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Perturbative Casimir shifts of nondispersive spheres at finite temperature
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The quantum-electrodynamic Helmholtz free energy of binding, at temper&tusedetermined perturba-
tively to order fia)? for atomic solid spheres of radius having dielectric constart=1+4mna and
magnetic susceptibility eithew=1 or u=1/e=1—-4mna. Heren is the number density, and the atomic
polarizabilty « is taken as independent of frequency. The perturbative shifts are regularized by disallowing
atomic separations below some minimathey are renormalized by dropping components proportional to the
volume and surface area, and the renormalized shiB$(na)? are expressed in terms of moments of the
interatomic potentialV at givenT, quoted from the preceding paper. Such shifts are always dominated by
(nominally) divergent components of orderzc/\, independent o anda. ForkTa/Ac> 1, the convergent
terms are of order kT In(kTal%c); for kTa/ic<1, they are of order- (kTa/%ic)3(%c/a) whenu=1 and of
order— (kTa/kc)*(hc/a) whenu=1/s. There is no compelling reason why these convergent terms should be
exactly the same as the shifts determined by recent normal-mode summations; nevertheless, agreement is
complete foru=1/e and almost complete fqu=1.

DOI: 10.1103/PhysRevA.64.032103 PACS nuntder12.20.Ds, 03.76:k, 03.65-w

I. INTRODUCTION interest in field theorysee Sec. I}, with eu=1, i.e., with
x=—«a. The appropriate potentials have been derived from
Consider the quantum-electrodynan@ED) Helmholtz  the atomic version of Ed1) in the preceding pap¢5b] (cited
free energy of binding—call iB—for a single macroscopic as Ill). We write them as
body modeled as a continuum, as opposed to the interaction 5
between mutually disjoint bodies. Limited but worthwhile W=—a"f(p,T), )
insights are obtainable from the simplified case where the — . .
material is optically dilute, say an atomic solid mimicked by haturally with d|fferent functions in the two cases, and ge”'
a nondispersivéfrequency-independentielectric function erally suppressing the argument Thus, to order fa)”,
e=1+4mnea, with «a is the electrostatic polarizability and QED yields
the number density of the atoms, and witha)?><1. Physi- 1
cally, constantr can be viewed as an approximation in prob- B=— —(na)zj J drd3’ f(p), p=Ir—r'].
lems where the important frequencies are far below typical 2 r<alr’<a
atomic excitation frequencieQ; formally, it corresponds to 3
taking the nondispersive limitQ)—«~ from the outset. To ; -
order (a)?, that is. to leading order of perturbation theory The underlying theory is developed at zero temperature and

X 0 " : applied to several simple shapes in | and Il, and is extended
[1.]’ B as derived from QED is _|dent|cally th_e same as they, dispersive spheres at>0 elsewherg6] (cited as V. We
binding calculated from the dipole approximation to the

oroperly retarded two-body potentil(p) at separations need several earlier conclusions, especially from II.
) P ' i) Physically the most persuasive wa ularize
defined so that the interatomic force isVW. Nondisper- (i) Phy y P y e B

sively and dispersively, the equivalence is demonstrated elsgi:);" fo rid it of ambiguities stemming from the singularity of
o . at coincidentr andr’, is to restrict the integral3) to
where([2] and[3], cited as | and Il, respectively grald) to p

H hall studw f di ! lid sph f >\, whereh<<a is a minimum separation enforced by the

di ere we 3 a fstu B .olr n(r)]n ISpersive solid Sp et;.e.s 0 (nonperturbativerepulsion when the atomic wave functions

r_a lusa, mace o Tategif W fose magnetlchpermhea ity begin to overlap. This is preferable to the more traditional
I;aan’lriI‘tlgri]z;(n rrg?élii]so iffer from unity. Then the QED prescription[ 7], which substitutes fow(p) another potential

