
PHYSICAL REVIEW A, VOLUME 64, 032102
Long-range Casimir-Polder-Feinberg-Sucher intermolecular potential at nonzero temperature
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A simple Hamiltonian determines in closed form the potential of the long-range force between two fixed
molecules polarizable magnetically as well as electrically, exposed to blackbody radiation at temperatureT.
The results apply providedkT!\V and at separationsr@c/V, with \V a typical molecular excitation energy.
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I. INTRODUCTION AND CONCLUSIONS

From the work of Casimir and Polder, one is familiar wi
the fact that at separationsr5urA2rBu well above typical
absorption wavelengths 2pc/V, and at zero temperature, th
potentialW between two neutral moleculesA andB fixed at
rA,B , with electrostatic polaribilities@1# aA,B , is given by

WCP~T50!52aAaB

23\c

4pr7 . ~1!

Allowing for magnetic polarizabilitiesxA,B , Feinberg and
Sucher@2# and Boyer@3# found

W~T50![
\c

4pr7 $223~aAaB1xAxB!

17~aAxB1xAaB!%. ~2!

For references and accessible discussions, see, e.g., B
@3#, Power@4#, and Sucher and Feinberg@5#.

Here we consider only the idealized case wherea andx
are nondispersive~i.e., strictly independent of frequency!:
our object is to generalize Eq.~2! to nonzero temperature
i.e., to molecules immersed in blackbody radiation at te
peratureT.0, supplementing the restrictionrV/c@1 with
kT!\V, which effectively confines each molecule to i
ground state. The results are useful, for instance, in pe
bative calculations of the Casimir shifts of molecular sol
~where A5B!, electromagnetically dilute in the sense th
both« andm are close to unity. The nondispersive shifts th
determined are reported in the following paper@6# ~cited as
IV !, drawing on the general theory developed elsewh
@7,8# ~cited as II and V! for dispersive media atT50 and
T.0.

With xA5xB50, the result is well known~see, e.g.,
McLachlan @9#, Boyer @10#, and appropriate limits from
Goedecke and Wood@11#!:

WCP~T!52aAaB

kT

r6 Q coth~2pkTr!, ~3!

featuring the zero-degree homogeneous differential oper
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Q[323r]1
5

4
r2]22

1

4
r3]31

1

16
r4]4, ][

]

]r
. ~4!

Equation~3! is rederived in Sec. II. Given

coth~z→0!5
1

z
1

z

3
2

z3

45
1

2z5

945
2

z7

4725
1¯ , ~5!

and

coth~z→`!5112$exp~22z!1exp~24z!1¯%, ~6!

it is easy to verify that, to leading order,WCP(2pkTr/\c
!1) reduces to Eq.~1!, while

WCP~2pkTr/\c@1!.2aAaB

3kT

r6 . ~7!

Section II generalizes these expressions to molecules
larizable magnetically as well as electrically. It starts from
very simple Hamiltonian and routes the calculation so t
two of the crucial intermediate results can~in the Appendix!
be adapted almost directly from the classic text by Lifsh
and Pitaevskii@12# ~their expressions suffice to deal als
with anisotropic polarizabilities, which here we exclude f
simplicity!. Section III specializes the results tox52a, ap-
propriately to dilute materials with unit refractive index, i.e
with «m51. This scenario, introduced by Brevik and Ko
benstvedt@13#, often attracts field theorists considering C
simir energies~some recent references are given in IV!.

Our end result for the potential is given in closed form
Eq. ~15! in terms of the two auxiliary functions~19! and~22!
whose asymptotics for 2pkTr/\c small or large are dis-
played in Eqs.~23!–~26!. It is noteworthy, and unexpected
that at large distances the electric-magnetic cross terms
minish exponentially faster than the pure electric and p
magnetic contributions.

II. NONDISPERSIVE POTENTIAL

The twin restrictions we have imposed amount to dis
garding dispersion, and are validated formally by taking
nondispersive limitV→` from the outset. In realistic case
~where generallyuxu!a!, it is not too difficult to allow for
finite V @9,11#, but it would become very awkward to do s
when x is not negligible, if only because magnetic and d
electric contributions disperse so differently~see Power@4#,
Farinaet al. @14#, and Salam@15#!. On the other hand, the
©2001 The American Physical Society02-1
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G. BARTON PHYSICAL REVIEW A 64 032102
nondispersive regime is covered by the very simple Ham
tonian

H5H rad1H int , H int5H int~A!1H int~B!, ~8!

whereH rad is the Hamiltonian for the free Maxwell field,

H int~A!52
1

2
$aAE2~rA!1xAB2~rA!%, ~9!

and similarly for H int(B). It is from just this Hamiltonian
that Eq.~2! was first derived by Feinberg and Sucher@2#.

