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Quantum measurement as a driven phase transition: An exactly solvable model
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A model of quantum measurement is proposed, which aims to describe statistical mechanical aspects of this
phenomenon, starting from a purely Hamiltonian formulation. The macroscopic measurement apparatus is
modeled as an ideal Bose gas, the order parameter of which, that is, the amplitude of the condensate, is the
pointer variable. It is shown that properties of irreversibility and ergodicity breaking, which are inherent in the
model apparatus, ensure the appearance of definite results of the measurement, and provide a dynamical
realization of wave-function reduction or collapse. The measurement process takes place in two steps: First, the
reduction of the state of the tested system occurs over a time of Bf@ENY4), whereT is the temperature
of the apparatus, and is the number of its degrees of freedom. This decoherence process is governed by the
apparatus-system interaction. During the second step classical correlations are established between the appa-
ratus and the tested system over the much longer time scale of equilibration of the apparatus. The influence of
the parameters of the model on nonideality of the measurement is discussedliiggréaittens, EPR setups,
and information transfer are analyzed.
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I. INTRODUCTION ments termed as idefl] can be used as filters to prepare the
system in a state whepetakes a well-defined valus, .

Understanding the specific features of quantum measure- More precisely, we denote kythe density operator of the
ments has been a long-standing quesfibag]. Discussions System under study, by that of the apparatus, and &% the
on this subject and its interpretations started in the early dayglobal density operator. To include the possibility of the most
of the quantum theorj1—5]. Physical and philosophical re- general descriptions of the system and the apparatus, we ana-
flections on the problem and consideration of its differentlyze the situation in terms of density operators rather than
aspects became a source for deep conclusions about tREre states. For simplicity we will operate in this section
quantum world and its classical counterpi2id]. Also the Wit discrete spectra. At the initial tinte=0 just before mea-
current activity in this fiel{6—11] clearly displays its com- Surement, the system is in amknownstatep(0), theappa-

plexity and multifariousness, and witnesses that its final seti2{us is in a fixed stat®(0) and these states are uncorre-
tling is not yet close. lated, so that the complete state is described by

The main purpose of this paper is to exhibit the co_mplet_e R(0)=p(0)®R(0). (1.
solution of a model for a measurement process, which will
show that two main paradigms of moder statistical phySICS"I’he uncorrelated character of this state simply reflects the

irreversi_bility and ergodicity breaking in phase transitions,]cact that fort<0 the tested system and the apparatus were
are Cr“C'a”Y relevant for the quantum measurement probleny, interacting. An evolution operatdr transforms this ini-
Together with some other conditions they provide all necesg;, density operator into the overall density operaq) at

sary ingredients for the realization of ideal quantum meayhg final time# of the measurement, which should have the
surements. No additional postulates need to be posed, singg

standard quantum statistical physics completely suffices for
the self-consistent explanation of this phenomenon.
We will start with a discussion on the problem of quantum T [p(0)®R(0)]=R(8)=>. pRi. (1.2
measurement and the main steps which were made in its k
interpretation and understanding.
Here 7 does not depend on the initial state of the system,
which is arbitrary and unknown, though it may depend on
A. General measurement the initial state of the apparati®(0). By = we mean “as
Let us recall the general requirements that a measuremeRtecise as desired provided that the parameters of the appa-
should satisfy. The quantity to be measured in the system &tus are tuned suitably.”
under study is represented by a Hermitian operaterith In a precise and unbiased measurement the final possible
eigenvalues, . The so-called pointer variabXin the mea-  StatesRy entering Eq(1.2) should constitute an orthogonal
suring apparatus A may take valuXg in correspondence Set,
with x,.. The observation oK, provides statistical informa-
tion about the state of the system. Moreover, some measure- tr(RyRy) = b 1.3
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S0 as to ensure that they represextlusiveevents to which  as weakly perturbed as possible after selection of the result.
ordinary (nonquantum probabilities can be assigned. They In an ideal measurement, the possible final st&ggactor-
may be distinguished from one another by observing théze as

pointer variableX, which takes in eaclk, the valueX, with

a negligible statistical fluctuation, namely Ri(0)=p® R, (1.9

tr(ReX) =Xy, tr(RkXZ):Xﬁ. (1.4 wherep, is expressed in terms of the initial stat€0) of the

system as

Hereafter t§ and tg indicate traces in the subspaces of the

apparatus and the system respectively, while tr is reserved for

the complete trace.

EachX occurs in Eq(1.2) with a probabilityp,., which

is determined by the initial state of the system in the form and where the possible final states of the apparatus, charac-

terized by the valu&, of the pointer variable as in E¢L.4),
Pk=1trs(p(0)11y), (1.5  are orthogonal as in Eq1.3),

1
Pk:EHkP(O)Hka (1.7

wherer: X (Xl _denotes_ the projection operator onto the tr(RR)) = Sy, (1.8

eigenvaluex, of x in the Hilbert space of the system. Al-

though the state®, may depend on the initial stagg0) of  and are independent of the initial st&€0). Notice that the

the particle, the quantitieX, do not depend omp(0) for  condition(1.8) is stronger than that given by E(L..3). Later

precise and unbiased measurements, but are determined g will connect it with robustnessof the apparatus as an

the structure of the apparatus only. On the other hand, theaformation-storing device.

probabilitiesp, are determined by the initial stag€0) only. Thus, after observation of the apparatus, and sorting of a
The fact that the process which leads fr&(0) to R(0) given outcomeX,, the system ipreparedin the state(1.7)

describes a measurement is reflected in a specific featurby means of the so-called “reduction of the wave packet” or

Due to the exclusiveness prope(ty.3), Eq.(1.2) represents “collapse of the wave function.” Apart from bringing the

the occurrence of alassicalrandom quantityk, with prob-  system into an eigenstate of the observatdessociated with

ability p,. It expresses that after the observation has takethe eigenvaluex,, the projection(1.7) does not affect its

place, the overall system is left in a st&@g with probability  other degrees of freedom.

px . Indeed, the density operat®( ) describes a statistical A complete measurement theory should provide condi-

ensemble of measurements performed under similar con- tions under which an apparatus interacting with the tested

ditions rather than an individual experiment. Since the varisystem brings it into one among the reduced states

able X has a definite value in each sta&®g, one can count

the frequencies of the differeX,’'s and thus recover the C. The standard approach

unknown probability distributiomp, . It is the specific type of ,

correlation exhibited for eack in Eq. (1.2), between the When they deal with quantum measurements, textbooks

properties(1.4) pertaining to the apparatus and the exprestsually justify the above properties by relying on the con-

sion (1.5 for the probabilitiesp, in terms ofp(0), which ~ Ventional arguments initiated by Bofit,3,12. Somewhat

allows us to gain information about the tested system. qualitative and incomplete, this gene_ral line of reasoning be-
The crucial problem of quantum measurement is thereforé@Me known as the Copenhagen interpretation. Different,

to explain how the evolution process of the coupled statdnough closely connected versions were summarized by

R(t) from R(0) to R(6) can produce a transformatich ~ Rosenfeld12] and more recently by van Kampg8] among

which ensures Eq1.2). The subsequent processaifserva- others. Th_e first precise discussion on the measurement prob-

tion then merely amounts to treelectionof a single term of €M was given by von Neumarib], who clarified the issues,

Eq. (1.2) characterized by the valug, of the pointer. This Put was led to consider the properties of quantum measure-

last step is by no means different from the analogous procedB€NtS: in particular the reductida.7) as apostulate which

in the classical probabilitytheory[6,8], as was stressed re- complements the standard principles of quantum mechanics.
cently by van Kampen and one of ]. It should be This additional postulate is, however, not needed as one can

stressed additionally that observation and selection refer tghow, using conS|stency_ arguments, that the redL_Jctl_on of the
the specific type of measurement process which has bedtVe packet can be _derlved_ from the standard prmmpl_es and
previously performed. from natural properties attributed to measurements, in par-
ticular, repeatabilityf6].

Nevertheless, a complete understanding of a quantum
measurement requires its analysis atyaamical processA

The above measurement scheme is rather general, and ¢nucial point to be explained is the nonexistence in the final
particular describes situations where the system itself doestate(1.2) of so-called Schidinger cat terms with respect to
not have a definite state after measurenierg., a photon is the indexk. For simplicity let us specialize on an ideal mea-
destroyed when detected by a photomultiplier surement. Starting from any initial state of the system, the

A theoretically and practically important class of mea-final density operatoR(6) should commute with both the
surements are the ideal ones, which leave the tested systemeasured observabieof the system and the pointer observ-

B. Ideal measurement
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able X of the apparatus. This property ensures that the resullosephson junctionsthe question remains open and can be
of the measurement process can be described in the languaigemulated in the following form: What are the concrete
of classical probability theory. Otherwise, R(6) did in-  properties of a system, that make it usable as a measuring
clude off-diagonal contributions ik, the standard interpreta- apparatus characterized by the collapsed state Bgb-—
tion of the measurement process would fail. 1.7?

The Copenhagen school of thought overcomes this diffi-
culty by saying that any physically acceptable apparatus has D. Irreversibility
to be a classical systefd,3]. Thus it cannot exist in a state . . o
with superpositions. More refined Copenhagen-like ap- An important requirement for the realization of Egs.

proacheqg12,13,§ state that the apparatus is a macroscopic(l'i)_(.l'n is the existence oﬁreVﬁrsibiI_ity. Whe_rel;als Eq. K
system, and therefore coherent superpositions may arise, bGt' Yisa pure state, we e>_<pect the po_lnter variable to take
ome well-defined valu¥, with the classical probabilitp,,

cannot be detected at least when measuring certain obsery? AT ) .
ables. This situation was illustrated by an exactly solvablg®Nd this implies the final state to be the mixtifel2. In
model[14] (see alsd15] in this context, where a class of Cther words, the von Neumann entrop§,n(R(6))=
observables was proposed, which are indeed nonsensitive 'R)trR(a)”LR( 0) of the stateR(0) in Eq. (1.1 is positive,
superpositions. Nevertheless, a small modification of thigvhile S,y(R(6))=0. More generally the von Neumann en-
class allows to produce superpositidis). tropy of Eq.(1.2) can be shown to be different from that of
In the von Neumann—Wigner approach5] the states of EQ. (1.1), due to the elimination of the coherent terms in the
the apparatus are pure, aR(0)=|¥)(¥|, and R, final state. This implies ¢oss of informationabout the co-
=|¥,)(¥,|, and the evolution is characterized by the map-herence, a loss which is required to ensure the classical in-
ping terpretation of the measurement and the reduction of the
wave packet.
[ Y= ) [Py (1.9 A measurement process should therefore be analyzed in
o ) the same way as an irreversible process in quantum statistical
between initial and final states of the compound system. Ifyechanics, a second reason for using density operators. The
this evolution is applied to a coherent initial state of thegj;e of the apparatus should be sufficiently large, so that

tested system such as irreversibility and relaxation emerge from the microscopic
reversible evolution. Otherwise measurements could not be
p(O):(E ak|¢,k>>(2 a:,<1/,k,|), (1.10 ideal. The fact that the conditiofl.2) cannot be realized
k K’ with a unitary transformation from any initial staté.l) is

5 nowadays well established with different degrees of gener-
then one finally gets the following state(6) associated alization[2,19]. To understand this in simple terms, let us
with p(0): write down the ideal measurement transformation for two

different initial state®(0), s=1,2 of the system,

R(O)=2 ad IV (Yo[(Ti|, (11D
ki’ T[pP(0)@R0)]=RO(0)=2 pIp@R,
K
whereas the desired stafd 0) in Eq. (1.2) involves only the (1.14
diagonal elements dR(6):
and assume for simplicity that the spectrumxofs nonde-
B ) generate: I1,=|x,)(x,]. Then unitarity of 7 requires
R( ‘9)—% | | Vi) (ol (Wl (1.12 trs[p(l)(O)p(z)(_O)]=tr[R(1)( 6)R @ (6)], and conditions
(1.7 and (1.8 imply

Partial traces ofR and R over either the apparatus or the
system subspace are equal, but we should explain why the ,(1)(0)p@(0)=">, (x| pM(0)[x){xi|p@(0)|x,)
off-diagonal terms ofR are never seen. Indeed, one has for kil
the partial density matrix of the particle
=2 (xdp ™0 (xid p(0) 39

p(0)=tr, R(6) =tryR( 6)=§k) | [ (. (119

(1.13

_ and hence
However, the situation described B(6#) does not corre-
spond to any measurement, since the apparatus and the tested
system cannot be in definite states with definite probabilities.
Actually, since with modern experimental equipments one is
able to detect mesoscopic and eveacroscopicsuperposi-  which cannot be true for arbitrapf*)(0) andp®(0). Thus,
tions (see, e.g.[17,18 where recent results are reported in the unitarity of 7 has to be disguised. Actually, the situation
the context of charge and flux macroscopic superpositions iis the same as in any relaxation process: The overall

gl (x PP0) X)X | pP(0)[x)=0,  (1.16
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system is isolated, and the evolution®({t) is in principle When choosing the model we have been guided by vari-
governed by Hamiltonian dynamics, but on suitable timeous conditions that an apparatus should satisfy.

scales irreversibility occurs owing to the presence of a large (1) It should have a degree of freedofrwhich may relax
number of degrees of freedom, which act as an external bathowards definite valueX, .

