of freed
A decoherence process suppresses superpositions of
special states, which are determined by the interaction
tween the environment and the system. However, in an id
quantum measurement, the coherence associated with
the observablex of the tested system, and the observableX of
the apparatus should disappearindependentlyof the concrete
form of environment-system interaction, whereas the ot
coherences which exists inr(0) should remain present in th
reduced statesrk defined by Eq.~1.7!. The type of decoher-
ence occurring in quantum measurements is thus very sp
and we shall relate its features to the apparatus-system i
action rather than to an environment-system interaction.

F. Requirements on quantum measurement models

Keeping in mind both the successes and shortcoming
the various existing ideas, we tackle in this paper the qu
tum measurement problem by investigating a specific mo
The coupled evolution of the system and apparatus is tre
as a dynamical process of quantum statistical mechanics
deriving an explicit solution we wish to show how the va
ous features of an ideal measurement, expressed by
~1.1!–~1.7!, can emerge from the microscopic dynamics ge
erated by the Hamiltonian of our model.
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When choosing the model we have been guided by v
ous conditions that an apparatus should satisfy.

~1! It should have a degree of freedomX which may relax
towards definite valuesXk .

~2! It should be macroscopic so as to ensure an irrev
ible relaxation.

~3! This relaxation should be selectively triggered by t
interaction ofX with the variablex of the measured system

~4! The various valuesXk should a priori be equally prob
able, so as to avoid any bias produced by the appara
Thus, the various final statesRk , characterized by the valu
of Xk , should have the same entropy.

~5! The apparatus should be a stable and robust infor
tion storing device, which implies that the statesRk are
nearly in equilibrium and that after the measurement
been completed,X is a nearly conserved collective variabl

These properties suggest to take for the apparatus a
ably chosen macroscopic system which is able to underg
phase transition, withXk as anorder parameter. Indeed, a
phase transition is a macroscopic process with robust
stable~or at least metastable! outcomes. Notice that the ex
istence of an order parameter implies ergodicity breaking
contrast to the purely ergodic view at measurement@13#.

~6! The measured quantityx should be coupled to the
order parameter, and the apparatus shouldamplify this signal
received during its interaction with the system. This
achieved by noting that the value of an order parameter
be controlled by an infinitesimally small source. The micr
scopic variable will play the role of such a source, whi
controlsX but otherwise does not affect the apparatus.

~7! The relaxation of the order parameter is ensured by
coupling with other degrees of freedom of the apparat
referred to as a thermal bath. It is this coupling which,
gether with the thermodynamical limit for the apparatus, w
ensure the specific type of relaxation discussed above.

We shall work out a model, as simple as possible, sub
to the above requirements. The tested system is a o
dimensional particle, and the quantity to be measured is
position. The apparatus is a noninteracting Bose gas, w
has an easily tractable phase transition. The variableX is the
amplitude of the condensate. This situation will be shown
be generalizable for an arbitrary tested system and an a
trary measured observable~Appendix A!. Although specific
and not realistic, the model is thus suggestive for more g
eral measurements. The possibility of tuning the parame
will help us to find the limit in which the measurement
ideal and to explore some imperfections of the measurem

This paper is organized as follows. In Sec. II we pres
the model and discuss its equations of motion. Limits wh
are especially relevant for the quantum measurement p
lem, as well as exact solutions of the equations of motion
the Schro¨dinger and Heisenberg pictures are considered
Sec. III. In Sec. IV we show that the present model realiz
the conditions of ideal measurements discussed above. T
we also consider characteristic times of this realization a
discuss imperfections which arise due to an incomplete th
modynamical limit for the apparatus. Our conclusions a
presented in the last section. Several technical questions
considered in Appendices A, B, C, and D.
8-4
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II. THE MODEL

A. The apparatus and its bath

As a model for our apparatus we will choose a system
N noninteracting bosons in a three-dimensional cubic b
with volumeV and periodic boundary conditions. Its Ham
tonian reads

HA5(
i

« iai
†ai , ~2.1!

whereai
† , ai are the creation and annihilation operators

each single-boson state, and« i is its energy, given in terms o
its wave vectork and of the boson massM by

« i5
\2k2

2M
. ~2.2!

Notice that«050. This apparatus is an open system, nam
it interactsweaklywith a large external environment. If ther
were no other interactions, the Bose gas would relax w
time towards the Gibbs distribution:

rA5
1

Z
exp~2bHA1bmN!, Z5tr exp~2bHA1bmN!,

~2.3!

whereT51/b is the temperature andm is the chemical po-
tential. Both of these quantities are imposed by the envir
ment. FinallyN is the number operator

N5(
i

ai
†ai . ~2.4!

In a realistic apparatus what we call the ‘‘external’’ env
ronment is actually constituted by a large number of degr
of freedom which are part of the apparatus itself. Here
treat it as a separate thermal bath, which can exchange
ergy and particles with the Bose gas. We can imagine
bath itself as a Bose gas which is much larger than the
paratus, so that its intensive variables remain fixed once
forever. The bath is characterized by its temperatureT, its
chemical potentialm, and by a quantum coupling which in
duces a relaxation timeg21 to the Bose gas. This situatio
corresponds to the grand canonical ensemble for the app
tus although the overall apparatus-bath system is isola
Whereas the value ofT is fixed by the overall energy, th
value of m is determined by the overall boson number. W
shall focus below on a condensed gas, withumu/T small as
1/AN. The tuning ofm is then achieved through a control o
the overall particle number.

As a system examined by means of the apparatus, we
a particle living in one-dimensional space, with massm, an
external potentialV(x) and Hamiltonian

HS5
p2

2m
1V~x!. ~2.5!

The measured quantity is the positionx, which is coupled to
the Bose gas through the interaction
03210
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2
~a0

†1a0!, ~2.6!

whereg is the coupling constant. The quantityX attached to
the apparatus will be our pointer variable. It is macrosco
cally accessible through observation of the density of
Bose gas provided Bose condensation takes place, whic
quires low temperature and sufficiently smallumu. In this
case we expect the signalx to be amplified, becauseX2 will
be extensive. On the other hand, a tested system intera
with all levels of the apparatus would certainly be less int
esting, since the threshold of the influence on the appar
would be diminished. We have chosen the simple interac
~2.6! for theoretical purposes, although it is not realistic sin
it can change the number of bosons.

Altogether the Hamiltonian of the apparatus and the s
tem during the measurement reads

H5HA2mN1HS1H I , ~2.7!

to which we should add the interaction of the Bose gas w
the bath, see Appendix D. Since the number of bosons m
change through exchanges with the bath and the obse
system, we have included for convenience in Eq.~2.7! the
contribution from the chemical potential. Later on we w
show how to generalize this situation to an arbitrary tes
system and measured observable, keeping the same mea
ment apparatus.

B. Bose condensation

As is well known, the three-dimensional ideal Bose gas
equilibrium undergoes a condensational phase transitio
sufficiently large density or small chemical potential. Let
briefly recall this phenomenon, since in our setup this i
crucial property of the apparatus as an information-stor
device. We consider here the Bose gas submitted to an
ternal constant field sourceJ, which later on will be identi-
fied with the termA\/2gx in H I :

HB5(
i

« iai
†ai2J~a01a0

†!. ~2.8!

We work in the grand canonical ensemble. When ther
no source term, it is known that despite different magnitud
of fluctuations in the condensed phase, the grand canon
and canonical ensembles are equivalent for the noninter
ing Bose gas@23#. However, the source term in Eq.~2.8! can
have a macroscopic effect only in the grand canonical
semble. It controls the density of the condensate, which
vary owing to possible exchange with the bath. In the
nonical ensemble where the overall density is given, the d
sity of the condensate would be practically insensitive to
presence of the source. In our present situation thedensity
^a0

†a0&, and not only thephaseof ^a0&, appears as an orde
parameter controlled by the fieldJ. This property is specific
for our model of noninteracting bosons, and would be inva
for a realistic Bose condensate with interaction.
8-5
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At the equilibrium state with temperatureT and~negative!
chemical potentialm one diagonalizes the Gibbsian dens
matrix by shifting the lowest energy operators as

a05ã02
J

m
, a0

†5ã0
†2

J

m
. ~2.9!

This leads to

^a0&52
J

m
, ~2.10!

^a0
†a0&5

1

e2bm21
1

J2

m2
. ~2.11!

The averages concerning excited states will not change, s
the field acts only on the lowest mode. For the total den
of particles one gets

N

V
5

1

V (
i

^ai
†ai&5

~2M !3/2

4p2\3 E0

` d«A«

eb(«2m)21
1

1

V

1

e2bm21

1
J2

Vm2
. ~2.12!

Here we went to the thermodynamical limit, which, ifx and
thusJ are well defined, means to make the following chan

tr~••• !°E d3x d3k

~2p!3
~••• !5VE d3k

~2p!3
~••• !

5V
~2M !3/2

4p2\3 E0

`

d«A«~••• !.

~2.13!

We also separated out the contribution coming from the lo
est state«50.

We wish to measurex, which, if x is well defined, means
that we wish to find the value ofJ5A\/2gx through a mac-
roscopic observation of the Bose gas. This is feasible
observing the total density~2.12!, provided that the last term
in this equation is finite in the thermodynamical limit, whic
requires:umu→0 whenN→`. In this case the particle den
sity

N

V
5

Nn

V
1

Nc

V
~2.14!

splits into a noncondensed part,

Nn

V
5

~2M !3/2

4p2\3 E0

` d«A«

eb«21
5

0.165869M3/2

\3
T3/2, ~2.15!

and a condensed part

Nc

V
5

T

Vumu
1

J2

Vm2
, ~2.16!
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which is our order parameter. SinceNn /V is a known func-
tion of temperature, we can deduceNc /V from the total den-
sity, provided that this total density is significantly larg
than the critical value~2.15!:

N

V
.

Nc

V
. ~2.17!

In order to use the Bose gas as a measurement devic
J, we shall require Eq.~2.16! to be dominated by its las
term, which means that

1@
umu
T

@
1

N
, ~2.18!

and that

umu
J

5OS 1

AN
D . ~2.19!

Under such conditions, the scalar source termx, which will
be replaced later on by the coordinate of the tested part
can be deduced from the density of the Bose gas and
characteristics of its bath:

x25
2m2V

\g2 S N

V
2

Nn

V D . ~2.20!

The sign ofx results through Eq.~2.10! from the phase of the
condensate. Low temperatures will improve the efficiency
the measurement, since they provide small values for
~2.15! and thus increase the ratioN/Nn . The chemical po-
tential of the bath should be fixed at some small value wh
N→`, so as to ensure Eqs.~2.18! and ~2.19!, andg should
be such that asg2x2\/m2 is of orderN.

The excited states of the Bose gas will not play a dir
role in our model of measurement, since they are not coup
to the tested particle. Nevertheless, they contribute, toge
with the bath, to exchange bosons with the condensate,
density of which can thus be controlled by the chemical p
tential as well as by the sourceJ.

Notice also that, although the various macroscopic sta
characterized by different values of the order parame
Nc /V can be distinguished, they appear on the same foot
because both their entropy and their energy are the sam
the thermodynamical limit. Indeed the contribution of th
condensate to the entropy is lnNc , its contribution tô HB& is
2mNc where umu!T, so that both become negligible asN
→`. This was required to prevent the apparatus from hav
an intrinsic bias.

C. Equations of motion

1. Dynamics of the apparatus in its bath

Before we examine the equations of motion of the ove
system including the tested particle, the apparatus and
bath, we will investigate in this subsection the situation wi
out the tested particle. At some remote initial timet5t0!0
the apparatus was in an arbitrarynonequilibriumstate. At
8-6
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that time it starts to interact with the bath, and the aris
dynamics for the apparatus will be described by means
weak-coupling quantum Langevin equation@24# ~see Appen-
dix D for the derivation of this equation from the Heisenbe
equation associated with the apparatus-bath Hamiltonian!:

ȧi5
i

\
@HA2mN,ai~ t !#2gai1A2gbi~ t !

52 i ~v i1a!ai2gai1A2gbi~ t !, ~2.21!

where

\v i[« i , \a[2m. ~2.22!

