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Invariant spinor representations of finite rotation matrices
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Our recent results@N. L. Manakovet al., Phys. Rev. A57, 3233~1998!; 61, 022103~2000!# on the invariant
representations of finite rotation matrices~FRM’s! of integer rankj ~in terms of tensor products of vectors
connected with a space-fixed reference frame! are generalized here for the general case of arbitrary~i.e., integer
or half-integer! rank j. This extension is carried out by using new spinor representations of FRM’s in terms of
specially introduced spinor-annihilation operators. We demonstrate that all widely used, standard representa-
tions of FRM’s follow as special cases of our invariant representation for particular parametrizations of the
rotation parameters. As the simplest application of invariant spinor representations of FRM’s, the factorized
form of Wigner dj (b) matrices with an arbitrary rankj is obtained as a product of two triangular matrices
composed of various powers of cos(b/2).
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I. INTRODUCTION

Finite rotation matrices~FRM’s!, Rkm
j (V), are basic ob-

jects of the quantum theory of angular momentum~see, e.g.,
Ref. @1#!. We define the FRMRm8m

j (V) in accordance with
the standard relation@1#

T̃jm5 (
m852 j

j

Tjm8Rm8m
j

~V!, ~1!

where Tjm and T̃jm are the components of an irreducib
tensorTj of rank j, given in the ‘‘old’’ ~space-fixed! frameK

and in the ‘‘new’’ ~rotated! frame K̃, respectively; andV
denotes three rotation parameters~e.g., in the case of Wigne
D functions@2# they are Euler anglesa,b,g).

Recently in Ref.@3# ~which will henceforth be referred to
as I! we introduced the so-called invariant representation
FRM’s ~i.e., having explicit tensor forms!, which are useful,
in particular, for analyses of angular distributions in pr
cesses involving polarized particles. Our invariant repres
tations are written for symmetrized combinations ofRkm

j (V),
i.e., the ‘‘parity-projected’’ FRM’s, which are defined by@4#

Rkm
j lp~V!5S 12

d0,k

2 D @R2km
j ~V!1~21!k1lpRkm

j ~V!#,

k>lp , ~2!

wherelp50 (lp51) for even~odd! parity. Parity-projected
FRM’s are closely related with the ‘‘real’’ representations
FRM’s @5#. Moreover, parity-projected WignerD functions
~or dj (b) matrices! naturally appear in three-body problem
having definite parity~see, e.g., Refs.@6# and @7#!.

It was shown that parity-projected FRM’s can be e
pressed in terms of the linear combination of tensor produ
of two spherical harmonics~bipolar harmonics! depending
1050-2947/2001/64~3!/032105~9!/$20.00 64 0321
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on two vectors,n andn8, connected with the fixed frameK.
In I several alternative forms for FRM’s were obtained f
special choices of the vectorsn and n8. The most genera
result may be presented as@cf. Eq. ~7! in Ref. @4##

Rkm
j lp~V!5 (

s50

k2lp

Aks
lp~u!$Yj 2s~n! ^ Ys1lp

~n8!% jm , ~3!

where Aks
lp(u) are numerical coefficients dependent on t

angleu between the vectorsn and n8 (0,u,p) @4#, and
where the tensor product,

$Yj 2s~n! ^ Ys1lp
~n8!% jm

5 (
q,q8

Cj 2sqs1lpq8
jm Yj 2sq~n!Ys1lpq8~n8!, ~4!

is the so-called ‘‘minimal bipolar harmonic’’~MBH!, where
Caabb

cg is a Clebsh-Gordan coefficient. The vectorn is di-
rected along thez axis of the fixed frameK and the vectorn8
lies in thezx plane.@Thus the angleu is the free parameter
and the three independent real parameters of the rotatioV
in our approach are determined by the angular coordinate
n andn8 in the ‘‘new’’ ~or rotated! frameK̃.# The term ‘‘in-
variant’’ for the representation of FRM’s in the form~3!
means that the entire dependence of the FRMRm8m

j (V) on
the tensor indexm is concentrated only in the tensor proje
tion m of the MBH’s on the right-hand side~rhs! of Eq. ~3!.
@The tensor sense of the indexm is obvious from Eq.~1!,
which may be interpreted as the expansion of a tensorT̃jm

~in the rotated frame! in (2 j 11) tensorsRm8m
j (V) enumer-

ated by the~nontensor! index m8.# We use the term ‘‘mini-
mal bipolar harmonics’’ for the parity-projected tensor pro
ucts in Eq. ~4! with index s50,1, . . . ,j 2lp , since they
form the ~minimal! basis set of (2j 11) irreducible tensors
in a space of tensors with an integer rankj. @There are (j
©2001 The American Physical Society05-1
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11) polar tensors forlp50 andj axial tensors~pseudoten-
sors! for lp51.# This fact is obvious, since an arbitrary te
sor can be presented as a combination of FRM’s@see Eq.
~1!#, and each of these FRM’s has expansion~3! in terms of
the set of MBH. The complete basis set of MBH was intr
duced for the reduction of bipolar harmonics of rankj in-
volving internal tensors of higher ranks thanj @8#. These
results provide great simplifications for the analysis of an
lar distributions in reactions involving polarized particles a
in g—2e processes~see, e.g., Refs.@8# and @9#!. They are
also useful in the analysis of other physical problems~see,
e.g., Refs.@1# and @10#!.

