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Minimum-error discrimination between multiply symmetric states
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An optimum measurement strategy is presented for a new class of quantum states. This provides discrimi-
nation among the states with the minimum probability of error.
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The communication of classical information by means
a quantum channel is a well-developed field of study@1–3#.
The transmitting party~Alice! encodes her message as
string of quantum systems, each prepared in one of a se
agreed signal statesuc j&. This set of states is known to th
receiving party~Bob!, who also knows thea priori probabil-
ity pj that Alice selected the stateuc j&. Bob’s problem is to
find the best measurement strategy. The simplest requirem
is to choose the strategy that minimizes the probability
error @1–5# although other criteria have also been stud
@6–12#.

The strategy realizing the minimum error probability wi
in most cases, be a generalized measurement describ
terms of the elements of a probability operator meas
~POM! @1#, also refered to as a positive operator-valued m
sure@13#. Each of the possible outcomes ‘‘k’’ of Bob’s mea-
surement is characterized by a corresponding POM elem
p̂k @14#. The probability that Bob will observe the resultk
given that Alice selected the stateuc j& is

P~ku j !5^c j up̂kuc j&. ~1!

We label Bob’s measurement results by the inference tha
draws from them; he will associate the resultk with the con-
clusion that Alice prepared the stateuck&. It follows that the
probability for Bob to make an error in assigning the state

Pe512(
j 51

M

^c j up̂ j uc j&pj , ~2!

whereM is the number of possible signal states.
Necessary and sufficient conditions are known for mi

mizing Pe @1–5#, although very few examples of the require
POM elements have been given@15#. The measurement tha
leads to the minimum error probability will have POM el
mentsp̂k that satisfy the two conditions@1–5#

p̂ j~pj uc j&^c j u2pkuck&^cku!p̂k50, ~3!

(
j 51

M

pj uc j&^c j up̂ j2pkuck&^cku>0. ~4!

The first of these conditions is required to hold for allj and
k. The second is a statement that the eigenvalues of the
erator on the left-hand side must be greater than or equ
zero and it is required to hold for allk. The explicit form of
the required POM elements has been found for some sp
1050-2947/2001/64~3!/030303~3!/$20.00 64 0303
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cases. These include the cases of only two possible si
states@1# and of equiprobable states that are complete in
sense that a weighted sum of projectors onto the states eq
the identity operator@4#. The required POM elements hav
also been given for the symmetric states@1,5#. These states
can be written in the form

uc j&5V̂j 21uc& ~5!

and are required to bea priori equally likely so thatpj

51/M . The operatorV̂ is unitary and satisfies the conditio

V̂M5 Î . ~6!

Note that we can also accommodate situations in whichV̂M

5 Î eia, for some phasea, by replacing V̂ with V̂8

5V̂ eia/M. This results only in changing the states~5! by an
unobservable phase.

Recently, Eldar and Forney have generalized the symm
ric states to produce the geometrically uniform states
have derived the detection strategy giving minimum er
probability for these states@17#. In this paper, we will extend
the idea of symmetric states in a different way by introduc
the multiply symmetric states. The simplest example is
doubly symmetric states that have the form

uc j ,k&5Ûk21V̂j 21uc&, ~7!

where j 51, . . . ,M and k51, . . . ,N, and ÛN5 Î 5V̂M. We
will say that these states are doubly symmetric if they oc
with equal a priori probabilitiespj ,k5(MN)21 and if the
two unitary operatorsÛ and V̂ both commute with the op-
erator

F̂5(
j 51

M

(
k51

N

uc j ,k&^c j ,ku5MNr̂, ~8!

wherer̂ is thea priori density operator. It is clear from th
form of the states thatÛ will commute with F̂, but the
requirement thatV̂ also commutes withF̂ is an additional
condition. Note that there isno requirement thatÛ and V̂
should commute@18#. Given these conditions, the minimum
error probability will be realized by a POM with the ele
ments

p̂ j ,k5F̂21/2uc j ,k&^c j ,kuF̂21/2. ~9!
©2001 The American Physical Society03-1
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These POM elements are an example of the so-called squ
root measurement@19–21#. The associated minimum erro
probability is then

Pe512
1

MN (
j 51

M

(
k51

N

^c j ,kup̂ j ,kuc j ,k&512 z^cuF̂21/2uc& z2.

~10!

Our proof that the POM elements~9! give the minimum
possible error probability follows closely one given for th
symmetric states by Banet al. @5# and consists of showing
that the POM elements satisfy the conditions~3! and ~4!.
Inserting our POM elements into~3! gives

1

MN
p̂ j ,k~ uc j ,k&^c j ,ku2uc j 8,k8&^c j 8,k8u!p̂ j 8,k8

5
1

MN
F̂21/2uc j ,k&F j ,k; j 8,k8^c j 8,k8uF̂

21/2, ~11!

whereF j ,k; j 8,k8 is thec number

F j ,k; j 8,k85^cuV̂12 jF̂21/2Ûk82kV̂j 821uc&

3~^cuV̂12 jF̂21/2V̂j 21uc&

2^cuV̂12 j 8F̂21/2V̂j 821uc&!. ~12!