The potentialW(T) we require consists of parts of th
shift D (2)F in the Helmholtz free energy of the system~ra-
diation plus moleculesA and B! of second order in
H int : namely, the parts that depend on the presence of b
molecules, and are proportional to any product@16# of aA or
xA with aB or xB . It is these free-energy shifts that give th
intermolecular force as2“rW. To keep track of factors o
2, it helps to start by writing down the result atT50,
namely, the familiar second-order shift of the~ordinary! en-
ergy, expressible as

D~2!E5
1

2
$^0uH intu1&1^1uH intu0&%

5
1

2
$^uH intu&2~diagonal terms!%, ~10!

whereu&5u0&1u1&, with u0& the zero-order ground state~no
photons! and u1& the first-order correction@two photons both
generated either byH int(A) or H int(B)#.

Thermodynamic perturbation theory~see, e.g., Landau
and Lifshitz @17# and Peierls@18#! then prescribesW as the
appropriate part of the expectation value formed from co
spondingly perturbed canonical averages^¯&. Three enor-
mous simplifications yieldW almost at once.

First, we are dealing only with the degrees of freedom
the Maxwell field: the nondispersive limit has eliminate
the internal dynamics of the molecules.

Second, one finds straightforwardly that

W~T!52
1

2
aA^E2~B→A!&2

1

2
xA^B2~B→A&, ~11!

where ^E2(B→A)& and ^B2(B→A)& are the expectation
values, at moleculeA, of the squaredE andB fields due to
the oscillating dipoles~both electric and magnetic! induced
in moleculeB by the randomly fluctuating fields~zero point
plus thermal! acting on it. Here the prefactor of 1/2 from E
~10! has been canceled@19# by a factor of 2, allowing for the
reciprocal effect of moleculeB experiencing the fields of the
fluctuating dipoles induced in moleculeA.

Next, subdivide

^E2~B→A!&5aB^E2~ee!&1xB^E2~em!& ~12!

into contributions from the electric and magnetic dipoles
duced in moleculeB, and subdivide^B2(B→A)& analo-
gously:
03210
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W~T!52
1

2
aA^$aBE2~ee!1xBE2~em!%&

2
1

2
xA^$aBB2~me!1xBB2~mm!%&. ~13!

Since the symmetries of the Maxwell field and blackbo
radiation entail

^E2~ee!&5^B2~mm!&, ^E2~em!&5^B2~me!&, ~14!

Eq. ~13! reduces to

W~T!52
1

2
~aAaB1xAxB!^E2~ee!&2

1

2
~aAxB1xAaB!

3^E2~em!&. ~15!

To save writing, from here on we take the two molecules
be identical, further reducing Eq.~15! to

W~T!52
1

2
~a21x2!^E2~ee!&2ax^E2~em!&. ~16!

Third, our most providential simplification is that som
straightforward manipulations, spelled out in the Append
link the Fourier transforms of the two canonical averages
Eqs. ~15! and ~16! to the corresponding results for vecto
potentials already worked out by Lifshitz and Pitaevskii@12#.
For brevity, we define

^E2~ee!&v[E
2`

`

dt exp~ ivt !
1

2
^El~rA ,t !El~rA,0!

1El~rA,0!El~~rA ,t !& ~17!

and other such transforms similarly. Then one finds

^E2~ee!&v5
2

r6 cothS v

2kTDQ sin~2vr!, ~18!

whence

^E2~ee!&5E
2`

` dv

2p
^E2~ee!&v5

2kT

r6 Q coth~2pkTr!.

~19!

Similarly, one finds

^E2~em!&v52
2

r6 cothS v

2kTD P sin~2vr!, ~20!

where

P[
1

4
r2]22

1

4
r3]31

1

16
r4]4. ~21!

Thus
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^E2~em!&5E
2`

` dv

2p
^E2~em!&v52

2kT

r6 P coth~2pkTr!.

~22!