Our derivations of invariant results for FRM’s in I wer
based on the vector differentiation technique@8#, and hence
they are valid only for irreducible tensors with integer ran
j. In this paper we generalize these results and present in
ant representations for FRM’s which are valid for an ar
trary ~either integer or half integer! rank j. This generaliza-
tion is performed in Sec. III based on specially introduc
‘‘spinor-annihilation’’ (d̂) operators ~Sec. II!, which are
spinor analogs of the vector¹ operators. The use of thesed̂
operators leads to the main result of this paper, i.e., the ‘‘
ferential’’ spinor representation of the FRM@in Eq. ~21!# and
explicit forms of FRM’s in Eqs.~23! and ~26!, which are
valid for both integer and half integer ranksj. In Sec. IV we
demonstrate the reduction of our spinor representation
the FRM to the known invariant form for the case of integ
j. Based on the invariant spinor representation, is possibl
obtain in a convenient way many fundamental results of
gular momentum algebra. In particular, this representa
permits the analysis of some interesting algebraic prope
of standard WignerD functions:

Dkm
j ~a,b,g!5 exp~2 ika!dkm

j ~b!exp~2 img!. ~5!

Namely, in Ref.@4# it was found that, for integer rankj, the
parity-projecteddj (b) matrix dj lp(b) can be presented as
product of two triangular matrices composed of Gegenba
polynomialsCn

a(cosb) having positive and negative uppe
indicesa, respectively. Based on the invariant spinor form
the FRM, in Sec. V we obtain the factorized form of th
standard~not ‘‘parity-projected’’! dj (b) matrix with an arbi-
trary j as a product of two triangular matrices composed
various powers of cos(b/2). Finally, all known standard pa
rametrizations of FRM’s may be obtained as special case
our invariant results for particular parametrizations of t
rotation parametersV. As an example, in Sec. VI we dem
onstrate the reduction of the ‘‘differential’’ spinor represe
tation of the FRM in Eq.~21! to explicit expressions for the
FRM in Euler’s parametrization@2# as well as in the (n,v)
parametrization involving the direction of the rotation axisn
and the rotation anglev @11,12#.

II. TENSOR PRODUCTS OF IDENTICAL SPINORS AND
SPINOR-ANNIHILATION OPERATORS

Below we shall obtain an invariant representation
Rkm

j (V) with arbitrary rankj ~either integer or half integer!.
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It is obvious that to generalize the results valid for spheri
tensors with integer ranks to the case of half integerj one
needs to use the spinor formalism. Let us first introdu
some spinor algebra notations. We use below the Greek le
x for a spinor as such, while its components we denote
xm , m561/2. We use in this paper the following definitio
for the scalar product of irreducible tensorsAj and Bj in
terms of the standard irreducible tensor product$Aj ^ Bj%km
@1#:

~Aj•Bj !5A2 j 11$Aj ^ Bj%00.

Thus the scalar product of spinorsx andf is

~x•f!5x1/2f21/22x21/2f1/2.

In particular, (x•x)50. An arbitrary spinorx can be ex-
panded in two base spinors,b (11/2) andb (21/2), as follows:

x5b (11/2)x21/22b (21/2)x1/2, x61/25~x•b (61/2)!,
~6!

where the orthonormalization properties of the base spin
b (61/2) are

~b (a)
•b (a8)!5~21!1/22ada,2a8, bm

(a)5~21!1/22adm,2a.

~7!

Note that for simpler presentation of the results below, o
definition for the components of spinorsb (61/2) differs from
the standard definition@1# of components of spin-1/2 func
tions x (1/2)m with m561/2.

We use the notation$x%aa for the irreducible tensor of
rank a and componenta which is the tensor product of 2a
spinorsx,

$x%aa5ˆ•••$x ^ x%1•••^ x‰aa . ~8!

This definition is similar to that introduced for the case
identical rank-1 tensors~vectors! in Ref. @8# ~see also Refs.
@13# and@14#! where a number of general properties of su
tensor products are discussed. In particular, the tensor p
uct ~8! does not depend on the coupling scheme of spinorx
in accordance with the identity

$Ra^ $x ^ Tb%b11/2%a1b11/25ˆ$Ra^ x%a11/2^ Tb‰a1b11/2,

~9!

which can be proved using the tensor recoupling rules@1#.
Inserting Eq.~6! into Eq. ~8!, we obtain

$x%aa5 (
n50

2a S 2a
n D ~x21/2!

n~2x1/2!
2a2n

ˆ$b (11/2)%n/2

^ $b (21/2)%a2n/2‰aa , ~10!

where (b
a) is the binomial coefficient. The tensor product

b (61/2) spinors is easily calculated using Eq.~7! and the re-
lation Caabb

a1ba1b51:
5-2



l

o
-

-

se

in

f

rs
e

is

he
t us

in
:

e

itly

e

ts
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$b (61/2)%aa5~61!2ada,7a . ~11!

Finally, using Eqs.~10! and~11! as well as known analytica
results for Clebsh-Gordan coefficients@1#, we obtain the fol-
lowing explicit expression for$x%aa in terms of spinor com-
ponentsxm :

$x%aa5A ~2a!!

