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Quantum measurement and decoherence
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Distribution functions defined in accordance with the quantum theory of measurement are combined with
results obtained from the quantum Langevin equation to discuss decoherence in quantum Brownian motion.
Closed form expressions for wave packet spreading and the attenuation of coherence of a pair of wave packets
are obtained. The results are exact within the context of linear passive dissipation. It is shown that, contrary to
widely accepted current belief, decoherence can occur at high temperature in the absence of dissipation.
Expressions for the decoherence time with and without dissipation are obtained that differ from those appear-
ing in earlier discussions.
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The problem of decoherence in quantum systems has beeoupled from the environment. Here we use a different for-
of considerable recent interest. A sampling of earlier theoretmulation in terms of quantum distribution functions
ical work appears in Ref§1—5], but for a detailed survey we introduced some time ago by Ford and Leyi4]. With this
refer to a recent book devoted wholly to the subjédtin an  formulation we are able to obtain exact closed form expres-
Introduction to the contents of this book, Joos surveys th&ions for the spreading of a wave packet and for the attenu-
current situation and, in discussing the mechanism of decaation of interference in the two-wave-packet problem, which
herence, states that “irreversible coupling to the environmen@re valid for all temperatures and for a very general dissipa-
seems to have become widely acceptadd even quite tive environment. In particular, we avoid the assumption that
populay during the last decade, not least through the varioughe particle is initially decoupled from the environment; the
contributions by Woljciech Zurek and his collaborators.” In particle is in equilibrium with the environment at the time it
this present work we come to quite the opposite conclusiofs put into the initial state by a measurement. An important
and in fact show that, in the high temperature case considsonclusion is that decoherence can occuryfer0 (absence
ered by ZureK4] and others, decoherence occurs in a charof dissipation. A further feature of the Ford-Lewis formula-
acteristic timery [see Eq(21) below] that is independent of tion is that the density matrix for the entire system is em-
the Ohmic decay rate [see Eq.(19) below| characterizing ployed, i.e., one does not trace over the environment to ob-
the strength of the coupling to the environment. Furthermorefain a reduced density matrix as previous investigations have
the formulation we use is exact and enables us to show exone.
plicitly that previous estimates of the decoherence time arise In the formulation of Ford and Lewis, we regard the par-
from an inconsistent application of long-time asymptotic for-ticle as part of a larger system of a particle coupled to a
mulas to obtain a short-time result. Apart from its relevanceeservoir. Initially (or in the distant pagtthe complete sys-
to the question of classical-quantum correspondence and ttigém is in equilibrium at temperatuf® described by the nor-
foundations of quantum mechanics, this work, especially thafnalized density matrix
part dealing with entangled states, is clearly relevant to the
host of experiments on decoherenj@ quantum teleporta- €
tion [8], and quantum information and computati&)10]. pO_Tr{efH/kT}’

Much of the discussion of decoherence has been in terms
of the simple problem of a particle moving in one dimensionwhereH is the systemHamiltonian. To a measurement »f
that is placed in an initial superposition staféchralinger  one associates a measuring functiefx;) (x; is ac num-
“cat” state) corresponding to two widely separated wavebern such thaf a(x—x;)®|?dx, is the probability that if the
packets. Decoherence is said to occur when the long-timgystem is in a normalized quantum statethe instrument
interference pattern is destroyed. The key questions askeglill read betweenx; and x;+dx,. An example is the
are, first, under what conditions does decoherence occur antGaussian slit”[12] for which
second, what is the decoherence time. Previous discussions
of the problem have used either the Feynman-Vernon influ- 1 X2
ence functional techniquiel] or master equation techniques a(X)=(2moy) ~"exp — 22|’ 2
[2—4] and have been confined to the case of Ohmic dissipa- 71

tion. In either case it is assumed that the initial state is de\'/vhere o, is the experimental width. It follows that i is

measured at time; the probability that the instrument will

i o ~read betweemx; anddx; is W(x4,t;)dx;, where
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"Permanent address: Department of Physics and Astronomy, Loui-
siana State University, Baton Rouge, Louisiana 70803-4001. Herex(t) is the Heisenberg operator at tire

1050-2947/2001/68)/0321014)/$20.00 64 032101-1 ©2001 The American Physical Society



G. W. FORD, J. T. LEWIS, AND R. F. O'CONNELL PHYSICAL REVIEW &4 032101

X(t):eiHUﬁxe_th/ﬁ. (4) 1 Xi
W(1)= 2exp‘——z],
In the same way, ik is measured at timg, and again at a 2mo 20
later timet, the probability that the first instrument will read

in range dx; and the second in dx, is W(1,2)

