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Perturbative Casimir shifts of nondispersive spheres at finite temperature
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The quantum-electrodynamic Helmholtz free energy of binding, at temperatureT, is determined perturba-
tively to order (na)2 for atomic solid spheres of radiusa, having dielectric constant«.114pna and
magnetic susceptibility eitherm51 or m51/«.124pna. Here n is the number density, and the atomic
polarizabilty a is taken as independent of frequency. The perturbative shifts are regularized by disallowing
atomic separations below some minimuml; they are renormalized by dropping components proportional to the
volume and surface area, and the renormalized shiftsDB/(na)2 are expressed in terms of moments of the
interatomic potentialW at givenT, quoted from the preceding paper. Such shifts are always dominated by
~nominally! divergent components of order2\c/l, independent ofT anda. For kTa/\c@1, the convergent
terms are of order2kT ln(kTa/\c); for kTa/\c!1, they are of order2(kTa/\c)3(\c/a) whenm51 and of
order2(kTa/\c)4(\c/a) whenm51/«. There is no compelling reason why these convergent terms should be
exactly the same as the shifts determined by recent normal-mode summations; nevertheless, agreement is
complete form51/« and almost complete form51.

DOI: 10.1103/PhysRevA.64.032103 PACS number~s!: 12.20.Ds, 03.70.1k, 03.65.2w
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I. INTRODUCTION

Consider the quantum-electrodynamic~QED! Helmholtz
free energy of binding—call itB—for a single macroscopic
body modeled as a continuum, as opposed to the interac
between mutually disjoint bodies. Limited but worthwhi
insights are obtainable from the simplified case where
material is optically dilute, say an atomic solid mimicked
a nondispersive~frequency-independent! dielectric function
«5114pna, with a is the electrostatic polarizability andn
the number density of the atoms, and with (na)2!1. Physi-
cally, constanta can be viewed as an approximation in pro
lems where the important frequencies are far below typ
atomic excitation frequenciesV; formally, it corresponds to
taking the nondispersive limitV→` from the outset. To
order (na)2, that is, to leading order of perturbation theo
@1#, B as derived from QED is identically the same as t
binding calculated from the dipole approximation to t
properly retarded two-body potentialW(r) at separationsr,
defined so that the interatomic force is2“W. Nondisper-
sively and dispersively, the equivalence is demonstrated e
where~@2# and @3#, cited as I and II, respectively!.

Here we shall studyB for nondispersive solid spheres o
radiusa, made of material whose magnetic permeabilitym
5114pnx may also differ from unity. Then the QED
Hamiltonian reads@4#

H5H rad1H int , H int52 1
2 E

r ,a
d3r $naE2~r !1nxB2~r !%,

~1!

where H rad is the Hamiltonian for the free~body-absent!
electromagnetic field andH int is treated as a perturbation
Specifically, we consider two scenarios, the first pure die
tric with x50 and the second wholly artificial, but of som
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interest in field theory~see Sec. IV!, with «m51, i.e., with
x52a. The appropriate potentials have been derived fr
the atomic version of Eq.~1! in the preceding paper@5# ~cited
as III!. We write them as

W52a2f ~r,T!, ~2!

naturally with different functionsf in the two cases, and gen
erally suppressing the argumentT. Thus, to order (na)2,
QED yields

B52
1

2
~na!2E

r ,a
E

r 8,a
d3r d3r 8 f ~r!, r5ur2r 8u.

~3!

The underlying theory is developed at zero temperature
applied to several simple shapes in I and II, and is exten
to dispersive spheres atT.0 elsewhere@6# ~cited as V!. We
need several earlier conclusions, especially from II.

~i! Physically the most persuasive way toregularize B,
i.e., to rid it of ambiguities stemming from the singularity o
W at coincidentr and r 8, is to restrict the integral~3! to r
.l, wherel!a is a minimum separation enforced by th
~nonperturbative! repulsion when the atomic wave function
begin to overlap. This is preferable to the more tradition
prescription@7#, which substitutes forW(r) another potential
W(r,l̃) generated by exchanging only virtual photons ha
ing wave numbersk,1/l̃, with the cutoff distancel̃ often
understood to be of orderc/V. The point is thatB is sensi-
tive to r comparable tol, whereW(r,l̃) is totally unlike the
true W(r). Contributions toB that would diverge in the hy-
pothetical limit l→0 we call ~nominally! divergent. Terms
that remain finite in this limit we callconvergent; terms that
vanish withl we shall drop without further comment. Dis
persion would cure no divergences, but would reduce th
order in 1/l ~e.g., linear to logarithmic, quadratic to linea
etc.!.