~a2a!! ~a1a!!
~x1/2!

a1a~x21/2!
a2a. ~12!

The key aspect of our further considerations is our use
‘‘spinor-annihilation operators,’’d̂. We introduce such opera
tors in an invariant way,

~f• d̂ !xm5fm , ~13!

wheref andx are arbitrary spinors. In terms of spinor com
ponents, the definition~13! is equivalent to the following:

d̂nxm5~21!1/21ndn,2m , ~14!

or, more generally,

d̂n~xm!k5~21!1/21nk~xm!k21dn,2m ,
~15!

d̂nxmxr5~21!1/21n~xmdn,2r1xrdn,2m!,

whereda,b is the Kronecker symbol. It is seen from the
equations that the spinor operatorsd̂ annihilate the spinorsx.

Using Eqs.~12! and ~15! one may verify two important
relations involving tensor products ofd̂ operators,$d̂% jm :

$d̂% jm$x% jk5~21! j 2k~2 j !!dm,2k , ~16!

$$d̂% j ^ $x% j %aa5(
m,k

Cjm jk
aa $d̂% jm$x% jk

5~21!2 jA2 j 11~2 j !!da,0 . ~17!

In particular,$d̂ ^ x%aa52A2da,0 . We note also the simple
relation

~ d̂• d̂ !$x% jm50, ~18!

which is obvious from the definition of the scalar product
Eq. ~7! and also because~after the annihilation of two
spinorsx) a tensor having rankj cannot be composed o
2 j 22 spinorsx. Thus the spinor-annihilation operatord̂ in
the space of tensors composed of spinorsx may be consid-
ered as the spinor generalization~valid for any j ) of the
vector gradient operator,¹, operating in the space of tenso
composed of vectorsr . This analogy is supported by th
comparison of the definition~13! with the vector identity,
(a•¹c)ck5ak . Moreover, the identity~18! with d̂→¹ and
x→r is also valid since the tensor product$r% jm obeys the
Laplace equation. One additional property ofd̂ operators that
03210
f

is similar to that for ordinary differential operators and that
useful in concrete applications is given in Eq.~A1! in the
Appendix.

III. SPINOR REPRESENTATIONS OF FRM

To obtain the representation of FRM in terms of t
spinor constructions introduced in the previous section, le
consider the scalar product (Tj•$x% j ), whereTj is an arbi-
trary tensor of rankj ~either integer or half integer!. In view
of the invariance of the scalar product, we have

~ T̃j•$x̃% j !5~Tj•$x% j !, ~19!

where the superscript tilde means that components ofx̃ and
T̃j are defined in the rotated coordinate frameK̃. Acting on

both sides of this equation with the operator$d̃̂% jm ~whered̃̂
is the spinor-annihilation operator in the frameK̃), we obtain

$d̃̂% jm (
q52 j

j

~21! j 2qT̃jq$x̃% j 2q

5$d̃̂% jm (
k52 j

j

~21! j 2kTjk$x% j 2k . ~20!

Since d̃̂ and x̃ are defined in the same frameK̃, we can
explicitly calculate the left-hand side~lhs! of Eq. ~20! using

Eq. ~16! ~assumingd̃̂ does not act onT̃kq). Then after the
comparison of the result with the definition of the FRM
Eq. ~1! we obtain the ‘‘operator representation’’ of the FRM

Rkm
j ~V!5

~21! j 1k

~2 j !!
$d̃̂% jm$x% j 2k . ~21!

Note that the tensor product ofd̃̂ operators in this equation
must be calculated in the rotated frameK̃, while the product
of spinorsx is defined in the ‘‘old’’ frameK @and thus the
result in Eq.~16! is not applicable here#. We use the term
‘‘invariant representation of the FRM’’ for the result on th
rhs of Eq.~21! because it depends on the projectionsm andk
only through invariant tensors and does not depend explic
on the rotation parameters. Equation~21! is the spinor analog
of the invariant ‘‘differential’’ representation of the FRM in
the tensor form@see Eq.~24! in I#:

Rkm
j ~V!5

~21!k

j !
$¹̃% jm$r% j 2k , j 50,1,2, . . . .

An explicit form of the invariant representation of FRM
in terms of tensor products of base spinorsb (a) of the old
frameK can be derived after the substitution of Eq.~12! into
Eq. ~21!. In view of the invariance of a scalar product, th
componentsx61/2 of the spinorx in the frameK, which
enter from Eq.~12!, may be written as the scalar produc
(x̃•b (11/2)) @cf. Eq. ~6!#, calculated in the rotated frameK̃.
Thus we have
5-3
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Rkm
j ~V!5

~21! j 1k

A~2 j !! ~ j 2k!! ~ j 1k!!