W(Xq,t1:X5,t,)dX;dX,. Using an obvious shorthand nota- exp[—[1/2(1—p2)](xf/az—2px1x2/ar+x§/72)}

tion,
2mor(1—p?)Y? 1
W(1,2=Tr{a(2)a(1)poa(1)'a(2)"}. (5) ©
Here ina(j) = a[x(t;) —X;] the index] is meant to indicate o
not only the timet; and instrumental positiox; , but also the where[note the misprint in Eq(7.18) of [11]]
instrumental parameters such as a width In this way one o2= g2+ (x?),
can go on to define higher order distribution functions.
The distribution functions can be expressed in terms of [X(t1),X(t5)]?
the corresponding characteristic functions ?=05— o +(x?), (10
g1
* dk —ikyx 2
W(l): 700%%(1)8 1, ZUPT:_S(tZ_t1)+2<X >
dk dk (6) In this last,s(t,—t;) is the mean square displacement
*® AKg [ OKy i
W(1,2)=f_w%f_xﬁ§(l,2)e kaxy thaxg), s(t) = {({x(ty) —x(t+1)}%t). (11

. The distributionW(1,2) is a Gaussian quadratic form,
Now the key formulas needed from Ford and Leyi$] is with mean square width given by

that for quantum Brownian motion these characteristic func-

tions are given by the general formulas o %
wz(t)Ef dxlf dX(X1—X5)2W(1,2)

&§(1)= ex —3k2<X(t )?) fx AP
7R [ B P L [X(t) X(t +1)]2 ,
=01 ——— —— ts(t) +o3. (12
Xa| g+ K e
al (11T =/,
2 This is an exact general formula for the spreading of a

1 2 2
£1.2= exp| — 72 2 (x(tx(t)
j=11=1

Gaussian wave packet, expressed in terms of the mean
square displacement and the nonequal-time commutator. For
the special case when the second measurement is made with

) infinite precision ¢,=0) and for a free particle without dis-
© dgy (* dOoyy ~ sipation and at zero temperatufgt) =0, [x(t;),x(t;+1t)]
X)X Kk [ S 2w “ =ifit/m) this reduces to the familiar formula of elementary
guantum mechaniddl5].

Kj|* ~ Kj In the case of an unbour(ftee) particle the mean square
— 5| @l gt 5 [expamka[x(ty) X(t) ]} (7)) displacementx?) diverges. We can obtain a simple expres-
sion in this limit if we introduce the conditional probability
Herea is the Fourier transform of the functian describing W(1.2)
the measurement, P(Xp—X1,to—t)= lim ———. (13)
(x%)— W)
a(l)= fﬁxdxla(xl)eflqlxl- @) Using the expression®) we find
We should remark that in the derivation of these formulas it P(x,t)= exp{ —x?/2w?(t)} (14)
was necessary to assume that the commufad@r),x(t,) ] ' V2mwWA(t)

is ac number. This is the case for quantum Brownian motion
[13]. Thus, the conditional probability is a normal distribution
We first apply these formulas to obtain an expression fowith variancew?(t). Here we should refer to the work of
the spreading of a wave packet. That is, at titpea mea- Hakim and Ambegaokdil4], who use path integral methods
surement is made with an associated function of the f@&@m for the special case of a free particle interacting with an
and then at a later timig a second measurement of the sameOhmic bath to obtain an equivalent expression for wave
form is made(with index 1—2). The integrals are all stan- packet spreadinfnote the misprint in their expressid88)
dard Gaussian integrals, and we obtain the results for the width|.
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Next, we consider the case where the initial measurement
forms two widely separated wave packets, which corre- Im{a(w+i0+)}=ﬁ.
sponds to the measurement function Mo (w°+y°)

’ (19

exp{ — (x,— d/2)%/4a 5} + expl — (1 +d/2)?/405} Consider first the case of vanishingly small dissipation
[87702(1+e*d2’8"§)2]1’4 ' (y—0). Then, settingr§=0 and puttings=(kT/m)t2 and
1 (15 [x(ty),x(t;+t)]=i(A/m)t in Egs.(12) and(17), we see that

a(l)=

(no dissipation,

(20

whered is the separation of the wave packets, the width of d?

each beingo; and x; being the center of the wave packet a(t)=exp — 802+ 202+ 8mol /KT
pair. The second measurement is then made with a single slit 71 Moy
instrument corresponding to a function of the fof2) (with
index 1—2). Again, the integrals are all standard Gaussian — . )
integrals, and we obtain results fof(1) andW(1,2). Again, WhereA=#A/ymkT is the mean thermal de Broglie wave-
there is a considerable simplification if we introduce the con/€ngth. Now the interest is always in the case where the wave

ditional probability(13). We find packets are widely separatedt>o;. From this expression
we see that for long time the attenuation factor will be small
1 (i.e., there will be decoherencé the temperature is suffi-
P(x,t)= — ciently high that the mean de Broglie wavelength is small
/ 2 —d“/8c —
2mwi(1l+e Y compared with the spacing> \. The characteristic time for
x2+(a§+s+ Ug)d2/4crf decoherence to occur will then be
X| expy —
2w? 2
g1
’ T4==, (21)
xd[x(ty),x(t;+t)] 1 (x—d/2) vd
cos — +§ex -
4ioiw 2w

wherev=+kT/m is the mean thermal velocity. This deco-

1 (x+d/2)? herence time is the time for a particle traveling with the
+ Eex T o2 (] (16) mean thermal velocity to traverse the slit width multiplied by
the ratio of the slit width to the slit spacing. Thus we see that