W(p,\) generated by exchanging only virtual photons hav-

L 3 ) ) ing wave number&<1/x, with the cutoff distancéx often
H=HpgtHin, Hin=—2 <ad r{naB(r)+nxB(r)},  ynderstood to be of orde’Q. The point is thaB is sensi-

r
(1)  tive top comparable ta, whereW(p,X) is totally unlike the
true W(p). Contributions toB that would diverge in the hy-
where H,4 is the Hamiltonian for the freébody-absent pothetical limitA —0 we call (nominally divergent Terms
electromagnetic field andfi;,, is treated as a perturbation. that remain finite in this limit we calkonvergentterms that
Specifically, we consider two scenarios, the first pure dielecvanish with\ we shall drop without further comment. Dis-
tric with y=0 and the second wholly artificial, but of some persion would cure no divergences, but would reduce their
order in 1A (e.g., linear to logarithmic, quadratic to linear,
etc).
*Electronic address: g.barton@sussex.ac.uk (i) It proves convenient to write
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B=Vu+So+AB, (4) Meanwhile, the results reported here could be viewed as well
defined if somewhat artificial preliminaries, more useful by
whereV andS are the volume and surface area of the bodyhindsight than can be warranted beforehand, to the complete
uis the free energy of binding per unit volume in unboundedtheory in V.
material, ando the surface tension, i.e., the free energy per (vi) Itis found in | and spelled out further in Il and V that
unit surface area of a half-space, while we ¢gl therenor- U, o, andAB for a sphere may be expressed in terms of the
malized[8] Casimir free energyNondispersively, the lead- moments
ing terms ofu and o are of orders N* and 1A3, respec- ”a
tively, while for a nondispersive sphere, we shall find that I 7N _ — 5
AB/(na)? subdivides into dlinearly) divergent term featur- a (p)_fp dp"t(pDp™ (N=23, AJs= fx dp fp”.
ing only \, but neitherT nor a, plus a convergent function of 5)
T anda, which we call thepure Casimir termThe divergent
part of AB will prove important as a probe for the differ- (Js would diverge forT>0, whenf~KkT/p®) Thus,
ences between the physics of our approach and of mode sum-
mations; it has a long if intermittent history dating back to __ 2 2™
Candelag9], and Il discusses it in some dgtail. ’ . (na)2wZ(A),  o=(na) “73()\) ©
(i) The total(i.e., the regularized but unrenormalized

free energyB is dominated by its most divergent components B [ el 1 3 2 p®
Vu+So, which ensure that it always tends to induce col- (na)2m?~ "2 ), dp pf) —Z5——4a’p+ =
lapse rather than expansion, regardlessA&, which is

smaller by many orders of magnitude. From this point of 1 3

view, the sign ofAB is merely a detail, incapable of gener- - E[T[jZ(x)_jZ(za)]

ating paradoxes whether it is positive or negative, and the
same is truea fortiori, of the pure Casimir term, whose
magnitude is smaller still. Conversely, it bears stressing that
all three terms inEq. (4) are essential: if one disregards
Vu-+So, then one can no longer make sense of the physicsvhence eventually

(iv) By contrast, there is a genuine paradox in the fact that AB L 82’
the perturbatively determined two-body potentillaffords _ a P
sensible estimates of all the nominally divergent contribu-  (na)2m2 gAJst 3 J2(28) 280 75(28). (8)
tions regardless of the value ofi¢)?, whereas it can yield
the far-subdominant pure Casimir term only whenwf? is  Notice thatA 75 depends orf(p) only for separationg that
small enough to make all many-atofmonadditive interac-  canbe realized in the sphere, whilg 5(2a) depend only on
tions truly negligible. This is precisely why the pure Casimir separations thatannotbe. Thus nominal divergences can
term represents such a challenge to nonperturbative fieldznterAB only throughA Js.
theory techniquese.g., to summations over normal moges Throughf, all the moments are functions dfas well as
and the complications attending such techniques are, in tur@f the integration limits. Sincd& and AB are shifts in the
the reason why it is worth viewing them through the veryHelmholtz free energy, the corresponding shifts in the energy
different and relatively easily implemented perturbative cal-and entropy read
culations that we report. The motivations evidently run full
circle. AS:_(?AB/(TF, AE:AB+TAS, (9)

(v) The nondispersive limif)—o taken at the outset, as
it is here, automatically entaikT<#A(): all atoms are in
the ground state. It also confines one to the retarded regi

1
— 48[ J3(\) — Ja(2a) ]+ §AJ5}, )

and similarly forSandE in terms ofB. Asymptotic approxi-
mgations to these shifts emerge naturally in the regimes

wherea>c/(), and similarly for any other important dis- ) A~
tances. Thus, for pure dielectricst 0, it formally reduces low T:  4nTa/hc=A<L, (10
W to the Casimir-Polder potentiat 23«?/4mp’ for all p high T A1 (11)

>\. Unfortunately, this enormous technical simplification

badly misrepresents the nominally divergent componenpp the other hand, we take

ts: in order to get them right, one requires the proper dis-

persive calculations spelled offitr dielectricg10]) in 1l and 47k TAhc=A <1, (12)