Statistical physics is needed to explain this behavior, in (2) It should be macroscopic so as to ensure an irrevers-
which microscopic reversible equations of motion result inible relaxation.

macroscopic irreversible ones. Just the same approach was (3) This relaxation should be selectively triggered by the
followed recently by two of us, to discover that the standardinteraction ofX with the variablex of the measured system.
issue of Brownian motion leads to incompatibilities with  (4) The various valueX, should a priori be equally prob-
thermodynamics in the regime of quantum entanglemengble, so as to avoid any bias produced by the apparatus.

[20]. Thus, the various final staté&,, characterized by the value
of Xy, should have the same entropy.
E. Ergodic and decoherence approaches to quantum (5) The apparatus should be a stable and robust informa-
measurements tion storing device, which implies that the statBg are

A first application of statistical physics in support of the nearly in equmbrl_um and that after the measurement has
been completedX is a nearly conserved collective variable.

Copenhagen interpretation was given by Daneri, Longier, Th " t 1o take for th i it
and Prosperj13,12. Somewhat relatetout not equivalent €se properties suggest lo take for the apparatus a suit-
ably chosen macroscopic system which is able to undergo a

approaches are reviewed in REE0]. After considering the h ¢ i i d ter Indeed
measuring apparatus and measured system togetheiisas an phase transition, Wittk, as anorder parameter ‘ndeed, a
lﬁ)_hase transition is a macroscopic process with robust and

lated system, one attributes the absence of macroscopic s tabl ¢ least metastableut Notice that th
perpositions to inevitable statistical uncertainties, which are'@ e(or at least metastapl@u comes. Notice that the ex-
present in macroscopic bodies. Mathematically this is reistence of an order parameter implies ergodicity breaking in

flected in different kinds of ergodic assumptions, which arecontrast to the purely ergodi'c view at measurenj@eg.
(6) The measured quantity should be coupled to the

reasonably creditable for those systems. However, these a8— d : d4th t h ity this sianal
proaches have several drawbacks, which, in particular, origic"d€" parameter, and the apparatus shauiglify this signa

nate from the fact that they do not provide dynamical mecha[ec‘?'ved durlng_ Its interaction with the system. This Is
nisms for the realization of quantum measurementsachleved by noting that the value of an order parameter can

Extensive criticism of them can be found i8], be controlled by an infinitesimally small source. The micro-

There is another, nowadays not less influential, school o?COp'Cl v;rlljable %’V'" playdthe role Offf SUCE a source, which
thought which we shall follow. It attempts to handle the con;roTsh ult ot ferW|sfehoesdnot aftect the _apparatuz.b .
problem also involving certain arguments from statistical ( ). e relaxation of the order parameter Is ensured by its
physics[21,22,9,11 In this decoherencepproach the loss coupling with other degrees of f_reed_om of t_he apparatus,
of coherence is viewed as a process established by an exté?—fermd .to as a thermal bath. It IS t.h's coupling which, t‘.)'
nal environment, which is generally understood as a CO”ecgether with the thermodynamical limit for the apparatus, will

tion of uncontrollable and unobservable degrees of freedomet\n?/vre thhe”spe(I:!flc ':ype ogrellaxatl_on (ljlscussed _f;llaove. biect
A decoherence process suppresses superpositions of some € shall work out a model, as simple as possibié, subjec
the above requirements. The tested system is a one-

special states, which are determined by the interaction be® : i : o
tween the environment and the system. However, in an ide(,ﬂlmensmnal particle, and the quantity to be measured is its

guantum measurement, the coherence associated with b Hsition. The apparatus is a nonint'e.racting BOS? gas, which
the observable of the tested system, and the observabts as an easily tractable phase transition. _The \_/armibiethe
the apparatus should disappdamepehdently)f the concrete amplitude of the condensate. This situation will be shown to

form of environment-system interaction, whereas the othePe generalizable for an arbitrary t-ested system and an arbi-
coherences which exists g{0) should remain present in the trary measured observabiéppendix A. Although specific

reduced states, defined by Eq(1.7). The type of decoher- and not realistic, the model is 'th.L!S suggestive for more gen-
ence occurring in gquantum measurements is thus very specigfaI measurements. The possibility of tuning the parameters

and we shall relate its features to the apparatus-system inte‘?’—III help us to find the I|m_|t in wh|c_h the measurement is
action rather than to an environment-system interaction. ideal and to explore some imperfections of the measurement.

This paper is organized as follows. In Sec. Il we present
the model and discuss its equations of motion. Limits which
are especially relevant for the quantum measurement prob-

Keeping in mind both the successes and shortcomings dém, as well as exact solutions of the equations of motion in
the various existing ideas, we tackle in this paper the quanthe Schrdinger and Heisenberg pictures are considered in
tum measurement problem by investigating a specific modeSec. lll. In Sec. IV we show that the present model realizes
The coupled evolution of the system and apparatus is treatettie conditions of ideal measurements discussed above. There
as a dynamical process of quantum statistical mechanics. Bye also consider characteristic times of this realization and
deriving an explicit solution we wish to show how the vari- discuss imperfections which arise due to an incomplete ther-
ous features of an ideal measurement, expressed by Eqgwodynamical limit for the apparatus. Our conclusions are
(1.1)—(1.7), can emerge from the microscopic dynamics genfresented in the last section. Several technical questions are
erated by the Hamiltonian of our model. considered in Appendices A, B, C, and D.

F. Requirements on quantum measurement models
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Il. THE MODEL \/ﬁ
__ N e
A. The apparatus and its bath Hi=—gxX X 2(a0+ ), 2.6

As a model for our apparatus we will choose a system of _ )
N noninteracting bosons in a three-dimensional cubic bo¥hereg is the coupling constant. The quantityattached to

with volumeV and periodic boundary conditions. Its Hamil- the apparatus will be our pointer variable. It is macroscopi-
tonian reads cally accessible through observation of the density of the

Bose gas provided Bose condensation takes place, which re-
quires low temperature and sufficiently smgil|. In this
case we expect the signato be amplified, becaus¢? will
be extensive. On the other hand, a tested system interacting

HAZE SiaiTai, (21)

wherea!, a; are the creation and annihilation operators ofwith all levels of the apparatus would certainly be less inter-
each single-boson state, ands its energy, given in terms of esting, since the threshold of the influence on the apparatus
its wave vectoik and of the boson masd by would be diminished. We have chosen the simple interaction
(2.6) for theoretical purposes, although it is not realistic since
f12k? it can change the number of bosons.
giToMm (2.2 Altogether the Hamiltonian of the apparatus and the sys-

tem during the measurement reads
Notice thatey=0. This apparatus is an open system, namely
it interactsweaklywith a large external environment. If there H=Hx— uN+Hst+H,, (2.7
were no other interactions, the Bose gas would relax with

time towards the Gibbs distribution: to which we should add the interaction of the Bose gas with

1 the bath, see Appendix D. Since the number of bosons may
pA=Zexq—BHA+ BuN), Z=trexp(—BHx+ BuN), change through exchanges with the bath and the observed
2.3 system, we have included for convenience in Exj7) the
' contribution from the chemical potential. Later on we will

whereT=1/8 is the temperature and is the chemical po- show how to generalize this situation to an arbitrary tested
tential. Both of these quantities are imposed by the environSYStém and measured observable, keeping the same measure-

ment. Finally\/ is the number operator ment apparatus.

NZZ ata (2.4) B. Bose condensation
- 1 (I .
: As is well known, the three-dimensional ideal Bose gas in
In a realistic apparatus what we call the “external” envi- equ_ili_brium undergoe; a condensationgl phase transition at
ronment is actually constituted by a large number of degree ufficiently large density or small chemical potential. Let us
riefly recall this phenomenon, since in our setup this is a

of freedom which are part of the apparatus itself. Here w rucial property of the apparatus as an information-storin
treat it as a separate thermal bath, which can exchange efj-" Property pp . 9
evice. We consider here the Bose gas submitted to an ex-

E;%K ﬁgglfp;;tglgzsvéltgatsh(\%/vﬁgﬁeisgzsu c\év?af; gr Itrr?:rgl?r? etgbgrnal _constant field sourgb which later on will be identi-

paratus, so that its intensive variables remain fixed once angfd With the term\7/2gx in H;

forever. The bath is characterized by its temperafljrés

chemical potential, and by a quantum coupling which in- Hg=> &aja—J(ap+al). (2.9

duces a relaxation timg ! to the Bose gas. This situation :

corresponds to the grand canonical ensemble for the appara-

tus although the overall apparatus-bath system is isolated. We work in the grand canonical ensemble. When there is

Whereas the value of is fixed by the overall energy, the no source term, it is known that despite different magnitudes

value of u is determined by the overall boson number. Weof fluctuations in the condensed phase, the grand canonical

shall focus below on a condensed gas, Wit/ T small as and canonical ensembles are equivalent for the noninteract-

1/y/N. The tuning ofy is then achieved through a control of ing Bose ga$23]. However, the source term in E(¢.8) can

the overall particle number. have a macroscopic effect only in the grand canonical en-
As a System examined by means of the apparatusy we ta'@mble It controls the density of the Condensate, which can

a particle living in one-dimensional space, with magsan  Vary owing to possible exchange with the bath. In the ca-

external potentiaV(x) and Hamiltonian nonical ensemble where the overall density is given, the den-
sity of the condensate would be practically insensitive to the
2 presence of the source. In our present situationdiesity
HS:ﬁJrV(X)- (2.9 (ajay), and not only thephaseof (a,), appears as an order

parameter controlled by the field This property is specific
The measured quantity is the positimnwhich is coupled to  for our model of noninteracting bosons, and would be invalid
the Bose gas through the interaction for a realistic Bose condensate with interaction.
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At the equilibrium state with temperatufeand(negative  which is our order parameter. Sindg,/V is a known func-
chemical potentiajx one diagonalizes the Gibbsian density tion of temperature, we can dedudg/V from the total den-

matrix by shifting the lowest energy operators as sity, provided that this total density is significantly larger
3 ] than the critical valu¢2.15:
aozao_ —, agzag— —. (29) N NC
M M = (2.17)
) V-V
This leads to

In order to use the Bose gas as a measurement device for

(a >:_i (2.10 J, we shall require Eq(2.16 to be dominated by its last
0 w’ ' term, which means that
1 J2 lu| 1
To\_ ~ 1> —>—, (2.18
<aoao>—e,,3#_1+#2- (2.1 T N
and that

The averages concerning excited states will not change, since

the field acts only on the lowest mode. For the total density M 1
of particles one gets —=0| —|. (2.19
p g 3 N
32 o
E: 1 > (ala)= 2M) f de e 11 Under such conditions, the scalar source tegravhich will
V. V5 47?3 Joeflemm—1 Ve br_g be replaced later on by the coordinate of the tested particle,
5 can be deduced from the density of the Bose gas and the
J ot ; .
n o (2.12 characteristics of its bath:
K , 20N N,
Here we went to the thermodynamical limit, whichxind X= g2 vV V) (2.20

thusJ are well defined, means to make the following change:

s 3 5 The sign ofx results through qu.m). from the phasg Qf the
(.. ')Hf d°xd k(. )= j d°k ) condensate. Low temperatures will improve the efficiency of
(2m)3 (2m)3 the measurement, since they provide small values for Eq.
(2.19 and thus increase the ratid/N,. The chemical po-
(2M)¥2 = tential of the bath should be fixed at some small value when
47243 J; dee(---). N—o, so as to ensure Eq&.18 and(2.19, andg should
be such that ag?x?#4/u? is of orderN.
(213 The excited states of the Bose gas will not play a direct
We also separated out the contribution coming from the Iow-rOIe in our model .Of measurement, since they are not coupled
to the tested particle. Nevertheless, they contribute, together
est state_a=0. S . with the bath, to exchange bosons with the condensate, the
we W'S.h 10 measure, which, if x is well defined, means density of which can thus be controlled by the chemical po-
that we W'Sg] to f|nq the fvafllue QIZ \/ﬁ_Ing_mfoulghfa m.zf' btential as well as by the sourde
obsering th oial densif 12, provide tat h st oL 20 L0 D6 ve0ue eToneon S
Irg ttli?eesﬂuin—(zg I\fv 22%T,i‘e|.tnhfﬁg%iﬁlamfa!:?c'févégﬁp N¢/V can be distinguished, they appear on the same footing,
=] I : P because both their entropy and their energy are the same in
Sity the thermodynamical limit. Indeed the contribution of the
condensate to the entropy isNR, its contribution to{Hg) is
(2.149  2uN; where|u|<T, so that both become negligible &5
—o0, This was required to prevent the apparatus from having
an intrinsic bias.

=V

J’_

<|Z
<|#

<z

splits into a noncondensed part,

N (2M)3/2 » de \/g 0.165869/ 3/2 C. Equations of motion
—= f = T32 (2.15 . .
V 47243 Jo ePe—1 %3 1. Dynamics of the apparatus in its bath
Before we examine the equations of motion of the overall
and a condensed part system including the tested particle, the apparatus and the
2 bath, we will investigate in this subsection the situation with-
N_C: LJF ‘]_ (2.1  outthe tested particle. At some remote initial titret,<0
VoVl vg? the apparatus was in an arbitranpnequilibrium state. At
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that time it starts to interact with the bath, and the arisingalways given by Eq(2.26). Therefore, in the further discus-
dynamics for the apparatus will be described by means of aion we will leave these excited levels aside.
weak-coupling quantum Langevin equati@dl] (see Appen-

dix D for the derivation of this equation from the Heisenberg 2. Equations of motion including the tested particle

equation associated with the apparatus-bath Hamiltgnian Let us now consider the situation with the tested system.

