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Quantum measurement and decoherence
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Distribution functions defined in accordance with the quantum theory of measurement are combined with
results obtained from the quantum Langevin equation to discuss decoherence in quantum Brownian motion.
Closed form expressions for wave packet spreading and the attenuation of coherence of a pair of wave packets
are obtained. The results are exact within the context of linear passive dissipation. It is shown that, contrary to
widely accepted current belief, decoherence can occur at high temperature in the absence of dissipation.
Expressions for the decoherence time with and without dissipation are obtained that differ from those appear-
ing in earlier discussions.
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The problem of decoherence in quantum systems has
of considerable recent interest. A sampling of earlier theo
ical work appears in Refs.@1–5#, but for a detailed survey we
refer to a recent book devoted wholly to the subject@6#. In an
Introduction to the contents of this book, Joos surveys
current situation and, in discussing the mechanism of de
herence, states that ‘‘irreversible coupling to the environm
seems to have become widely accepted~and even quite
popular! during the last decade, not least through the vari
contributions by Woljciech Zurek and his collaborators.’’
this present work we come to quite the opposite conclus
and in fact show that, in the high temperature case con
ered by Zurek@4# and others, decoherence occurs in a ch
acteristic timetd @see Eq.~21! below# that is independent o
the Ohmic decay rateg @see Eq.~19! below# characterizing
the strength of the coupling to the environment. Furthermo
the formulation we use is exact and enables us to show
plicitly that previous estimates of the decoherence time a
from an inconsistent application of long-time asymptotic fo
mulas to obtain a short-time result. Apart from its relevan
to the question of classical-quantum correspondence and
foundations of quantum mechanics, this work, especially
part dealing with entangled states, is clearly relevant to
host of experiments on decoherence@7#, quantum teleporta-
tion @8#, and quantum information and computation@9,10#.

Much of the discussion of decoherence has been in te
of the simple problem of a particle moving in one dimensi
that is placed in an initial superposition state~Schrödinger
‘‘cat’’ state! corresponding to two widely separated wa
packets. Decoherence is said to occur when the long-t
interference pattern is destroyed. The key questions as
are, first, under what conditions does decoherence occur
second, what is the decoherence time. Previous discuss
of the problem have used either the Feynman-Vernon in
ence functional technique@1# or master equation technique
@2–4# and have been confined to the case of Ohmic diss
tion. In either case it is assumed that the initial state is
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coupled from the environment. Here we use a different f
mulation in terms of quantum distribution function
introduced some time ago by Ford and Lewis@11#. With this
formulation we are able to obtain exact closed form expr
sions for the spreading of a wave packet and for the atte
ation of interference in the two-wave-packet problem, wh
are valid for all temperatures and for a very general dissi
tive environment. In particular, we avoid the assumption t
the particle is initially decoupled from the environment; t
particle is in equilibrium with the environment at the time
is put into the initial state by a measurement. An importa
conclusion is that decoherence can occur forg→0 ~absence
of dissipation!. A further feature of the Ford-Lewis formula
tion is that the density matrix for the entire system is e
ployed, i.e., one does not trace over the environment to
tain a reduced density matrix as previous investigations h
done.

In the formulation of Ford and Lewis, we regard the pa
ticle as part of a larger system of a particle coupled to
reservoir. Initially ~or in the distant past! the complete sys-
tem is in equilibrium at temperatureT, described by the nor-
malized density matrix

r05
e2H/kT

Tr $e2H/kT%
, ~1!

whereH is thesystemHamiltonian. To a measurement ofx
one associates a measuring functiona(x1) (x1 is a c num-
ber! such thatua(x2x1)Fu2dx1 is the probability that if the
system is in a normalized quantum stateF the instrument
will read betweenx1 and x11dx1. An example is the
‘‘Gaussian slit’’ @12# for which

a~x1!5~2ps1
2!21/4expH 2

x1
2

4s1
2J , ~2!

wheres1 is the experimental width. It follows that ifx is
measured at timet1 the probability that the instrument wil
read betweenx1 anddx1 is W(x1 ,t1)dx1, where

W~x1 ,t1!5Tr $a@x~ t1!2x1#r0a@x~ t1!2x1#†%. ~3!

Herex(t) is the Heisenberg operator at timet,

i-
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x~ t !5eiHt /\xe2 iHt /\. ~4!

In the same way, ifx is measured at timet1 and again at a
later timet2 the probability that the first instrument will rea
in range dx1 and the second in dx2 is
W(x1 ,t1 ;x2 ,t2)dx1dx2. Using an obvious shorthand nota
tion,

W~1,2!5Tr$a~2!a~1!r0a~1!†a~2!†%. ~5!

Here ina( j )5a@x(t j )2xj # the indexj is meant to indicate
not only the timet j and instrumental positionxj , but also the
instrumental parameters such as a widths j . In this way one
can go on to define higher order distribution functions.

The distribution functions can be expressed in terms
the corresponding characteristic functions

W~1!5E
2`

` dk1

2p
j~1!e2 ik1x1,

~6!