3$d̃̂% jm~ x̃•b (11/2)! j 2k~ x̃•b (21/2)! j 1k, ~22!

where the components of all spinorsd̃̂, x̃, andb (61/2) must
be calculated in the same frameK̃. Note that one must dis
tinguish betweenb (61/2) and b̃ (61/2), which are the base
spinors of the framesK and K̃, respectively. Obviously, for
the components ofb (61/2) in the K̃ frame Eqs.~7! are not
valid. Below in the text~unless otherwise specified! we will
use the notationb (61/2) for the components of spinor
b (61/2) given in theK̃ frame. The calculation of the rhs o
Eq. ~22! is straightforward but quite lengthy. The key ste
are as follows:~i! One uses an equation similar to that forx
in Eq. ~6! to expandb (61/2) in terms of the base spinor
b̃ (61/2) of K̃; ~ii ! Using the binomial theorem, one expan
the rhs of Eq.~22! in powers ofx̃61/2 @cf. Eq. ~6!#; ~iii ! One

uses Eq.~12! to expand$d̃̂% jm in powers ofd̃̂ n ; ~iv! One uses

Eq. ~15! to calculate the result of the operatorsd̃̂ n acting on
the componentsx̃61/2; ~v! One uses an equation similar
Eq. ~12! to express powers of the components ofb (61/2) on
the base spinorsb̃ (61/2) in terms of a sum~over Q) of
$b (11/2)%aa @wherea5( j 2k)/2 anda5Q] and $b (21/2)%bb
@where b5( j 1k)/2 and b5m2Q]; ~vi! One notices that
the coefficient of each term inQ is proportional to the
Clebsch-Gordan coefficientCaabb

jm ; ~vii ! Using the definition
of a tensor product@cf. Eq. ~4!# one may express the rhs o
Eq. ~22! finally in terms of the followingjm tensor:

Rkm
j ~V!5Cjkˆ$b

(21/2)%( j 1k)/2^ $b (11/2)%( j 2k)/2‰jm ,
~23!

where

Cjk5~21! j 1kA ~2 j !!

~ j 1k!! ~ j 2k!!
,

and where$b (11/2)%pk ~or $b (21/2)%pk) is the tensor produc
~8! of 2p spinorsb (11/2) ~or b (21/2)), whose components
should be calculated in the~rotated! coordinate frameK̃.
Obviously, these components are connected with stan
componentsbm

(a) @see Eq.~7!# in the ‘‘old’’ coordinate frame
K. Moreover, this connection determines implicitly the d
pendence of the rhs of Eq.~23! on the rotation parametersV.
An alternative derivation of the key result in Eq.~23! is
presented in the Appendix.

A more general representation of the FRM than that giv
in Eq. ~23! may be derived if we rewrite the identity~6! as
follows:

b (21/2)52
1

b
~ab (11/2)1x̃ !, ~24!
03210
rd

-

n

wherea[2(x•b (21/2)) andb[(x•b (11/2)). ~The scalarsa
and b can be calculated in an arbitrary coordinate fram!
Since the tensor product$b (21/2)%( j 1k)/2 does not depend on
the coupling scheme of spinorsb (21/2), we find

$b (21/2)%( j 1k)/25S 2
a

bD j 1k

(
n50

j 1k S j 1k
n D 1

an
ˆ$x̃%n/2

^ $b (11/2)%( j 1k2n)/2‰( j 1k)/2 . ~25!

We used in the above derivation the usual binomial formu
Inserting Eq.~25! into the rhs of Eq.~23!, after some algebra
we obtain the representation of the FRM containing free
rameters — the componentsa andb of the ~arbitrary! spinor
x in the coordinate frameK:

Rkm
j ~V!5S a

bD j 1kA ~2 j !!

~ j 2k!! ~ j 1k!! (n50

j 1k S j 1k
n D 1

an
ˆ$x̃%n/2

^ $b (11/2)% j 2n/2‰jm . ~26!

Note that the tensor product on the rhs of this equat
should be calculated in the rotated frameK̃ @cf. Eq. ~23!#.
The new representations of the FRM with an arbitrary ranj
in Eqs.~23! and~26! together with the formal ‘‘differential’’
representation in Eq.~21! are our main results. All of these
representations have an explicitly invariant tensor form si
their entire dependence on the tensor indexm is concentrated
only in the tensor projection on the rhs of Eqs.~21!, ~23!, and
~26!.

The result in Eq.~26! together with the transformation
rule in Eq. ~1! proves that an arbitrary irreducible tensor
either integer or half integer rankj can be expanded on th
basis of (2j 11) ‘‘minimal’’ tensor products of the kind
$$w%n/2^ $x% j 2n/2%jm ~with n50,1,2, . . . ,2j ), wherew andx
are ~in general, arbitrary! spinors. In I we have shown tha
the set of minimal bipolar harmonics, Eq.~4!, can also serve
as a basis in the space of irreducible tensors of integer ra
We do not present here the explicit connection between th
two bases for the case of integerj, although it may be easily
derived considering the transformation of the MBH und
the rotationV with the use of the spinor representation~26!
for the FRM in Eq.~1!.

IV. CONNECTION TO THE CASE OF INTEGER j

In order to obtain the connection between invariant spi
representations of FRM and the representations in ve
form presented in I, we transform Eq.~23! to the form

Rkm
j ~V!5Cjkˆ$$b

(11/2)
^ b (21/2)%1% j 2k^ $b (21/2)%k‰jm ,

k>0, ~27!

where we have used the fact that the tensor product on
5-4
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rhs of Eq.~27! does not depend on the coupling scheme
internal tensors. Note that for integerk the tensor produc
$b (21/2)%kk may be written as@cf. Eqs.~8,9!#

$b (21/2)%kk5ˆ$b (21/2)
^ b (21/2)%1^ •••^ $b (21/2)

^ b (21/2)%1‰kk .