The interaction between the apparatus and the tested system

éiZI—[HA—MN,ai(t)]— ya;+\2yb;(t) !s.slwitched on at the initial timé=0. Fort<0 t.he overa_ll
h initial state factorizes as in Eql.1), wherep(0) is an arbi-
YN . _ trary state of the tested particle aR{0) is the Gibbs distri-
(i @)ai—yait2ybi(t), (2.21 bution of the apparatus given by E@.3). Indeed due to the
where assumed conditiot—ty>1/y the apparatus had enough time
to relax starting from any initial state &&t,. From now on
ho=¢,, ha=—p. (2.22  we shall drop the index 0 ing=a, by=b. The Heisenberg-

Langevin equation of motion for the lowest level of the ap-
Notice that the chemical potential is negative, whereas the paratus reads far>0
parameterr is positive. The Langevin equations are written
for the Heisenberg operators of the apparatus only, but the
presence of the bath is reflected through a friction term
—vya;, and a random Gaussian force operdigdt), which
satisfies [

=—iaa+ ng(t)—yaJr \/Z_yb(t). (2.28

a= ;;[H,aa)]— ya+\2yb(t)

[bi(t),bi(t")]= sy d(t—t"),

, + _ This equation is solved exactly as
[0i(t), b (t") J=[b; (1), by(t") ]=0, (2.23

_ ig [t _
bl (t)by(t'))= & S(t—t")n®Y, a(ty=e ""19tg(0 +—f dse " lasx(t—s
(b (1)by(t")) = dyd(t—t")n; (t) ()@o (t—s)
(bi(t)by(t")) = (b (H)bj(t"))=0, (2.24 t _
+\/2yj ds e 5 '*Sp(t—s). (2.29
0
n-eq:;. (2.25 .
oeBleitm) 1 For yt>1, and wherx is constant, Eq(2.29 expresses that

the Bose gas relaxes towards an equilibrium state, where the
The most important consequence of E(&21), (2.23,  particle number in the condensate is given by @016 with
(2.24), and(2.25 is that they ensure relaxation with the char- J= \/h_/29x, as ensured by the second term in the right-hand
acteristic time 1y of the apparatus towards the Gibbs distri- side (RHS) of Eq. (2.29. The average number of particles
bution (2.3) with the temperatur@ and chemical potentiak n(t)=(a'(t)a(t)) in the lowest state is evolving as
imposed by the bath. This can be seen from the following

exact solution of Eq(2.21): g2x?
n(t)=e"2"n(0) + ————
a(t)=e - -i(wira)(t—to)g (1) 2fi(y+a®)

+(1_e—271)nel{ (2.30

(1+e 2"—2e "cosat)

t—t )
+ \/2_'yf “ds g it sy (t—s). (2.26)
0 The second term in the RHS of E@®.30 is the contribution
supplied by the source, which shifts the condensate density.

In particular, all possible momenta™(t)a"(t)) calculated Although the evolution of the apparatus when there is no

with Eq. (2.26) for t—t,>1/y are identical to those obtained ¢\ rce leads to a well-defined equilibrium state whe(@)
through the Gibbs distributiof2.3). For example the aver- =T/|u| is large but not extensive a&—, the small inter-
age number of particle@;(t)a;(t)) in the leveli evolves in  action with the tested particle is sufficient to change macro-
time according to scopically n at timest>1/(2y) if |u|=%Aa is sufficiently

t _ e a2t o 2y(t—tg)\meq small._ This means that_the_apparatus toget_her with its bath
(ai(hai(t)=ni(t)=e “ni(to) +(1-e “INi", constitute a system which isearly nonergodiovhen Bose
(2.27) condensation sets in.

which shows thatn;(t) relaxes to its Gibbsian stationary The Heisenberg dynamics of the particle reads

valuen{?at the characteristic time 1/62.

Since, as shown by Eq&.6) and(2.7), the tested particle F= '_ He F(1)]1— '9 x(1). F(H @) +a'(t
interacts only with the lowest level of the apparatus, the ﬁ[ sFU] \/ﬁ[ ®.FmIa® ®)
equations of motion for the excited levels with 1 will be (2.3)
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for any operatoir. We find in particular

- 1
X= Ep, (2.32
. t
p=—V’(x)+fodsX(t—s)x(s)+ 7(1), (2.33
where
7(t) = no(t) + 74(t), (2.34

70(t) =779 Jotds & (b (t—s)e "+ b(t—s)e 1),
(2.39

i _ _
(1) = \[Ege M@'(0)e'“'+a(0)e”'™, (236

(2.37)

x(t)=g%e "sinat.

The interaction of the particle with the Bose gas produces a
force, which has a random part. The randomness of the noise

7(t) arises from two independent reasons: the statistioa!

PHYSICAL REVIEW A 64 032108

Notice thatK(t,t") is time-translation invariant, although its
separate parts are not. It is seen thattfert’>1/y, which
corresponds to the stationary apparatus, ¢t —t’) per-
sists. The most important effect of the bath on the dynamics
of the tested particle is the appearance of a new characteristic
correlation time 1¢ in addition to the time scale set up by
the maximal frequency of the apparatus and to the universal
quantum correlation timé/T.

3. Brownian motion of the tested particle

In order to compare Eq$2.32—(2.37) with the standard
quantum Brownian motion approach, one integrates Eq.
(2.33 by parts. This yields an equati¢g4],

. 1 - ~
p=-V'(x)—- afodsx(t—s)p(s) +7(t) —x(1)x(0)

(2.43

which has the usual form in terms of a friction kernel

+x(0)x(1),

e cosat+ ysinat

x(t=e" , (2.44

a’+ 'yz

and of a noisey(t). Notice, however, that the friction kernel

certain character of the initial state of the apparatus, whichyoes not have a definite sign with The last term in Eq.

gives the contributiony,(t), and the random character lof
b, which occurs throughyo(t). Recall that at=0 the ap-
paratus was in equilibrium at temperatufeand chemical
potential u,

<a*(0)a<0>>=#-
e Ar—1

(2.39

Since b(t), b'(t) are themselves Gaussiam(t) will be
Gaussian as well, with the noise autocorrelation:

1
(a(0)a’(0)y=1+ m,

K(t,t)=(n(t); n(t"))=Ko(t,t") +Ky(t,t"), (2.39

Ko(t,t")={m0(t); 170(t"))
2

=¥Cos{a(t—t')]

fia ’ ’
><cothﬁ(e’7‘H l—e 1)) (2.40

Ky(tt") =(na(t); na(t"))
2
g°h ha '
_2 Y y(t+t")
5 cog a(t—t )]coth—z_l_e ,

(2.4

where we define for any operatofs B:

(A;B)E%(AB+ BA). (2.42)

(2.43 renormalizes the potential. As far as one is interested
in the state of the tested particle itself, the full noise acting
on itis n(t). However, for the global state of the particle and
the apparatusy,(t) is a deterministic object, and only,
remains as noise.

4. Validity of weak-coupling quantum Langevin equations

When substituting the above white-noise quantum Lange-
vin equations for the actual interaction between the apparatus
and the bath, a crucial fact was that their coupling is weak, so
that the damping time %/ is much larger than both the
(maxima) dynamical characteristic timig of the apparatus,
and the characteristic correlation time of the b&atf. Under
these conditions it is possible, as shown in Appendix D, to
introduce an effective quantum noibét) with white spec-
trum satisfying Eqs(2.23—(2.25, and get the Gibbs distri-
bution as the result of relaxation. The timgs expressed as

—, (2.45

as seen from the free part of E@.28). Altogether the pa-
rameters of the bath should satisfy

a>y or T>|u|>hy, (2.49

where we have taken into account the upper bo@ntd on
|x]. Notice that excited levels of the Bose gas have a lower
dynamical time

1

()~ .
d a+ wj

(2.47
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It is expected that in a nonideal Bose gas these characteristitynamical evolution equations, this allows to obtain and un-
times will influence also the lowest mode, making its char-derstand results in a more easy way. This is because Wigner
acteristic dynamical time lower. The weak-coupling condi-functions allow one to use the classical intuition as much as
tion (2.46 is discussed with more details in Appendix D.  possible, which appears to be insightful for such systems.
We shall focus on the degrees of freedryp of the tested
particle anda, a' of the condensate, leaving aside the excited
I1l. DYNAMICS OF THE MEASUREMENT PROCESS states of the Bose gas which relax independently. To intro-
duce a Wigner function not only for the particle but also for
the apparatus degrees of freedom, we represent the annihila-
The above equations describe the joint evolution of theion and creation operators in the canonical way:
tested particle and the Bose gas in the bath which ensures

A. Approximate conservation of the measured quantity

relaxation. This evolution will describe a measuremenk,of 1 . + i

if the Bose condensate registers the statistical distribution of a= E(X“P)a a :E(X_IP)’ (3.9)
xin the initial statep(0) under the conditions specified in the

Introduction. In the present section we will take into account

the following condition for ideality of the measurement. X = \[E(aJraT), P=i g(a*—a), (3.2

If x(t) did change with time during the process, the final
state of the apparatus would be determined not only by the
statistical distribution ok(0) but rather by the whole history [X,P]=if. (3.3
of its change. So to be sure that we indeed measure the ) i )
quantityx(0), wewill require that the characteristic time for R";C&" ”that the connection between a density matrix
x(t) to change appreciably from its initial value is much (X |p[x") and the corresponding Wigner functior(x,p) is
larger than the relaxation time l/of the apparatus. This 9iven for each degree of freedom as
time is itself shorter than the duratighof the measurement, 1
since fort= ¢ the apparatus should display definite results <x+ —f‘p
through well-defined stationary states. Notice the conserva- 2
tion of x(t) does not mean that the state of the particle is not .
changing. One only needs approximate conservation of the _ itolh
guantity x. For the considered model this is realized if over w(x,p)—f dge ' <X+ Eg‘p
the time scaled one can neglect the contribution of the ki-
netic energyp?/(2m) to the change of the coordinateOb-  Notice that in the present paper the normalization of the
viously, this is realized for sufficiently large. The more  Wigner function is chosen as
precise conditionm>g2¢® will be found in Appendix C,
where we discuss the deviations from nonideality which dp dx B
arise from the motion of the particle during the measure- 2mh w(x,p)=1, (3.6
ment. For other systems this conservation of the measured
quantity may result from a commutation relatigri g, x] since the integration with this weight corresponds to a trace.
=0, as stressed by Wigng2] (see alsg26] in this context. =~ The Wigner function of the particle and the condensate to-
However, the actual mechanism is basically irrelevant progether will be denoted byV(X,P,x,p); those of the particle
vided that the time scale for the variationofs much larger and condensate separately will be denotedvés,p) and

1 d .
x—§§>=f%e"fp/hw(x,p), (3.4

1
X—§§>. (35)

than the duration of the measurement. W(X,P), respectively. Obviously, one has
Notice that taking the limitn—, as we do in the bulk of

this paper, does not mean that we are dealing with a classical dXdP

particle. In fact, the initial density matrix’|p(0)|x") of the J S WX PXp)=w(X.p),

particle is arbitrary, which expresses that the quantity
subject to a fully quantum probability distribution at the ini- dxdp
tial time owing to the presence of off-diagonal elements. The f a7 WK PXp)=W(X,P). 3.7
large mass enters the equation of mot{@B2), and it only

implies that the diagonal elementg|p(t)|x) remain un-

i The Wigner function at time in the Schrdinger picture
changed during the measurement.

can readily be represented in terms of the Heisenberg opera-

tors. For example, for the tested particle the corresponding
B. Wigner function and intermediate Wigner function formula reads

1. Wigner function

.. w(x,p;t) = {trp(0)W(x,p;t)),
For solving the dynamics in the Scldiager picture, we (x,pit) =(trp(O)w(x,pit))

find it useful to employ the language of the Wigner function. dadb
The description through Wigner functions is, of course, com- \7v(x,p;t)=J
pletely equivalent to that through density matrices, but fre- A2
guently, and in particular for quantum systems with linear (3.8

exd —iax—ibp+iax(t)+ibp(t)],
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wherex(t), p(t) are the Heisenberg operators of the particle, X(t)=X(0)e "cosat+P(0)e "'sinat
p(0) is its initial state, and the average is taken with respect

to the full noisen= 7o+ 7;. x(0)g
2

> la—(ysinat+acosat)e” ]
. . . Y t+a
2. Intermediate Wigner function

We shall also find it convenient to use yet another formu- ft — s A—ias iasit

. ) +h dse e '**b(t—s)+e'**b'(t—5)],
lation, where the degrees of freedom of the tested particle are Y 0 [ ( ) ( )]
left in the matrix representation, and the Wigner transforma-

tion (3.5) is taken only for the apparatus degrees of freedom. (3.10
We will call this object the intermediate Wigner function, o o
and denote it a¥(X,P,x’,x"), wherex’, x” denote the cor- ~ P(t)=P(0)e” "cosat—X(0)e™ "sinat
responding matrix elements in tlxerepresentation, %(0)
_ 1 1 + 2—92[7+(a sinat—ycosat)e™ "]
V(X,P,x’,x”)zJ dge'fP’ﬁ<x+§§,x' R’X—Eg,x”> Via
t . .
_ X' +x" +ix/ﬁyf ds e "[e'*bT(t—s)—e '*Sh(t—s)].
=J dp éF’(X’—X”VﬁW(x,P, 5 ,p). 0

(3.11)
(3.9
For the tested particle we can solve E@32 and(2.33

Here again the excited states of the Bose gas are left aside. S
when the operatox(t) does not significantly change, as