Notice that the chemical potentialm is negative, whereas th
parametera is positive. The Langevin equations are writte
for the Heisenberg operators of the apparatus only, but
presence of the bath is reflected through a friction ter
2gai , and a random Gaussian force operatorbi(t), which
satisfies

@bi~ t !,bk
†~ t8!#5d ikd~ t2t8!,

@bi~ t !,bk~ t8!#5@bi
†~ t !,bk

†~ t8!#50, ~2.23!

^bi
†~ t !bk~ t8!&5d ikd~ t2t8!ni

eq,

^bi~ t !bk~ t8!&5^bi
†~ t !bk

†~ t8!&50, ~2.24!

ni
eq5

1

eb(« i2m)21
. ~2.25!

The most important consequence of Eqs.~2.21!, ~2.23!,
~2.24!, and~2.25! is that they ensure relaxation with the cha
acteristic time 1/g of the apparatus towards the Gibbs dist
bution ~2.3! with the temperatureT and chemical potentialm
imposed by the bath. This can be seen from the follow
exact solution of Eq.~2.21!:

ai~ t !5e2g(t2t0)2 i (v i1a)(t2t0)ai~ t0!

1A2gE
0

t2t0
ds e2gs2 i (v i1a)sbi~ t2s!. ~2.26!

In particular, all possible moments^a†n(t)am(t)& calculated
with Eq. ~2.26! for t2t0@1/g are identical to those obtaine
through the Gibbs distribution~2.3!. For example the aver
age number of particleŝai

†(t)ai(t)& in the leveli evolves in
time according to

^ai
†~ t !ai~ t !&[ni~ t !5e22g(t2t0)ni~ t0!1~12e22g(t2t0)!ni

eq,
~2.27!

which shows thatni(t) relaxes to its Gibbsian stationar
valueni

eq at the characteristic time 1/(2g).
Since, as shown by Eqs.~2.6! and~2.7!, the tested particle

interacts only with the lowest level of the apparatus,
equations of motion for the excited levels withi>1 will be
03210
g
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always given by Eq.~2.26!. Therefore, in the further discus
sion we will leave these excited levels aside.

2. Equations of motion including the tested particle

Let us now consider the situation with the tested syste
The interaction between the apparatus and the tested sy
is switched on at the initial timet50. For t<0 the overall
initial state factorizes as in Eq.~1.1!, wherer(0) is an arbi-
trary state of the tested particle andR(0) is the Gibbs distri-
bution of the apparatus given by Eq.~2.3!. Indeed due to the
assumed conditiont2t0@1/g the apparatus had enough tim
to relax starting from any initial state att5t0. From now on
we shall drop the index 0 ina05a, b05b. The Heisenberg-
Langevin equation of motion for the lowest level of the a
paratus reads fort.0

ȧ5
i

\
@H,a~ t !#2ga1A2gb~ t !

52 iaa1
i

A2\
gx~ t !2ga1A2gb~ t !. ~2.28!

This equation is solved exactly as

a~ t !5e2gt2 iata~0!1
ig

A2\
E

0

t

ds e2gs2 iasx~ t2s!

1A2gE
0

t

ds e2gs2 iasb~ t2s!. ~2.29!

For gt@1, and whenx is constant, Eq.~2.29! expresses tha
the Bose gas relaxes towards an equilibrium state, where
particle number in the condensate is given by Eq.~2.16! with
J5A\/2gx, as ensured by the second term in the right-ha
side ~RHS! of Eq. ~2.29!. The average number of particle
n(t)5^a†(t)a(t)& in the lowest state is evolving as

n~ t !5e22gtn~0!1
g2x2

2\~g21a2!
~11e22gt22e2gtcosat !

1~12e22gt!neq. ~2.30!

The second term in the RHS of Eq.~2.30! is the contribution
supplied by the source, which shifts the condensate den

Although the evolution of the apparatus when there is
source leads to a well-defined equilibrium state wheren(0)
5T/umu is large but not extensive asV→`, the small inter-
action with the tested particle is sufficient to change mac
scopically n at times t@1/(2g) if umu5\a is sufficiently
small. This means that the apparatus together with its b
constitute a system which isnearly nonergodicwhen Bose
condensation sets in.

The Heisenberg dynamics of the particle reads

Ḟ5
i

\
@HS,F~ t !#2

ig

A2\
@x~ t !,F~ t !#„a~ t !1a†~ t !…

~2.31!
8-7
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for any operatorF. We find in particular

ẋ5
1

m
p, ~2.32!

ṗ52V8~x!1E
0

t

dsx~ t2s!x~s!1h~ t !, ~2.33!

where

h~ t !5h0~ t !1h1~ t !, ~2.34!

h0~ t !5A\ggE
0

t

ds e2gs
„b†~ t2s!eias1b~ t2s!e2 ias

…,

~2.35!

h1~ t !5A\

2
ge2gt

„a†~0!eiat1a~0!e2 iat
…, ~2.36!

x~ t !5g2e2gtsinat. ~2.37!

The interaction of the particle with the Bose gas produce
force, which has a random part. The randomness of the n
h(t) arises from two independent reasons: the statistical~un-
certain! character of the initial state of the apparatus, wh
gives the contributionh1(t), and the random character ofb,
b†, which occurs throughh0(t). Recall that att50 the ap-
paratus was in equilibrium at temperatureT and chemical
potentialm,

^a~0!a†~0!&511
1

e2bm21
, ^a†~0!a~0!&5

1

e2bm21
.

~2.38!

Since b(t), b†(t) are themselves Gaussian,h(t) will be
Gaussian as well, with the noise autocorrelation:

K~ t,t8!5^h~ t !;h~ t8!&5K0~ t,t8!1K1~ t,t8!, ~2.39!

K0~ t,t8!5^h0~ t !;h0~ t8!&

5
g2\

2
cos@a~ t2t8!#

3coth
\a

2T
~e2gut2t8u2e2g(t1t8)!, ~2.40!

K1~ t,t8!5^h1~ t !;h1~ t8!&

5
g2\

2
cos@a~ t2t8!#coth

\a

2T
e2g(t1t8),

~2.41!

where we define for any operatorsA, B:

^A;B&[
1

2
^AB1BA&. ~2.42!
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Notice thatK(t,t8) is time-translation invariant, although it
separate parts are not. It is seen that fort1t8@1/g, which
corresponds to the stationary apparatus, onlyK0(t2t8) per-
sists. The most important effect of the bath on the dynam
of the tested particle is the appearance of a new characte
correlation time 1/g in addition to the time scale set up b
the maximal frequency of the apparatus and to the unive
quantum correlation time\/T.

3. Brownian motion of the tested particle

In order to compare Eqs.~2.32!–~2.37! with the standard
quantum Brownian motion approach, one integrates
~2.33! by parts. This yields an equation@24#,

ṗ52V8~x!2
1

mE
0

t

dsx̃~ t2s!p~s!1h~ t !2x̃~ t !x~0!

1x̃~0!x~ t !, ~2.43!

which has the usual form in terms of a friction kernel

x̃~ t !5e2gt
a cosat1g sinat

a21g2
, ~2.44!

and of a noiseh(t). Notice, however, that the friction kerne
does not have a definite sign witht. The last term in Eq.
~2.43! renormalizes the potential. As far as one is interes
in the state of the tested particle itself, the full noise act
on it is h(t). However, for the global state of the particle an
the apparatush1(t) is a deterministic object, and onlyh0
remains as noise.

4. Validity of weak-coupling quantum Langevin equations

When substituting the above white-noise quantum Lan
vin equations for the actual interaction between the appar
and the bath, a crucial fact was that their coupling is weak
that the damping time 1/g is much larger than both the
~maximal! dynamical characteristic timetd of the apparatus,
and the characteristic correlation time of the bath\/T. Under
these conditions it is possible, as shown in Appendix D,
introduce an effective quantum noiseb(t) with white spec-
trum satisfying Eqs.~2.23!–~2.25!, and get the Gibbs distri-
bution as the result of relaxation. The timetd is expressed as

td;
1

a
5

\

umu
, ~2.45!

as seen from the free part of Eq.~2.28!. Altogether the pa-
rameters of the bath should satisfy

a@g or T@umu@\g, ~2.46!

where we have taken into account the upper bound~2.18! on
umu. Notice that excited levels of the Bose gas have a low
dynamical time

td
( i );

1

a1v i
. ~2.47!
8-8
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It is expected that in a nonideal Bose gas these characte
times will influence also the lowest mode, making its ch
acteristic dynamical time lower. The weak-coupling con
tion ~2.46! is discussed with more details in Appendix D.

III. DYNAMICS OF THE MEASUREMENT PROCESS

A. Approximate conservation of the measured quantity

The above equations describe the joint evolution of
tested particle and the Bose gas in the bath which ens
relaxation. This evolution will describe a measurement ox,
if the Bose condensate registers the statistical distributio
x in the initial stater(0) under the conditions specified in th
Introduction. In the present section we will take into accou
the following condition for ideality of the measurement.

If x(t) did change with time during the process, the fin
state of the apparatus would be determined not only by
statistical distribution ofx(0) but rather by the whole histor
of its change. So to be sure that we indeed measure
quantityx(0), wewill require that the characteristic time fo
x(t) to change appreciably from its initial value is muc
larger than the relaxation time 1/g of the apparatus. This
time is itself shorter than the durationu of the measurement
since for t5u the apparatus should display definite resu
through well-defined stationary states. Notice the conse
tion of x(t) does not mean that the state of the particle is
changing. One only needs approximate conservation of
quantityx. For the considered model this is realized if ov
the time scaleu one can neglect the contribution of the k
netic energyp2/(2m) to the change of the coordinatex. Ob-
viously, this is realized for sufficiently largem. The more
precise conditionm@g2u3 will be found in Appendix C,
where we discuss the deviations from nonideality wh
arise from the motion of the particle during the measu
ment. For other systems this conservation of the meas
quantity may result from a commutation relation:@HS,x#
50, as stressed by Wigner@2# ~see also@26# in this context!.
However, the actual mechanism is basically irrelevant p
vided that the time scale for the variation ofx is much larger
than the duration of the measurement.

Notice that taking the limitm→`, as we do in the bulk of
this paper, does not mean that we are dealing with a clas
particle. In fact, the initial density matrix̂x8ur(0)ux9& of the
particle is arbitrary, which expresses that the quantityx is
subject to a fully quantum probability distribution at the in
tial time owing to the presence of off-diagonal elements. T
large mass enters the equation of motion~2.32!, and it only
implies that the diagonal elements^xur(t)ux& remain un-
changed during the measurement.

B. Wigner function and intermediate Wigner function

1. Wigner function

For solving the dynamics in the Schro¨dinger picture, we
find it useful to employ the language of the Wigner functio
The description through Wigner functions is, of course, co
pletely equivalent to that through density matrices, but f
quently, and in particular for quantum systems with line
03210
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dynamical evolution equations, this allows to obtain and u
derstand results in a more easy way. This is because Wi
functions allow one to use the classical intuition as much
possible, which appears to be insightful for such systems

We shall focus on the degrees of freedomx, p of the tested
particle anda, a† of the condensate, leaving aside the excit
states of the Bose gas which relax independently. To in
duce a Wigner function not only for the particle but also f
the apparatus degrees of freedom, we represent the ann
tion and creation operators in the canonical way:

a5
1

A2\
~X1 iP !, a†5

1

A2\
~X2 iP !, ~3.1!

X5A\

2
~a1a†!, P5 iA\

2
~a†2a!, ~3.2!

@X,P#5 i\. ~3.3!

Recall that the connection between a density ma
^x8urux9& and the corresponding Wigner functionw(x,p) is
given for each degree of freedom as

K x1
1

2
jUrUx2

1

2
j L 5E dp

2p\
ei jp/\w~x,p!, ~3.4!

w~x,p!5E dj e2 i jp/\K x1
1

2
jUrUx2

1

2
j L . ~3.5!

Notice that in the present paper the normalization of
Wigner function is chosen as

E dp dx

2p\
w~x,p!51, ~3.6!

since the integration with this weight corresponds to a tra
The Wigner function of the particle and the condensate
gether will be denoted byW(X,P,x,p); those of the particle
and condensate separately will be denoted asw(x,p) and
W(X,P), respectively. Obviously, one has

E dX dP

2p\
W~X,P,x,p!5w~x,p!,

E dx dp

2p\
W~X,P,x,p!5W~X,P!. ~3.7!