~ii ! It proves convenient to write
©2001 The American Physical Society03-1
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G. BARTON PHYSICAL REVIEW A 64 032103
B5Vu1Ss1DB, ~4!

whereV andS are the volume and surface area of the bo
u is the free energy of binding per unit volume in unbound
material, ands the surface tension, i.e., the free energy p
unit surface area of a half-space, while we callDB therenor-
malized@8# Casimir free energy. Nondispersively, the lead
ing terms ofu and s are of orders 1/l4 and 1/l3, respec-
tively, while for a nondispersive sphere, we shall find th
DB/(na)2 subdivides into a~linearly! divergent term featur-
ing only l, but neitherT nor a, plus a convergent function o
T anda, which we call thepure Casimir term. The divergent
part of DB will prove important as a probe for the differ
ences between the physics of our approach and of mode
mations; it has a long if intermittent history dating back
Candelas@9#, and II discusses it in some detail.

~iii ! The total ~i.e., the regularized but unrenormalize!
free energyB is dominated by its most divergent componen
Vu1Ss, which ensure that it always tends to induce c
lapse rather than expansion, regardless ofDB, which is
smaller by many orders of magnitude. From this point
view, the sign ofDB is merely a detail, incapable of gene
ating paradoxes whether it is positive or negative, and
same is true,a fortiori, of the pure Casimir term, whos
magnitude is smaller still. Conversely, it bears stressing
all three terms inEq. ~4! are essential: if one disregard
Vu1Ss, then one can no longer make sense of the phys.

~iv! By contrast, there is a genuine paradox in the fact t
the perturbatively determined two-body potentialW affords
sensible estimates of all the nominally divergent contrib
tions regardless of the value of (na)2, whereas it can yield
the far-subdominant pure Casimir term only when (na)2 is
small enough to make all many-atom~nonadditive! interac-
tions truly negligible. This is precisely why the pure Casim
term represents such a challenge to nonperturbative fi
theory techniques~e.g., to summations over normal mode!;
and the complications attending such techniques are, in t
the reason why it is worth viewing them through the ve
different and relatively easily implemented perturbative c
culations that we report. The motivations evidently run f
circle.

~v! The nondispersive limitV→` taken at the outset, a
it is here, automatically entailskT!\V: all atoms are in
the ground state. It also confines one to the retarded reg
where a@c/V, and similarly for any other important dis
tances. Thus, for pure dielectrics atT50, it formally reduces
W to the Casimir-Polder potential223a2/4pr7 for all r
.l. Unfortunately, this enormous technical simplificatio
badly misrepresents the nominally divergent compon
ts: in order to get them right, one requires the proper d
persive calculations spelled out~for dielectrics@10#! in II and
V. However, subject tokT!\V, paper V eventually finds
that dispersion leaves the pure Casimir term unaffec
Though this might perhaps have been suspected in adva
this author believes that only the dispersive calculation
compelling: prima facieplausible guesses cease to be pla
sible once it is realized that eventually one must accomm
date all the dimensionless cross ratios between as man
four energy parameters, namely,\c/a, \c/l, \V, andkT.
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Meanwhile, the results reported here could be viewed as w
defined if somewhat artificial preliminaries, more useful
hindsight than can be warranted beforehand, to the comp
theory in V.

~vi! It is found in I and spelled out further in II and V tha
u, s, andDB for a sphere may be expressed in terms of
moments

JN~r![E
r

`

dr8 f ~r8!r8N ~N52,3!, DJ5[E
l

2a

dr f r5.

~5!