In obtaining Eq.~12! we have made use of the fact thatÛ

commutes withF̂. If we also enforce the condition@V̂,F̂#
50, then the term in parenthesis vanishes to giveF j ,k; j 8,k8
50. It follows, therefore, that the first of our conditions~3!
is satisfied.

The fact that Eq.~3! is satisfied means that the operato

Ĝ5
1

MN (
j 51

M

(
k51

N

uc j ,k&^c j ,kup̂ j ,k ~13!

is Hermitian and therefore has real eigenvalues. This imp
that it is meaningful to test the condition~4!. We write the
left-hand side of this inequality in the form

Ĝ2
1

MN
uc j 8,k8&^c j 8,k8u5

1

MN
Ûk821V̂j 821ĜV̂12 j 8Û12k8,

~14!

whereĜ is the Hermitian operator

Ĝ5^cuF̂21/2uc&F̂1/22uc&^cu. ~15!

The operator~14! is unitarily equivalent toĜ and therefore
has the same eigenvalues. It is sufficient, therefore, to s
thatĜ is a positive semidefinite operator and this will be tr
if ^uuĜuu&>0 for all statesuu&. From the definition ofĜ we
have

^uuĜuu&5^cuF̂21/2uc&^uuF̂1/2uu&2 z^uuc& z2

> z^cuF̂21/4F̂1/4uu& z22 z^uuc& z250, ~16!
03030
re-

s

w

where we have used the Cauchy-Schwarz inequality. It
lows that our POM satisfies the necessary and sufficient c
ditions ~3! and ~4! and therefore gives the minimum prob
bilty for error in assigning the state selected by Alice.

As an example, consider the multiply symmetric sta
generated from an entangled two-qubit state of the form

uc&5au11 ,22&1bu21 ,12&, ~17!

wherea andb are complex coefficients, by the action of tw
unitary operators

Û5cosu~ u11&^21u1u21&^11u!

1sinu~ u11&^11u2u21&^21u!, ~18!

V̂5cosu~ u11&^11u2u21&^21u!

2sinu~ u11&^21u1u21&^11u!. ~19!

The set of four multiply symmetric states produced in th
way is

uc1,1&5au11 ,22&1bu21 ,12&, ~20!

uc1,2&5a@cosuu21&1sinuu11&] u22&1b@cosuu11&

2sinuu21&] u12&, ~21!

uc2,1&5a@2sinuu21&1cosuu11&] u22&2b@sinuu11&

1cosuu21&] u12&, ~22!

uc2,2&5au21 ,22&2bu11 ,12&. ~23!

The operatorF̂ for these states is

F̂52Î 1^ ~ uau2u22&^22u1ubu2u12&^12u!, ~24!

which clearly commutes with bothÛ andV̂. The correspond-
ing minimum error probability is found by use of Eq.~10! to
be

Pe5
1

2
2uabu. ~25!

This error probability is zero ifuau5ubu corresponding to
four mutually orthogonal states. It takes its maximum va
of 1/2 if either uau or ubu is zero, in which case the problem
becomes one of discriminating between four multiply sy
metric states of qubit 1.

It is straightforward to demonstrate that our example d
not correspond to any of the previously mentioned cases
which the required POM has been constructed@1,4,5,17#.
The reduced density operator for qubit 2 has the same f
for each of the four states, and hence, it is not possible
construct the identity operatorÎ 1^ Î 2 from projectors onto
the four states. The simplest way to see that the states ar
simply a symmetric set is to consider the case in whichb
50. For a symmetric set of states it is necessary to fin
single unitary operatorV̂, the action of which generates a
3-2



s

e
re

ti-
n

b

te

il-

gies
to

t in-
tum

or
and
is

the
rt-

RAPID COMMUNICATIONS

MINIMUM-ERROR DISCRIMINATION BETWEEN . . . PHYSICAL REVIEW A64 030303~R!
the states in the form~5!. This is clearly not possible unles

u5np/4. Futhermore, the operatorsÛ and V̂ do not com-
mute and so our states are not a geometrically uniform s

It is straightforward to show that the square-root measu
ment also provides the minimum error probability for mul
ply symmetric states. These are equiprobable states ge
ated by the action of multiple unitary operators,uc j 1••• j n

&

5V̂n
j n21

•••V̂1
j 121uc&, where thea priori density operator

commutes with all of the unitary operatorsV̂l . The proof is
a natural generalization of that presented above for dou
symmetric states.

The multiply symmetric states form a new class of sta
ry

m
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for which state discrimination with minimum error probab
ity can be demonstrated. Recent experimental progress@16#
means that it is possible to implement such optimal strate
in the laboratory. The states also provide a tool with which
test ideas in quantum communication and measuremen
cluding studies of quantum channel capacities and quan
key distribution.
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