The Wigner function at timet in the Schro¨dinger picture
can readily be represented in terms of the Heisenberg op
tors. For example, for the tested particle the correspond
formula reads

w~x,p;t !5^trr~0!ŵ~x,p;t !&,

ŵ~x,p;t !5E da db

4p2
exp@2 iax2 ibp1 iax~ t !1 ibp~ t !#,

~3.8!
8-9
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wherex(t), p(t) are the Heisenberg operators of the partic
r(0) is its initial state, and the average is taken with resp
to the full noiseh5h01h1.

2. Intermediate Wigner function

We shall also find it convenient to use yet another form
lation, where the degrees of freedom of the tested particle
left in the matrix representation, and the Wigner transform
tion ~3.5! is taken only for the apparatus degrees of freedo
We will call this object the intermediate Wigner functio
and denote it asV(X,P,x8,x9), wherex8, x9 denote the cor-
responding matrix elements in thex representation,

V~X,P,x8,x9!5E dj e2 i jP/\K X1
1

2
j,x8URUX2

1

2
j,x9L

5E dp eip(x82x9)/\WS X,P,
x81x9

2
,pD .

~3.9!

Here again the excited states of the Bose gas are left as

C. Exact solution of the equations of motion in the Heisenberg
picture

We consider a heavy (m→`), free (V(x)50) particle.
The equations of motion for the apparatus have already b
solved as Eq.~2.26! for the excited states and Eq.~2.29! for
the lowest state. The latter equation, in whichx(t2s) can be
replaced byx(0), is written in terms ofX, P andb5b0 as
03210
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X~ t !5X~0!e2gtcosat1P~0!e2gtsinat

1
x~0!g

g21a2
@a2~g sinat1a cosat !e2gt#

1A\gE
0

t

ds e2gs@e2 iasb~ t2s!1eiasb†~ t2s!#,

~3.10!

P~ t !5P~0!e2gtcosat2X~0!e2gtsinat

1
x~0!g

g21a2
@g1~a sinat2g cosat !e2gt#

1 iA\gE
0

t

ds e2gs@eiasb†~ t2s!2e2 iasb~ t2s!#.

~3.11!

For the tested particle we can solve Eqs.~2.32! and~2.33!
when the operatorx(t) does not significantly change, as

x~ t !5x~0!, ~3.12!

p~ t !5p~0!1x~0!j~ t !1E
0

t

du h~u!, ~3.13!

where
and the
for the
j~ t !5E
0

t

duE
0

u

dsx~s!5g2
~g21a2!at1~g22a2!e2gtsinat22ag~12e2gtcosat !

~g21a2!2
, ~3.14!

andx(t), h(t) are defined by Eqs.~2.34!–~2.37!. Hereafter the following formulas will be used:

E
0

t

dse2gscosvs5
g@12e2gtcosvt#1ve2gtsinvt

g21v2
, E

0

t

ds e2gssinvs5
v@12e2gtcosvt#2ge2gtsinvt

g21v2
. ~3.15!

D. Exact solution of the equations of motion in the Schro¨dinger picture

Since the above dynamical equations are linear, there is a direct connection between the Heisenberg picture
Schrödinger dynamics in terms of the overall Wigner function for the tested particle and the apparatus. The equation
common Wigner function of the particle and the lowest mode has the form

W~X,P,x,p;t !5E dX0dP0dp0F~X,P,x,p;tuX0 ,P0 ,x,p0 ;0!W~X0 ,P0 ;0!w~x,p0 ;0!. ~3.16!

Here we denote byX0 ,P0 ,p0 the variables of the Wigner function at the initial time. The variablex of the Wigner function
remains unchanged from the initial to the final state, since the Heisenberg operatorx(t) is conserved. In Eq.~3.16! we used the
fact that the initial Wigner functionW is factorized into the partial Wigner function of the lowest levelW(0) and that of the
tested particlew(0),

W~X,P,x,p;0!5W~X,P;0!w~x,p;0!5w~x,p;0!
\

l
expF2

1

2l
X22

1

2l
P2G , ~3.17!
8-10
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where we took into account the fact that at the initial timet50 the apparatus has already relaxed to the equilibrium G
distribution under the influence of the bath.

To find the transition kernelF, we notice that the Heisenberg operatorsX(t), P(t) andp(t) of the Bose gas and the teste
particle given by Eqs.~3.10!–~3.13! are linear and involve only theGaussiannoiseb,b†. We can then use the method of E
~3.8! for the whole system. Recall that the moments of the Wigner function coincide with the correspondingsymmetrized
operator moments. Hence,F has the Gaussian form

F~X,P,x,p;tuX0 ,P0 ,x,p0 ;0!5
AdetB

~2p!3/2
expS 2

1

2 (
i ,k51

3

BikLiLkD , ~3.18!

where (L1 ,L2 ,L3) is the following three-dimensional vector:

L15X2^X&5X2X0e2gtcosat2P0e2gtsinat2
xg

g21a2
@a2~g sinat1a cosat !e2gt#, ~3.19!

L25P2^P&5P2P0e2gtcosat1X0e2gtsinat2
xg

g21a2
@g1~a sinat2g cosat !e2gt#, ~3.20!

L35p2^p&5p2p02xj~ t !2
gX0

g21a2
@g1~a sinat2g cosat ! e2gt#2

gP0

g21a2
@a2~g sinat1a cosat ! e2gt#.

~3.21!

Here we have used Eqs.~3.10!, ~3.11!, and~3.13!, and the averagê•••& is taken over the noise operatorsb, b† directly and
throughh0. The quantityj(t) was defined in Eq.~3.14!. Notice that since we are interested here in the common state o
particle and the apparatus, the term connected withh1 which gives rise to the last two terms in Eq.~3.21! appears as
deterministic. The Gaussian quantum noise enters throughB, which is a 333 symmetric matrix with the following elements

@B21#115^~X2^X&!2&5@B21#225^~P2^P&!2&5
\

2
@12e22gt#coth

\a

2T
, ~3.22!

@B21#125^X2^X&;P2^P&&50, ~3.23!

@B21#135^X2^X&;p2^p&&5K X2^X&;E
0

t

dsh0~s!L 5
g\

2 S g22ge2gtcosat1ge22gt

g21a2 D coth
\a

2T
, ~3.24!

@B21#235^P2^P&;p2^p&&5K P2^P&;E
0

t

dsh0~s!L 52
g\

2 S a22ge2gtsinat2ae22gt

g21a2 D coth
\a

2T
, ~3.25!

@B21#335^~p2^p&!2&5E
0

tE
0

t

ds1ds2K0~s1 ,s2!5
g2\

2
coth

\a

2T S 2gt112e22gt

g21a2
1

4g~ge2gtcosat2ae2gtsinat2g!

~g21a2!2 D .

~3.26!

If we adopt the following notations

l~ t !5@B21#11, z~ t !5
@B21#13

l~ t !
, s~ t !5

@B21#23

l~ t !
, ~3.27!

D~ t !5
@B21#33

l~ t !
2s~ t !22z~ t !2, ~3.28!

then we can write the matrixB21 as

B215lS 1 0 z

0 1 s

z s D1z21s2
D , ~3.29!
032108-11
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and hence the matrixB will read

B5
1

lD S D1z2 zs 2z

zs D1s2 2s

2z 2s 1
D 5

1

l S 1 0 0

0 1 0

0 0 0
D 1

1

lD S 2z

2s

1
D ^ ~2z 2s 1!. ~3.30!

Equation~3.18! for F can altogether be written in the explicit form:

F~X,P,x,p;tuX0 ,P0 ,x,p0 ;0!5
1

A~2p!3l3D
expS 2

1

2l
~L1

21L2
2!2

1

2lD
~L32zL12sL2!2D , ~3.31!
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wherel, z, s, D, L1 , L2 andL3 are defined by Eqs.~3.19!–
~3.28! as functions of time.

E. Measurement of a variable with a discrete spectrum

The results reported so far were obtained for the meas
ment of the coordinatex which has a continuous spectrum.
is of clear interest to indicate how the obtained results can
generalized for other specific situations, e.g., for meas
ment of spin. Here we provide a simple remark, which w
set our results in a more general context.

Let us assume that the interaction between the tested
tem and the apparatus is still given by Eq.~2.6! but now the
tested system is completely arbitrary, andx in this equation
refers to one of its observables. In particular, it can hav
discrete spectrum. For simplicity we still neglect the se
Hamiltonian of the tested system. In this general case,
complete Wigner function for the system and the lowest le
is no longer defined. Nevertheless, the intermediate Wig
function of Eq.~3.9! is still perfectly defined. Recall that thi
function employs (X,P) variables for the lowest mode, bu
uses the matrix elements (x8,x9) in the eigenrepresentatio
of the measured quantityx. As we show in Appendix A the
intermediate Wigner function corresponding to Eq.~3.16! ad-
equately describes the general situation that we cons
Though the complete density matrix of the measured sys
and the lowest mode might also be used, the intermed
Wigner functionV is a more convenient object to deal wit

An illustrative example for the measurement of an obse
able with a discrete spectrum is the spin-boson Hamilton
@25#, of which we only need to specify the interaction par

H I5
1

2
gszX, ~3.32!

where the measured observable1
2 sz is the z-component of

spin for the tested system.
The situation of a discrete spectrum measurement

also be encountered below for our original model in spite
the continuity of the coordinatex. Actually, we shall consider
an initial density operatorr(0) involving two distinct values
of x only, a situation which does not differ much from
genuine discrete spectrum.
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IV. IDEAL MEASUREMENT: POSTMEASUREMENT
STATES

In this section we will be interested in the postmeasu
ment situation. Let us first resume theconditions of ideality
of the measurement that we have encountered above.
relaxation time of the apparatus should be small compare
the duration of the measurement:

gu@1. ~4.1!

The coupling with the bath should however be small on
scale of the dynamical time~2.45!, as shown in Appendix D:

g!a5
umu
\

. ~4.2!

On the other hand, if we denote byx̃ a typical value of the
coordinate to be measured,

x̃25tr„r~0!x2
…, ~4.3!

its coupling with the apparatus should produce a finite c
densate density, which according to Eq.~2.20! is expressed
as

\g2x̃2

m2
5O~N!. ~4.4!

The fact that the bath ensures Bose condensation, but tha
condensate density remains dominated by the coupling w
the particle, imposes the condition~2.18!, that is

1@
umu
T

@
1

N
. ~4.5!

To fix ideas we shall assume in the following that

umu
T

5OS 1

AN
D , ~4.6!

with T finite in the thermodynamical limit. This will imply,
from Eq. ~4.4!, that the coupling constantg is finite. Finally,
if p̃ is the characteristic value of the particle momentum,
approximate conservation ofx during the measuremen
means that
8-12
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p̃

m
u! x̃ ~4.7!

or m@g2u3 as shown in Appendix C. We expect that und
these conditions both the tested system and the Bose
have reached at timeu a quasistationary state that we wish
study.

By using the condition~4.1! we first recall that the excited
states become decoupled and thermalized with the b
since their Wigner function at timeu deduced from Eq.
~2.26! reads

Wk~Xk ,Pk!5
2

coth
«k1\a

2T

expF2
1

\coth
«k1\a

2T

3~Xk
21Pk

2!G . ~4.8!

The transition kernelF between times 0 andu can be
obtained from Eqs.~3.19!–~3.28!, and ~3.31!. Under condi-
tions ~4.1!, ~4.2!, ~4.5!, and ~4.7! its various ingredients re
duce to

l~u!5
\

2
coth

\a

2T
.

T

a
, z~u!50, s~u!52

g

a
,

~4.9!

D~u!5
2g2gu

a2
, ~4.10!

L1~u!5X2
gx

a
, L2~u!5P,

L3~u!5p2p02
xg2u

a
2

g

a
P0 , ~4.11!