The asympotics of̂E2(ee)& and ^E2(em)& are found by
acting on Eqs.~5! and~6! with Q andP. For 2pkTr!1, one
obtains

^E2~ee!&5
23

2pr7 1
22~2p!5

945

~kT!6

r
1O„~kT!8r…,

~23!

^E2~em!&52
7

2pr7 1
10~2p!5

945

~kT!6

r
1O„~kT!8r…,

~24!

where the manifest gaps reflect the relationsQr5Pr
5Qr35Pr350. For 2pkTr@1, one obtains

^E2~ee!&5
kT

r6 $614Q exp~24pkTr!

1O exp~28pkTr!%, ~25!

^E2~em!&5
kT

r6 $24P exp~24pkTr!1O exp~28pkTr!%.

~26!

The reason whŷ E2(em)& vanishes exponentially fast a
large separations is that, unlikeQ, the operatorP has no
components free of]/]r, whence it totally destroys the lead
ing term11 on the right of Eq.~6!.

III. SPECIAL CASE xÄÀa

Finally, we assemble the results for the special case m
tioned in Sec. I. Withx52a, substitution into Eq.~16!
from Eqs.~19! and ~22! yields

W52a2
2kT

r6 R coth~2pkTr!, ~27!

where

R5Q1P5323r]1
3

2
r2]22

1

2
r3]31

1

8
r4]4. ~28!

Accordingly,

W~2pkTr!1!52a2H 15

pr7 1
12~2p!5

945

~kT!6

r

1O„~kT!8r…J , ~29!

W~2pkTr@1!52a2
kT

r6 $614R exp~24pkTr!

1O exp~28pkTr!%. ~30!
03210
n-

The reason why the leading term of Eq.~30! is just double
the pure dielectric result~7! is that the~mm! contribution is
the same as the~ee!, while Eq.~26! shows that the~em! and
~me! cross terms vanish much faster.

Note added in proof. In fact, an attempt to determin
W(T) is already on record; see Ref.@20#.

APPENDIX: THE CANONICAL AVERAGES ŠE2
„ee…‹

AND ŠE2
„em…‹

We determine the expectation values needed in Eqs.~15!
and ~16!. The results, transcribed into our own notation, a
all cited from Lifshitz and Pitaevskii@12#, referred to as LP.
They apply in the dipole approximation and are derived in
gauge whereA050, so thatE52Ȧ andB5“3A.

For the vector potential due to the electric polarizabili
of molecule B, LP’s Sec. 77, problem 1, Eq.~1!, with R[s
2rB andR8[s82rB , yields the Fourier transform@defined
analogously to Eq.~17!#

^Ai~s!Ak~s8!&v
~e!5v2 coth~v/2kT!Im Dil

R~v,R!Dlk
R ~v,R8!;

~A1!

with their Eq. ~77.6! corrected for an obvious misprint, th
retarded Green’s tensor reads

Dil
R~v,R!52H d i l 1

1

v2 ] i l
2 J Y, Y[

exp~ ivR!

R
. ~A2!

Performing the differentiations, one obtains

Dil
R~v,R!52Y$d i l h1R̂i R̂lg%, ~A3!

where the carets specify unit vectors, and

h[11
i

vR
2

1

v2R2 , g[212
3i

vR
1

3

v2R2 . ~A4!

Now use^Ei(s)El(s8)&v5v2^Ai(s)Al(s8)&v , set s5s85rA
~whenceR5R85r!, and substitute from Eqs.~A3! and~A4!
into Eq. ~A1! to find the expression for̂E2(ee)&v already
quoted in Eq.~18!.

For the vector potential due to the magnetic polarizabil
of molecule B, LP’s Sec. 77, problem 2, Eq.~2! plus their Eq.
~76.6! yields similarly that

^Ai~s!Ai~s8!&v
~m!5coth~v/2kT!Im$« ipl]pY~R!« lqi]q8Y~R8!%

52 coth~v/2kT!Im$“Y~R!•“8Y~R8!%,

~A5!

where the first line has reexpressed LP’s somewhat pec
operators curl in conventional language. On settings5s8
5rA as before, straightforward manipulation leads to the
pression for̂ E2(em)&v already quoted in Eq.~20!.
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@1# We use natural units\515c ~except for occasional emphasi!

and unrationalized Gaussian units for the Maxwell fields. W
rationalized units~and the standard rationalized definitions
a and x!, all our potentialsW must be divided by (4p)2,
because they are due to two-photon exchange.
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