W~1,2!5E
2`

` dk1

2p E
2`

` dk2

2p
j~1,2!e2 i (k1x11k2x2).

Now the key formulas needed from Ford and Lewis@11# is
that for quantum Brownian motion these characteristic fu
tions are given by the general formulas

j~1!5 expH 2
1

2
k1

2^x~ t1!2&J E
2`

` dq1

2p
ãS q12

k1

2 D *

3ãS q11
k1

2 D ,

j~1,2!5 expH 2
1

4 (
j 51

2

(
l 51

2

^x~ t j !x~ t l !

1x~ t l !x~ t j !&kjklJ E
2`

` dq1

2p E
2`

` dq2

2p )
j 51

2

ãS qj

2
kj

2 D *
ãS qj1

kj

2 Dexp$q1k2@x~ t1!,x~ t2!#%. ~7!

Hereã is the Fourier transform of the functiona describing
the measurement,

ã~1!5E
2`

`

dx1a~x1!e2 iq1x1. ~8!

We should remark that in the derivation of these formula
was necessary to assume that the commutator@x(t1),x(t2)#
is ac number. This is the case for quantum Brownian mot
@13#.

We first apply these formulas to obtain an expression
the spreading of a wave packet. That is, at timet1 a mea-
surement is made with an associated function of the form~2!
and then at a later timet2 a second measurement of the sa
form is made~with index 1→2). The integrals are all stan
dard Gaussian integrals, and we obtain the results
03210
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W~1!5
1

A2ps2
expH 2

x1
2

2s2J ,

W~1,2!

5
exp$2@1/2~12r2!#~x1

2/s222rx1x2 /st1x2
2/t2!%

2pst~12r2!1/2
,

~9!

where@note the misprint in Eq.~7.18! of @11##

s25s1
21^x2&,

t25s2
22

@x~ t1!,x~ t2!#2

4s1
2

1^x2&, ~10!

2srt52s~ t22t1!12^x2&.

In this last,s(t22t1) is the mean square displacement

s~ t !5^$x~ t1!2x~ t11t !%2t&. ~11!

The distributionW(1,2) is a Gaussian quadratic form
with mean square width given by

w2~ t ![E
2`

`

dx1E
2`

`

dx2~x12x2!2W~1,2!

5s1
22

@x~ t1!,x~ t11t !#2

4s1
2

1s~ t !1s2
2 . ~12!

This is an exact general formula for the spreading o
Gaussian wave packet, expressed in terms of the m
square displacement and the nonequal-time commutator.
the special case when the second measurement is made
infinite precision (s250) and for a free particle without dis
sipation and at zero temperature„s(t)50, @x(t1),x(t11t)#
5 i\t/m… this reduces to the familiar formula of elementa
quantum mechanics@15#.

In the case of an unbound~free! particle the mean squar
displacement̂x2& diverges. We can obtain a simple expre
sion in this limit if we introduce the conditional probability

P~x22x1 ,t22t1!5 lim
^x2&→`

W~1,2!

W~1!
. ~13!

Using the expressions~9! we find

P~x,t !5
exp$2x2/2w2~ t !%

A2pw2~ t !
. ~14!

Thus, the conditional probability is a normal distributio
with variancew2(t). Here we should refer to the work o
Hakim and Ambegaokar@14#, who use path integral method
for the special case of a free particle interacting with
Ohmic bath to obtain an equivalent expression for wa
packet spreading@note the misprint in their expression~38!
for the width#.
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Next, we consider the case where the initial measurem
forms two widely separated wave packets, which cor
sponds to the measurement function

a~1!5
exp$2~x12d/2!2/4s1

2%1 exp$2~x11d/2!2/4s1
2%

@8ps1
2~11e2d2/8s1

2
!2#1/4

,

~15!

whered is the separation of the wave packets, the width
each beings1 and x1 being the center of the wave pack
pair. The second measurement is then made with a single
instrument corresponding to a function of the form~2! ~with
index 1→2). Again, the integrals are all standard Gauss
integrals, and we obtain results forW(1) andW(1,2). Again,
there is a considerable simplification if we introduce the c
ditional probability~13!. We find

P~x,t !5
1

A2pw2~11e2d2/8s1
2
!

3S expH 2
x21~s1

21s1s2
2!d2/4s1

2

2w2 J
3cos

xd@x~ t1!,x~ t11t !#

4is1
2w2

1
1

2
expH 2

~x2d/2!2

2w2 J
1

1

2
expH 2

~x1d/2!2

2w2 J D . ~16!

This conditional probability is the sum of three contribution
corresponding to the three terms within the large paren
ses. The second and third clearly correspond to the sum
probabilities of the form~14! from two single slits, while the
first term ~that involving the cosine! is an interference term
It is of interest to study the ratioa(t22t1) of the amplitude
of the interference term to twice the geometric mean of
other two terms, which we will refer to as the attenuati
factor. We find

a~ t !5 expH 2
@s~ t !1s2

2#d2

8s1
2w2~ t !