L32zL12sL25p2p01
g

a
~P2P0!2

xg2u

a
, ~4.12!

where we have usedj(u)5g2u/a as follows from Eq.
~3.14!. We note that Eqs.~4.5! and ~4.6! imply

N\@l~u!@\, l5\O~AN!, ~4.13!

respectively, and that Eqs.~4.1! and ~4.4! imply

D~u!@
N\

x̃2
, ~4.14!

while gx̃/a is of orderAN\.
The postmeasurement state of the tested particle and

apparatus will be investigated below in three steps. First
will discuss the partial state of the apparatus and that of
particle. Later on we shall turn to the global state.
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A. Apparatus

As seen, the apparatus itself behaves as a Bose gas su
to a source field proportional togx(0). Owing to Eqs.~4.13!
and~4.14! the variancelD of L3 in Eq. ~3.31! is much larger
than (N\/ x̃)2. We can therefore readily trace out the test
particle from Eqs.~3.16! and~3.31! by integrating over both
p andp0. The factorw(x,p0 ;0) of Eq. ~3.16! thus generates
the probability density

E dp0

2p\
w~x,p0 ;0!5^xur~0!ux& ~4.15!

for the coordinatex in the initial state of the tested particle
The resulting expression of the Wigner function of the ap
ratus at timeu has the expected form

W~X,P;u!5E dx^xur~0!ux&Wx~X,P!, ~4.16!

Wx~X,P!5
\

l
expF2

1

2l S X2
gx

a D 2

2
1

2l
P2G . ~4.17!

The Wigner functionWx(X,P), wherel5T/a, describes the
quantum Gibbs distribution of the apparatus at temperatuT
and chemical potentialm52\a, with a classical sourceJ
5A\/2gx.

For each possible value of the coordinatex of the particle
the apparatus is thus in an equilibrium state, with an or
parameter proportional tox. In spite of the quantum nature o
the variablex(0) which is governed by the initial densit
operatorr(0), it acts on the apparatus as aclassical random
object. We can understand this classical feature by no
that becausex(0)5x(t) during the process,a(t) and a†(t)
commute with it:@a(t),x(0)#50, @a†(t),x(0)#50. There-
fore, the situation is very similar to that considered in S
II B, with J5gx(0)A\/2. However, there is a subtle poin
since the fieldJ is now random. Its quantum randomne
arises from the initial state of the tested particle, which
general is not an eigenstate of the coordinate operator. S
the off-diagonal part ofr(0) disappears owing to the larg
size of l(u)D(u), to be inserted in Eq.~3.31!, Eq. ~4.16!
shows that the quantum nature of the randomness is
pressed. It is seen as well that the resulting classical rand
ness is quenched, which means that all extensive quant
have to be calculated for a fixed field and then average
the last step.

Notice that for the continuous spectrum a certain di
culty may arise if~for example! the initial state of the par-
ticle is an eigenstate of the coordinate:^x8ur(0)ux9&5d(x8
2x0)d(x92x0), in which case the quantity~4.15! diverges.
There are several standard ways to overcome this diffic
@3#. The simplest one is to consider a Gaussian pac
^xuc&5(2pe)21/4exp@2(x2x0)

2/(4e)# instead of a precise
eigenstate of the coordinate. This state has a normaliz
Wigner function,

w~x,p;0!52 expF2
~x2x0!2

2e
2

2ep2

\2 G , ~4.18!
8-13
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and we can lete→0 in the last stage of calculations. Furth
on we will always assume that this procedure is impl
when necessary. This justifies the replacement of Eq.~4.15!
by d(x2x0).

Since the apparatus is a nonergodic system, Eq.~4.16!
means that it will occupy witha priori probabilities
^xur(0)ux& a state which is determined by the initial value
the coordinate. If the initial state of the particle is an eige
state of the coordinate operator the field is not random,
there is only one state to which the apparatus can relax. S
this case we have a definite prediction, as it should be.

In each state~4.17! of the apparatus, the momentumP
associated with the lowest mode fluctuates around the v
0 exactly as in the Gibbsian state imposed by the bath, bu
coordinateX is shifted byxg\/umu. This shift is of order
AN\ according to Eq.~4.4!, and it produces a finite shift in
the density

Nc

V
5

1

2\V
^X21P22\&.

\g2x2

2m2V
~4.19!

of the condensate. The statistical fluctuation ofX, equal to
Al, is small compared tôX&}AN\ owing to the first con-
dition in Eq. ~4.13!, namelyl!N\.

The second condition in Eq.~4.13!, namelyl@\, entails
that the variablesX andP behaves asclassicalrandom vari-
ables, which is a natural requirement for the pointer varia
of an apparatus. Compared to the shift^X& their fluctuations
are of relative orderN21/4 if we choosel5\O(AN).

1. Amplification and registration

We have just seen that the interaction of the tested par
and the apparatus results in amacroscopicchange in the
condensate density: It fixes the expectation value^X& to
xg\/umu within fluctuations which are small in relativ
value. This large effect is a consequence of the condi
~4.4!. The couplingg is sufficiently large to produce a shift i
the numberNc , which is of the same order as the total pa
ticle number. However, it is sufficiently small so that th
contribution of the interaction HamiltonianH I to the energy
of the apparatus is negligible.

The amplification of the influence of the tested system
the apparatus is due here to the smallness ofumu. The bath,
which imposes on the apparatus the condition~4.5!, prepares
it before the measurement in a state where the conden
density is not yet finite, but where the smallness ofumu
makes the apparatus very sensitive to a source coupledX.
By making successive macroscopic observations of the v
of X, one can then find the statistics ofx(0) through
^xur(0)ux&. There is a one-to-one correspondence betw
^X& andx(0), without bias because the various values of
order parameter̂X& yield identical values for the energy a
well as for the entropy.

A peculiarity of the model comes from the fact that t
amplification factorg/umu depends on the coupling consta
g and on the chemical potential of the bath. These quant
need to be known to let us determinex(0) through^X&.
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Moreover, if we wish toregister the result of a measure
ment, which is the value reached byX at the timeu when the
interactiong is switched off, we need to imagine that th
exchange of bosons between the bath and the apparat
also switched off at the same timeu. The overall density of
bosons as well the condensate density thereafter remain
in the apparatus, which is in canonical equilibrium after t
time u. Another theoretical procedure to freeze the cond
sate density at the value~4.19! would consist in switching off
the couplingg before the end of the measurement. The f
of the tested particle after the timeu is considered in Appen-
dix B.

2. Robustness

We have explained how our apparatus realizes amplifi
tion of weak signals. This is only half of the way towards
good information storing device, because we yet should
whether another important property which isrobustnessis
satisfied. In other words, if under influence of a weak fie
the apparatus has relaxed to a definite state, then what i
probability that it will leave this state spontaneously? If th
transition probability is small, and can be made as small a
is desired, then the property of robustness is present.

Let us assume that the apparatus has been brought in
state with

^X&5
gx

a
. ~4.20!

In this state the apparatus has Wigner functionWx and den-
sity matrix R. We wish to calculate the transition probabilit
to another stateR8 associated withx8 under the effect of
some perturbation. If these states were pure, the trans
probability would read as usual:

Pr~x→x8!5tr~RR8!. ~4.21!

For mixed states we use the same formula in terms of
overlap:

Pr~x→x8!}tr~RR8!5E dX dP

2p\
Wx~X,P!Wx8~X,P!.

~4.22!

To be normalized this expression should be divided
Pr(x→x). Using Eq.~4.17! one gets

Pr~x→x8!5expF2
g2~x2x8!2

4la2 G . ~4.23!

It is clear that above the phase transition point, when b
a52m\ and l @defined by Eqs.~3.22! and ~3.27!# are fi-
nite, this transition probability is of order one, so that
robustness is present as was to be expected.

Let us consider the situation below phase transition wh
l;T/a. We then have

Pr~x→x8!5expF2
\g2~x2x8!2

4Tumu G . ~4.24!
8-14
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According to Eq.~4.5! the exponent is of order2Numu/T.
With Eq. ~4.6! this exponent behaves as2AN in the thermo-
dynamical limit, providedx andx8 differ by a quantity which
remains finite asN→`. The probability therefore vanishe
as it should.

The fact that the overlap between states of the appar
associated with different values ofx is negligible also ex-
presses that different positions of the pointer variable con
tute exclusiveevents.

3. Accuracy of measurement

The robustness reflects stability of the apparatus with
spect to external perturbations. Another quantity, theaccu-
racy, characterizes the strength of the noise due to the in
uncertainty of the tested particle, and due to spontane
thermal fluctuations induced by the bath. One can estim
the accuracy of the measurement by evaluating the follow
quantity

S5
$^X2&%av2$^X&2%av

$^X&2%av

, ~4.25!

where the averagê•••& is taken with respect to the state
the apparatus, and where$•••%av denotes the average ove
the initial distribution of the particle. This is the signal-to
noise ratio, andS!1 corresponds to a good measuremen
X. Having used Eqs.~2.10!, ~2.11!, and~4.5!, one finally gets

S5
Tumu

\g2$x2%av

. ~4.26!

In the region where the condensational phase transition
ists this quantity is small asT/(umuN)5O(N21/2), provided
that the thermodynamical limit is taken and that$x2%av is
finite. The accuracy is thus governed by thermal noise.

Note also that apart from the above uncertainty the d
vation of the measured quantityx from the pointer variableX
by means of Eq.~4.19! involves the ratiog/m. The accuracy
of the measurement is, of course, spoiled if the coupl
constantg and the chemical potential of the bath are n
controlled with precision.

B. Tested particle

Let us now consider the partial state of the tested parti
At time u we can find this state by tracing out the appara
from Eq. ~3.16! using the approximations~4.9!–~4.12!. In
this calculation we first note that the memory about the
tial valueX0 is lost. The variableP0 enters through the las
term of the exponent ofF, which at the timeu reads

2
1

2lD
~L32zL12sL2!2

52
1

2lD S p2p01
g

a
~P2P0!2

xg2u

a D 2

.

~4.27!
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Since the apparatus is nearly in equilibrium at both time
and u, P and P0 are of orderAl5AT/a. We can thus ne-
glect the term depending on the apparatus in the bracke
Eq. ~4.27!, because

1

2lD

g2

a2
~P2P0!25

a3

4g2Tgu

g2

a2

T

a
5

1

4gu
~4.28!

is small. This means that the overall system forgets about
initial state of the apparatus forgu@1. We can therefore
readily integrate over the initial stateW(X0 ,P0 ;0) of the
apparatus, then over the variablesX andP, which yields

w~x,p;u!5E dp0w~x,p0 ;0!
1

A2plD

3expF2
1

2lD S p2p02x
g2u

a D 2G . ~4.29!

Due to the large value oflD the exponential factor in Eq
~4.29! is nearly constant. Indeed, we have

lD x̃2

\2
5

2\g2x̃2

m2

T

umu
gu5guO~N3/2!, ~4.30!

wherex̃ is defined by Eq.~4.3!, so that the only effect of this
exponential is to produce a cutoff which ensures the norm
ization of w(x,p;u). Otherwise,w(x,p;u) is practically in-
dependent ofp, and its dependence onx is the same as that o
the probability densitŷxur(0)ux& as expected.

The density matrix in thex basis associated with th
Wigner function~4.29! is given by

^x8ur~u!ux9&5^x8ur~0!ux9&expF2
lD

2\2
~x82x9!2

1
ig2u

2umu ~x822x92!G . ~4.31!

The large value oflD ensures that it practically reduces
the diagonal part ofr(0) in the basisx.

1. Decoherence time

The above expressions forw(u) or r(u) show that the
decoherence of the state of the tested particle with respe
x has been achieved at the timeu.

In order to understandhow and whenthis decoherence
takes place during the interaction process between time
and u, we return to the equations of motion of the test
particle which are given by Eqs.~3.8!, ~3.12!, and ~3.13!.
Both termsh0 andh1 in Eq. ~3.13! should here be treated a
noise, since we eliminate the apparatus. The fluctuation
this noise are given by Eqs.~2.40! and~2.41!. Altogether we
get for the Wigner functionw(x,p;t) of the tested particle:
8-15
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w~x,p;t !5E dp0w~x,p0 ;0!
1

A2pd~ t !

3expF2
1

2d~ t !
„p2p02xj~ t !…2G , ~4.32!

where we defined(t) by

d~ t !5E
0

tE
0

t

dt1dt2K~ t1 ,t2!5E
0

tE
0

t

dt1dt2K0~ t1 ,t2!