~J5 would diverge forT.0, when f ;kT/r6.! Thus,

u52~na!22pJ2~l!, s5~na!2
p

2
J3~l!, ~6!

B

~na!2p2 52 1
2 E

l

2a

dr r2f H 16a3

3
24a2r1

r3

3 J
52

1

2 H 16a3

3
@J2~l!2J2~2a!#

24a2@J3~l!2J3~2a!#1
1

3
DJ5J , ~7!

whence eventually

DB

~na!2p2 52
1

6
DJ51

8a3

3
J2~2a!22a2J3~2a!. ~8!

Notice thatDJ5 depends onf (r) only for separationsr that
canbe realized in the sphere, whileJ2,3(2a) depend only on
separations thatcannot be. Thus nominal divergences ca
enterDB only throughDJ5 .

Throughf, all the moments are functions ofT as well as
of the integration limits. SinceB and DB are shifts in the
Helmholtz free energy, the corresponding shifts in the ene
and entropy read

DS52]DB/]T, DE5DB1TDS, ~9!

and similarly forSandE in terms ofB. Asymptotic approxi-
mations to these shifts emerge naturally in the regimes

low T: 4pTa/\c[A!1, ~10!

high T: A@1. ~11!

On the other hand, we take

4pkTl/\c[L!1, ~12!

anticipating a near approach to the limitl→0, as formally
we always do. Physically, Eq.~12! is enforced by the realis
tic inequality\V!\c/l ~cf. II! combined withkT!\V.

The rest of this paper is laid out as follows. Section
quotes the requisite potentials from III and arranges th
conveniently for evaluating Eq.~8!. Sections III and IV deal
with x50 andx52a, respectively. Each has one subse
3-2
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tion on low and another on high temperatures; two awkw
integrals are relegated to the Appendix. These sections
compare ourDB, briefly, to expressions already reported
the literature for related, but not necessarily identical, qu
tities, by Nesterenko, Lambiase, and Scarpetta@11# ~cited as
NLS! for dielectrics and by Klich, Feinberg, Mann, an
Revzen@12# ~cited as KFMR! for «m51. Section V com-
ments on such comparisons more critically, and summar
our conclusions.

II. THE POTENTIALS AND THE FUNCTIONS f „r…

It is shown in III that the potentials read@13#

W~dielectric!52a2f , f 5
kT

r6 Q coth~2pkTr! ~x50!,

~13!

W~«m51!52a2f , f 5
2kT

r6 R coth~2pkTr!

~x52a!, ~14!

featuring the homogeneous zero-degree differential opera

Q[323r]1
5

4
r2]22

1

4
r3]31

1

16
r4]4, ][

]

]r
,

~15!

R[323r]1
3

2
r2]22

1

2
r3]31

1

8
r4]4. ~16!

The asymptotics ofW(r) hinge on the expansions

coth~z→0!5
1

z
1

z

3
2

z3

45
1

2z5

945
2

z7

4725
1¯ ~17!

and

coth~z→`!5112$exp~22z!1exp~24z!1¯%,
~18!

as do eventually those ofDB as a function ofL andA. As
already stated, we shall drop terms that vanish withl and
thereby withL. Also, for large A we shall drop terms expo
nentially small in the sense that they are at most of or
exp(2A). Much use will be made of

QS 1/r
1
r
r3

r5

D 5S ~23/2!~1/r!

3
0
0

~11/2!r5

D , RS 1/r
1
r
r3

r5

D 5S 15/r
3
0
0

3r5

D ,

~19!

and of

~Q,R!exp~22nr!5~quartics!3O„exp~22nr!…. ~20!

Thus, from Eqs.~13!–~19!, it is easy to verify forx50 that
03210
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f ~2pkTr!1!5
23

4pr7 1
11~2p!5

945

~kT!6

r
1O„r~kT!8

…,

~21!

f ~2pkTr@1!5
kT

r6 $31O„~kTr!4 exp~24pkTr!…%,

~22!

and forx52a that

f ~2pkTr!1!5
15

pr7 1
12~2p!5

945

~kT!6

r
1O„r~kT!8

…,

~23!

f ~2pkTr@1!5
kT

r6 $61O„~kTr!4 exp~24pkTr!…%.

~24!

III. PURE DIELECTRIC MEDIA

This is the case treated dispersively in V. Here we m
evaluate the moments needed in Eq.~8! using f from Eq.
~13!.

A. Low temperatures

Start withJ2(2a). Define

c~z![coth~z!, c~n!~z![
dnc~z!

dzn ; ~25!

then, a change of variables and repeated integrations by p
yield

J2~2a!5kT~4pkT!3
1

8 E
A

` dz

z4 Qc~z!