V. However, subject tkT<#(), paper V eventually finds

that dispersion leaves the pure Casimir term unaffectedanticipating a near approach to the limit-0, as formally
Though this might perhaps have been suspected in advancge always do. Physically, E¢12) is enforced by the realis-
this author believes that only the dispersive calculation idic inequalityzQ <<#c/\ (cf. II) combined withk T<# ().
compelling: prima facieplausible guesses cease to be plau- The rest of this paper is laid out as follows. Section Il
sible once it is realized that eventually one must accommoguotes the requisite potentials from Il and arranges them
date all the dimensionless cross ratios between as many asnveniently for evaluating Eq8). Sections Il and IV deal
four energy parameters, namefyc/a, ic/\, A, andkT. with y=0 and xy= — «, respectively. Each has one subsec-
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tion on low and another on high temperatures; two awkward 23 11(2m)° (kT)® o
integrals are relegated to the Appendix. These sections also f(27kTp<1)= Amp] * 915 p +O(p(kT)®),
compare ouAB, briefly, to expressions already reported in (21)

the literature for related, but not necessarily identical, quan-
tities, by Nesterenko, Lambiase, and Scarptid (cited as KT
NLS) for dielectrics and by Klich, Feinberg, Mann, and  f(27kTp>1)=—5{3+O((kTp)* exp(—47kTp))},
Revzen[12] (cited as KFMR for euw=1. Section V com- p

ments on such comparisons more critically, and summarizes (22)
our conclusions. and for y=— a that
Il. THE POTENTIALS AND THE FUNCTIONS f(p) 15  12(2m)5 (kT)®
. . . f2rkTp<l)= —7+—— +0(p(kT)®),
It is shown in IIl that the potentials redd3] P 945 23
23
) i kT
W(dielectrig = — a?f, f=—Qcoth27kTp) (x=0), KT
P 13 f(2mkTp>1)= F{6+ O((kTp)* exp(—47kTp))}.
(24)
W( 1) 2, f 2kTR th 27k Tp)
eu=1)=—a’"T, = CcO T
K 76_ P Ill. PURE DIELECTRIC MEDIA
(x=—a), (19 This is the case treated dispersively in V. Here we must

. . i evaluate the moments needed in E8). using f from Eq.
featuring the homogeneous zero-degree differential operatoygg).

Q=3—-3ps+ §p2¢92— l10363-1— ip4¢94 = i A. Low temperatures
4 4 16" 7 ap’
(15) Start with 7,(2a). Define
d"c(z)
R=3-3pa+ o p2P— L3P+ Sptt (19 c@=cothz), (D)= (25
2 2 8 z
The asymptotics ofV(p) hinge on the expansions then, a change of variables and repeated integrations by parts
yield
th(z—0) 1+Z Z3+225 Z + (17)
cothz—0)=—-+5— =+ —7— 1 (~dz
z 3 45 945 4725 j2(2a)=kT(477kT)3§J FQC(Z)
A
and
kT[ A%®(A) A%P(A)
cothz—»)=1+2{exp(—2z) +exp(—4z)+---}, =83l " 18 T 2
(18
as do eventually those @B as a function ofA andA. As —AcY(A)+c(A)], (26)

already stated, we shall drop terms that vanish witand
thereby withA. Also, for large A we shall drop terms expo- 1 (23 7A*  11A°
nentially small in the sense that they are at most of order Jo(2a)= _4[_+ _

exp(—A). Much use will be made of ma* (256 11520 60480

+O(A8)}. (27)

1lp (2312 (1lp) 1lp 15/p The simplicity of Eq.(26) stems from the fact that its ex-
1 3 1 3 pected component proportional tprdz o(z)/z* turns up
ol »|= 0 Rl p |=| O with coefficient zero, for no deep reason that this author can
3 0 ' 3 0 ' see.
p5 5 p5 5 There is no such luck witli/z(2a), for which one finds
p (11/2p p 3p analogously to Eq(26) that
and of . A3 1 Ac®(A) 5c@(A)
Jo(28) =163 "2 M7 T T 16
,R)exp(—2np)=(quarticg X O(exp(—2np)). (20
(Q,R)exp(—2np) = (quartics X O(exp —2np)). (20) 5ol TelA) N
Thus, from Eqs(13—(19), it is easy to verify fory=0 that 4A 4A% ||’ (28
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»dz qz) ing exponentially small terms as we do, we can by virtue of
Ms= N (29 Eq. (22 replacef—3kT/p® and find
. . L a® 5kT
The rather awkward integral1 is dealt with in the Appen- TJZ(Za)—Zazjg(Za): TR (35
dix, where one finds
1 1 73 A 2A3 Remarkably, this is independent af