1
g2\

2
coth

\a

2T S 122e2gtcosat1e22gt

g21a2 D , ~4.33!

and *0
t *0

t dt1dt2K0(t1 ,t2) is given by Eq.~3.26!. By using
Eqs.~3.24! and ~3.26! we find

d~ t !5@B21#331
g

g
@B21#13. ~4.34!

With the help of formulas~3.4! and ~3.5! one gets the
evolution of the density matrix

^x8ur~ t !ux9&5^x8ur~0!ux9&expF2
d~ t !

2\2
~x82x9!2

1
i j~ t !

2\
~x822x9!2G . ~4.35!

It is seen that the diagonal elements of the density ma
~those for whichx85x9) are not changed at all, whereas t
off-diagonal ones are damped with rated(t)/\2. In other
words, the density matrix of the tested particle tends to
mixture formed by eigenstates of the coordinate opera
Indeed, the decoherence factord(t), which measures how
the density matrix is squeezed in terms ofx82x9, increases
from 0 to ` as the timet goes from 0 tò . Its asymptotic
forms at short and long times are derived from Eqs.~3.24!
and ~3.26! as

d~ t !5
g2T

a
t2, gt!at!1, ~4.36!

d~u!5
2g2T

a3
gu, gu@1. ~4.37!

For long timesgu@1 the exponent of Eq.~4.35! behaves as

d~u!

2\2
~x82x9!2;

\g2~x82x9!2

m2

T

umu
gu5guO~N3/2!,

~4.38!

and we recover as in Eq.~4.31! the strong damping of the
off-diagonal terms, which allows us to obtain the proper st
of the tested particle after the measurement.
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An analogous investigation for short timesgt!at!1 can
be carried out using Eq.~4.36!:

d~ t !

2\2
~x82x9!2;

\g2~x82x9!2

m2

T

umu S Tt

\ D 2

5S Tt

\ D 2

O~N1/2!.

~4.39!

This quantity can be much larger than 1 even in the region
short timest for which at5umut/\!1, provided

N21/4!
Tt

\
!

T

umu
5O~N1/2!. ~4.40!

The off-diagonal terms ofr(t) thus disappear at the ver
beginning of the interaction of the particle with the appa
tus, after a delay of orderN21/4. The characteristic time

t;
\

TN1/4
~4.41!

over which the reduction of the state of the tested part
takes place is thusmuch shorterthan theduration u of the
measurement, since

u@
1

g
@

\

umu
@t. ~4.42!

The first inequality in Eq.~4.42! ensures the relaxation of th
apparatus. The second inequality ensures that the statio
state will be Gibbsian. The third inequality indicates that t
decoherence of the tested particle takes place on a time s
much smaller that the dynamical time\/umu given by Eq.
~2.45!. Note also that\/T itself is an important characteristi
time scale in quantum statistical physics, which character
the relevance of quantum versus thermal effects. As show
Eq. ~4.41! the macroscopic size of the apparatus redu
these quantum effects by a factorN1/4.

The collapse timet, which in textbook discussions is e
ther taken to be zero or identified with themeasurement time
u itself, is definitely different from the latter in our mode
Another interesting aspect of this difference is that, at th
short time scales given by Eq.~4.41!, the change in the ap
paratus is still negligible. Indeed, the variables of the b
have not yet changed at those scales, since the characte
time over which the equilibrium between the bath and
apparatus sets in is 1/g. On the other hand, the energy ass
ciated with the particle has as well not changed, because
influence of the kinetic energy can be neglected, and
coordinatex(t) remains constant. In fact we shall study
the next subsection the change in momentum associated
the second, imaginary term in the exponent of Eq.~4.35!.
According to Eqs.~4.36! and~4.45! below, this term is neg-
ligible compared to the first one forat!1 since their ratio
for such short times is of order\j(t)/d(t);atumu/6T
5atO(N21/2). Altogether, this means that Eqs.~4.39!,
~4.41!, and ~4.42! provide an example of a situation whe
the reduction of the state of the tested particle occurs l
before achievement of the measurement process, and wit
8-16
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any energy cost, although this reduction is a consequenc
the interaction with the apparatus.

2. Back reaction of the apparatus

The post-measurement Wigner function~4.29! of the
tested particle involves a shiftxg2u/a of the momentum,
that we have not yet discussed. The density matrix~4.31!
accordingly exhibits oscillations within the small region
x82x9 where^x8ur(t)ux9& is significant. Let us evaluate th
order of magnitude of the corresponding average mom
tum:

^p&5
\xg2u

m
5

\g2x̃2u

m2

a

g

x\

x̃2
gu5

\

x̃

a

g
guO~N!@

\

x̃
O~N!.

~4.43!

The fluctuations ofp, of orderAlD5Ad(u), are also large,
because the final state is localized in thex space. They are
expressed by Eq.~4.30!. Although large, the value of̂p&
would be ineffective if it were smaller than these fluctu
tions. However, the ratio of the shift to the fluctuations
given at the timeu by

^p&2

^p2&2^p&2
5

\g2x2

2m2

T

umu S a

g D 2

gu @S a

g D 2

guO~N1/2!,

~4.44!

a large number in the thermodynamical limit.
The shift of ^p& is therefore an important effect of th

measurement. Let us look how this shift increases at s
times. By using Eqs.~4.32! and ~3.14! we find

xj~ t !;
g2axt3

6
, gt!at!1. ~4.45!

At the timet when decoherence is being achieved, the s
~4.45! is of order

xj~t!;
\g2x2

m2 S m

T D 3

N23/4
\

x
5

\

x
O~N25/4!. ~4.46!

We see that the change in^p& begins to be significant long
after decoherence has taken place. This is consistent with
fact anticipated at the end of Sec. IV B 1, that very little
yet changed in the apparatus at the timet.

The ratio ~4.44! is of order 1 at a timet1 such that
@xj(t1)#25d(t1), where the shift becomes comparable w
the fluctuation. Using Eqs.~4.36! and ~4.45! one finds

t15
\

T
N3/8, t!t1!

1

a
. ~4.47!

Here as int, the time-scale is given by\/T, but now the
thermodynamical limit produces an enhancement.

The large shift of̂ p& can be attributed to the interactio
process which takes place between the apparatus and
particle in the time intervalt1 , u. During this period, the
particle acts upon the lowest mode so as to drive it toward
03210
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state with a finite density of the condensate. In response
large effect produces a boost in the average momentum^p&.
The phenomenon can be traced back to the second ter
the RHS of Eq.~2.33! for p. The factorx(t) which enters
this term describes a deterministic effect produced on
particle by the apparatus in contact with the bath. The
crease ofu^p&u is thus a cumulative effect of friction, which
accompanies the rise ofu^X&u.

Altogether the interaction of the tested particle with t
apparatus produces on this particle two effects. It first
duces the state, suppressing the off-diagonal terms inx dur-
ing the timet. Later on, between the timest1 andu, it yields
a large value to the average momentum without spread
the distribution inx, as seen in Eqs.~4.29! and ~4.32!. This
second effect is probably connected with specific feature
our model, namely, the choice of the apparatus and of
order parameter, and the form of the interaction Hamilton
between the apparatus and the tested particle. It is also
lated to the existence of the continuous spectrum forx, which
allows the rapid oscillations exhibited by Eqs.~4.31! and
~4.35!.

One may wonder whether the large value of^p& reached
at the timeu is compatible with our hypothesis that th
Heisenberg operatorx(t) has remained practically consta
over the time interval (0,u). We show in Appendix C that
contrary top(t), the equation of motion forx(t) contains no
systematic drift term arising from the coupling with the a
paratus and hence with the bath; it involves only a noise te
which does not affect muchx(t). We were thus entitled to
neglect the variations ofx between the times 0 andu.

3. Einstein-Podolsky-Rosen experiment and speed of quantu
signals

The above analysis allows us to discuss an experimen
the Einstein-Podolsky-Rosen~EPR! type. Let us suppose tha
the tested system consists of two particles denoted by 1
2. They do not interact fort.0, but they did interact in the
past, which is reflected in an entangled wave function of
tested system at the initial timet50:

r~0!5uc&^cu, uc&5(
k

akuxk&uyk&, ~4.48!

where uxk& are eigenfunctions of the operatorx for the first
particle, anduyk& are arbitrary normalized, not necessar
orthogonal functions in the Hilbert space of the second p
ticle. As indicated by Eq.~4.18! a small dispersion should b
allowed for x so as to normalizeuxk&. The measurement o
the observablex is realized as above, namely the first partic
couples through its operatorx with the apparatus as ex
pressed by Eq.~2.6!. However, the second particledoes not
interact with the apparatus. Equations~4.35! and~4.39! take
place as above with the slight difference that^x8ur(t)ux9&,
^x8ur(0)ux9& are matrices in the Hilbert space of the seco
particle. In particular, the reduction~collapse! of the initial
state occurs on the time scale predicted by Eqs.~4.39! and
~4.41!, and it now provides
8-17
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r~t!.(
k

uaku2uxk&uyk&^yku^xku. ~4.49!

The remarkable feature of quantum mechanics is that
though only one subsystem is involved in the measurem
the total state of the tested system is reduced.

This general analysis can be illustrated by the stand
example of two spins produced in the singlet state by
decay of an object with angular momentum 0. The init
density operator~4.48! is

^s1s2ur~0!us18s28&5
1

2
ds11s2,0~ds1 ,s

18
ds2 ,s

28
2ds1 ,s

28
ds2 ,s

18
!.

~4.50!

As above we perform measurement on thez component of
the first spin only. For largeN Eq. ~4.39! leads to reduction
s15s18 after a delayt. This automatically impliess25s28 :

^s1s2ur~t!us18s28&.
1

2
ds11s2,0ds1 ,s

18
ds2 ,s

28
. ~4.51!

Let us give some quantitative estimate of the characte
tic reduction time scalet. For a temperatureT.1K we ob-
tain

t510211N21/4 s. ~4.52!

Estimating N;1024 for a macroscopic system, we gett
;10217 s. For a distance of 1 m between spins this wo
lead to a speed of order 1017 m/s. Of course, this does no
mean that there is an information transfer at this speed,
only a change in our knowledge throughr of the quantum
correlations of the two spins. Indeed, as we noticed at
end of Sec. IV B 1 the energy of the system is constant
times of ordert.

C. The common state of the tested particle and apparatus

In the evaluation of the common Wigner function~3.16!
of the particle and the apparatus, we use for the transi
kernelF the approximate expressions~4.9!–~4.12! as above.
We recall that in the limitgu@1 the variance ofp,

d~u!5l~u!D~u!5
2g2T

a3
gu5

\2

x̃2
guO~N3/2!, ~4.53!

is large as well asl(u)5T/a. We saw at the beginning o
Sec. IV B that this implies a loss of memory about the init
stateW(X0 ,P0 ;0) of the apparatus. In Eq.~3.16! we thus
integrate over the initial Wigner function~3.17! and find

W~X,P,x,p;u!5E dp0C~X,P,x,p;uux,p0!w~x,p0 ;0!,

~4.54!

where
03210
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l
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l

C~X,P,x,p;uux,p0!

5
\

l~u!A2pd~u!
expF2

1

2l S X2x
g

a D 2

2
1

2l
P2

2
1

2d~u! S p2p02j~u!x1
g

a
PD 2G . ~4.55!

For d(u)→` the expression~4.54! reduces to the product o
the Wigner functionWx(X,P) of the apparatus, defined b
Eq. ~4.17! for each possible value ofx, and thatw(x,p;u) of
the particle given by Eq.~4.29!. This factorization merely
expresses both the reduction of the initial statew(x,p;0) into
w(x,p;u) and the registration by the apparatus of the clas
cal random variablex.

The finite size ofd(u) in Eq. ~4.55! entails a nonideality
of the measurement that we now consider. We shall fin
convenient to rewrite Eqs.~4.54! and ~4.55! in two alterna-
tive forms. First we may use as indicated in Sec. III B 2 t
density matrix representation only for the tested partic
while keeping the Wigner representation for the appara
~intermediate Wigner function!

V~X,P,x8,x9;u!