Obviously, components of the tensor product of two spin
having the rank 1 are spherical components of a vectov
[$b (11/2)

^ b (21/2)%1. The components of this vector in th
frame K may be easily calculated taking into account t
identities in Eq.~7!,

v052C 1
2 2 1

2
1
2

1
2

10
52

1

A2
, v6150.

Thus, we obtain thatv52e0 /A2, wheree0 is the unit vector
directed along the axis Z of the frameK. Similarly, in theK
frame we have following relations:

$b (21/2)
^ b (21/2)%115C 1

2
1
2

1
2

1
2

11
51,

while the components$b (21/2)
^ b (21/2)%1n with n50 andn

521 are zero. Therefore we obtain another vector iden
$b (21/2)

^ b (21/2)%152e21, where e21 and e11 are the
spherical unit tensors in the frameK. Thus, for integer values
of j, Eq.~27! can be reduced to the known result for the FR
in terms of basis vectors of the ‘‘old’’ frameK @cf. Eq.~17! in
I#:

Rkm
j ~V!5Ajkˆ$e21%k^ $e0% j 2k‰jm , k>0, ~28!

where the coefficientsAjk are related to theCjk in Eq. ~23!:

Ajk5~21! j~A2!k2 jCjk5~21!kA 2k2 j~2 j !!

~ j 2k!! ~ j 1k!!
.

Obviously, in a similar analysis for the case of half integej
we will have one ‘‘uncompensated’’ spinorb (n) in the tensor
product~27!.

V. FACTORIZED FORM OF WIGNER MATRICES

Invariant spinor representations of FRM’s may prove
be useful in various applications involving angular mome
tum algebra, especially those in which the tensor structur
the FRM provides more insight into the underlying phys
of a process than does its explicit algebraic expression~e.g.,
as in the analysis of spin polarization effects!. In addition,
they also permit one to derive new representations of FRM
As an example, we obtain below a new factorized form
Wigner functions for arbitrary values ofj; this is similar to
the results obtained in Ref.@4# ~see also Ref.@7#! for parity-
projected matrices having integerj. We note first that Eq.
~26! can be considered as a product of two triangular ma
ces. The explicit form of these matrices for the case of E
er’s parametrization of the FRM, i.e., for WignerD functions
Eq. ~5!, can be obtained by considering the special case
which the spinorx̃ in Eq. ~26! is the base spinorb̃ (11/2) of
03210
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f
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the rotated frame K̃. For this case, coefficientsa and b

~which are ‘‘coordinates’’ of the spinorx[b̃ (11/2) in the K
frame! are connected with the Euler anglesa, b, g as fol-
lows:

a52~ b̃ (11/2)
•b (21/2)!5D (1/2)(1/2)

1/2 ~abg!

5e2 i (a1g)/2 cos~b/2!,
~29!

b5~ b̃ (11/2)
•b (11/2)!5D2(1/2)(1/2)

1/2 ~abg!

5ei (a2g)/2 sin~b/2!.

These identities follow immediately from Eqs.~1! and ~6!.
The calculation in theK̃ frame of the tensor product on th
rhs of Eq.~26! can be performed explicitly by standard a
gular momentum algebra@1#:

ˆ$b̃ (11/2)%n/2^ $b (11/2)% j 2n/2‰jm

5Cn/2,2n/2,j 2n/2,(m1n/2)
jm A ~2 j 2n!!

~ j 1m!! ~ j 2m2n!!

3~b (11/2)
•b̃ (11/2)! j 1m~b (11/2)

•b̃ (21/2)! j 2m2n.

~30!

Here we have used Eqs.~11! and ~12! for the calculation of

$b̃ (11/2)%n/2 and$b (11/2)% j 2n/2 , respectively.
Replacing the Clebsh-Gordan coefficient on the rhs of

~30! by its analytic expression@1# and then inserting Eq.~30!
@with the account of Eq.~29!# into Eq.~26!, we obtain~upon
omitting the trivial dependence of theD functions on the
anglesa and g) the following expression for thedkm

j (b)
matrix:

dkm
j ~b!5A~ j 2m!! ~ j 1k!!

~ j 1m!! ~ j 2k!! S sin
b

2 D m2k

(
n50

j m

~21!n

3
~2 j 2n!!

n! ~ j 1k2n!! ~ j 2m2n!! S cos
b

2 D 2 j 1k2m22n

,

~31!

where j m5min(j2m, j 1k). Eq. ~31! can be considered a
matrix identity.

For a simpler presentation, it is convenient to introduc
slightly different matrix,d̄j , instead of the standarddj ma-
trix:

dp2 j ,q2 j
j ~b!5~21!pS sin

b

2 D q2pAp! ~2 j 2q!!

q! ~2 j 2p!!
d̄pq

j ~b!,

where p,q50,1,2, . . . ,2j . Thus one may write the matrix
identity in Eq.~31! in terms of thed̄j matrix as a factorized
product:
5-5
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d̄j5C•A,

or, in explicit form,

d̄pq
j ~b!5 (

n50

2 j

Cpn~b!Anq~b!, ~32!

where the matrix elements of theA andC matrices are

A[Anq~b!5S 2 j 2n
q D S cos

b

2 D 2 j 2n2q

,

~33!