5
kT

8a3 F2
A3c~3!~A!

16
1

A2c~2!~A!

4

2Ac~1!~A!1c~A!G , ~26!

J2~2a!5
1

pa4 H 23

256
1

7A4

11520
2

11A6

60480
1O~A8!J . ~27!

The simplicity of Eq.~26! stems from the fact that its ex
pected component proportional to*A

`dz c(z)/z4 turns up
with coefficient zero, for no deep reason that this author
see.

There is no such luck withJ3(2a), for which one finds
analogously to Eq.~26! that

J3~2a!5
A3

16pa3 H 2
1

2
M32FAc~3!~A!

16
2

5c~2!~A!

16

1
5c~1!~A!

4A
2

7c~A!

4A2 G J , ~28!
3-3
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G. BARTON PHYSICAL REVIEW A 64 032103
M3[E
A

` dz c~z!

z3 . ~29!

The rather awkward integralM3 is dealt with in the Appen-
dix, where one finds

M35
1

3A3 1
1

3A
2

z~3!

p2 1
A

45
2

2A3

2835
1¯ . ~30!

Substituting into Eq.~28! and expanding the square bracke
by powers ofA, one eventually finds

J3~2a!5
1

pa3 H 23

96
1

z~3!A3

32p2 2
11A6

45360
1O~A8!J . ~31!

Three points are worth stressing.~i! In Eq. ~31! the term
with A3, i.e., with T3, is clearly an odd one out. It stem
wholly from M3 . ~ii ! This term is actually independent o
the argument ofJ3(2a), whence the corresponding term
cancel from the difference@J3(l)2J3(2a)# in the unrenor-
malized free energyB given by Eq.~7!. ~iii ! The same ap-
plies @14# to the term withA4, i.e., proportional toT4, in Eq.
~27!.

By contrast toJ2,3(2a), it is easy to determineDJ5 . We
substitutef directly from Eq.~21! into Eq. ~5!, observe that
we may setL→0 in the second term~the difference vanishe
with L!, and find

DJ55DJ501DJ511O~A8/a!, ~32!

where

DJ50[DJ5~T50!5
23

4p F1

l
2

1

2aG , DJ515
11A6

18 900pa
.

~33!

Finally, on substitution from Eqs.~27!, ~31!, ~32!, and
~33!, Eq. ~8! yields

DB

~na!2p2 52
23

24pl
1

1

pa H 23

96
2

z~3!A3

16p2 1
7A4

4320

2
11A6

113400
1O~A8!J . ~34!

As far as this author knows, the only other compara
calculation for this system at finiteT is that of NLS. At low
temperatures, a quantityF, which they call simplythe Ca-
simir free energy, is given by their Eq.~3.35!, whose zero-
temperature limit reproduces the correct pure Casimir s
(na)223p/96a if one identifies their symbolDn2 with our
4p2(na)2. In our notation, theirF then coincides with wha
one gets from our Eq.~34! by dropping the divergent com
ponent~with 1/l!, and dropping also the component withA3.

B. High temperatures

Here it is the integralsJ2,3(2a) that become trivial, be-
cause they involvef (r) only for kTr>kTa@1. Disregard-
03210
e

ft

ing exponentially small terms as we do, we can by virtue
Eq. ~22! replacef→3kT/r6 and find

8a3

3
J2~2a!22a2J3~2a!52

5kT

12
. ~35!

Remarkably, this is independent ofa.
The fifth moment is not so easy. A change of variables a

repeated integration by parts leads to

DJ55kTE
l

2a dr

r
Q coth~2pkTr!

5kTE
L/2

A

dzH 3c

z
23c~1!1

5zc~2!

4
2

z2c~3!

4
1

z3c~4!

16 J
5kT$3DM11N1%, ~36!

N1[Fz3c~3!

16
2

7z2c~2!

16
1

17zc~1!

8
2

41c

8 G
L/2

A

.
17

L
2

41

8
,

~37!

DM1[E
L/2

A dzc~z!

z
.