C. Exact solution of the equations of motion in the Heisenberg

picture X(1)=x(0), (3.12

We consider a heavynf—), free (V(x)=0) particle. ¢
The equations of motion for the apparatus have already been p(t)=p(0)+x(0)&(t)+ f du n(u), (3.13
solved as Eq(2.26) for the excited states and E@.29 for 0
the lowest state. The latter equation, in whigh—s) can be
replaced byx(0), is written in terms ofX, P andb=Db, as where

t u 2+ a®)at+(y?—a®)e Msinat—2ay(1—e "cosat
e()= [ au  "asy(s) =g AT ISR 2 3 (3.14
0 0 (v*+a?)?
and x(t), »(t) are defined by Eqg2.34—(2.37). Hereafter the following formulas will be used:
t y[1—e "coswt]+ we™ Msinwt t o[1—e "coswt]— ye sinwt
fdse YScosws= CR , fdse rSsinws= PN . (3.19
0 Y tw 0 Yt

D. Exact solution of the equations of motion in the Schrdinger picture

Since the above dynamical equations are linear, there is a direct connection between the Heisenberg picture and the
Schralinger dynamics in terms of the overall Wigner function for the tested particle and the apparatus. The equation for the
common Wigner function of the particle and the lowest mode has the form

W(X,P,x,p;t) = f dXod Podpo® (X, P,X,p;t|Xo,Pg,X,Po;0)W(Xq,Pg;0)W(X,pg;0). (3.19

Here we denote b¥y,Pq,pg the variables of the Wigner function at the initial time. The variablef the Wigner function
remains unchanged from the initial to the final state, since the Heisenberg opétatisrconserved. In Eq3.16) we used the
fact that the initial Wigner functionV is factorized into the partial Wigner function of the lowest leW§0) and that of the
tested particlev(0),

h 1
W(X,P,X,p;O)=W(X,P;O)W(x,p;0)=w(x,p;0)Xexr{ - ﬁxz— EPZ}, (3.17
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where we took into account the fact that at the initial tirse0 the apparatus has already relaxed to the equilibrium Gibbs
distribution under the influence of the bath.

To find the transition kerneb, we notice that the Heisenberg operat&(s), P(t) andp(t) of the Bose gas and the tested
particle given by Eqs(3.10—(3.13 arelinear and involve only theGaussiamoiseb,b’. We can then use the method of Eq.
(3.9 for the whole system. Recall that the moments of the Wigner function coincide with the correspsypdinggtrized
operator moments. Henc®, has the Gaussian form

J/detB 1 3 )

D(X,P,x,p;t| Xq,Po,X,pp;0) = exp — 5 BL;L 31
( P;t|X0,Po,X,Po;0) (27)32 2i,g=:1 ikLibk (3.18
where (4,L,,L3) is the following three-dimensional vector:
L,=X—(X)=X—Xqe "cosat—Pye "'sinat— 2 Z[a—('ysinat+aCOSat)e_yt], (3.19
Y o
L,=P—(P)=P—Pye "cosat+ X,e "'sinat— %[w (asinat—ycosat)e "], (3.20
Y o
_ _ 9Xo . o 9Po . o
Lz=p—{(p)=p—po—Xx&(t)— [ v+ (asinat—ycosat) e” "']— [a—(ysinat+ a cosat) e "].
y2+a2 72+a2
(3.2)

Here we have used Eq&8.10), (3.1, and(3.13), and the averagé - -) is taken over the noise operatdysb directly and
through z,. The quantityé(t) was defined in Eq(3.14). Notice that since we are interested here in the common state of the
particle and the apparatus, the term connected withwhich gives rise to the last two terms in E(.21) appears as
deterministic. The Gaussian quantum noise enters thr8ughich is a 3x 3 symmetric matrix with the following elements:

-1 2 -1 o _ T —2mpt ha
[B™]1=((X=(X))5)=[B~ ]=((P—(P)) >:§[1_e 7]C0th2_-|-a (3.22

[B~1]1=(X—(X);P—(P))=0, (3.23

t fi [ y—2ye Ycosat+ ye 2" ha
[B-l]ls=<><—<><>;p—<p>>=<><—<><>;j0dsno<s>>=97<7 i )cothz—T, (324

[B‘1]23:<P—(P>;p—(p>>=<P—(P);j;dsno(s)> =— %(

a—2ye Msinat—ae™ " ha
coth—, (3.2
'yz+ o? 2T

t(t 9°h  ha|2yt+1—e 2" 4y(ye Mcosat—ae "'sinat—y)
B 1s=((p-— 2=desd Ko(S1,S;) = —=—coth=— + )
[B™ ]ss=((p—(P))*) 0o &t S2Ko(S1,52) 2 T Vot o (Y2+ a?)?
(3.26
If we adopt the following notations
[B™ 13 [B™ M2
= -1 — —
MO=[B" T, (== oO=5 (3:27
[B™1]
M= o= (329
then we can write the matrig ! as
1 0 4
B l=x|0 1 o , (3.29

{ o A+{2+0'2
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and hence the matri® will read

. A+? lo —¢ . 100 L —¢
= — A+o® — =—(0 1 O — - — —
B A {o Loy o) N A o|®(—¢ o 1). (3.30
- -0 1 0O 0 O 1

Equation(3.18 for ® can altogether be written in the explicit form:

1 1 1
. ‘) — T 2.2y _ _ 2
CI)(X,P,X,p,t|XO,P0,X,p0,O) (277)3)\3A ex% 2)\(L1+L2) 2)\A(L3 ng O-LZ) ) (331)
T
where\, ¢, o, A, L4, L, andL 5 are defined by Eq$3_19)— IV. IDEAL MEASUREMENT: POSTMEASUREMENT
(3.28 as functions of time. STATES

In this section we will be interested in the postmeasure-
ment situation. Let us first resume thenditions of ideality
of the measurement that we have encountered above. The
The results reported so far were obtained for the measureelaxation time of the apparatus should be small compared to
ment of the coordinate which has a continuous spectrum. It the duration of the measurement:
is of clear interest to indicate how the obtained results can be
generalized for other specific situations, e.g., for measure-

ment of spin. Here we provide a simple remark, which will tpg ¢4 pling with the bath should however be small on the

set our results in a more general context. scale of the dynamical tim.45), as shown in Appendix D:
Let us assume that the interaction between the tested sys-

tem and the apparatus is still given by E8.6) but now the | ]

tested system is completely arbitrary, anth this equation y<a= h (4.2

refers to one of its observables. In particular, it can have a

discrete spectrum. For simplicity we still neglect the self-On the other hand, if we denote Eya typical value of the

Hamiltonian of the tested system. In this general case, theoordinate to be measured,

complete Wigner function for the system and the lowest level

is no longer defined. Nevertheless, the intermediate Wigner X2=tr(p(0)x?), 4.3

function of Eq.(3.9) is still perfectly defined. Recall that this

function employs X,P) variables for the lowest mode, but its coupling with the apparatus should produce a finite con-

uses the matrix elements’(x") in the eigenrepresentation densate density, which according to Ef.20 is expressed

of the measured quantity. As we show in Appendix A the @s

intermediate Wigner function corresponding to E2}16) ad-

equately describes the general situation that we consider. hg

Though the complete density matrix of the measured system u?

and the lowest mode might also be used, the intermediate

Wigner function) is a more convenient object to deal with. The fact that the bath ensures Bose condensation, but that the
An illustrative example for the measurement of an observcondensate density remains dominated by the coupling with

able with a discrete spectrum is the spin-boson Hamiltoniathe particle, imposes the conditig@.18), that is

[25], of which we only need to specify the interaction part

E. Measurement of a variable with a discrete spectrum

y6>1. 4.1

Z;(Z

—O(N). (4.4)

1
1 1> @> N’ (4.5
H|:§g(TZX, (332
To fix ideas we shall assume in the following that
where the measured observalle, is the zcomponent of Mzo i (4.6)
spin for the tested system. T INJ'

The situation of a discrete spectrum measurement will
also be encountered below for our original model in spite oWwith T finite in the thermodynamical limit. This will imply,
the continuity of the coordinate Actually, we shall consider from Eqg.(4.4), that the coupling constagtis finite. Finally,
an initial density operatgs(0) involving two distinct values if p is the characteristic value of the particle momentum, the
of x only, a situation which does not differ much from a approximate conservation of during the measurement
genuine discrete spectrum. means that
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A. Apparatus

As seen, the apparatus itself behaves as a Bose gas subject
to a source field proportional @x(0). Owing to Eqs.(4.13

or m>g?¢* as shown in Appendix C. We expect that underand(4.14 the variance\ A of L5 in Eq. (3.31) is much larger
these conditions both the tested system and the Bose gésan (N%/x)2. We can therefore readily trace out the tested
have reached at tim@ a quasistationary state that we wish to particle from Eqs(3.16 and(3.31) by integrating over both

study.

p andpg. The factorw(x,pg;0) of Eq.(3.16 thus generates

By using the conditiori4.1) we first recall that the excited the probability density
states become decoupled and thermalized with the bath,

since their Wigner function at time deduced from Eq.
(2.26 reads

1
WX PO = ) et ha
COthT ﬁCOthT

X (XZ+P2) |. 4.9

The transition kernetb between times 0 and can be
obtained from Eqgs(3.19—(3.28, and(3.31). Under condi-
tions (4.1), (4.2), (4.5, and(4.7) its various ingredients re-
duce to

h ha T g
MO =5 cothom=—, 1(6)=0, (==
(4.9
29%v0
A(O)="0, (4.10
a
gx
|—1(9)=X_;, Lo(0)=P,
xg?0 g
L3(0)=p—po— _;Pm (4.11
g xg*o
_§|—1_U|—2:p_po+Z(P_Po)_ , (4.12

where we have used(6)=g?6/a as follows from Eq.
(3.14). We note that Eq94.5) and (4.6) imply

NA>N(0)>h, N=hO(YN), (4.13
respectively, and that Eq&.1) and(4.4) imply
N#A
A(0)> =, (4.19
X

while gX/a is of orderN

The postmeasurement state of the tested particle and the
apparatus will be investigated below in three steps. First we
will discuss the partial state of the apparatus and that of the

particle. Later on we shall turn to the global state.

J’dp 0 0 4.1
P00 =(p(O)) (419

for the coordinatec in the initial state of the tested particle.
The resulting expression of the Wigner function of the appa-
ratus at timef has the expected form

Wi.Pi0)= [ axxlp(OWOP), @18
h 1 gx 1
W, (X, P)——exp[ zx(x_ —) —ﬁpz (4.17

The Wigner functionV,(X,P), wherex =T/ «, describes the
quantum Gibbs distribution of the apparatus at temperdature
and chemical potentigh= —7% «, with a classical sourcd

= JhI2gx.

For each possible value of the coordinatef the particle
the apparatus is thus in an equilibrium state, with an order
parameter proportional ta In spite of the quantum nature of
the variablex(0) which is governed by the initial density
operatorp(0), it acts on the apparatus aglassical random
object. We can understand this classical feature by noting
that because(0)=x(t) during the processa(t) anda'(t)
commute with it:[a(t),x(0)]=0, [a'(t),x(0)]=0. There-
fore, the situation is very similar to that considered in Sec.
I B, with J=gx(0)\%/2. However, there is a subtle point,
since the fieldJ is now random. Its quantum randomness
arises from the initial state of the tested particle, which in
general is not an eigenstate of the coordinate operator. Since
the off-diagonal part op(0) disappears owing to the large
size of A\(6)A(6), to be inserted in Eq3.3)), Eq. (4.16
shows that the quantum nature of the randomness is sup-
pressed. It is seen as well that the resulting classical random-
ness is quenched, which means that all extensive quantities
have to be calculated for a fixed field and then averaged at
the last step.