C[Cpn~b!5S p
nD S 2 cos

b

2 D p2n

.

It is seen from the above equations that the matrixA is an
upper-left matrix, whileC is a lower left one; diagonal ele
ments of both these matrices are equal to 1. It is an impor
fact that the matrix elements of the (2j 11)-dimensional ma-
tricesA[A(k) andC[C(k), wherek52 j 11, do not depend
on the rankj, because it enters Eq.~33! only in the combi-
nation (2j 2n), which determines the dimension of the m
trices. As a consequence, theA(k11) ~or C(k11)) matrix can
be calculated by simply adding one additional highest~or
lowest! row to A(k) ~or C(k)). As an example, forj 51 we
have

A(3)5S cos2
b

2
2 cos

b

2
1

¯¯ ¯¯

cos
b

2
1 A 0

1 0 A 0

D ,

C(3)5S 1 0 A 0

2 cos
b

2
1 A 0

¯¯ ¯¯ A

cos2
b

2
22 cos

b

2
1

D ,

where the marked 232 internal matrices in these equatio
are results forj 51/2.

The matrix identity~32! can be explicitly inverted, as wa
done for the parity-projecteddj lp(b) matrices@4#. To dem-
onstrate this, it is sufficient to consider the rotation of t
tensor product defined by the lhs of Eq.~30! from theK to
the K̃ coordinate frames. In accordance with Eq.~1! we have
03210
nt

$$b̃ (1/2)%n/2^ $b (1/2)% j 2n/2%jm

5 (
k52 j

j

ˆ$b̃ (1/2)%n/2^ $b (1/2)% ( j 2n)/2‰jk
(K)Dkm

j ~abg!,

~34!

where the superscript~K! on the rhs of this equation mean
that the corresponding tensor product should be calculate
the K frame. It is evident that Eq.~34! can be written in
matrix form~omitting once again the trivial dependence ona
andg):

A5B•d̄j ,

or explicitly,

Aqn~b!5 (
p50

2 j

Bnp~b!d̄pq
j ~b!, ~35!

where the matrixB is

B[Bnp5S n
pD S cos

b

2 D n2p

. ~36!

Comparing Eqs.~35! and ~36! with Eq. ~32!, we obtain an
explicit form for the matrix inverse ofC:

C21[~C21!np5Bnp . ~37!

VI. REDUCTION OF THE INVARIANT REPRESENTATION
OF THE FRM TO STANDARD RESULTS

In what follows we shall demonstrate how known sta
dard parametrizations of FRM’s may be deduced as spe
cases of our invariant results. As may be seen from the g
eral identity for the FRM, Eq.~21!, in order to reduce this
result for the case of a concrete parametrization of the r
tion parametersV one needs to use the spinor transformat
rule in terms of parameters that describe the chosen pa
etrization.

For the Wigner parametrization ofV, the spinor transfor-
mation rule in terms of Euler angles may be written as f
lows @1#:

x1/25ei (a/2)S ei (g/2)cos
b

2
x̃1/22e2 i (g/2)sin

b

2
x̃21/2D

~38!

x21/25e2 i ~a/2!S ei (g/2)sin
b

2
x̃1/21e2 i (g/2)cos

b

2
x̃21/2D ,

where the notationsx61/2 (x̃61/2) denote the components o
the spinor in the ‘‘old’’ ~‘‘new’’ ! coordinate frame. Upon
inserting Eqs.~38! into Eq. ~21!, taking into account Eq.
~12!, we obtain~after some simple algebra! the following
result:
5-6
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Rm8m
j

5e2 i (m8a1mg)
~21!2 j

A~ j 2m!! ~ j 2m8!! ~ j 1m!! ~ j 1m8!!

3~ d̃̂1/2!
j 1m~ d̃̂21/2!

j 2m(
n,n8

~21!nS j 2m8
n D S j 1m8

n8 D
3~ x̃1/2!

n1n8~ x̃21/2!
2 j 2n2n8S cos

b

2 D n2n81 j 1m8

3S sin
b

2 D n82n1 j 2m8
.

The calculation of the action of the spinor annihilation o
erators in this equation@cf. Eqs.~13! and ~14!# gives

Rm8m
j

5e2 i (m8a1mg)S cos
b

2 D m1m8S sin
b

2 D m2m8

3A ~ j 1m!! ~ j 2m!!

~ j 1m8!! ~ j 2m8!!
(

n
~21! j 2m1nS j 2m8

n D
3S j 1m8

j 2m2nD S cos
b

2 D 2nS sin
b

2 D 2 j 22m22n

.

Here the sum overn defines the Jacobi polynomia
Pk

(a,b)(cosb) @15#. Thus we have obtained the standard de
nition of Wigner’s functions in terms of Jacobi polynomia
@1#:

Rm8m
j

~abg![Dm8m
j

~abg!

5e2 i (m8a1mg)A ~ j 1m!! ~ j 2m!!

~ j 1m8!! ~ j 2m8!!

3S cos
b

2 D m1m8S sin
b

2 D m2m8

3Pj 2m
(m2m8,m1m8)~cosb!. ~39!

