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Long-range Casimir-Polder-Feinberg-Sucher intermolecular potential at nonzero temperature
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A simple Hamiltonian determines in closed form the potential of the long-range force between two fixed
molecules polarizable magnetically as well as electrically, exposed to blackbody radiation at temperature
The results apply providekiT<#4 ) and at separations>c/Q), with () a typical molecular excitation energy.
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I. INTRODUCTION AND CONCLUSIONS 5 1 1 J
Q=3-3pi+ szaz— Zp3r93+ 1—6p4(94, 9= (4)
From the work of Casimir and Polder, one is familiar with P
the fact that at separations=|r,—rg| well above typical Equation(3) is rederived in Sec. Il. Given
absorption wavelengthst/(), and at zero temperature, the . . .
potential W between two neutral moleculésandB fixed at ¢ 0)= E+ z Z_+ 222z b 5
rag, With electrostatic polaribilitie$l] as g, is given by coth(z—0)= 7z 3 45 945 4725 ' ®)
23k ¢ and
WCP(TZO):_aAaBﬁ- 1)
™p cothz—o)=1+2{exp(—2z)+exp—4z)+---}, (6)
Allowing for magnetic polarizabilitiesy, g, Feinberg and it is easy to verify that, to leading ordéWcp(27kTp/fic
Sucher[2] and Boyer{ 3] found <1) reduces to Eq(1), while
he 3kT
W(TZO)EW{—ZS(aAaB—I—XAXB) ch(2wkTp/ﬁC>1):—aAaB7- (7)
+7(apxs+ xaas)}. 2) Section Il generalizes these expressions to molecules po-

larizable magnetically as well as electrically. It starts from a

For references and accessible discussions, see, e.g., Boy&y Simple Hamiltonian and routes the calculation so that
[3], Power[4], and Sucher and Feinbef#]. two of the crucial intermediate results cén the Appendix

Here we consider only the idealized case wherandy ~ Pe adapted almost directly from the classic text by Lifshitz
are nondispersivéi_e_, Strictly independent of frequemy and PItaeVSkll[lZ] (the” eXpreSSionS suffice to deal also
our object is to genera”ze E(QZ) to nonzero temperature, with aniSOtI’OpiC pOlaI’izabilitieS, which here we exclude for
i.e., to molecules immersed in blackbody radiation at temsimplicity). Section Il specializes the results fo= — «, ap-
peratureT >0, supplementing the restrictiqnt)/c>1 with ~ Propriately to dilute materials with unit refractive index, i.e.,
kT<#%€, which effectively confines each molecule to its With su=1. This scenario, introduced by Brevik and Kol-
ground state. The results are useful, for instance, in pertuRenstved{13], often attracts field theorists considering Ca-
bative calculations of the Casimir shifts of molecular solidsSimir energiegsome recent references are given in.Iv
(where A=B), electromagnetically dilute in the sense that Our end result for the potential is given in closed form by
bothz and are close to unity. The nondispersive shifts thusEd- (15 in terms of the two auxiliary functiond9) and(22)
determined are reported in the following papét (cited as ~Whose asymptotics for 2kTp/Ac small or large are dis-
IV), drawing on the general theory developed elsewherlayed in Eqs(23)—(26). It is noteworthy, and unexpected,
[7,8] (cited as Il and V for dispersive media at=0 and that at large distances the electric-magnetic cross terms di-
T>0. minish exponentially faster than the pure electric and pure

With ya=xs=0, the result is well known(see, e.g., Magnetic contributions.
McLachlan [9], Boyer [10], and appropriate limits from
Goedecke and WoodL1]): Il. NONDISPERSIVE POTENTIAL

The twin restrictions we have imposed amount to disre-
Wep(T) =~ aAaBk—sTQ coth 27k Tp), (3  garding dispersion, and are validated formally by taking the
p nondispersive limit)l—oc from the outset. In realistic cases
(where generallyx|<a), it is not too difficult to allow for
featuring the zero-degree homogeneous differential operatdinite ( [9,11], but it would become very awkward to do so
when y is not negligible, if only because magnetic and di-
electric contributions disperse so differentsee Powef4],
*Electronic address: g.barton@sussex.ac.uk Farinaet al. [14], and Salan{15]). On the other hand, the
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nondispersive regime is covered by the very simple Hamil- 1 5 5
tonian W(T)=— 5 aa{{agE"(e€) + xgE“(em)})