(30) The fifth moment is not so easy. A change of variables and

Mz=53+ —+ —— .-
3AT 3A m 45 2835 repeated integration by parts leads to

Substituting into Eq(28) and expanding the square brackets 2adp
by powers ofA, one eventually finds AJs=ka 7Q coth(27kTp)
A
1 (23 ((3)A% 11A® . A (3c 5702 7263 28
Ja(28)= 31961 32,2 " 153607 OA) |- BD :kTJA/Zer__g,C(l)_,_ Tt e ]
Three points are worth stressing). In Eq. (31) the term —KT{3AM;+ N}, (36)
with A3, i.e., with T3, is clearly an odd one out. It stems
wholly from Msj. (ii) This term is actually independent of £c® 7262 1724V a1c]A 17 41
the argument of7;(2a), whence the corresponding terms  N;= 6 16 + s 5 =A 8
cancel from the difference7;(\) — J3(2a)] in the unrenor- Al2
malized free energ given by Eq.(7). (i) The same ap- (37)
lies[14] to the t ithA%, i.e., tional tar*, in Eq.
E)ZI%S[ ] to the term wi i.e., proportiona in Eq A dzdz) 2 A
. . _ AM,= =—+In| =+, (39
By contrast to7, 2a), it is easy to determind J5. We A2 Z A ™

substitutef directly from Eq.(21) into Eq. (5), observe that _ o _
we may set\ — 0 in the second terrtthe difference vanishes where y=0.577 is Euler’s constant. Our approximations in

with A), and find Egs.(37) and(38) are, as always, accurate up to terms that
either vanish withA or are at most of order exp(@). While
A Js=A Jso+ A Js1+ O(A%/a), (320 N is elementaryA M, like Mj is awkward and is, like-
wise, relegated to the Appendix, from which E®8) has
where guoted. Substituting Eq$35)—(38) into Eq.(8), one obtains
ATsi=AJs(T=0)= 231 1 A ——llAG A8 23 1kTI 4KT ! kT
Jso=ATs(T=0)= 7715~ 23" 275" Igg00ra’ (na)2m? = " 2amn 2 <TUN(4KTa)+ 93+ 76kT.
(33 (39
Finally, on substitution from Eqs27), (31), (32, and The first term, here as in Eq34), is just the nominally
(33), Eq. (8) yields divergent part of the nondispersive zero-temperature shift.
The pure Casimir part may coincide with E§.41) given by
AB 23 1 (23 ¢(3)A3 7A* NLS for their F at high T, which in our notation reads
(na)?m? " 24m\ ' 7a|96 167 ' 4320 - .
6 W =— sz{In(kTa) + C} (NLS), (40)

11A 8
113400+O(A) . (34
where C is a constant[Their equation(3.42 quotesC
As far as this author knows, the only other comparable=In(4)+y—7/8 from a forthcoming paper by Nesterenko,
calculation for this system at finif€ is that of NLS. At low  Pirozhenko, and Bordag, which does produce coincidénce.
temperatures, a quantify, which they call simplythe Ca-

simir free energy, is given by their E¢3.35, whose zero- IV. MEDIAWITH ep=1
temperature limit reproduces the correct pure Casimir shift . _ _
(n@)?23x7/96a if one identifies their symboAn? with our Brevik and Kolbenstved15] were the first to point out

47%(na)?. In our notation, theif then coincides with what that sums over normal modes for the Casimir energies of

one gets from our Eq34) by dropping the divergent com- Such media are immune to certain complications and ambi-

ponent(with 1/\), and dropping also the component wAR. guities afflicting realistic cases where the speed of light is
different inside and out. Recent references can be traced

through KFMR. By contrast to mode summations, the inte-

grations in our approach are easy or difficult to much the
Here it is the integrals/, f(2a) that become trivial, be- same degree for media of both types.

cause they involvd (p) only for kTp=kTa>1. Disregard- The moments required by E(B) must now be evaluated

B. High temperatures
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using f from Eq. (14). We proceed as in Sec. lll, merely 23c®  772c(@  137¢D  25c1A
replacingQ with 2R. Mepn=1)= - + ——
8 8 4 41,
A. Low temperatures 24 25
Analogously to Eqs(26) and(27), one finds A 4 (46
kT[ A3®A) A%c?(A)

Combining these results, we obtain

T A
AB
(na)zﬂ'z__Z

5 5
—Ac(A)+c(A) m\—kT{In(4kTa)+ v+ ZkT. (47)

1 [15 A*  AS

I b _ 8 Apart from the nominally divergent term5/2m\, this coin-
wa’ |64 2880 5040  OA )J' “1

cides with Eq.(42) of KFMR.