Besides the Euler angles, another widely used param
zation of the rotationV for which FRM’s have a simple
analytical form is the (n, v) parametrization, where the un
vectorn defines the rotation axis andv is the rotation angle
@11,12# ~see also Ref.@16#!. In this parametrization the trans
formation rule for a spinorx has the form@1#

x5x̃ cos
v

2
2 iA3$n^ x̃%1/2 sin

v

2
. ~40!

Here we use the notationx for the spinor whose componen
x61/2 are defined in the ‘‘old’’ frameK @cf. Eq. ~38!#. From
Eq. ~21!, it follows that

Rm8m
j

5
1

~2 j !! (
aa

~21! j 1m8Cjm j2m8
aa

ˆ$d̃̂% j ^ $x% j‰aa .

~41!
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In order to calculate the tensor product on the rhs of t
equation, we note that it is proportional to the spherical h
monic Ȳaa(n),

$$d̃̂% j ^ $x% j %aa5AaȲaa~n!, ~42!

where Ȳaa(n) is a ‘‘renormalized’’ spherical harmonic
Ȳaa(n)[A4p/(2a11)Yaa(n). The identity ~42! may be

understood by considering that after the action of thed̃̂ op-
erators on the spinorsx̃, taking into account Eq.~40!, the
tensor of ranka on the lhs of Eq.~42! may be composed only
of unit vectorsn, whose angular representation is the sphe
cal harmonicYaa(n). The numerical coefficientAa in Eq.
~42! may be calculated in an appropriate coordinate fram
the simplest of which is the frame having itsZ axis directed
along the vectorn. In this coordinate frame the componen
of x follow from Eq. ~40!:

x61/25x̃61/2e
6 i (v/2).

Then, calculating the tensor product on the lhs of Eq.~42!,
we find for the coefficientAa the following chain of equa-
tions:

Aa5(
n

Cjn j 2n
a0 $d̃̂% jn$x% j 2n

5(
n

Cjn j 2n
a0

~2 j !!

~ j 2n!! ~ j 1n!!
~ d̃̂1/2!

j 1n~ d̃̂21/2!
j 2n

3~ x̃1/2!
j 2n~ x̃2

1

2
! j 1ne2 ivn

5~2 j !!(
n

~21! j 1nCjn j 2n
a0 e2 ivn

5~2 i !a~21!2 j~2 j !!
A2a11

A2 j 11
xa

j ~v!, ~43!

where the results on the second and third lines follow fr
Eqs. ~12! and ~14!, respectively, and wherexa

j (v) is the
generalized character of the rotation group O~3! ~cf. Sec.
4.15 of Ref.@1#!. Inserting Eq.~43! into Eq. ~42! and then
that result into Eq.~41!, we obtain

Rm8m
j

~n,v![Um8m
j

~n,v!

5 (
a50

2 j

~2 i !a
2a11

2 j 11
xa

j ~v!Cjm8aa
jm Ȳaa~n!.

~44!

The result in Eq.~44! coincides with the standard definitio
of the FRM Um8m

j (n,v) for the case of the (n, v) param-
etrization@1,11#.

We note also the parametrization ofV in terms of Cayley-
Klein parameters, which are two complex numbersa andb
normalized by the conditionuau21ubu251 @1,17#. The con-
5-7



r

e

ve

of

re

e

tio
te
e
g
’
o

be
r

m

te

uc
-
ar
in

e
a-

-

in
le

o
on
je
ol

o
th

e-
rs
r

v-

he

n
of

d
ts
e,

MANAKOV, MEREMIANIN, AND STARACE PHYSICAL REVIEW A 64 032105
nection ofa andb with Euler angles is given by the Wigne
functionsD (1/2)(1/2)

1/2 (a,b,g) andD2(1/2)(1/2)
1/2 (a,b,g), respec-

tively. It is seen from Eq.~29! that in the case when the ‘‘fre

spinor’’ x coincides with the base spinorb̃ (11/2) of the

‘‘new’’ frame K̃, its components in the ‘‘old’’ frameK, a and
b, are nothing else than Cayley-Klein parameters. Moreo
it is possible to write the tensor product in Eq.~30! in terms
of a and b, thus obtaining the explicit representation
FRM’s in terms of Cayley-Klein parameters@1,17#. How-
ever, we do not present the derivation of this result he
because it is not used widely in physical problems.