H=H gt Hint,  Hin=Hin(A)+Hin(B), (8)

1
— 5 xa{{agB?(me)+ xgBX(mm)}). (13
whereH .4 is the Hamiltonian for the free Maxwell field, 2 AR °

1 ) ) Since the symmetries of the Maxwell field and blackbody
Hint(A)= = 5 1@aE"(ra) + xaB*(ra)}, (9 radiation entail
and similarly forH;,(B). It is from just this Hamiltonian (E*(eg))=(B*(mm)), (E*(em))=(B*(me)), (14)

that Eq.(2) was first derived by Feinberg and Suchg}.

The potentiaW(T) we require consists of parts of the EQ.(13) reduces to
shift A®®F in the Helmholtz free energy of the systena-
diation plus moleculesA and B) of second order in
Hint: namely, the parts that depend on the presence of both
molecules, and are proportional to any produd] of a, or
xa With ag or xg . Itis these free-energy shifts that give the
intermolecular force as-V ,W. To keep track of factors of
2, it helps to start by writing down the result d=0,
namely, the familiar second-order shift of tt@rdinary en-
ergy, expressible as

1 1
W(T)=— E(aAaB+XAXB)<E2(ee)>_ E(aAXB+XAaB)
X(E2(em)). (15

To save writing, from here on we take the two molecules to
be identical, further reducing E@L5) to

1
L W(T)=—E(az—i-xz)(Ez(ee))—aX<E2(em)). (16)
APg= §{<0|Hint| 1>+<1|Hint|o>}
Third, our most providential simplification is that some
1 . straightforward manipulations, spelled out in the Appendix,
= 5 {([Hinl) — (diagonal termg, (100 Jink the Fourier transforms of the two canonical averages in
Egs. (15 and (16) to the corresponding results for vector
where|)=|0)+|1), with |0) the zero-order ground stateo potential_s already v_vorked out by Lifshitz and PitaevEki].
photons and 1) the first-order correctioftwo photons both ~ For brevity, we define
generated either bi;«(A) or H;(B)].

Thermodynamic perturbation theorigee, e.g., Landau 2 ZJ"” . }
and Lifshitz[17] and Peierld18]) then prescribe®V as the (E%(ee)),= %dtexmwt) 2<E'(rA’t)E'(rA’O)
appropriate part of the expectation value formed from corre-
spondingly perturbed canonical averages). Three enor- +E(ra0E(((ra,t)) (17)

mous simplifications yieldV almost at once. o _
First, we are dealing only with the degrees of freedom ofand other such transforms similarly. Then one finds
the Maxwell field: the nondispersive limit has eliminated )
the internal dynamics of the molecules. 2 _“ o .
Secongdone finds straightforwardly that (EX(ee),= p° cotl-( 2kT) Qsin2wp), (18

W(T)=—%aA<E2(B%A)>—%XA<BZ(B%A>, 1y ‘vhence

* dw 2kT

where (E2(B—A)) and (B?(B—A)) are the expectation <E2(ee)>:f_xﬁﬁz(ee»w:?(?COWZWkTP)-
values, at moleculd, of the squared andB fields due to (19)
the oscillating dipolegboth electric and magnejiénduced
in moleculeB by the randomly fluctuating fieldero point  gimilarly, one finds
plus thermal acting on it. Here the prefactor of 1/2 from Eq.
(10) has been cancelgd9] by a factor of 2, allowing for the 2 o
reciprocal effect of moleculB experiencing the fields of the (E*(em)),=— —600tr< m) P sin(2wp), (20
fluctuating dipoles induced in molecuke P