Notice that for the continuous spectrum a certain diffi-
culty may arise if(for example the initial state of the par-
ticle is an eigenstate of the coordinate’|p(0)|x")= 6(x’

—Xg) 8(X"—Xg), in which case the quantiti4.15 diverges.
There are several standard ways to overcome this difficulty
[3]. The simplest one is to consider a Gaussian packet
(X|y)=(2me) " Yexd —(x—x0)%(4€)] instead of a precise
eigenstate of the coordinate. This state has a normalizable
Wigner function,

(X=X%g)*  2ep?
2¢ #2

, (418

w(Xx,p;0)=2 ex{ —
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and we can lee—0 in the last stage of calculations. Further  Moreover, if we wish toregisterthe result of a measure-
on we will always assume that this procedure is impliedment, which is the value reached Kyat the time# when the
when necessary. This justifies the replacement of(Eq.5  interactiong is switched off, we need to imagine that the
by 8(x—Xg). exchange of bosons between the bath and the apparatus is
Since the apparatus is a nonergodic system, (Ed.6 also switched off at the same tinte The overall density of
means that it will occupy witha priori probabilities bosons as well the condensate density thereafter remain fixed
(x|p(0)|x) a state which is determined by the initial value of in the apparatus, which is in canonical equilibrium after the
the coordinate. If the initial state of the particle is an eigen-time 6. Another theoretical procedure to freeze the conden-
state of the coordinate operator the field is not random, andate density at the valé.19 would consist in switching off
there is only one state to which the apparatus can relax. So ie couplingy before the end of the measurement. The fate
this case we have a definite prediction, as it should be.  of the tested patrticle after the tingeis considered in Appen-
In each statg4.17) of the apparatus, the momentumn  dix B.
associated with the lowest mode fluctuates around the value
0 exactly as in the Gibbsian state imposed by the bath, but its 2. Robustness

coordinateX is shifted byxgﬁ/|,_u|. This shift is of order We have explained how our apparatus realizes amplifica-
VN7 according to Eq(4.4), and it produces a finite shift in tion of weak signals. This is only half of the way towards a
the density good information storing device, because we yet should see
whether another important property which risbustnesss
g2x2 satisfied. In other words, if under influence of a weak field
(4.19  the apparatus has relaxed to a definite state, then what is the
probability that it will leave this state spontaneously? If this
transition probability is small, and can be made as small as it
of the condensate. The statistical fluctuationXpfequal to  is desired, then the property of robustness is present.
VA, is small compared t6X)e /N7 owing to the first con- Let us assume that the apparatus has been brought into a
dition in Eq.(4.13, namely\ <N#. state with
The second condition in E¢4.13), namelyA>1#, entails
that the variableX andP behaves aslassicalrandom vari- _ 9x
e’ . : : (X)=—. (4.20
ables, which is a natural requirement for the pointer variable a

of an apparatus. Compared to the sk} their fluctuations ] ] .
are of relative ordeN 4 if we choosex =%0(yN). In this state the apparatus has Wigner functtgpand den-
sity matrix R. We wish to calculate the transition probability

to another statdR’ associated withx’ under the effect of
some perturbation. If these states were pure, the transition
We have just seen that the interaction of the tested particlgrobability would read as usual:
and the apparatus results innaacroscopicchange in the
condensate density: It fixes the expectation va{de to Prix—x")=tr(RR’). (4.2
xghi/|u| within fluctuations which are small in relative _ .
value. This large effect is a consequence of the conditiofror mixed states we use the same formula in terms of the
(4.4). The couplingg is sufficiently large to produce a shiftin overlap:
the numbem., which is of the same order as the total par-
ticle number. However, it is sufficiently small so that the Pr(x—>x’)octr(RR’)=f dXdPWX(X,P)WX,(X,P).
contribution of the interaction Hamiltoniad, to the energy 2mh
of the apparatus is negligible. (4.22
The amplification of the influence of the tested system o
the apparatus is due here to the smallnesisupf The bath,
which imposes on the apparatus the conditisb), prepares
it before the measurement in a state where the condensate
density is not yet finite, but where the smallness| af pr(x_»(/):ex%_
makes the apparatus very sensitive to a source coupl¥d to
By making successive macroscopic observations of the value
of X, one can then find the statistics af0) through It is clear that above the phase transition point, when both
(X|p(0)|x). There is a one-to-one correspondence betweerr=—ufi and\ [defined by Eqs(3.22 and (3.27)] are fi-
(X) andx(0), without bias because the various values of thenite, this transition probability is of order one, so that no
order parametefX) yield identical values for the energy as robustness is present as was to be expected.
well as for the entropy. Let us consider the situation below phase transition where
A peculiarity of the model comes from the fact that the A\~ T/a. We then have
amplification factorg/| x| depends on the coupling constant
g and on the chemical potential of the bath. These quantities
need to be known to let us determir@) through({X).

NC 2 2
v o m(X +P —h>—2M2V

1. Amplification and registration

nTo be normalized this expression should be divided by
Pr(x—x). Using Eq.(4.17) one gets

gZ(X_X')Z
2

(4.23

ANa

hg?(x—x")?

a4 4.2

Pr(x—>x’):ex;{—
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According to Eg.(4.5 the exponent is of orderN|u|/T.  Since the apparatus is nearly in equilibrium at both times 0
With Eq. (4.6) this exponent behaves asy|N in the thermo- and 6, P and P, are of orderyA=T/a. We can thus ne-
dynamical limit, provideck andx’ differ by a quantity which  glect the term depending on the apparatus in the bracket of
remains finite ad\—cc. The probability therefore vanishes, Eg.(4.27), because

as it should.

The fact that the overlap between states of the apparatus 1 g2 3 g2
associated with different values afis negligible also ex-
presses that different positions of the pointer variable consti-
tute exclusiveevents.

T 1
—— — 2: —_—— I ———
2\A az(P Po) 49°Ty0 a? a  4y0 428

is small. This means that the overall system forgets about the
3. Accuracy of measurement initial state of the apparatus foy6>1. We can therefore

The robustness reflects stability of the apparatus with ref€adily integrate over the initial stat/(X,Po;0) of the
spect to external perturbations. Another quantity, sbeu- ~ 2PParatus, then over the variabkandP, which yields
racy, characterizes the strength of the noise due to the initial
uncertainty of the tested particle, and due to spontaneous
thermal fluctuations induced by the bath. One can estimate w(x,p;0)=f dpoW(X’poio)\/z—T
the accuracy of the measurement by evaluating the following &

quantity 1 9°6\?

i , X ex —m(p—po—xT . (4.29

S = {<X >}av_{<x> }av (4 23
{X)?) oy ' ' Due to the large value ofA the exponential factor in Eq.
(4.29 is nearly constant. Indeed, we have

where the averagg - - ) is taken with respect to the state of
the apparatus, and whefe- - },, denotes the average over NAXZ 2hg%Xe T i
the initial distribution of the particle. This is the signal-to- S mw: vOO(N~9), (4.30
noise ratio, and <1 corresponds to a good measurement of h K K

X. Having used Eqg2.10), (2.11), and(4.5), one finally gets
wherex is defined by Eq(4.3), so that the only effect of this

T| ] exponential is to produce a cutoff which ensures the normal-
= ﬁz—z (4.26 ization of w(x,p; ). Otherwisew(x,p;6) is practically in-
9T ay dependent op, and its dependence oris the same as that of

the probability densityx|p(0)|x) as expected.
X" The density matrix in thex basis associated with the
Wigner function(4.29 is given by

In the region where the condensational phase transition e

ists this quantity is small a$/(|x|N)=0(N~?), provided

that the thermodynamical limit is taken and tHat},, is

finite. The accuracy is thus governed by thermal noise. A
Note also that apart from the above uncertainty the deri- ; I ot " AR U2

vation of the measured quantityfrom the pointer variablX X lp()]x")={x"[p(0)]x )ex;{ 2ﬁ2(x x")

by means of Eq(4.19 involves the ratiag/«. The accuracy

of the measurement is, of course, spoiled if the coupling ig26 P

constantg and the chemical potential of the bath are not + m(x —x")|. (4.3

controlled with precision.

The large value ok A ensures that it practically reduces to
the diagonal part 0p(0) in the basis.

Let us now consider the partial state of the tested particle.
At time 6 we can find this state by tracing out the apparatus 1. Decoherence time
from Eq. (3.16 using the approximation§4.9—(4.12. In
this calculation we first note that the memory about the ini—de
tial value X, is lost. The variablé?, enters through the last
term of the exponent ob, which at the timef reads

B. Tested particle

The above expressions fov(#) or p(#) show that the
coherence of the state of the tested particle with respect to
x has been achieved at the tire

In order to understantiow and wherthis decoherence
takes place during the interaction process between times 0

1
- m(Lg,—ng—aLz)z and 6, we return to the equations of motion of the tested
particle which are given by Eq$3.8), (3.12, and (3.13.
1 xg26)\ 2 Both termsz, and %, in Eq. (3.13 should here be treated as

g
=~ 53&| P=Pot — (P=Po)=

A noise, since we eliminate the apparatus. The fluctuations of

this noise are given by Eq&.40 and(2.41). Altogether we
(4.27 get for the Wigner functiomw(x,p;t) of the tested particle:

a
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1
W(X,p,t):f dpoW(X,Do,O)Td(t)
1
xex;{—m(p—po—xﬁt))z}, (4.32

where we definal(t) by

t [t t [t
d(t):J f dtldtZK(tlntZ):J f dt;dt,Ko(ty,ty)
0Jo 0Jo

+ ——cot

g%h hﬁ_a 1—2e "cosat+e 2"
2 2T

| o

,y2+a2
and [5/5dt,dt,Ko(ty,t,) is given by Eq.(3.26. By using
Egs.(3.24 and(3.26 we find

d(t)=[B pat %[B*l]la. (4.34

With the help of formulag3.4) and (3.5 one gets the
evolution of the density matrix

’ ” ! " d(t) ’ "2
X' [p()|x")=(x"[p(0)[x )exp[—ﬁ(x =x")

1£(t)

SN2
+2ﬁ (x

"

X )?|. (4.35

It is seen that the diagonal elements of the density matri
(those for whichx’ =x") are not changed at all, whereas the

off-diagonal ones are damped with radét)/#2. In other

words, the density matrix of the tested particle tends to th
mixture formed by eigenstates of the coordinate operato
Indeed, the decoherence factft), which measures how

the density matrix is squeezed in termsxof-x”, increases
from O to~ as the timet goes from 0 too. Its asymptotic
forms at short and long times are derived from E{24)
and(3.26) as

_9T,
d(t)—Tt , Yt<at<l, (4.36
29°T
d(6)=—5-v0, y6>1. (4.37)
o

For long timesy6>1 the exponent of Eq4.35 behaves as

_ 0= v00 N3’2,
e PR T RERR A
(4.38

PHYSICAL REVIEW A 64 032108

An analogous investigation for short timgs<at<1 can
be carried out using Ed4.36):

d(t) ) hg?(x'—x")? T (Tt)2 (Tt)2
- X’_X” ~_ | = — O Nll X
2h2( ) u? JIRE2 i) O

This quantity can be much larger than 1 even in the region of
short timest for which at=|u|t/Z <1, provided

Tt T
N~ < —<—r=0(N'?). (4.40

| |

The off-diagonal terms op(t) thus disappear at the very
beginning of the interaction of the particle with the appara-
tus, after a delay of ordeX ™4 The characteristic time

h
[ TN1/4

(4.47

over which the reduction of the state of the tested particle
takes place is thumuch shorterthan theduration 6 of the
measurement, since

1 &
0> —> —>r7,

(4.42
vy |ul

The first inequality in Eq(4.42 ensures the relaxation of the
apparatus. The second inequality ensures that the stationary
state will be Gibbsian. The third inequality indicates that the
)gecoherence of the tested particle takes place on a time scale
much smaller that the dynamical tintg/| | given by Eq.
(2.495. Note also that /T itself is an important characteristic
ime scale in quantum statistical physics, which characterizes
éhe relevance of quantum versus thermal effects. As shown in
Eqg. (4.41) the macroscopic size of the apparatus reduces
these quantum effects by a factdl’”.
The collapse timer, which in textbook discussions is ei-

ther taken to be zero or identified with theeasurement time

0 itself, is definitely different from the latter in our model.
Another interesting aspect of this difference is that, at those
short time scales given by E.41), the change in the ap-
paratus is still negligible. Indeed, the variables of the bath
have not yet changed at those scales, since the characteristic
time over which the equilibrium between the bath and the
apparatus sets in isjL/ On the other hand, the energy asso-
ciated with the particle has as well not changed, because the
influence of the kinetic energy can be neglected, and the
coordinatex(t) remains constant. In fact we shall study in
the next subsection the change in momentum associated with
the second, imaginary term in the exponent of E435.
According to Eqs(4.36 and(4.49 below, this term is neg-
ligible compared to the first one fart<1 since their ratio

for such short times is of ordefi&(t)/d(t)~ at|w|/6T
=atO(N™ 9. Altogether, this means that Eq$4.39,

and we recover as in Eq4.31) the strong damping of the (4.41), and(4.42 provide an example of a situation where
off-diagonal terms, which allows us to obtain the proper statéhe reduction of the state of the tested particle occurs long

of the tested particle after the measurement.

before achievement of the measurement process, and without

032108-16



QUANTUM MEASUREMENT AS A DRIVEN . .. PHYSICAL REVIEW A64 032108

any energy cost, although this reduction is a consequence esfate with a finite density of the condensate. In response this

the interaction with the apparatus. large effect produces a boost in the average momegip)m
_ The phenomenon can be traced back to the second term in
2. Back reaction of the apparatus the RHS of Eq.(2.33 for p. The factory(t) which enters

The post-measurement Wigner functidd.29 of the this term describes a deterministic effect produced on the
tested particle involves a shiftg?6/« of the momentum, particle by the_ apparatus in contact with the_ b_ath. Th_e in-
that we have not yet discussed. The density maigl)  crease of(p)| is thus a cumulative effect of friction, which
accordingly exhibits oscillations within the small region in accompanies the rise ¢fX)|. . .

x' —x" where(x'| p(t)|x") is significant. Let us evaluate the ~ Altogether the interaction of the tested particle with the

order of magnitude of the corresponding average momenr@pPparatus produces on this particle two effects. It first re-
tum: duces the state, suppressing the off-diagonal ternxsciar-

ing the timer. Later on, between the times and ¥, it yields
% a large value to the average momentum without spreading
v00O(N)> =O(N). the distribution inx, as seen in Eqg4.29 and(4.32. This
X second effect is probably connected with specific features of
(4.43 our model, namely, the choice of the apparatus and of its