2

L
1 lnS A

p D1g, ~38!

whereg.0.577 is Euler’s constant. Our approximations
Eqs. ~37! and ~38! are, as always, accurate up to terms th
either vanish withL or are at most of order exp(2A). While
N1 is elementary,DM1 like M3 is awkward and is, like-
wise, relegated to the Appendix, from which Eq.~38! has
quoted. Substituting Eqs.~35!–~38! into Eq. ~8!, one obtains

DB

~na!2p2 .2
23

24pl
2

1

2
kT$ ln~4kTa!1g%1

7

16
kT.

~39!

The first term, here as in Eq.~34!, is just the nominally
divergent part of the nondispersive zero-temperature s
The pure Casimir part may coincide with Eq.~3.41! given by
NLS for their F at highT, which in our notation reads

F

~na!2p2 52
1

2
kT$ ln~kTa!1C% ~NLS!, ~40!

where C is a constant.@Their equation~3.42! quotes C
5 ln(4)1g27/8 from a forthcoming paper by Nesterenk
Pirozhenko, and Bordag, which does produce coincidenc#

IV. MEDIA WITH «µÄ1

Brevik and Kolbenstvedt@15# were the first to point out
that sums over normal modes for the Casimir energies
such media are immune to certain complications and am
guities afflicting realistic cases where the speed of light
different inside and out. Recent references can be tra
through KFMR. By contrast to mode summations, the in
grations in our approach are easy or difficult to much
same degree for media of both types.

The moments required by Eq.~8! must now be evaluated
3-4
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using f from Eq. ~14!. We proceed as in Sec. III, merel
replacingQ with 2R.

A. Low temperatures

Analogously to Eqs.~26! and ~27!, one finds

J2~2a!5
kT

4a3 F2
A3c~3!~A!

8
1

A2c~2!~A!

2

2Ac~1!~A!1c~A!G
5

1

pa4 H 15

64
2

A4

2880
2

A6

5040
1O~A8!J . ~41!

But in J3 the coefficient of the integralM3 now turns out to
vanish, leaving us with

J3~2a!5
A3

8pa3 H 2
Ac~3!~A!

8
1

5c~2!~A!

8

2
3c~1!~A!

2A
1

3c~A!

2A2 J
5

1

pa3 H 5

8
2

A6

3780
1O~A8!J . ~42!

The fifth moment can be found just as before. Altern
tively, comparing the potential~23! with Eq. ~21!, one sees
thatDJ5 can be written down at once by adapting the diel
tric result from Sec. III B: all we need do is~i! multiply the
zero-temperature part by 2(R/r)/(Q/r)560/23 and~ii ! mul-
tiply the A6 part by 2(Rr5)/(Qr5)512/11. Either way one
finds

DJ55DJ501DJ515
15

p F1

l
2

1

2aG1
12A6

18 900a
1¯ .

~43!

Combining these results, we obtain

DB

~na!2p2 52
5

2pl
1

1

pa H 5

8
2

A4

1080
2

A6

9450
1O~A8!J .

~44!

By contrast to Eq.~34!, there is no term inA3, becauseM3
happens to have vanished fromJ3(2a). To our accuracy the
pure Casimir part of this coincides with Eq.~28! of KFMR,
whosej2 equals our 4p2(na)2.

B. High temperatures

Comparing the leading terms of Eqs.~22! and ~24!, one
finds thatJ2,3(2a) are now double the expressions for pu
dielectrics, while

DJ552kTE
l

2a dr

r
Q coth~2pkTr!

52kT$3DM11N~«m51!%, ~45!
03210
-

-

N~«m51![Fz3c~3!

8
2

7z2c~2!

8
1

13zc~1!

4
2

25c

4 G
L/2

A

.
24

L
2

25

4
. ~46!

Combining these results, we obtain

DB

~na!2p2 52
5

2pl
2kT$ ln~4kTa!1g%1

5

4
kT. ~47!

Apart from the nominally divergent term25/2pl, this coin-
cides with Eq.~42! of KFMR.

V. SUMMARY, COMPARISONS, AND COMMENTS

~i! The perturbative result for the renormalized fre
energy shiftDB is Eq. ~8!, where the moments~5! are to be
evaluated with the potential functionf given by Eq.~13! or
~14! for m51 or m51/«, respectively. For arbitrary tem
perature this must be done numerically. Convenient appr
mations for 4pkTa/\c[A!1 are given by Eq.~34! or ~44!
and, forA@1, by Eq.~39! or ~47!.