J . ~17!

In general, the interest is in the case where the second m
surement is made with infinite precision, so in the followi
discussion we sets2 equal to zero.

For quantum Brownian motion, the mean square displa
ment and the commutator are given by the formulas

s~ t !5
2\

p E
0

`

dvIm$a~v1 i01!%coth
\v

2kT
~12 cosvt !,

~18!

@x~ t1!,x~ t11t !#5
2i\

p E
0

`

dvIm $a~v1 i01!%sinvt,

where a is the response function. In the so-called Ohm
case, where the mean motion ism^ẍ&1mg^ẋ&50,
03210
nt
-

f

lit

n

-

,
e-
of

e

a-

e-

Im$a~v1 i01!%5
g

mv~v21g2!
. ~19!

Consider first the case of vanishingly small dissipati
(g→0). Then, settings2

250 and puttings5(kT/m)t2 and
@x(t1),x(t11t)#5 i (\/m)t in Eqs.~12! and~17!, we see that

a~ t !5 expH 2
d2

8s1
212l̄218ms1

4/kTt2
J ~no dissipation!,

~20!

where l̄5\/AmkT is the mean thermal de Broglie wave
length. Now the interest is always in the case where the w
packets are widely separated,d@s1. From this expression
we see that for long time the attenuation factor will be sm
~i.e., there will be decoherence! if the temperature is suffi-
ciently high that the mean de Broglie wavelength is sm
compared with the spacing,d@l̄. The characteristic time for
decoherence to occur will then be

td5
s1

2

v̄d
, ~21!

where v̄5AkT/m is the mean thermal velocity. This deco
herence time is the time for a particle traveling with t
mean thermal velocity to traverse the slit width multiplied
the ratio of the slit width to the slit spacing. Thus we see t
we can havedecoherence without dissipation~in the sense
that td is independent ofg, which characterizes the streng
of the coupling to the environment!.

Next we consider the case of Ohmic dissipation at h
temperature, where by high temperature we meankT@\g.
Then, using Eq.~19! we see from the formulas~18! that

s~ t !5
2kT

mg S t2
12e2gt

g D ,

@x~ t1!,x~ t11t !#5
i\

mg
~12e2gt!. ~22!

For short times (gt!1) these reduce to those for the case
vanishingly small dissipation, for which the decoheren
time is given by Eq.~21!. Thus if gtd5gs1

2/ v̄d is small
~and this will generally be the case at high temperature! the
decoherence time will be the same as for the case of van
ingly small dissipation, given by Eq.~21!.

These exact results are strikingly different from those o
tained by previous investigators@2–5#. It appears that the
disagreement arises from the fact that others have implic
used a long time (td@g21) approximation to obtain charac
teristic decay times. To see how this comes about, we ev
ate the high temperature formulas~22! for very long times
(gt@1). Putting the result in Eq.~17! and settings1

250 we

find a(t); exp$2d2gt/l̄2%. This is an exponential decayin
1-3
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with characteristic timeg21l̄2/d2, which is exactly twice the
expression for the decoherence time obtained by prev
authors@3–5#. But we see that it is inconsistent with th
assumption of long time used to obtain it. At short times,
we have seen, we recover the estimate~21!. One possible
reason why others have obtain inconsistent results may
due to the fact that they assumed that the system and
environment are initially decoupled whereas, by contrast
the formulation we use the particle state is entangled with
environment~i.e., in equilibrium! at the time it is put into the
initial state by a measurement. Putting this point in anot
way, previous discussions have been in terms of the redu
density matrix but, as pointed out by Ambegaokar@16#, ‘‘on
such short time scales the time evolution does not operat
the reduced density matrix . . . alone.’’

In conclusion we have seen that the simple and gen
formulation of quantum measurement given in@11# provides
a powerful method for discussing quantum stochastic s
tems. The formalism is in terms of quantum distributi
functions and, when combined with results obtained from
quantum Langevin equation, has enabled us to obtain e
explicit expressions for wave packet spreading and the
herence attenuation factor. In discussing the latter we h
n
ca

-
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seen that decoherence occurs at high temperature wit
without dissipation. In either case the decoherence tim
the same, given by Eq.~21!. At zero temperature, decohe
ence occurs only in the presence of dissipation.

Note added in proof. In order to understand more clear
the origin of our ~no dissipation! result ~20!, we recently
showed that it may be derived in a simple manner sol
within the framework of elementary quantum mechanics a
equilibrium statistical mechanics@17#. In addition, we have
recently obtained an explicit general solution of the ex
master equation@18#. When applied to the situation consid
ered in previous discussions, namely, a particle at temp
ture zero suddenly coupled to a bath at high temperature
are led to an expression for the decoherence time differing
a factor of 6 from the conventional result. We see, therefo
that the conventional result corresponds to a particle tha
‘‘warming up’’ over a time of orderg21; our result corre-
sponds to a particle that is initially at the same temperat
as the bath.
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