But in 75 the coefficient of the integral1; now turns out to

vanish, leaving us with V. SUMMARY, COMPARISONS, AND COMMENTS
3 (3) 2) (i) The perturbative result for the renormalized free-
Js(2a)= A 3{ — ACT(A) + 5¢”(A) energy shiftAB is Eq.(8), where the moment&) are to be
87a 8 8 evaluated with the potential functidngiven by Eq.(13) or
3cM(A)  3c(A) (14) for w=1 or u=1le, respectively. For arbitrary tem-
- + 5 ] perature this must be done numerically. Convenient approxi-
2A 2A mations for 4rkTa/ic=A<1 are given by Eq(34) or (44)
1 (5 A8 and, forA>1, by Eq.(39) or (47).
= —3[5— 3780" O(A8)]. (42 (i) When comparingA\ B with expressionsg- from mode
ma summations, we have spoken of coincidefeethe lack of

it) rather than of agreement, because it is evident that by
renormalizationsuch methods mean something physically
quite different from our own definition, which amounts only
to distinguishing betweeAB andVu+ So. To see that the
difference is significant, it suffices to recall th&B retains a
nominal divergence proportional toAlthough independent

The fifth moment can be found just as before. Alterna-
tively, comparing the potentigl3) with Eq. (21), one sees
thatA 75 can be written down at once by adapting the dielec
tric result from Sec. 111 B:  all we need do {§) multiply the
zero-temperature part by R(p)/(Q/p) =60/23 andii) mul-
tiply the A® part by 2Rp®)/(Qp°)=12/11. Either way one

finds of a, while the mode summations we have cited subtract
counterterms chosen so as to makeholly convergent. In
151 1 1216 particular, without further study one cannot exclude the pos-
ATJs= A T5ot Aj51=?[x— %a + 1890G +eee sibility that they might unwittingly have assigned Fosome
43) convergent components du+ So.
Accordingly, what should surprise one is not the occa-
Combining these results, we obtain sional discrepancy betwedhand the pure Casimir parts of
AB, but the large measure of coincidence that does exist.
AB 5 1 (5 A* AS 8 Though coincidence happens to be complete for nondisper-
na)2m? - 2mn + E{g_ 1080 9450 CA7) - sive media (1 —=) atT=0 (cf. I), the scope for differences

(44) evidently widens with the proliferation of input parameters
when the theory is extended 10>0 (as herg¢ or to finite ()

By contrast to Eq(34), there is no term irA%, becauseM  (cf. Il), or to both(cf. V). Clearly, it would be interesting to
happens to have vanished frofg(2a). To our accuracy the devise a renormalization scheme for mode summations
pure Casimir part of this coincides with E@8) of KFMR,  whose physics is demonstrably the same as ours, and then to
whoseé? equals our 4%(na)?. explore its precise relation to the schemes used hitherto; but
pending such studies, this author believes that comparisons
like those in Secs. Il and IV cannot fruitfully be exploited

B. High temperatures
much further.

Comparing the leading terms of Eq®2) and (24), one (i) Meanwhile, ambiguities are least troublesome for
finds that7, {2a) are now double the expressions for pure. , — 1. Numerically, the zero-temperature pure Casimir shift
dielectrics, while appears already in the pioneering paper by Brevik and Kol-

2adp benstved{15]: to order ()2, their Eq.(2.59 implies
Aj5=2ka —Qcoth 27k Tp)
» P 0.092 35 0.31
— 2KT{BAM;+ Mep=1)}, (45) X4X[1+T]1_0'1991
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for the exact coefficient 5/8=0.1989 visible in our Eq. . 1 JL % dx x A3)
(44). [The closed form &/8 follows trivially from the form '=— o —:f NV SR
237196 for u=1: comparing Egs(21) and (23), we see 2n 9m Jo (X+a) (€ —1)
that one need merely multiply by the ratio 60/23 of the PO-2nd expand on the right of EGA2) to obtain
tentials atT=0.] '
Sections IVA and IVB have already noted that, at low - 1 7 {(3)
and highT, respectively, our pure Casimir terms coincide L' (p—0)= ypeca 4—2+ 18, 8.2
with F in KFMR’s Egs.(28) and(42). However, for diagnos- Y noom
ing renormalization prescriptions, this is less significant than +(terms vanishing withz). (A4)