. — order parameter, and the form of the interaction Hamiltonian
The quctuatlons op, of qrder )‘.A_ .d(e)’ are also large, between the apparatus and the tested particle. It is also re-
because the final state is localized in thepace. They are

lated to the existence of the continuous spectrunxfarhich
expressed_ by Eq(._4.3(_))._AIthough large, the value ofp) allows the rapid oscillations exhibited by Eq.31) and
would be ineffective if it were smaller than these fluctua-( 35

tions. However, the ratio of the shift to the fluctuations is

given at the timef) by at the time 6 is compatible with our hypothesis that the
2 rade T 2 2 Heisenberg operatox(t) has remained practically constant
(p” _hgx _(E> y0>(3> YOO(N2) over the time interval (@). We show in Appendix C that,
P —(p)2  2u? lully Y ' contrary top(t), the equation of motion fox(t) contains no
(4.44 systematic drift term arising from the coupling with the ap-
) ) o paratus and hence with the bath; it involves only a noise term
a large number in the thermodynamical limit. which does not affect muck(t). We were thus entitled to

The shift of (p) is therefore an important effect of the neglect the variations of between the times 0 anl
measurement. Let us look how this shift increases at short

times. By using Eqs(4.32 and(3.14 we find

hxg?0 hg?X%0 a xh h
= 5=
M~ M Y X X

(p)=

a
Y

One may wonder whether the large value(pj reached

3. Einstein-Podolsky-Rosen experiment and speed of quantum

gzaxt3 signals
xé&(t)~ 6 yt<at<l. (4.45

The above analysis allows us to discuss an experiment of
the Einstein-Podolsky-Ros€BPR) type. Let us suppose that
At the time 7 when decoherence is being achieved, the shifthe tested system consists of two particles denoted by 1 and

(4.4 is of order 2. They do not interact for>0, but they did interact in the
past, which is reflected in an entangled wave function of the
hg®x% [ w)3 hoh tested system at the initial tinte=0:
XE()~ -2 5 (ﬁ) N™3—=—O(N"%). (4.46
o T X X
We see that the change {p) begins to be significant long p(0)=[¥) (¥, |'ﬂ>:§ a x|y, (4.48

after decoherence has taken place. This is consistent with the
fact anticipated at the end of Sec. IV B 1, that very little is
yet changed in the apparatus at the time where|x,) are eigenfunctions of the operatoifor the first
The ratio (4.44) is of order 1 at a timer; such that particle, and|y,) are arbitrary normalized, not necessarily
[x&(71)]?=d(r,), where the shift becomes comparable with orthogonal functions in the Hilbert space of the second par-
the fluctuation. Using Eqg4.36) and(4.45 one finds ticle. As indicated by Eq(4.18 a small dispersion should be
allowed forx so as to normalizéx,). The measurement of
the observabla is realized as above, namely the first particle
couples through its operator with the apparatus as ex-
pressed by Eq2.6). However, the second partictibes not
Here as int, the time-scale is given b/T, but now the interact with the apparatus. Equatiods35 and(4.39 take
thermodynamical limit produces an enhancement. place as above with the slight difference tkat|p(t)|x"),
The large shift of p) can be attributed to the interaction (x’|p(0)|x") are matrices in the Hilbert space of the second
process which takes place between the apparatus and tparticle. In particular, the reductiofcollapse of the initial
particle in the time interval;, 6. During this period, the state occurs on the time scale predicted by E4K89 and
particle acts upon the lowest mode so as to drive it towards &4.41), and it now provides

f 1
n=gN¥ ren < (4.47)
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¥ (X,P,x,p;0|X,
p(0=3 lalhQlydnlixd. (449 (X.Pxpitl.po)
K 2
h 1 g 1
o o x|
The remarkable feature of quantum mechanics is that al- N(0)y2md(6) 2\ @
though only one subsystem is involved in the measurement, 1
the total state of the tested system is reduced. -
This general analysis can be illustrated by the standard 2d(0)
example of two spins produced in the singlet state by the )
decay of an object with angular momentum 0. The initialFor d(#)— = the expressiof4.54 reduces to the product of
density operatot4.48 is the Wigner functionW,(X,P) of the apparatus, defined by
Eq. (4.17 for each possible value of and thatw(x,p; 6) of
1 the particle given by Eq(4.29. This factorization merely
($185|p(0)[s]S5) = 3 85, +5,0( s, 51 55, 5~ 05, 505, 1) expresses both the reduction of the initial stafe, p;0) into
(4.50 w(x,p; #) and the registration by the apparatus of the classi-
' cal random variable.
The finite size ofd( ) in Eq. (4.55 entails a nonideality
of the measurement that we now consider. We shall find it
convenient to rewrite Eqg4.54) and (4.55 in two alterna-
tive forms. First we may use as indicated in Sec. llI B 2 the
density matrix representation only for the tested particle,
(4.51) while keeping the Wigner representation for the apparatus
(intermediate Wigner function

2
(p—po—g(a)x+%P> } (4.55

As above we perform measurement on theomponent of
the first spin only. For larg®&l Eq. (4.39 leads to reduction
s,=s; after a delayr. This automatically implies,=s,:

1
<5132| p(7) | SiSé> = E 531* 52,0551 ,31532 Sh*

Let us give some quantitative estimate of the characteris- V(X,P,x", X", 0)
tic reduction time scale. For a temperaturé=1K we ob- 5 1 g X +x"\2
tain =(x' m - x-2 =
(X"|p(8)|x )Aex;{ 2)\(X o
=10 "NV s, (4.52 1 gi
T p2_ 2 g
2)\P - h(x x"P/, (4.56

Estimating N~ 10?* for a macroscopic system, we get

717 - . .
~10""" s. For a distance 9f 1 'm between spins this would;ere the density matrip(6) reduces to a nearly diagonal
lead to a speed of order 10m/s. Of course, this does not form in x as expressed by Eqggt.31) and(4.35. And finally

mean that there is an information transfer at this speed, byfe same expression can be presented in the complete density
only a change in our knowledge throughof the quantum ., 5+ix representation:

correlations of the two spins. Indeed, as we noticed at the
end of Sec. IVB1 the energy of the system is constant for

1
times of orderr. X' X' |R(O) X" X"Y=(X"|p(0)|X"Y —=
C. The common state of the tested particle and apparatus 1 (X' +X" gx' +x" 2
In the evaluation of the common Wigner functi¢.16) xexp{ ol T 2 T4 2

of the particle and the apparatus, we use for the transition
kernel® the approximate expressiof9)—(4.12 as above. A
We recall that in the limity6>1 the variance op,

g 2
“lxxZoee)
2 h2
y0==; y#O(N*?), (453 (4.57

X
It is seen that the last small tergfx’ —x")/« in the RHS of
Egs.(4.56 or (4.57) quantifies the entanglement, that is, the
degree of quantum correlations between the apparatus and
the particle. Indeed, if in Eq4.57) we neglect this factor, we
again find that the overall density matrix simgigctorizes
into the contributions studied above separately for the appa-
ratus and the particle

2
d(6)=N()A()= —
(24

is large as well as.(6)=T/«a. We saw at the beginning of
Sec. IV B that this implies a loss of memory about the initial
stateW(X,,Py;0) of the apparatus. In Ed3.16 we thus
integrate over the initial Wigner functio8.17 and find

W(X,P,X,p; 0)= f dpoP (X,P,x,p; 0]X,pg)W(X,pg;0),

454 (X7 X RO X" X"y=(X"[RIX")(X"| p(0) X"),

where where we check, using=—#AT/u and u= —f «, that
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1 ;{ 1 (X +X" gx\|2 We again find the expected features for an ideal measure-
Ry= f dX"dX"| X" W(X"|exg — —(—— —) ment, without the difficulties of the continuous spectrum dis-
V2 2hy 2 @ cussed in Eq(4.18 and Sec. IV B 2.
In order to understand the above suppression in terms of
_ L(X’ — X2 (4.59 observables, let us imagine that one calculates the average in
2h? the state(4.60 of some observablg with matrix elements

(X'|FlX") in the Hilbert space of the particle and the ap-

is the Gibbsian density operator of the apparatus for thgaratus:

pointer variablex=(x'+x")/2. This factorization, together
with the fact thatp(#) describes the reduced state of the
tested particle, shows that the program set up in the introduc-
tion by Egs.(1.1)—(1.8) is achieved, and that our model de-

1£(0)

oh (ST

(F)= Z Pitra(Fii Ri) + ;k exr{

scribes an ideal measurement provided the various condi- d(o) )
tions (4.9 —(4.12 are satisfied. YT (si—s1)?|(silp(0)[s)tra( FiiRik) -
Let us turn to a more detailed discussion of the off- 2

diagonal terms in the overall density matii4.57). As we
already discussed in Sec. Il E, Eq4.56) and (4.57) are
valid for the measurement of any Hermitian oper&aif the

(4.64
To ensure that the second sum in the RHS of @60 is

tested particle, in particular those with a discrete spectrunion-negligible in the thermodynamic limit, one needs

When dealing with this casé|x)} should be directly substi-
tuted by the eigenbase &f Then the analogue of E4.57)
reads

1 &(0
RO pls)sloR 0+ S ot oy ()
1 itk
d(o)
_#(Si_sk)z (silp(0)[si)|si)(sd|® Rk,

(4.60

wherep;=(s;|p(0)|s;) is the initial distribution of the mea-
sured quantityS of the tested particle, and where

Ri,= ! de'dX"X’ X" L XX
ik_\/m | >< |EX ﬁ 2
gsi+sd® N[, ., 9 z
—ET —% X=X ;(Si Sk)
(4.6
satisfies
Ag® 1 ) , o |pl
trARik—eX;{—7%(si—5k) 1, trARik—ﬁ—ﬁ.
(4.62

Fori #k, Ri, has almost the same formB§=R;, given for
the continuous case by E¢.59, but with slightly shifted

d( ) 5
|tra( FiiRik) [+ ex 252 (si—sk) (4.69
at least for one pairi¢ k). Using
[tra( FiRi) P < traFic FitraR (4.66

and Eq.(4.62, one can write the conditiot®.65 as

2T p[d(a)

trA]:ikfkiB mex ? . (467}

(si—sK)?

No general principle prohibits the existence of such an ob-
servableF which will satisfy Eq.(4.67). However, it is need-
less to mention that in the considered lafgdimit it would

be quite pathological. So, under reasonable conditions one
only has the diagonal term in E.64).

The same conclusions as we just drew from the large size
of d(6) do hold in the continuous case given by E4.57),
except for divergences associated with the continuous spec-
trum, and we can rewrite E¢4.57) in the form

R(0)= [ axpld(der(0), (469

where p(x) =(x|p(0)|x), which exhibits the form required
by the ideal measurement conditions.
Let us finally discuss for illustration two examples.
1. Transformation of an eigenstate

If the initial state|x;) of the particle is an eigenstate of

off-diagonal matrix elements. Notice that this shift is due tocoordinate, one has for the initial density matrix and Wigner

entanglement between the apparatus and the particle.
It is seen from Eq(4.60 that the off-diagonal terms 6%
are strongly suppressed with the exponential factor

d(o)
exr{ - #(si—sk)2

. (4.63

function,

(X' [p(0)[X") = (X" [} )(Xa[X"),  W(X,p;0)=8(X—xy).

(4.69

More precise normalization according to £4.18 provides
a small widthe to the § function inw and multiplies it by
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Zepz) Wi(X,P,X,p; 6)

\/SWEEX[{ - 22 (4.70

d(e) 5
=2¢1¢expg — %(XZ_Xl)
The state of the apparatus and particle @1 will be o
XWy(X,P)d(x—x)

WX, P X, p; 0) =W, (X,P)8(X=x1), (4.70) B ,
XCO{M( p+ %P—xﬂ)

f

whereWXl(X,P), given by Eq.(4.17), is the final Wigner
function of the apparatus. As expected the measurement does (4.79

not change the state of the particle; it leaves the particle and.

the apparatus uncorrelated, apart from the registration of th¥ith X=(x1+X5)/2. The Wigner function4.74 is a sum of
valuex, in the latter, two contributionsW,, and W;;. The first one,W,,, is the

expression(4.68 describing an ideal measurement. It is a
positive function and just consists as expected of the inco-
herent mixture of two measured valuesandx, with clas-
sical probabilitiesp? and 3.