5^x8ur~u!ux9&
\

l
expF2

1

2l S X2
g

a

x81x9

2 D 2

2
1

2l
P22

g

a

i

\
~x82x9!PG , ~4.56!

where the density matrixr(u) reduces to a nearly diagona
form in x as expressed by Eqs.~4.31! and~4.35!. And finally
the same expression can be presented in the complete de
matrix representation:

^X8,x8uR~u!uX9,x9&5^x8ur~u!ux9&
1

A2pl

3expF2
1

2l S X81X9

2
2

g

a

x81x9

2 D 2

2
l

2\2 S X82X92
g

a
~x82x9! D 2G .

~4.57!

It is seen that the last small termg(x82x9)/a in the RHS of
Eqs.~4.56! or ~4.57! quantifies the entanglement, that is, t
degree of quantum correlations between the apparatus
the particle. Indeed, if in Eq.~4.57! we neglect this factor, we
again find that the overall density matrix simplyfactorizes
into the contributions studied above separately for the ap
ratus and the particle

^X8,x8uR~u!uX9,x9&.^X8uRxuX9&^x8ur~u!ux9&,
~4.58!

where we check, usingl52\T/m andm52\a, that
8-18
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Rx5
1

A2pl
E dX8dX9uX8&^X9uexpF2

1

2l S X81X9

2
2

gx

a D 2

2
l

2\2
~X82X9!2G ~4.59!

is the Gibbsian density operator of the apparatus for
pointer variablex5(x81x9)/2. This factorization, togethe
with the fact thatr(u) describes the reduced state of t
tested particle, shows that the program set up in the introd
tion by Eqs.~1.1!–~1.8! is achieved, and that our model d
scribes an ideal measurement provided the various co
tions ~4.9!–~4.12! are satisfied.

Let us turn to a more detailed discussion of the o
diagonal terms in the overall density matrix~4.57!. As we
already discussed in Sec. III E, Eqs.~4.56! and ~4.57! are
valid for the measurement of any Hermitian operatorSof the
tested particle, in particular those with a discrete spectr
When dealing with this case,$ux&% should be directly substi
tuted by the eigenbase ofS. Then the analogue of Eq.~4.57!
reads

R~u!5(
i

pi usi&^si u ^ Ri~u!1(
i 5” k

expF i j~u!

2\
~si

22sk
2!

2
d~u!

2\2
~si2sk!

2G ^si ur~0!usk&usi&^sku ^ Rik ,

~4.60!

wherepi5^si ur(0)usi& is the initial distribution of the mea
sured quantityS of the tested particle, and where

Rik5
1

A2pl
E dX8dX9uX8&^X9uexpF2

1

2l S X81X9

2

2
g

a

si1sk

2 D 2

2
l

2\2 S X82X92
g

a
~si2sk! D 2G

~4.61!

satisfies

trARik5expF2
lg2

a2

1

2\2
~si2sk!

2G , trARik
2 5

\

2l
5

umu
2T

.

~4.62!

For i 5” k, Rik has almost the same form asRii [Ri , given for
the continuous case by Eq.~4.59!, but with slightly shifted
off-diagonal matrix elements. Notice that this shift is due
entanglement between the apparatus and the particle.

It is seen from Eq.~4.60! that the off-diagonal terms ofR
are strongly suppressed with the exponential factor

expF2
d~u!

2\2
~si2sk!

2G . ~4.63!
03210
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We again find the expected features for an ideal meas
ment, without the difficulties of the continuous spectrum d
cussed in Eq.~4.18! and Sec. IV B 2.

In order to understand the above suppression in term
observables, let us imagine that one calculates the avera
the state~4.60! of some observableF with matrix elements
^X8uFikuX9& in the Hilbert space of the particle and the a
paratus:

^F&5(
i

pi trA~Fi i Ri !1(
i 5” k

expF i j~u!

2\
~si

22sk
2!

2
d~u!

2\2
~si2sk!

2G ^si ur~0!usk&trA~FkiRik!.

~4.64!

To ensure that the second sum in the RHS of Eq.~4.60! is
non-negligible in the thermodynamic limit, one needs

utrA~FkiRik!u}expFd~u!

2\2
~si2sk!

2G ~4.65!

at least for one pair (i 5” k). Using

utrA~FkiRik!u2<trAFikFkitrARik
2 ~4.66!

and Eq.~4.62!, one can write the condition~4.65! as

trAFikFki>
2T

umu
expFd~u!

\2
~si2sk!

2G . ~4.67!

No general principle prohibits the existence of such an
servableF which will satisfy Eq.~4.67!. However, it is need-
less to mention that in the considered largeN limit it would
be quite pathological. So, under reasonable conditions
only has the diagonal term in Eq.~4.64!.

The same conclusions as we just drew from the large
of d(u) do hold in the continuous case given by Eq.~4.57!,
except for divergences associated with the continuous s
trum, and we can rewrite Eq.~4.57! in the form

R~u!5E dxp~x!ux&^xu ^ Rx~u!, ~4.68!

where p(x)5^xur(0)ux&, which exhibits the form required
by the ideal measurement conditions.

Let us finally discuss for illustration two examples.

1. Transformation of an eigenstate

If the initial stateux1& of the particle is an eigenstate o
coordinate, one has for the initial density matrix and Wign
function,

^x8ur~0!ux9&5^x8ux1&^x1ux9&, w~x,p;0!5d~x2x1!.
~4.69!

More precise normalization according to Eq.~4.18! provides
a small widthe to thed function in w and multiplies it by
8-19
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A8peexpS 2
2ep2

\2 D . ~4.70!

The state of the apparatus and particle forgu@1 will be

W~X,P,x,p;u!5Wx1
~X,P!d~x2x1!, ~4.71!

where Wx1
(X,P), given by Eq.~4.17!, is the final Wigner

function of the apparatus. As expected the measurement
not change the state of the particle; it leaves the particle
the apparatus uncorrelated, apart from the registration of
valuex1 in the latter.

2. Decay of initial superpositions: May Schro¨dinger kittens
survive?

Let the initial state of the particle be a superposition
two different eigenvectorsux1& and ux2& of the coordinate
operator, which appear with amplitudesw1 , w2. For simplic-
ity we will take these amplitudes real. At the initial time on
has

^x8ur~0!ux9&5 (
i ,k51

2

w iwk^x8uxi&^xkux9&. ~4.72!

The corresponding Wigner function reads, within the reg
larization of Eq.~4.18! which provides a normalization fac
tor ~4.70!,

w~x,p;0!5(
i 51

2

w i
2d~x2xi !

12w1w2dS x2
x11x2

2 D cos
p~x12x2!

\
.

~4.73!

The physical interpretation of this formula is obvious. T
first two, incoherent terms refer to localized states atx1 and
x2. The cross term, which describes coherence, is local
half-way betweenx1 and x2; through its oscillations it is
associated with quantuminterference, a fact which is clear
when one notices that it makes the Wigner function alter
tively positive andnegativealong the liney5(x11x2)/2. In
other words, the initial state is highly non-classical.

Using Eq.~4.55! one finds the common Wigner functio
of the apparatus and the particle as

W~X,P,x,p;u!5(
i 51

2

w i
2Wxi

~X,P!d~x2xi !

1Wif~X,P,x,p;u!, ~4.74!

where the contribution from the interference term
w(x,p;0) after integration overp0 is
03210
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Wif~X,P,x,p;u!

52w1w2expF2
d~u!

2\2
~x22x1!2G

3Wy~X,P!d~x2 x̄!

3cosF ~x12x2!

\ S p1
g

a
P2x

g2u

a D G ,
~4.75!

with x̄5(x11x2)/2. The Wigner function~4.74! is a sum of
two contributionsWm and Wif . The first one,Wm, is the
expression~4.68! describing an ideal measurement. It is
positive function and just consists as expected of the in
herent mixture of two measured valuesx1 andx2 with clas-
sical probabilitiesw1

2 andw2
2.

The interference termWif is strongly suppressed due t
the factord(u), which according to Eq.~4.52! yields in Eq.
~4.75! an exponent of orderguN3/2 providedux22x1u is not
very small. The disappearance of the contribution of the
terference term expresses that the initially existingSchrö-
dinger catsare automaticallysuppressed, so that a classica
interpretation can be given to the final result of the measu
ment.

For the continuous spectrum there can be cases w
ux22x1u!ux1u. Since the initial superposition is then sma
this situation can be calledSchrödinger kitten. As seen from
Eq. ~4.75!, the decay of such a state becomes less efficien
ux22x1u decreases. We may thus wonder whether Sch¨-
dinger kittens could partly survive in a non-ideal measu
ment process. We note, however, that the valuesx1 and x2
can be separated in a measurement only if the transi
probability of Eq.~4.24! is negligible, which requires

\g2

4Tumu ~x22x1!2@1. ~4.76!

Since the exponent in the damping factor of Eq.~4.75! which
characterizes the decoherence,

gu
T2

m2

\g2

Tumu ~x22x1!2, ~4.77!

is much larger by a factor of orderguN than the exponen
~4.76! which characterizes the robustness of the meas
ment, even the weakest Schro¨dinger kittens disappear in an
measurement process. Any kitten that can be detected
distinguishing from each other the two interfering values ox
has the same fate as a cat: it does not survive.

V. SUMMARY AND CONCLUSIONS

In the present paper we have studied a simple mode
order to get better insight on the question of quantum m
surement. Our purpose was to describe in full detail the
namical process which takes place during the measurem
due to the coupling between the tested object and the a
8-20
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ratus. As usual in this problem, we rely on the fact that
apparatus is a macroscopic object, so as to ensure the
decoherence which is needed to explain the classical na
of the interpretation of a measurement. However, in our
proach, this type of irreversible behavior is merged with
idea that the apparatus should be able to evolve indiffere
towards different macroscopic states. The selection of
outcome should be controlled by a small interaction with
microscopic observed object. The evolution of the appara
should therefore be nonergodic, which we realize by ide
fying the pointer variable with an order parameter in a ph
transition. The interaction with the measured system beha
as a small source which drives the actual value of the o
parameter.

We wanted our model to fulfill the requirements on ide
measurements listed by the end of the Introduction. We a
wished to be able to produce, in a consistent framework
from the first principles, using standard methods of quant
statistical mechanics, a full solution for the equations of m
tion which describe the dynamical process of measurem
This led us to choose an extremely simple model. Our ap
ratus is a noninteracting Bose gas in contact with a part
and energy reservoir, which can undergo a Bose-Eins
condensation. The pointer variable is the condensate den
which is sensitive to a coupling of the lowest-energy level
the gas with the tested microscopic system. To fix ideas
have chosen for this system a one-dimensional particle,
position of which is to be measured, but generalization
other systems is straightforward. When the interaction
tween the system and the apparatus is switched on, the
densate density relaxes to a value in one-to-one corres
dence with the possible values of the position of the tes
particle. We find that the randomness of this position is
rectly reflected by the statistics of the possible outcomes.
off-diagonal elements of the initial density matrix of the pa
ticle are suppressed by the process, and only classical p
abilities enter the description of the correlations between
initial position of the particle and the pointer variable.

The various parameters of the model can be tuned, s
to explore the validity of the approximations which ensu
that the measurement is ideal. The following requireme
which were expressed mathematically at the beginning
Sec. IV, are needed for ideality.

~a! The apparatus should be macroscopic. This large
plays a double role. On the one hand it ensures through
coherence the appearance of definite results in the mea
ment process. This means that in its final state the ove
system composed by the apparatus and the tested sy
may be found in different mutually exclusive states w
probabilities given by the initial distribution of the measur
quantity. On the other hand, the macroscopic number of c
densed bosons ensures a robust and accurate registrati
the measured observable.

~b! Before the interaction with the tested system starts
act, the apparatus should be prepared in a state whic
extremely sensitive to this interaction with the tested mic
scopic system. When the coupling is switched on at so
initial time, the initial state of the apparatus becomes th
unstable, and it relaxes to another state determined by
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measured object. This was achieved by letting the ini
number of condensed Bosons be already large~asAN) but
not yet macroscopic~asN!.

~c! The relaxation time of the apparatus should be lar
than the dynamical time, so that the equilibrium properties
the apparatus are not affected by the bath.

~d! The coupling constantg should be finite, so that the
source term produces a macroscopic effect on the conden
although the interaction term in the Hamiltonian is not e
tensive.