VII. CONCLUSION

This paper completes our analysis of invariant repres
tations of finite rotation matrices~see I and@4#!. In Sec. III
we have obtained the most general invariant representa
of the FRM, as they are valid for both integer and half in
ger j. We have also established the relation of these gen
spinor representations to both our previous results for inte
j ~in Sec. IV! and to the standard representations for FRM
~in Sec. VI!. Besides applications to the general theory
angular momentum~demonstrated in Sec. V!, invariant rep-
resentations of FRM’s are useful in physical problems
cause they provide a powerful tool for the analysis of gene
properties of a physical phenomenon based only on sym
try considerations, taking into account the invariant~e.g.,
vector or spinor! characteristics inherent to the concre
problem. These applications are based on an invariant~i.e.,
independent of a concrete coordinate frame! analysis of the
fundamental mathematical objects of atomic theory, irred
ible tensor operatorsTjm . The idea of an invariant param
etrization of tensor operators was realized in I, where inv
ant representations of FRM’s were introduced. Then, us
the transformation rule~1!, Tjm ~or more exactly,T̃jm , i.e.,
the operatorTjm in an arbitrary reference frameK̃) may be
presented in terms of itsjm8 components in a suitable fram
K and of invariant FRM’s, without an explicit parametriz
tion of the rotationV @see, e.g., Eqs.~53! and ~54! in I for
the case of integerj ]. Moreover, the parameters which~im-
plicitly ! describe the rotationV ~e.g., two noncollinear vec
tors or components of the spinorx in a fixed coordinate
frame! may be connected with some physical quantities
herent to the problem being analyzed. A number of examp
have been presented in I. We emphasize only that such
variant methods are especially fruitful for the separation
kinematical ~i.e., dependent on the geometry, polarizati
states, and momentum directions of the target and pro
tiles! from dynamical factors in cross sections of atomic c
lisions with photons and/or electrons.
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APPENDIX: AUXILIARY IDENTITY FOR d̂ OPERATORS
AND ALTERNATIVE DERIVATION OF EQ. „23…

In applications of thed̂-operator formalism introduced in
Sec. II an auxiliary identity for the product of two homog
neousn-linear forms, one of them involving spinor operato
d̂ and another involving spinorsx, may be useful. Conside
therefore the following such product:

S (
m1 , . . . ,mn561/2

am1 , . . . ,mn
d̂m1

••• d̂mnD
3S (

n1 , . . . ,nn561/2
bn1 , . . . ,nn

xn1
•••xnnD

5~21!nS (
n1 , . . . ,nn561/2

bn1 , . . . ,nn
d̂n1

••• d̂nnD
3S (

m1 , . . . ,mn561/2
am1 , . . . ,mn

xm1
•••xmnD ,

~A1!

where the coefficientsam1 , . . . ,mn
andbn1 , . . . ,nn

may be com-

posed of spinors other thanx and d̂. Equation~A1! is com-
pletely equivalent to the similar identity for the case invol
ing ordinary differential operators@18#. The result in Eq.
~A1! may be verified by direct calculation as it illustrates t
following chain of equations for the casen52:

S (
m1 ,m2561/2

am1m2
d̂m1

d̂m2D S (
n1 ,n2561/2

bn1n2
xn1

xn2D
5 (

m1 ,m2
(

n1 ,n2

am1m2
bn1n2

~21!11m11m2~dm1 ,2n1
dm2 ,2n2

1dm1 ,2n2
dm2 ,2n1

!

5 (
m1 ,m2

(
n1 ,n2

am1m2
bn1n2

d̂n1
d̂n2

xm1
xm2

5S (
n1 ,n2

bn1n2
d̂n1

d̂n2D S (
m1 ,m2

am1m2
xm1

xm2D ,

wheredm,2n is the Kronecker symbol. The first equality i
the above chain of equations follows from the definitions
d̂ ’s in Eqs.~14! and~15!. In the third line term, thed̂ andx
components are introduced again~only with reversed indi-
ces! using once again Eq.~14! and the evident symmetry
relation

d̂nxm5~21!1/21ndn,2m52 d̂mxn . ~A2!

The case of a product of twon-linear forms may be analyze
similarly ~e.g., for three-linear forms, six terms with produc
of three Kronecker symbols will appear in the second lin
etc!. Therefore, in the products of twon-linear homogeneous
5-8
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forms composed ofd̂ ’s and x ’s one can replaced̂↔2x.
@The necessity of the minus sign for oddn is evident from
Eq. ~A2!.#

To demonstrate the utility of Eq.~A1! in concrete calcu-
lations involving complicated constructions of spino
annihilation operators, we present an alternative deriva
of the basic representation~23! for FRM’s. With the use of
Eq. ~A1!, the rhs of Eq.~22! may be written as follows:

$d̃̂% jm~ x̃•b (11/2)! j 2k~ x̃•b (21/2)! j 1k

5~21!2 j~ d̃̂•b (11/2)! j 2k~ d̃̂•b (21/2)! j 1k$x̃% jm .

~A3!

Here the calculation of the term on the rhs of Eq.~A3! is
much simpler than the straightforward but lengthy appro
described in Sec. III for calculating the lhs. Indeed, taki
into account Eq.~13! and the independence of$x̃%km of the
coupling scheme of rank-1/2 tensorsx̃, one obtains
i,

-
,

s

s

B

03210
n

h

~ d̃̂•b (21/2)! j 1k$x̃% jm5~ d̃̂•b (21/2)! j 1k21~22 j !ˆb (21/2)

^ $x̃% j 21/2‰jm

5~ d̃̂•b (21/2)! j 1k222 j ~2 j 21!

3ˆ$b (21/2)%1^ $x̃% j 21‰jm

5•••

5~21! j 1k
~2 j !!

~ j 2k!!
ˆ$b (21/2)% ( j 1k)/2

^ $x̃% ( j 2k)/2‰jm .

Calculating similarly the action of (d̃̂•b (11/2)) j 2k on

$x̃%( j 2k)/2 @which gives (21) j 2k( j 2k)! $b (11/2)%( j 2k)/2] and
inserting the results in Eq.~22!, we obtain Eq.~23! once
again.
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