Let the initial state of the partiCle be a SUperpOSition of The interference terrfu/\}if is Strong|y Suppressed due to
two different eigenvectorgx,) and [x,) of the coordinate the factord(#), which according to Eq(4.52 yields in Eq.
operator, which appear with amplitudes, ¢,. For simplic- (4,75 an exponent of ordey N> provided|x,—x,| is not
|ty we will take these amplitudes real. At the initial time one very small. The disappearance of the contribution of the in-
has terference term expresses that the initially existBghre

dinger catsare automaticallysuppressedso that a classical
2 interpretation can be given to the final result of the measure-
X' [p(O)X"y= 2, @iorlX X)X dx"). (472  ment.
k=1 For the continuous spectrum there can be cases where
|X,— X1 <|x4|. Since the initial superposition is then small,
The corresponding Wigner function reads, within the regu-his situation can be calleSchralinger kitten As seen from
larization of Eq.(4.18 which provides a normalization fac- Eg.(4.75, the decay of such a state becomes less efficient as

2. Decay of initial superpositions: May Schrbinger kittens
survive?

tor (4.70, |x,—x,| decreases. We may thus wonder whether Schro
dinger kittens could partly survive in a non-ideal measure-
2 ment process. We note, however, that the vakieand x,
w(x,p;0)=2 <pi25(x—xi) can be separated in a measurement only if the transition
i=1 probability of Eq.(4.24) is negligible, which requires
XitXp|  P(X1—Xp) %02
+2q01(,025(x_ S . g _ 2>
2 h —4T|,u|(X2 Xq)>1. (4.76
4.73

Since the exponent in the damping factor of E§75 which

The physical interpretation of this formula is obvious. Thecharacterizes the decoherence,

first two, incoherent terms refer to localized statexqatnd ) )

X,. The cross term, which describes coherence, is localized yo— (Xp—Xq)? 4.77
half-way betweerx; and x,; through its oscillations it is w2 Tlul 72 7100

associated with quantunnterference a fact which is clear

when one notices that it makes the Wigner function alternais much larger by a factor of orderéN than the exponent
tively positive andnegativealong the liney=(x;+x,)/2. In  (4.76 which characterizes the robustness of the measure-

other words, the initial state is highly non-classical. ment, even the weakest Schinger kittens disappear in any
Using Eq.(4.55 one finds the common Wigner function measurement process. Any kitten that can be detected by
of the apparatus and the patrticle as distinguishing from each other the two interfering values of

has the same fate as a cat: it does not survive.
2

W(X,P,x,p;e)=2l qoiZWxi(X,P)é(x—xi) V. SUMMARY AND CONCLUSIONS
1=

In the present paper we have studied a simple model in
order to get better insight on the question of quantum mea-
surement. Our purpose was to describe in full detail the dy-
where the contribution from the interference term ofnamical process which takes place during the measurement,
w(x,p;0) after integration ovepg is due to the coupling between the tested object and the appa-

+Wif(X,P,X,p;0), (4.79
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ratus. As usual in this problem, we rely on the fact that themeasured object. This was achieved by letting the initial
apparatus is a macroscopic object, so as to ensure the rapidmber of condensed Bosons be already laegeyN) but
decoherence which is needed to explain the classical natuf®t yet macroscopiasN).

of the interpretation of a measurement. However, in our ap- () The relaxation time of the apparatus should be larger
proach, this type of irreversible behavior is merged with thethan the dynamical time, so that the equilibrium properties of
idea that the apparatus should be able to evolve indifferenti{'€ @Pparatus are not affected by the bath.

towards different macroscopic states. The selection of the (d) The coupling constarg should be finite, so that the

Source term produces a macroscopic effect on the condensate

outcome should be controlled by a small interaction with thealthough the interaction term in the Hamiltonian is not ex-

microscopic observed object. The evolution of the apparatugsive.

should therefore be nonergodic, which we realize by identi- () The duration of the measurement should be larger than
fying the pointer variable with an order parameter in a phasgne relaxation time of the apparatus.

transition. The interaction with the measured system behaves () The statistical distribution of the measured quantity,
as a small source which drives the actual value of the ordefiere the position of the tested particle, should remain con-
parameter. stant during the whole measurement process.

We wanted our model to fulfill the requirements on ideal The model explains the collapse of the state of the tested
measurements listed by the end of the Introduction. We alsparticle as an effect of its coupling to the lowest level of the
wished to be able to produce, in a consistent framework anBose gas. The thermal bath acts oimigirectly, through the
from the first principles, using standard methods of quantunapparatus. We can therefore understand why this decoher-
statistical mechanics, a full solution for the equations of mo-ence process eliminates the off-diagonal elements of the den-
tion which describe the dynamical process of measuremensity matrix in thex basis and not in another basis. Indeed, the
This led us to choose an extremely simple model. Our appaguantum noise due to the environment affects directly the
ratus is a noninteracting Bose gas in contact with a particlgointer variableX of the apparatus, and the tested system
and energy reservoir, which can undergo a Bose-Einsteifeels it only because it is coupled % through the term
condensation. The pointer variable is the condensate density,gxX of the Hamiltonian. The association of the decoher-
which is sensitive to a coupling of the lowest-energy level ofence with the measured observable is thus a natural outcome
the gas with the tested microscopic system. To fix ideas wef the model. Thus in our model the decoherence is deter-
have chosen for this system a one-dimensional particle, theined by the interaction between the tested system and the
position of which is to be measured, but generalization tcapparatus. This interaction is a tunable property and can be
other systems is straightforward. When the interaction beeontrolled. Let us notice that in the standard decoherence
tween the system and the apparatus is switched on, the coapproach9,11] this process depends on the interaction be-
densate density relaxes to a value in one-to-one correspotween the apparatus and its environment which is a hardly
dence with the possible values of the position of the testedontrollable quantity due to the very definition @hobserv-
particle. We find that the randomness of this position is di-able environment.
rectly reflected by the statistics of the possible outcomes. The Remarkably, the collapse of the state of the measured sys-
off-diagonal elements of the initial density matrix of the par-tem takes place at the very beginning of its interaction with
ticle are suppressed by the process, and only classical prothe apparatus, over a time=7%/(TNY4 which has the usual
abilities enter the description of the correlations between théeatures of a decoherence time, proportionalztd@ and
initial position of the particle and the pointer variable. small in the thermodynamic limit of the apparatus. This time

The various parameters of the model can be tuned, so axale should be contrasted to the much larger time scale 1/
to explore the validity of the approximations which ensureassociated with the relaxation of the apparatus. Once the
that the measurement is ideal. The following requirementsstate of the tested patrticle is reduced, very little has yet been
which were expressed mathematically at the beginning ofhanged in the macroscopic apparatus. It still takes a long
Sec. |V, are needed for ideality. time, of order 14, for the apparatus to reach its new equi-

(a) The apparatus should be macroscopic. This large sizkbrium position determined by the system.
plays a double role. On the one hand it ensures through de- The reduction takes place for both the states of the tested
coherence the appearance of definite results in the measurngarticle and the apparatus, which remain only coupled by
ment process. This means that in its final state the overatllassical correlations at the end of the measurement. We have
system composed by the apparatus and the tested systerstimated the order of magnitude of the corrections to this
may be found in different mutually exclusive states withideal situation, and seen that they become extremely small as
probabilities given by the initial distribution of the measuredN increases. In particular the broadening of the density ma-
guantity. On the other hand, the macroscopic number of cortrix of the particle around its diagonal elements is of order
densed bosons ensures a robust and accurate registrationleds thanN~>2. Related to this aspect is the suppression of
the measured observable. Schralinger catginterference effects of states located at two

(b) Before the interaction with the tested system starts talifferent positiony and even of Schadinger kittens(similar
act, the apparatus should be prepared in a state which &ates at two nearby positignsvhich cannot survive a ro-
extremely sensitive to this interaction with the tested micro-bust measurement.
scopic system. When the coupling is switched on at some If the tested system involves degrees of freedom other
initial time, the initial state of the apparatus becomes thughan the one which is measured, our model shows that they
unstable, and it relaxes to another state determined by themain unaffected by the process. As expected for an ideal
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measurement, the density matrix of the system is then simply
projected according to Eq1.7) by the interaction with the
apparatus. In particular, in Einstein-Podolsky-Rosen setups,
our analysis confirms that the measurement of one particle N . ~t N
implies the collapse of the full system, thus also of constitu- fp(t) =iV (B (1) —b(1)). (A3)
ents that are spatially separated. This means that quantum .
information is transferred at a large speed, which depends onor a general operator & no Wigner function exists in its
the size of the apparatus, and can thus be extremely large Standard sense, but for us it will be enough to operate with
Although oversimplified, our model has many genericthe intermediate Wigner functiow(X,P,s’,s") defined in
features which are expected to occur in realistic measureSec. lll B 2. Recall that this object is a Wigner function with
ment processes. However, taking advantage of the lack despect to the lowest level of the apparathere the corre-
interactions in the Bose gas, we have used an order pararfiponding Wigner function can be definethut is a density
eter which is the density of the condensate. This is a peculianatrix in the eigenrepresentati¢fs)} of S.
property, since in a real Bose gas only the phase of the con- To write the equations of motion in terms Yfwe will use
densate, not its amplitude is an order parameter. A drawback method described ifi27], which replaces the operator
of this situation is the fact that the back reaction of the apequations/A2) and (A3) by the stochastic equation:
paratus on the system is stronger here than expected for a
truly ideal measurement: Indeed we have seen that, aPaFt&tT)(X,P,s’,s”)z—ax([aP—yX]T/)+§p([aX+yP]T))
from the reduction of the state to a nearly diagonal density
matrix, a large amount of momentum is transferred by the
apparatus to the particle. Another drawback of our model is
that it simulates nonergodicity, rather than completely in-
volving it. Although very sensitive to perturbations, our ini-
tial state is stable. It would be desirable to work out a more
elaborate model where the initial state is metastable, and can
be displaced towards several possible truly equilibrium stateslere f(t) andfp(t) behave as classical noises, which have
characterized by an order parameter, this displacement beirgxactly the same average and autocorrelation as the corre-

controlled _by thg interaction with the system. sponding quantum quantiti&&(t) and?p(t) after the sym-
Other difficulties have been encountered above due to thgetrization of Eq(2.42). The true intermediate Wigner func-

continuity of the spectrum Of the measured. quantity. For "Nion Vis obtained fromy by averaging with respect to these
stance, the large back reaction on the particle momentum IS
oisesfy(t) andfp(t),

related to this continuity. However, such difficulties are not
an artifact of our model as continuous spectra are known to
cause difficulties in many other circumstances.

| o

P=—aX— 7|5+gé+fp(t),

o

t

!+//

—ox(FV) = dp(fpV) = —5—0apV

i ~
+ §X(s’ sV (A4)

V(X,P,s',s")=(V(X,P,s',s")). (A5)

The first line in the RHS of Eq(A4) is the standard drift
ACKNOWLEDGMENTS contribution of the Liouville-Wigner equation. The last line

R.B. is grateful for discussion with M. Gaudin. Th.M.N. In this equation is as well explained rather simply: This is
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pitality at the University of Amsterdam. (i/h){s'|[H,p]|s") in the density matrix representation.
Now it is easy to see by direct substitution that the solu-

tion of Eq. (A4) reads
APPENDIX A: SOLUTION OF EQUATIONS OF MOTION
FOR AN ARBITRARY MEASURED QUANTITY ~ ig t
. ) ) ) V(X,P,s’,s")=ex —(s’—s”)f dt’ X(t")
Here we discuss the solution of equations of motion fi 0

(2.28 and(2.31) for an interaction Hamiltonian X S(X—X(1)8(P—P(1)), (A6)

Hs=—9XxS, (A1) where X(t) and P(t) are the solution of the following
) c-number equations:

where S is an arbitrary Hermitean operator, which can in

particular have discrete spectrum. In the present appendix we d _

will distinguish operators by a hat. Let us rewrite Eg.28 &X_ aP = yX+1x(1), (A7)
in terms ofX and P:

! /)
+ ’

2

P=—aX—-yP+g +fp(t). (A8)

2le

P g%t i), Ex(=Fy B0+ b)),

dt
(A2) This means that one has the following solution ¥or
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V(X,P,s’,s") Let us now investigatev(x,p;t) att> 6 for the initial state
) att=0 given by Eq.(4.73:
ig t
= | dX,dPy{ expg—(s'—¢s" fdt’x t’ .
f 0 O< F{h ( ) 0 ( )} W(x,p,t)
2, t—6
><§(X—X(t))5(P—P(t))> =2 ¢l8|x=xi=—=p
XW(Xo,Po)(s'|p(0)[s"), (A9) =0 XitX

+2901<P25(X— P>
whereW(X,,Py) is the initial Wigner function of the lowest
level, andXy=X(0), Po=P(0) are initial values ofX(t), d(6)(x;—X5)?
P(t) which are inherent in EqgA7) and (A8). Since the xexg — 2

. : : . . 2%
exact solution of these equations is available in the form of
Egs.(3.10 and(3.1)), a little patience is sufficient to verify (B4)
that V(X,P,s’,s") in Eq. (A9) coincides with the intermedi- . I . L
ate Wigner function corresponding to E8.16 and(3.18 It is seen that the last contribution to this equation is due to

provided that one makes the identificatioh—x’, s"—x". incomplete reduction. If it is not supp.ressed totgll_y in the
course of the measuremefiiecauseN is not sufficiently

large, it will persist during further evolution, and might in
principle be observed.

(x{=x3)
COS{ 12h = (p—é(0)%)].

APPENDIX B: THE STATE OF THE PARTICLE
AFTER MEASUREMENT

Here we discuss the postmeasurement evolution of the APPENDIX C: MOTION OF THE PARTICLE
state of the particle. We will assume that at tite 6 the DURING MEASUREMENT
interaction between the particle and the apparatus has been o .
instantaneously switched off. The switching is needed to en- The purpose of the p.resf'-‘”t Appendix is to dISCUSS. what
sure that the measurement will remain ideal, whereas its inhappens_ 'f. the change_wnh time of the measured quaxtiy
stantaneous character is taken for simplicity. Indeed, if théot .negl|g|ble, gnd if it cannot pe treated as a constant .Of
tested particle is interacting with the apparatus long enougfﬂmt'on' In practice the consgrvatlon of the measured quantity
its coordinate will start to change due to its own Hamiltonian'> ensured only over short times. However the duratiaof

Hs, as well as due to interaction with the apparatus. Sincéhe interaction with the apparatus should be sufficient so as

the apparatus is itself interacting with the bath, sufficiently!® €nsure registration, and there will arise a source of non-
ideality. Our purpose here is not to develop a full account of

long interaction of the particle and apparatus will finally lead hi ideality. but displ hich ti les |
to relaxation of the particle towards certain steady statet, IS nonideality, but just to display on which time-scales its
presence is not relevant.

hich is ind dent of its initial state. This will violate th s .
which is independent of its initial state. This will violate the We will investigate Eqs(2.28, (2.32, and (2.33 on

condition of ideality. . h h fth q i
Therefore, the tim@ was assumed to be much larger thant!mes where changes of the measured quartiigcome no-

1/y, so that the apparatus has enough time to relax to itgceable. To keep the situation free of instabilities, we will
stationary state and monitor the results of measurement. Q ake a natural_a_ssumpnon_ that the_ tes_te_d pa_rt|c|e IS .SUb'
the other handg was assumed to be small enough so thaﬂe.CtGd to a confining potenpal. For S'szhcny this potential
effects connected with change wfare not yet relevant. For Will be taken to be harmonic?(x) = mwpx“/2.

t= 6 the tested particle thus follows its free evolution, which

is described by free Heisenberg equations: 1. Dynamics
The general solution of Eq§2.32 and(2.33 is obtained
p(t)=p(6), B ith help of Laplace transformation. Recall the following
i~ o standard reIationsAbetween functioAst), Bgt) and their
X(t)=x(0)+ ?p(a). (B2) Laplace transform#\(s) = [{dt e S'A(t) and B(s) denoted

in this appendix with a hat:

Due to the instantaneous character of the switchpi(d@), t
X(0) are those operator values which the particle reached E{ f dt’A(t—t’)B(t’)] =A(s)B(s),
during the interaction with the apparatus. 0

The dynamics fromt=0 to t=46 is described by Eq.