~ii ! When comparingDB with expressionsF from mode
summations, we have spoken of coincidence~or the lack of
it! rather than of agreement, because it is evident that
renormalizationsuch methods mean something physica
quite different from our own definition, which amounts on
to distinguishing betweenDB andVu1Ss. To see that the
difference is significant, it suffices to recall thatDB retains a
nominal divergence proportional to 1/l though independen
of a, while the mode summations we have cited subtr
counterterms chosen so as to makeF wholly convergent. In
particular, without further study one cannot exclude the p
sibility that they might unwittingly have assigned toF some
convergent components ofVu1Ss.

Accordingly, what should surprise one is not the occ
sional discrepancy betweenF and the pure Casimir parts o
DB, but the large measure of coincidence that does ex
Though coincidence happens to be complete for nondis
sive media (V→`) at T50 ~cf. I!, the scope for differences
evidently widens with the proliferation of input paramete
when the theory is extended toT.0 ~as here! or to finite V
~cf. II!, or to both~cf. V!. Clearly, it would be interesting to
devise a renormalization scheme for mode summati
whose physics is demonstrably the same as ours, and th
explore its precise relation to the schemes used hitherto;
pending such studies, this author believes that comparis
like those in Secs. III and IV cannot fruitfully be exploite
much further.

~iii ! Meanwhile, ambiguities are least troublesome
«m51. Numerically, the zero-temperature pure Casimir sh
appears already in the pioneering paper by Brevik and K
benstvedt@15#: to order (na)2, their Eq.~2.59! implies

0.092 35

2
343F11

0.311

4 G50.1991
3-5
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G. BARTON PHYSICAL REVIEW A 64 032103
for the exact coefficient 5p/850.1989 visible in our Eq.
~44!. @The closed form 5p/8 follows trivially from the form
23p/96 for m51: comparing Eqs.~21! and ~23!, we see
that one need merely multiply by the ratio 60/23 of the p
tentials atT50.#

Sections IV A and IV B have already noted that, at lo
and highT, respectively, our pure Casimir terms coinci
with F in KFMR’s Eqs.~28! and~42!. However, for diagnos-
ing renormalization prescriptions, this is less significant th
it might seem, because KFMR’s expressions are intende
differences between one sphere of finite and another of
nite radius. On the other hand, theirF at high T, being the
same as the pure Casimir part of our Eq.~47!, seems mean
to carry more information than its component2kT ln@(kTa)
3(arbitrary constant)#, which is the most that such a diffe
ence could warrant.

~iv! For pure dielectrics, Sec. III B has registered thatDB
coincides with NLS’sF at highT, but Eq.~34! shows that at
low T it differs from F by the addend
2(na)2(4pkTa)3z(3)/16pa. In view of paragraph~ii ! just
above, we cannot at present say anything conclusive a
the physics~if any! underlying this discrepancy, but it migh
be worth recalling, from the paragraph following Eq.~31!,
that the total~i.e., the regularized, but unrenormalized! free
energyB has no terms proportional either toA3 or A4. In-
deed, it is straightforward to verify that, at lowT,

B

~na!2p2 5~divergent terms!

1
1

pa H 23

96
2

11A6

113400
1O~A8!J ~x50!.

~48!

The writer welcomes this opportunity to acknowled
comments from Professor I. Brevik and Professor V. V. N
terenko.

APPENDIX: TWO INTEGRALS

1. The low-temperature integral M3

Section III A requires, withA!1,

M3[E
A

` dz

z3 coth~z!5E
A

` dz

z3 F 2

~22z21!
11G

5N31
1

2A2 , N3[8E
2A

` dx

x3~ex21!
. ~A1!

To determineN3 we cite, by hindsight and with the limith
→0 in mind, the standard integral

L[E
0

` dx x

~x21h2!~ex21!
5

1

2 F lnS h

2p D2
p

h
2cS h

2p D G ;
~A2!

differentiate under*dx¯ with respect toh,
03210
-

n
as
fi-

ut

-

L8[2
1

2h

]L

]h
5E

0

` dx x

~x21h2!2~ex21!
; ~A3!

and expand on the right of Eq.~A2! to obtain

L8~h→0!5
p

4h32
1

4h2 1
p

48h
2

z~3!

8p2

1~ terms vanishing withh!. ~A4!