Next, subdivide

where
(E¥(B—A))=ag(E*(e®)+xs(E*(em) (12 L L
_ T 2.2 T 3.3, ~ 4.4
into contributions from the electric and magnetic dipoles in- P= 4P J 4P ot 16" 7 (22)
duced in moleculeB, and subdivide(B*(B—A)) analo-
gously: Thus
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) (™ do ) B 2kT
(E (em))—ﬁmﬁﬁ (em)>w——?6—PCOt|'(27TkTp).
(22)

The asympotics ofE?(e€)) and(E?(em)) are found by
acting on Eqgs(5) and(6) with Q andP. For 27k Tp<1, one
obtains

23 22(2m)° (kT)®
(E*(e®)= prfr 945 +0((kT)%p),
(23
, B 7 10(2m)° (kT)® .
(24

where the manifest gaps reflect the relatioQp=Pp
=Qp3=Pp>=0. For 2rkTp>1, one obtains

(E%(eg))= kT{6+4Q exp(—4mkT,
Pl mkTp)

+O exp(—8wkTp)}, (25

KT
(Ez(em)>=F{—4P exp(—4mkTp)+ 0 exp —87kTp)}.
(26)
The reason whyE?(em)) vanishes exponentially fast at
large separations is that, unlikg, the operator® has no

components free af/dp, whence it totally destroys the lead-
ing term+1 on the right of Eq(6).

Ill. SPECIAL CASE xy=—a

Finally, we assemble the results for the special case me

tioned in Sec. I. Withy= —«, substitution into Eq.(16)
from Egs.(19) and(22) yields

2kT
W= — azTR coth(27kTp), (27
where
3 1 1
R=Q+P=3-3pi+ §p2(92— §p3ﬁ3+ §p4(74. (28)
Accordingly,
W2k o) = — o 15 12(27)° (kT)®
(27kTp<l)=—« 7T_p7+—945 P
+ O((kT)Sp)J : (29)
kT
W(27TkTp>1)=—azF{6+4Rexq—4TrkTp)
+O exp(—8wkTp)}. (30
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The reason why the leading term of E§O) is just double
the pure dielectric resulf7) is that the(mm contribution is
the same as th@e), while Eq.(26) shows that théem) and
(me cross terms vanish much faster.

Note added in proofin fact, an attempt to determine
W(T) is already on record; see R¢R0].

APPENDIX: THE CANONICAL AVERAGES (E?%(ee))
AND (E2%(em))

We determine the expectation values needed in Eds.
and(16). The results, transcribed into our own notation, are
all cited from Lifshitz and Pitaevsk(il2], referred to as LP.
They apply in the dipole approximation and are derived in a
gauge wheré\,=0, so thatE=—A andB=V XA.

For the vector potential due to the electric polarizability
of molecule BLP’s Sec. 77, problem 1, Eql), with R=s
—rg andR’'=s"—rg, yields the Fourier transforrfdefined
analogously to Eq(17)]

(Ai(9A(S)) ¥ = w? coth w/2kT)IMm DR (w,R)D}(w, F(e');)
Al

with their Eq.(77.6 corrected for an obvious misprint, the
retarded Green'’s tensor reads

Y= M (A2)

DR(w,R)=— =

1 2
5” + Fa” Y,

Performing the differentiations, one obtains

Dff(w,R)=—Y{sh+RRg}, (A3)

NWhere the carets specify unit vectors, and
h=1+ =-1 3 + 3 A4
“MOR R 9T GR R A9

Now use(E;(9)E|(5)),=0XAi(9A(S)),, sets=s =r,
(whenceR=R’=p), and substitute from Eq$A3) and(A4)
into Eq. (A1) to find the expression fofE?(e€)),, already
quoted in Eq.(18).

For the vector potential due to the magnetic polarizability
of molecule BLP’s Sec. 77, problem 2, EQ) plus their Eq.
(76.6 yields similarly that

(A(9A(S)) " =coth w/2kT)Im{e;p Y (R)&1qidg Y (R')}
=2 coth w/2kT)IM{VY(R)-V'Y(R")},
(A5)

where the first line has reexpressed LP’s somewhat peculiar
operators curl in conventional language. On settasgs’

=r, as before, straightforward manipulation leads to the ex-
pression fo E2(em)),, already quoted in E¢(20).
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