it might seem, because KFMR’s expressions are intended as
differences between one sphere of finite and another of infiThe crucial trick is to splitL’ = [5dx---= (J2A+ [Z,)dx---
nite radius. On the other hand, thérat high T, being the |’ {+L} on the right of Eq(A3). In the limit L} reduces to
same as the pure Casimir part of our E4j7), seems meant N,/8, whence
to carry more information than its componenkT In[(kT&)
X (arbitrary constanf), which is the most that such a differ- N3=8 lim{L'—Lj}. (AB)
ence could warrant. 7—0

(iv) For pure dielectrics, Sec. Il B has registered that
coincides with NLS'sF at highT, but Eq.(34) shows that at To calculateL; we expandx/(e*—1) appropriately to
low T it differs from F by the addend smallxand integrate term by term:
—(na)?(4wkTa)3¢(3)/16m7a. In view of paragraptiii) just
above, we cannot at present say anything conclusive about  , [2A dx x
the physicdif any) underlying this discrepancy, but it might N 7°)2(e*—1)
be worth recalling, from the paragraph following E&J1),
that the total(i.e., the regularized, but unrenormalizdtee 2A  dx
energyB has no terms proportional either £° or A%, In- - JO (x2+ 7?2 1-
deed, it is straightforward to verify that, at low

2 4 6

X X X X
2712 720" 30240 |

(AB)
B (di t termp 1 1 1 1 A

——— =(divergent term m .
na)2m? (np—0)= - e 5an3 T TAAZ T 2AA 2An
(na)2m Lin=00= 15" 77" 28, 24a° T 16A7 24A 360

123 11A8
96 113200 A (x=O). + A + (A7)
11340
(48)

On substituting from Eq9A4) and (A7) into Eq. (A5), and
The writer welcomes this opportunity to acknowledgethence Eq.(Al), one obtains the approximation quoted in
comments from Professor |. Brevik and Professor V. V. Nes£q. (30).

terenko.
2. The high-temperature integral A M,
APPENDIX:  TWO INTEGRALS Section 11l B requires, witA>1 andA <1,
1. The low-temperature integral M, A dzcoth(z) A dz 2
Section 11l A requires, withA<1, AM;= LQT: JA/Z? (22><—_1)+1
©dz »dz 2 2A
Ms= fA?COWZ)ZL? 271 ! =2AN;+In T)’ (A8)
1 o dx
= N3+ A2 J\@EBLAm. (AL) A./\GEJZA iix . (A9)
A X(e'=1)

To determine\; we cite, by hindsight and with the limiy
—0 in mind, the standard integral

d = f fZA J' dxx =L;+L,+L
EJ L S P 2 A (A - | 0T (1) mithethe
o (X“+7°)(e*=1) 2 '
We dropL ; because it is exponentially small, and recognize

2w g (A10)
differentiate undeif dx: -+ with respect toz, thatL, reduces tAAN; as »— 0. Hence,

Again we start from Eq(A2), splitting it into

In
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2A _ Now expand this for small, expand similarly on the right
AM;=In N +2 lim(L—L,)+O[exp(—2A)]. Eg. (A2), combine the results, and take the limit
7—0
All . |1 ™ 2 1|7
(AL I|m(L—L1)=I|m[§ In(zl)——Jr v+ — }—— 5
To calculatel; we note that it involves onlyx<1, expand 70 T 7 7
;(/(ex— 1) as on the right of EqA6), and integrate term by 7 1| A 1 1 [ A
erm: ——4 |+ =zIn|l—|{=—+=In| =—
A 2" AT2M2
. 1t (A 1I A2+ 52 y
L s L L + 2 (AL3)
+(terms vanishing withA even when»=0). Substitution into Eq.(Al11) then yields the approximation
(A12) already quoted in E(.38).
[1] The total free energy contains also terms of ordes, but options one must choose on physical grounds, depending on
these stem from the self-energiésamb shiftg of the indi- what, precisely, one wishes to calculate.
vidual atoms and are irrelevant to the bindifgf. [3] and [9] P. Candelas, Ann. Phy@N.Y.) 143 241(1982.
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