The crucial trick is to splitL85*0
`dx¯5(*0

2A1*2A
` )dx¯

[L181L28 on the right of Eq.~A3!. In the limit L28 reduces to
N3/8, whence

N358 lim
h→0

$L82L18%. ~A5!

To calculateL18 we expandx/(ex21) appropriately to
small x and integrate term by term:

L18[E
0

2A dx x

~x21h2!2~ex21!

5E
0

2A dx

~x21h2!2 F12
x

2
1

x2

12
2

x4

720
1

x6

30240
1¯G ,

~A6!

L18~h→0!5
p

4h32
1

4h2 1
p

48h
2

1

24A3 1
1

16A22
1

24A
2

A

360

1
A3

11340
1¯ . ~A7!

On substituting from Eqs.~A4! and ~A7! into Eq. ~A5!, and
thence Eq.~A1!, one obtains the approximation quoted
Eq. ~30!.

2. The high-temperature integral DM1

Section III B requires, withA@1 andL!1,

DM1[E
L/2

A dzcoth~z!

z
5E

L/2

A dz

z F 2

~22x21!
11G

52DN11 lnS 2A

L D , ~A8!

DN1[E
L

2A dx

x~ex21!
. ~A9!

Again we start from Eq.~A2!, splitting it into

L5H E
0

L

1E
L

2A

1E
2A

` J dx x

~x21h2!~ex21!
[L11L21L3 .

~A10!

We dropL3 because it is exponentially small, and recogn
that L2 reduces toDN1 ash→0. Hence,
3-6
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DM15 lnS 2A

L D12 lim
h→0

~L2L1!1O@exp~22A!#.

~A11!

To calculateL1 we note that it involves onlyx!1, expand
x/(ex21) as on the right of Eq.~A6!, and integrate term by
term:

L15
1

h
tan21S L

h D2
1

4
lnS L21h2

h2 D
1~ terms vanishing withL even whenh50!.

~A12!
-
s

re

nt
c

03210
Now expand this for smallh, expand similarly on the right
Eq. ~A2!, combine the results, and take the limit

lim
h→0

~L2L1!5 limH 1

2 F lnS h

2p D2
p

h
1S g1

2p

h D G2
1

h Fp2
2

h

L
1¯G1

1

2
lnS L

h D J 5
1

L
1

1

2
lnS L

2p D
1

g

2
. ~A13!

Substitution into Eq.~A11! then yields the approximation
already quoted in Eq.~38!.
on

ag-
re-

rint

D

on-
@1# The total free energy contains also terms of orderna, but
these stem from the self-energies~Lamb shifts! of the indi-
vidual atoms and are irrelevant to the binding~cf. @3# and
references given therein!.

@2# G. Barton, J. Phys. A32, 525 ~1999!, cited as I.
@3# G. Barton, J. Phys. A34, 4083~2001!, cited as II.
@4# We use natural units\515c, apart from occasional high

lighting. For the Maxwell field, we use unrationalized Gaus
ian units, as in III, whereas I and II use rationalized units.

@5# G. Barton, preceding paper, Phys. Rev. A64, 032102~2001!,
cited as III.

@6# G. Barton, J. Phys. A~to be published!, cited as V.
@7# In this respect this author would amend the calculation

ported in I.
@8# Section V will comment on other and significantly differe

prescriptions for regularizing and renormalizing. Between su
-

-

h

options one must choose on physical grounds, depending
what, precisely, one wishes to calculate.

@9# P. Candelas, Ann. Phys.~N.Y.! 143, 241 ~1982!.
@10# This author has not tried to combine dispersion with a m

netic in addition to a dielectric response, because these
sponses disperse so differently.

@11# V. V. Nesterenko, G. Lambiase, and G. Scarpetta, e-p
hep-th/0006121v2, revised 14 March 2001, cited as NLS.

@12# I. Klich, J. Feinberg, A. Mann, and M. Revzen, Phys. Rev.
62, 045017~2000!, cited as KFMR.

@13# Recall again that everything from here on applies in the n
dispersive limit: for instance, the pure dielectricf here is the
same asf nd in V.

@14# Both these points are peculiar to the nondispersive limit.
@15# I. Brevik and H. Kolbenstvedt, Ann. Phys.~N.Y.! 143, 179

~1982!.
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