(4.32, and fort> @ one has L{A}=—A(0)+sA(s), (C1
where A= (d/dt)A. Thus the solution of Eqgs(2.32 and
W(x,p;t)=f dXod poW(Xg,Po, ) S(P—Po) (2.33 reads
t—46 “ 1. .- . o
X & x—xo—Wpo). (B3) x(s)=Ef(s)n(s)+(x(0)+sx(0))f(s), (C2
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(C3

where

Cle)— 2
x(s)=g 4 (715 (C4

is the Laplace transform gf(t) [see Eq(2.37)]. Finally one
has

= f ! f ! td'f Np(t!
x(O)=x(O)f(t)+ —p(0)f(t)+ Efo tf(t—t")p(t"),
(CH

. . t
p(t)=p(0)f(t)+mX(0)f(t)+f dt’f(t—t")n(t),
0
(CH
wheref(t) is the inverse Laplace transform fs).
Substituting Eq(C5) into Eq.(2.29, we obtain the solu-
tion of the Heisenberg equation for the pointer variable:

gp(0)
;;}.

m
(C7)
Its last term, wheren is given by EQs.(2.349—(2.36 de-

t , i
X(t)=gx(0)f dt’'e "sinat'f(t—t’)+
0

X341
m

t , 1
xf dt'e™ " sinat’f(t—t’)+§£‘1
0

scribes the effect of the noigeb' and the remanence of the
initial conditions X(0),P(0) of the apparatus. We recover

Eq. (3.10 in the largem limit, for which f(t)=t if wt<<1.
However, instead of being controlled &y0) only, the order

PHYSICAL REVIEW A 64 032108

mentum operatop(t). Its solution given by Eq(2.29 ex-
presses the action of the particle on the apparatus as a
memory effectlepending orx(t) at earlier times. Using the
equation of motion(C5) for x(t), we have here re-expressed
X(t) in terms ofx(0) andp(0). Themomentum of the par-
ticle thus came out from the elimination of the history of

X(t).

2. Short-time expansion

To investigate the short-time behavior of the tested par-
ticle in more detail, we adopt the following large-mass ap-
proximation:

Fg)= L X (<)
S: 1
P+ (SP+wd)? M
(= St Qaftdt'[ in(wot")
= - si
wo 2w8 0 @o
—t' woCoSwot’ Jsin(a[t—t'])e Yt=)  (C9)
where
g2 1/3
Q=(—) (C10
m

is the characteristic frequency connected with the mass of the
particle and the interaction with the apparatus. This fre-
quency will be assumed to be the smallest characteristic fre-
quency in our problem. Equatidi€9) is a short-time expan-
sion, which is valid for

. 1_(m)l/3
Q \g?)

Expansion(C9), when substituted into EqC5), produces
the coordinate as a sum of two terms: The first one is due to

(C1D)

parameteiX(t) now depends on the initial state of the par- the free motion in the potentiaf(x), and the second one
ticle through bothx(0) andp(0). Since due to the uncer- represents a deterministic correction arising from interaction
tainty relation(p(0)?)(x(0)?)=12/4 these quantities cannot with the apparatus. The interaction with the apparatus should

have definite values simultaneoug(¥(t)) is always fluctu-

be switched off before this term becomes comparable with

ating with the initial state of the particle. This violates con- the first term in Eq(C9). In particular, ift is so small ag
ditions (1.4), (1.5 according to which if the tested system <1/wg we obtain
starts its evolution from one of the eigenstates of the mea-

sured quantity, then the result displayed by the apparatus can
be definite. Moreover, EqC7) shows that the statistics of

X(t) is governed by the statistics &{0),p(0), or equiva-
lently by the full density operatgs(0) of the particle at the

Q3 ,
f(t)=t+Ff dt't 3sin(a[t—t'])e "), (C12
0

When this equation is substituted into E¢85) and(C6), it

beginning of the measurement, including off-diagonal ele4s seen that in all terms besides the second term in the RHS

ments. It is the disappearance of the termpif®) in Eg.

of Eq. (C6) the correction tof (t)=t in Eq. (C12 can be

(3.10 which allowsX(0) at the end of the measurement to dropped under the conditidi€11). If one will take addition-

depend only on the diagonal elemertgp(0)|x). As we
shall see below, this occurs far=g26°, that is, for a suffi-

ally: x(0)>p(0)t/m, Egs. (C5), (C6), and (C12 produce
Eqg. (3.13.

ciently short duration of the measurement. Once again this It is important to notice that in this approximation there is
shows that the short-time limit is a necessary condition fora deterministic influence of the bath on the momentum. This

(nearly ideal measurement of the coordinate.
Remember that the Heisenberg equati@r28 for X(t)
depended only on the position operaxt), not on the mo-

is just friction, which may enhance or redu@e). However,
there is no such a systematic influence on the coordinate. It
was therefore legitimate to assume in the bulk of this paper
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that in the Heisenberg representation we haft¢=x(0) in
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m with creation operatorgﬁ1 and energie% (), (including

the time interval 4 in spite of the large value reached by the chemical potential of the batiThis bath is equivalent to

(p) at the time# due to friction(Sec. IVB 2.

3. Relaxation of the tested particle

Although Eq.(C9) has been sufficient for our purposes

we will mention here how the fulf(t) behaves. This will

allow us to understand the long-time behavior of the teste

particle. One has to obtain the roofg,vy,,vs,ys of the
following equation
[e?+(m— M vic+ w5l —aQ®=0  (C13

which provide

4
(=2 Ae ™, Ac=Limg._, (s+y)f(s).
k=1
(C14

Using the smallness df) the above roots can be obtained

approximately as

yi=ytiatd,  y=91, (C19
Y3=iwo+ 8, Ya=v3, (C10
where, after usingr> v, a> wg, we find
P ST S e AL
b2 ('y+ia)2+wé a®  2a?
(C17)
aQ® 1 L0(0%) 03y 03
2 2w (iwg—y)%+ a? &® 2awg
(C18

As seen from Eqs(C15 and (C16) the particle has two

relaxation times: 1y (which is also the relaxation time of the

apparatusand a much longer one 1/(Re) = a°/Q3y. They
are widely separated since®/Q°%>1. After the time

a@’103%y=a®g?/my all information about the initial state
will be forgotten by the patrticle if it still interacts with the
apparatus, and it will relax to its equilibrium state imposed

by the bath temperature.

APPENDIX D: WEAK-COUPLING LANGEVIN EQUATION

In the present appendix we will derive from a consistent

Hamiltonian formulation the Langevin equatid@.21) for

the dense set of harmonic oscillators usually considered in
guantum Brownian motiofi20, 24, 23, but here the cou-

pling should account for transfers of bosons between the bath
and the apparatus proper, with conservation of the total par-

' ticle number. We can thus describe the apparatus with its
gath by the total Hamiltonian

Has =haa’at % B e Emt % h(Cod'émt chéna).
(D1)

The resulting equations of motion in the Heisenberg pic-
ture are

a=—iaa—i Cném, (D2)

§m=—iQm§m_iC:1a. (D3)

The initial state of the apparatus and the bath is assumed to
be factorized at some remote initial tinig<0. At that time

the bath was in equilibrium at temperatuge ! while the
apparatus was in an arbitrary state. Explicit integration of Eq.
(D3), through

) t . ,
Em(D) = En(to)e Ot —jc* [ dt’a(t’)e'mt=1),
to
(D4)

allows us to eliminate the bath and to write a closed, exact
equation of motion for the operatar In the weak-coupling
regime it is convenient to go to the rotating frame by means
of the transformation

a(t)=a(t)e'*(t"to), (D5)
From Egs.(D2), (D4), and(D5) we obtain
da(t o . ,
d(t - -2 Icmlzft dt/act’)elt w4 g(b),
0
(D6)

where/(t) appears as a Gaussian quantum noise defined by

{()=—12 Cpém(to)e'@ tm(-to), (D7)

the apparatus-bath dynamics. More information on weaklyrhis noise is characterized by the properties

coupled(weakly dampegdissipative systems can be found

in [24].

For simplicity we deal only with the lowest energy level [((U[T(t')]zg |Gl €/ 2 g (1),£(1)]=0,

of the apparatus, the Hamiltonian of which reduces to the

chemical potential term-na'a=%aa’a; as in Eq.(2.29

we drop the index 0. The dynamics of the excited state op-

eratorsa; would be obtained by substituting+ w; to @. The

considered mode is coupled to the thermal bath, which is
also a noninteracting Bose gas having single-particle levels

(D8)

2gi(a=0Qp)(t-t)

(L)) =o.
(D9)

(em)=3 [

eBhm_1
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We are interested in the thermodynamic limit for the bath,Since this expression will be integrated over a function of
where the number of bath modes goes to infinity while theittime which varies on the scalg, its successive terms yield
frequencied),, tend to a continuum. For simplicity, we as- an expansion in powers of/ «, and we can thus replace Eq.
sume that the valueQ,, have a constant spacidg—0, and  (D14) in the limit o>y by
that the couplindc,,| is a vanishingly small constant:

- S(t—t’) ,
A ((@e)=2y Zo— (DEt))=0. (O17)
[Cml=\—. (D10
7 If the noise is redefined as
We then have
_ bo(t) = i((t)e‘i“(“‘o), (D19
> ey e e Mt =2y 5(t—t"). (D11) V2y

m

Eq.(D12) reduces to the equation of moti¢a.21) for ay(t),
(If the spectrum of),, is bounded, the>-function stands for @nd Egs.(D13) and (D16) coincide with the conditions
a narrow peak, with a width smaller than all the characteris{2-23, (2.24), (2.25), onby(t). We can likewise recover Egs.
tic times of the problem if the range @, is sufficient) (2.20—-(2.29 for i and k#0 by addingw to « and by
Equation(D11) ensures that the retardation effect can be ne€PUPling all the modes of the apparatus with the modes

glected in Eq(D6), which becomes of the bath. o
If we had not used the approximatiar> vy, we would

da(t) _ have obtained the evolution of the average particle number
T —ya(t)+ (1), (D12)  no(t)=(a'(t)a(t)) in the lowest level of the apparatus by
integration of Eqs(D5) and (D12), using Eq.(D14) instead

and that the properties of the noise are simplified into of Eq. (D17). This yields

t), Mt ]=2y8(t—t"), t),£(t')]=0, _ 2yttt 4 ¥
40,81 01=2700-0), [EOLOI=0, g nggre 0+ 2
d eiw(tit,) do —(ytia—io)(t—tg 1
<§*(t'>§(t>>=%fe;;m_—@_l, ({(he)=0. Xf—(w_a)zﬂﬂl—e A PR
(D14 (D19)

Apart from the very short time-scale involved in the noiseinstead of Eq(2.27). In particular, we find for arbitrary/a
{(t), two time-scalese~! and y~ !, enter the dynamical thatn,(t) relaxes for large times towards
equationgD5), (D12) for the operator(t) generated by the
apparatus-bath Hamiltonidf, g . Other, longer time scales Y dow
will also be induced by the interaction with the tested sys- nO(t)_’;J’ (0— )2+ 92 ebho_ 1"
tem. We assume that tldgnamical frequency is the largest
characteristic frequency of the problem. The transformatiorit is only for y<« that Eq.(D19) reduces to Eq(2.27), and
(D5) then accounts for the fast, oscillatory motionaf(ft).  that ny(t) reaches the expected equilibrium Bose factor

The evolution ofa(t) takes place on larger time scales, of 1/(e”"“—1) for large times.

(D20)

ordery~! or more. We can thus expand E@14) for large Altogether the weak-coupling conditiop< a, which will
a according to be enforced throughout this paper, ensures that the quantum
Langevin equation(2.21) can be obtained from the
y ) e (—)(d\™ 1 apparatus-bath HamiltoniafD1). Owing to this condition,
("))~ ;f do @t ol (a) e while the coupling parametey governs thedynamicsof the
n=0 ' € (D_l:é) apparatus during its relaxation to equilibrium, theuilib-

rium properties of the apparatus remain unaffected by the
= i a1 presence of the bath. Note finally that the simplifying as-
=2y _gn)(t_tf)(_) —— . (D1  sumptions we made on the batually spaced level®y,

n=o n! da/ epha constanic,,|) become irrelevant in the weak-coupling limit.
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