~e! The duration of the measurement should be larger t
the relaxation time of the apparatus.

~f! The statistical distribution of the measured quanti
here the position of the tested particle, should remain c
stant during the whole measurement process.

The model explains the collapse of the state of the tes
particle as an effect of its coupling to the lowest level of t
Bose gas. The thermal bath acts onlyindirectly, through the
apparatus. We can therefore understand why this deco
ence process eliminates the off-diagonal elements of the
sity matrix in thex basis and not in another basis. Indeed,
quantum noise due to the environment affects directly
pointer variableX of the apparatus, and the tested syst
feels it only because it is coupled toX through the term
2gxX of the Hamiltonian. The association of the decoh
ence with the measured observable is thus a natural outc
of the model. Thus in our model the decoherence is de
mined by the interaction between the tested system and
apparatus. This interaction is a tunable property and can
controlled. Let us notice that in the standard decohere
approach@9,11# this process depends on the interaction b
tween the apparatus and its environment which is a ha
controllable quantity due to the very definition of~unobserv-
able! environment.

Remarkably, the collapse of the state of the measured
tem takes place at the very beginning of its interaction w
the apparatus, over a timet5\/(TN1/4) which has the usua
features of a decoherence time, proportional to\/T and
small in the thermodynamic limit of the apparatus. This tim
scale should be contrasted to the much larger time scaleg
associated with the relaxation of the apparatus. Once
state of the tested particle is reduced, very little has yet b
changed in the macroscopic apparatus. It still takes a l
time, of order 1/g, for the apparatus to reach its new equ
librium position determined by the system.

The reduction takes place for both the states of the te
particle and the apparatus, which remain only coupled
classical correlations at the end of the measurement. We h
estimated the order of magnitude of the corrections to
ideal situation, and seen that they become extremely sma
N increases. In particular the broadening of the density m
trix of the particle around its diagonal elements is of ord
less thanN23/2. Related to this aspect is the suppression
Schrödinger cats~interference effects of states located at tw
different positions!, and even of Schro¨dinger kittens~similar
states at two nearby positions!, which cannot survive a ro-
bust measurement.

If the tested system involves degrees of freedom ot
than the one which is measured, our model shows that t
remain unaffected by the process. As expected for an id
8-21
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measurement, the density matrix of the system is then sim
projected according to Eq.~1.7! by the interaction with the
apparatus. In particular, in Einstein-Podolsky-Rosen set
our analysis confirms that the measurement of one par
implies the collapse of the full system, thus also of const
ents that are spatially separated. This means that quan
information is transferred at a large speed, which depend
the size of the apparatus, and can thus be extremely lar

Although oversimplified, our model has many gene
features which are expected to occur in realistic meas
ment processes. However, taking advantage of the lac
interactions in the Bose gas, we have used an order pa
eter which is the density of the condensate. This is a pecu
property, since in a real Bose gas only the phase of the c
densate, not its amplitude is an order parameter. A drawb
of this situation is the fact that the back reaction of the
paratus on the system is stronger here than expected
truly ideal measurement: Indeed we have seen that, a
from the reduction of the state to a nearly diagonal den
matrix, a large amount of momentum is transferred by
apparatus to the particle. Another drawback of our mode
that it simulates nonergodicity, rather than completely
volving it. Although very sensitive to perturbations, our in
tial state is stable. It would be desirable to work out a m
elaborate model where the initial state is metastable, and
be displaced towards several possible truly equilibrium sta
characterized by an order parameter, this displacement b
controlled by the interaction with the system.

Other difficulties have been encountered above due to
continuity of the spectrum of the measured quantity. For
stance, the large back reaction on the particle momentu
related to this continuity. However, such difficulties are n
an artifact of our model as continuous spectra are know
cause difficulties in many other circumstances.

ACKNOWLEDGMENTS

R.B. is grateful for discussion with M. Gaudin. Th.M.N
acknowledges hospitality during a visit to the CEA Sacl
A.E.A. acknowledges support by NATO and INTAS and ho
pitality at the University of Amsterdam.

APPENDIX A: SOLUTION OF EQUATIONS OF MOTION
FOR AN ARBITRARY MEASURED QUANTITY

Here we discuss the solution of equations of mot
~2.28! and ~2.31! for an interaction Hamiltonian

ĤS52gX̂Ŝ, ~A1!

where Ŝ is an arbitrary Hermitean operator, which can
particular have discrete spectrum. In the present appendi
will distinguish operators by a hat. Let us rewrite Eq.~2.28!
in terms ofX̂ and P̂:

d

dt
X̂5a P̂2gX̂1 f̂ X~ t !, f̂ X~ t !5A\g„b̂†~ t !1b̂~ t !…,

~A2!
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d

dt
P̂52aX̂2g P̂1gŜ1 f̂ P~ t !,

f̂ P~ t !5 iA\g„b̂†~ t !2b̂~ t !…. ~A3!

For a general operator ofŜ no Wigner function exists in its
standard sense, but for us it will be enough to operate w
the intermediate Wigner functionV(X,P,s8,s9) defined in
Sec. III B 2. Recall that this object is a Wigner function wi
respect to the lowest level of the apparatus~here the corre-
sponding Wigner function can be defined!, but is a density
matrix in the eigenrepresentation$us&% of Ŝ.

To write the equations of motion in terms ofV we will use
a method described in@27#, which replaces the operato
equations~A2! and ~A3! by the stochastic equation:

] tṼ~X,P,s8,s9!52]X~@aP2gX#Ṽ!1]P~@aX1gP#Ṽ!

2]X~ f XṼ!2]P~ f PṼ!2
s81s9

2
g]PṼ

1
ig

\
X~s82s9!Ṽ. ~A4!

Here f X(t) and f P(t) behave as classical noises, which ha
exactly the same average and autocorrelation as the c
sponding quantum quantitiesf̂ X(t) and f̂ P(t) after the sym-
metrization of Eq.~2.42!. The true intermediate Wigner func
tion V is obtained fromṼ by averaging with respect to thes
noisesf X(t) and f P(t),

V~X,P,s8,s9!5^Ṽ~X,P,s8,s9!&. ~A5!

The first line in the RHS of Eq.~A4! is the standard drift
contribution of the Liouville-Wigner equation. The last lin
in this equation is as well explained rather simply: This
just the result of the Wigner transformation~3.4! which
was applied for the apparatus to the corresponding t
( i /\)^s8u@H,r#us9& in the density matrix representation.

Now it is easy to see by direct substitution that the so
tion of Eq. ~A4! reads

Ṽ~X,P,s8,s9!5expF ig

\
~s82s9!E

0

t

dt8X~ t8!G
3d„X2X~ t !…d„P2P~ t !…, ~A6!

where X(t) and P(t) are the solution of the following
c-number equations:

d

dt
X5aP2gX1 f X~ t !, ~A7!

d

dt
P52aX2gP1g

s81s9

2
1 f P~ t !. ~A8!

This means that one has the following solution forV:
8-22
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V~X,P,s8,s9!

5E dX0dP0K expF ig

\
~s82s9!E

0

t

dt8X~ t8!G
3d~X2X~ t !!d~P2P~ t !!L
3W~X0 ,P0!^s8ur~0!us9&, ~A9!

whereW(X0 ,P0) is the initial Wigner function of the lowes
level, andX05X(0), P05P(0) are initial values ofX(t),
P(t) which are inherent in Eqs.~A7! and ~A8!. Since the
exact solution of these equations is available in the form
Eqs.~3.10! and~3.11!, a little patience is sufficient to verify
thatV(X,P,s8,s9) in Eq. ~A9! coincides with the intermedi
ate Wigner function corresponding to Eqs.~3.16! and ~3.18!
provided that one makes the identifications8→x8, s9→x9.

APPENDIX B: THE STATE OF THE PARTICLE
AFTER MEASUREMENT

Here we discuss the postmeasurement evolution of
state of the particle. We will assume that at timet5u the
interaction between the particle and the apparatus has
instantaneously switched off. The switching is needed to
sure that the measurement will remain ideal, whereas its
stantaneous character is taken for simplicity. Indeed, if
tested particle is interacting with the apparatus long enou
its coordinate will start to change due to its own Hamiltoni
HS, as well as due to interaction with the apparatus. Si
the apparatus is itself interacting with the bath, sufficien
long interaction of the particle and apparatus will finally le
to relaxation of the particle towards certain steady sta
which is independent of its initial state. This will violate th
condition of ideality.

Therefore, the timeu was assumed to be much larger th
1/g, so that the apparatus has enough time to relax to
stationary state and monitor the results of measurement
the other hand,u was assumed to be small enough so t
effects connected with change ofx are not yet relevant. Fo
t>u the tested particle thus follows its free evolution, whi
is described by free Heisenberg equations:

p~ t !5p~u!, ~B1!

x~ t !5x~u!1
t2u

m
p~u!. ~B2!

Due to the instantaneous character of the switching,p(u),
x(u) are those operator values which the particle reac
during the interaction with the apparatus.

The dynamics fromt50 to t5u is described by Eq.
~4.32!, and fort.u one has

w~x,p;t !5E dx0dp0w~x0 ,p0 ,u!d~p2p0!

3dS x2x02
t2u

m
p0D . ~B3!
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Let us now investigatew(x,p;t) at t.u for the initial state
at t50 given by Eq.~4.73!:

w~x,p;t !

5 (
k51

2

w i
2dS x2xi2

t2u

m
pD

12w1w2dS x2
t2u

m
p2

x11x2

2 D
3expF2

d~u!~x12x2!2

2\2 GcosF ~x1
22x2

2!

2\
„p2j~u!x…G .

~B4!

It is seen that the last contribution to this equation is due
incomplete reduction. If it is not suppressed totally in t
course of the measurement~becauseN is not sufficiently
large!, it will persist during further evolution, and might in
principle be observed.

APPENDIX C: MOTION OF THE PARTICLE
DURING MEASUREMENT

The purpose of the present Appendix is to discuss w
happens if the change with time of the measured quantityx is
not negligible, and if it cannot be treated as a constan
motion. In practice the conservation of the measured quan
is ensured only over short times. However the durationu of
the interaction with the apparatus should be sufficient so
to ensure registration, and there will arise a source of n
ideality. Our purpose here is not to develop a full account
this nonideality, but just to display on which time-scales
presence is not relevant.

We will investigate Eqs.~2.28!, ~2.32!, and ~2.33! on
times where changes of the measured quantityx become no-
ticeable. To keep the situation free of instabilities, we w
make a natural assumption that the tested particle is s
jected to a confining potential. For simplicity this potenti
will be taken to be harmonic:V(x)5mv0

2x2/2.

1. Dynamics

The general solution of Eqs.~2.32! and~2.33! is obtained
with help of Laplace transformation. Recall the followin
standard relations between functionsA(t), B(t) and their
Laplace transformsÂ(s)5*0

`dt e2stA(t) and B̂(s) denoted
in this appendix with a hat:

LH E
0

t

dt8A~ t2t8!B~ t8!J 5Â~s!B̂~s!,

L$Ȧ%52A~0!1sÂ~s!, ~C1!

where Ȧ5(d/dt)A. Thus the solution of Eqs.~2.32! and
~2.33! reads

x̂~s!5
1

m
f̂ ~s!ĥ~s!1„ẋ~0!1sx~0!… f̂ ~s!, ~C2!
8-23
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f̂ ~s!5
1

s21v0
22

1

m
x̂~s!

, ~C3!

where

x̂~s!5g2
a

a21~g1s!2
~C4!

is the Laplace transform ofx(t) @see Eq.~2.37!#. Finally one
has

x~ t !5x~0! ḟ ~ t !1
1

m
p~0! f ~ t !1

1

mE
0

t

dt8 f ~ t2t8!h~ t8!,

~C5!

p~ t !5p~0! ḟ ~ t !1mx~0! f̈ ~ t !1E
0

t

dt8 ḟ ~ t2t8!h~ t8!,

~C6!

where f (t) is the inverse Laplace transform off̂ (s).
Substituting Eq.~C5! into Eq. ~2.29!, we obtain the solu-

tion of the Heisenberg equation for the pointer variable:

X~ t !5gx~0!E
0

t

dt8e2gt8sinat8 ḟ ~ t2t8!1
gp~0!

m

3E
0

t

dt8e2gt8sinat8 f ~ t2t8!1
1

g
L 21H S x̂

m
f̂ 11D ĥJ .