This conditional probability is the sum of three contributions, W€ ¢an h_ave:iecoherence W't_hom dlSSlpat_lc(m the sense
corresponding to the three terms within the large parenthdl@t 74 is independent of, which characterizes the strength
ses. The second and third clearly correspond to the sum &' the coupling to the environment _
probabilities of the form{14) from two single slits, while the Next we consider the case of Ohmic dissipation at high
first term (that involving the cosineis an interference term. €Mperature, where by high temperature we mieas 7 y.

It is of interest to study the ratia(t,—t,) of the amplitude  1heN. using Eq(19) we see from the formulail8) that

of the interference term to twice the geometric mean of the

2w

other two terms, which we will refer to as the attenuation s(t)= 2kT . 1—-e M
factor. We find = my 5 ,
[s(t)+ o2]d? "
aft)=expp ————. 1 _ ot
(t) P{ 8o2wl(1) 17 [X(ty),X(t;+1)] my(l e ). (22)

In general, the interest is in the case where the second mepgyr short times §t<1) these reduce to those for the case of
surement is made with infinite precision, so in the f°”°W'”9vanishingly small dissipation, for which the decoherence

discussion we sat, equal to zero. __time is given by Eq.(21). Thus if yrg=yo2/ud is small
For qguantum Brownian motion, the mean square displace- S :
ment and the commutator are given by the formulas (and this will generally be the case at high temperattire

decoherence time will be the same as for the case of vanish-
ingly small dissipation, given by Eq21).
1— coswt), These exact results are strikingly different from those ob-
tained by previous investigatof@—5|. It appears that the
ot (18 disagreement arises frogn the fact that others have implicitly
_elh [ RSN used a long time£;> vy~ *) approximation to obtain charac-
[x(t) Xty +0)]= 7[0 dolm {a(w+i07)}sinwt, teristic decay times. To see how this comes about, we evalu-
ate the high temperature formul&2?2) for very long times
where « is the response function. In the so-called Ohmic(yt>1). Putting the result in Eq17) and settingrfzo we

case, where the mean motionmgx)+my(x)=0, find a(t)~ exp{—d?y/\?. This is an exponential decaying

hw

2h (=
s(t)= 7jo dwlm{a(w+i0+)}coth2k_|_(
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with characteristic tim@,flp/d{ which is exactly twice the S€en that decoherence occurs at high temperature with or
expression for the decoherence time obtained by previouithout dissipation. In either case the decoherence time is
authors[3—5]. But we see that it is inconsistent with the the same, given by Edq21). At zero temperature, decoher-
assumption of long time used to obtain it. At short times, agence occurs only in the presence of dissipation.
we have seen, we recover the estimgt#). One possible Note added in proofin order to understand more clearly
reason why others have obtain inconsistent results may hike origin of our(no dissipation result (20), we recently
due to the fact that they assumed that the system and itshowed that it may be derived in a simple manner solely
environment are initially decoupled whereas, by contrast, iwithin the framework of elementary quantum mechanics and
the formulation we use the particle state is entangled with thequilibrium statistical mechanid4.7]. In addition, we have
environmenti.e., in equilibrium at the time it is put into the  recently obtained an explicit general solution of the exact
initial state by a measurement. Putting this point in anothepaster equatiof18]. When applied to the situation consid-
way, previous discussions have been in terms of the reducegeq in previous discussions, namely, a particle at tempera-
density matrix but, as pointed out by AmbegaokB8], “on  {re zero suddenly coupled to a bath at high temperature, we
tsﬁe‘:?esdhu%r;grgg :sﬁgleri;?r?x“mﬁ e;’r(’)'#é'g” does not operate Qllg |ed to an expression for the decoherence time differing by
ahfactor of 6 from the conventional result. We see, therefore,

formu?:tri]grl]ugl‘onu;Vrftuﬁvrﬁezesir:etgzz:heivzlr?l?‘_ll]e ?SSi dgeinerq at the conventional result corresponds to a particle that is
d 9 P “warming up” over a time of ordery™; our result corre-

a powerful metho_d for' dllscussmg quantum stocha§t|c .Syséponds to a particle that is initially at the same temperature
tems. The formalism is in terms of quantum distribution

functions and, when combined with results obtained from thé™> the bath.

qguantum Langevin equation, has enabled us to obtain exact G.W.F. and R.F.O’C. wish to thank the School of Theo-
explicit expressions for wave packet spreading and the caretical Physics, Dublin Institute for Advanced Studies, for
herence attenuation factor. In discussing the latter we havieospitality.
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