~C7!

Its last term, whereh is given by Eqs.~2.34!–~2.36! de-
scribes the effect of the noiseb,b† and the remanence of th
initial conditions X(0),P(0) of the apparatus. We recove
Eq. ~3.10! in the largem limit, for which f (t)5t if v0t!1.
However, instead of being controlled byx(0) only, the order
parameterX(t) now depends on the initial state of the pa
ticle through bothx(0) and p(0). Since due to the uncer
tainty relation^p(0)2&^x(0)2&>\2/4 these quantities canno
have definite values simultaneously,^X(t)& is always fluctu-
ating with the initial state of the particle. This violates co
ditions ~1.4!, ~1.5! according to which if the tested syste
starts its evolution from one of the eigenstates of the m
sured quantity, then the result displayed by the apparatus
be definite. Moreover, Eq.~C7! shows that the statistics o
X(t) is governed by the statistics ofx(0),p(0), or equiva-
lently by the full density operatorr(0) of the particle at the
beginning of the measurement, including off-diagonal e
ments. It is the disappearance of the term inp(0) in Eq.
~3.10! which allowsX(0) at the end of the measurement
depend only on the diagonal elements^xur(0)ux&. As we
shall see below, this occurs form@g2u3, that is, for a suffi-
ciently short duration of the measurement. Once again
shows that the short-time limit is a necessary condition
~nearly! ideal measurement of the coordinate.

Remember that the Heisenberg equation~2.28! for X(t)
depended only on the position operatorx(t), not on the mo-
03210
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an

-

is
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mentum operatorp(t). Its solution given by Eq.~2.29! ex-
presses the action of the particle on the apparatus a
memory effectdepending onx(t) at earlier times. Using the
equation of motion~C5! for x(t), we have here re-expresse
X(t) in terms ofx(0) andp(0). Themomentum of the par-
ticle thus came out from the elimination of the history
x(t).

2. Short-time expansion

To investigate the short-time behavior of the tested p
ticle in more detail, we adopt the following large-mass a
proximation:

f̂ ~s!5
1

s21v0
2

1
1

~s21v0
2!2

x̂~s!

m
, ~C8!

f ~ t !5
sinv0t

v0
1

V3

2v0
3E0

t

dt8@sin~v0t8!

2t8v0cosv0t8#sin~a@ t2t8# !e2g(t2t8), ~C9!

where

V5S g2

m D 1/3

~C10!

is the characteristic frequency connected with the mass of
particle and the interaction with the apparatus. This f
quency will be assumed to be the smallest characteristic
quency in our problem. Equation~C9! is a short-time expan-
sion, which is valid for

t!
1

V
5S m

g2D 1/3

. ~C11!

Expansion~C9!, when substituted into Eq.~C5!, produces
the coordinate as a sum of two terms: The first one is du
the free motion in the potentialV(x), and the second one
represents a deterministic correction arising from interact
with the apparatus. The interaction with the apparatus sho
be switched off before this term becomes comparable w
the first term in Eq.~C9!. In particular, if t is so small ast
!1/v0 we obtain

f ~ t !5t1
V3

6 E
0

t

dt8t83sin~a@ t2t8# !e2g(t2t8). ~C12!

When this equation is substituted into Eqs.~C5! and~C6!, it
is seen that in all terms besides the second term in the R
of Eq. ~C6! the correction tof (t)5t in Eq. ~C12! can be
dropped under the condition~C11!. If one will take addition-
ally: x(0)@p(0)t/m, Eqs. ~C5!, ~C6!, and ~C12! produce
Eq. ~3.13!.

It is important to notice that in this approximation there
a deterministic influence of the bath on the momentum. T
is just friction, which may enhance or reduce^p&. However,
there is no such a systematic influence on the coordinat
was therefore legitimate to assume in the bulk of this pa
8-24
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that in the Heisenberg representation we havex(t).x(0) in
the time interval 0,u in spite of the large value reached b
^p& at the timeu due to friction~Sec. IV B 2!.

3. Relaxation of the tested particle

Although Eq.~C9! has been sufficient for our purpose
we will mention here how the fullf (t) behaves. This will
allow us to understand the long-time behavior of the tes
particle. One has to obtain the rootsg1 ,g2 ,g3 ,g4 of the
following equation

@a21~gk2g!2#@gk
21v0

2#2aV350 ~C13!

which provide

f ~ t !5 (
k51

4

Ake
2gkt, Ak5Lims→2vk

~s1gk! f̂ ~s!.

~C14!

Using the smallness ofV the above roots can be obtaine
approximately as

g15g1 ia1d1 , g25g1* , ~C15!

g35 iv01d2 , g45g3* , ~C16!

where, after usinga@g,a@v0, we find

d15
V3

2i

1

~g1 ia!21v0
2

1O~V6!.2
V3g

a3
1

iV3

2a2
,

~C17!

d25
aV3

2iv0

1

~ iv02g!21a2
1O~V6!.

V3g

a3
2

iV3

2av0
.

~C18!

As seen from Eqs.~C15! and ~C16! the particle has two
relaxation times: 1/g ~which is also the relaxation time of th
apparatus! and a much longer one 1/(Red2)5a3/V3g. They
are widely separated sincea3/V3@1. After the time
a3/V3g5a3g2/mg all information about the initial state
will be forgotten by the particle if it still interacts with th
apparatus, and it will relax to its equilibrium state impos
by the bath temperature.

APPENDIX D: WEAK-COUPLING LANGEVIN EQUATION

In the present appendix we will derive from a consiste
Hamiltonian formulation the Langevin equation~2.21! for
the apparatus-bath dynamics. More information on wea
coupled~weakly damped! dissipative systems can be foun
in @24#.

For simplicity we deal only with the lowest energy lev
of the apparatus, the Hamiltonian of which reduces to
chemical potential term2ma†a5\aa†a; as in Eq.~2.28!
we drop the index 0. The dynamics of the excited state
eratorsai would be obtained by substitutinga1v i to a. The
considered mode is coupled to the thermal bath, which
also a noninteracting Bose gas having single-particle le
03210
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m with creation operatorsjm
† and energies\Vm ~including

the chemical potential of the bath!. This bath is equivalent to
the dense set of harmonic oscillators usually considered
quantum Brownian motion@20, 24, 25#, but here the cou-
pling should account for transfers of bosons between the b
and the apparatus proper, with conservation of the total
ticle number. We can thus describe the apparatus with
bath by the total Hamiltonian

HAB 5\aa†a1(
m

\Vmjm
† jm1(

m
\~cma†jm1cm* jm

† a!.

~D1!

The resulting equations of motion in the Heisenberg p
ture are

ȧ52 iaa2 i(
m

cmjm , ~D2!

j̇m52 iVmjm2 icm* a. ~D3!

The initial state of the apparatus and the bath is assume
be factorized at some remote initial timet0!0. At that time
the bath was in equilibrium at temperatureb21 while the
apparatus was in an arbitrary state. Explicit integration of
~D3!, through

jm~ t !5jm~ t0!e2 iVm(t2t0)2 icm* E
t0

t

dt8a~ t8!eiVm(t2t8),

~D4!

allows us to eliminate the bath and to write a closed, ex
equation of motion for the operatora. In the weak-coupling
regime it is convenient to go to the rotating frame by mea
of the transformation

ã~ t !5a~ t !eia(t2t0). ~D5!

From Eqs.~D2!, ~D4!, and~D5! we obtain

dã~ t !

dt
52(

m
ucmu2E

t0

t

dt8ã~ t8!ei (a2Vm)(t2t8)1z~ t !,

~D6!

wherez(t) appears as a Gaussian quantum noise define

z~ t !52 i(
m

cmjm~ t0!ei (a2Vm)(t2t0). ~D7!

This noise is characterized by the properties

@z~ t !,z†~ t8!#5(
m

ucmu2ei (a2Vm)(t2t8), @z~ t !,z~ t8!#50,

~D8!

^z†~ t8!z~ t !&5(
m

ucmu2ei (a2Vm)(t2t8)

eb\Vm21
, ^z~ t !z~ t8!&50.

~D9!
8-25
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We are interested in the thermodynamic limit for the ba
where the number of bath modes goes to infinity while th
frequenciesVm tend to a continuum. For simplicity, we as
sume that the valuesVm have a constant spacingD→0, and
that the couplingucmu is a vanishingly small constant:

ucmu5AgD

p
. ~D10!

We then have

(
m

ucmu2ei (a2Vm)(t2t8)52gd~ t2t8!. ~D11!

~If the spectrum ofVm is bounded, thed-function stands for
a narrow peak, with a width smaller than all the characte
tic times of the problem if the range ofVm is sufficient.!
Equation~D11! ensures that the retardation effect can be
glected in Eq.~D6!, which becomes

dã~ t !

dt
52gã~ t !1z~ t !, ~D12!

and that the properties of the noise are simplified into

@z~ t !,z†~ t8!#52gd~ t2t8!, @z~ t !,z~ t8!#50,
~D13!

^z†~ t8!z~ t !&5
g

pE dv eiv(t2t8)

eb\(a2v)21
, ^z~ t !z~ t8!&50.

~D14!

Apart from the very short time-scale involved in the noi
z(t), two time-scales,a21 and g21, enter the dynamica
equations~D5!, ~D12! for the operatora(t) generated by the
apparatus-bath HamiltonianHA,B . Other, longer time scale
will also be induced by the interaction with the tested s
tem. We assume that thedynamical frequencya is the largest
characteristic frequency of the problem. The transformat
~D5! then accounts for the fast, oscillatory motion ofa(t).
The evolution ofã(t) takes place on larger time scales,
orderg21 or more. We can thus expand Eq.~D14! for large
a according to

^z†~ t8!z~ t !&'
g

pE dv eiv(t2t8) (
n50

`
~2v!n

n! S d

da D n 1

eb\a21
~D15!

52g (
n50

`
i n

n!
d (n)~ t2t8!S d

da D n 1

eb\a21
. ~D16!
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Since this expression will be integrated over a function
time which varies on the scaleg, its successive terms yield
an expansion in powers ofg/a, and we can thus replace Eq
~D14! in the limit a@g by

^z†~ t8!z~ t !&52g
d~ t2t8!

eb\a21
, ^z~ t !z~ t8!&50. ~D17!

If the noise is redefined as

b0~ t !5
1

A2g
z~ t !e2 ia(t2t0), ~D18!

Eq. ~D12! reduces to the equation of motion~2.21! for a0(t),
and Eqs. ~D13! and ~D16! coincide with the conditions
~2.23!, ~2.24!, ~2.25!, onb0(t). We can likewise recover Eqs
~2.21!–~2.25! for i and kÞ0 by addingvk to a and by
coupling all the modesi of the apparatus with the modesm
of the bath.

If we had not used the approximationa@g, we would
have obtained the evolution of the average particle num
n0(t)[^a†(t)a(t)& in the lowest level of the apparatus b
integration of Eqs.~D5! and ~D12!, using Eq.~D14! instead
of Eq. ~D17!. This yields

n0~ t !5n0~ t0!e22g(t2t0)1
g

p

3E dv

~v2a!21g2
u12e2(g1 ia2 iv)(t2t0)u2

1

eb\v21
,

~D19!

instead of Eq.~2.27!. In particular, we find for arbitraryg/a
that n0(t) relaxes for large times towards

n0~ t !→ g

pE dv

~v2a!21g2

1

eb\v21
. ~D20!

It is only for g!a that Eq.~D19! reduces to Eq.~2.27!, and
that n0(t) reaches the expected equilibrium Bose fac
1/(eb\a21) for large times.

Altogether the weak-coupling conditiong!a, which will
be enforced throughout this paper, ensures that the quan
Langevin equation ~2.21! can be obtained from the
apparatus-bath Hamiltonian~D1!. Owing to this condition,
while the coupling parameterg governs thedynamicsof the
apparatus during its relaxation to equilibrium, theequilib-
rium properties of the apparatus remain unaffected by
presence of the bath. Note finally that the simplifying a
sumptions we made on the bath~equally spaced levelsVm ,
constantucmu) become irrelevant in the weak-coupling limi
-
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