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An optimum measurement strategy is presented for a new class of quantum states. This provides discrimi-
nation among the states with the minimum probability of error.
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The communication of classical information by means ofcases. These include the cases of only two possible signal
a quantum channel is a well-developed field of st{ity3].  stateg 1] and of equiprobable states that are complete in the
The transmitting party(Alice) encodes her message as asense that a weighted sum of projectors onto the states equals
string of quantum systems, each prepared in one of a set diie identity operatof4]. The required POM elements have
agreed signal statds);). This set of states is known to the also been given for the symmetric staf@s5|. These states

receiving party(Bob), who also knows tha priori probabil-  can be written in the form
ity p; that Alice selected the stafe;). Bob’s problem is to .
find the best measurement strategy. The simplest requirement [y =VI"1 ) (5)

is to choose the strategy that minimizes the probability for _ o _
error [1-5] although other criteria have also been studiedand are required to ba priori equally likely so thatp;

[6-12. =1/M. The operatol is unitary and satisfies the condition
The strategy realizing the minimum error probability will,
in most cases, be a generalized measurement described in yM=T. (6)

terms of the elements of a probability operator measure
(POM) [1], also refered to as a positive operator-valued meanote that we can also accommodate situations in wiitth
sure[13]. Each of the possible outcomek™of Bob's mea-  _jde  for some phasea, by replacing V with ¥’

surement is characterized by a corresponding POM element ~ : /u . . .
- =V &M, This results only in changing the stat&s by an
. [14]. The probability that Bob will observe the resiit y ging & by

: i . unobservable phase.
giventhat Alice selected the stal;) is Recently, Eldar and Forney have generalized the symmet-

o - ric states to produce the geometrically uniform states and
P(kI]) = (il md i) oy have derived the detection strategy giving minimum error
probability for these statd4d.7]. In this paper, we will extend

We label Bob's measurement results by the inference that ht%e idea of symmetric states in a different way by introducing

Slra;’ysnfrt%rgttAhﬁg; hree V\glrle?jstsr?:'gde the lrte?;‘lg'thst?heaf?ﬁé the multiply symmetric states. The simplest example is the
us! Ice prep ). W . doubly symmetric states that have the form

probability for Bob to make an error in assigning the state is

Moo [4140 =0 VI ), )
Pe=1-=2 (vi|ml4)p;. @ , N

=1 wherej=1,... M andk=1,... N, andU"=1=V". We
will say that these states are doubly symmetric if they occur
with equala priori probabilities p; = (M N)~! and if the
two unitary operatordé) andV both commute with the op-
rator

whereM is the number of possible signal states.
Necessary and sufficient conditions are known for mini-
mizing P, [1-5], although very few examples of the required
POM elements have been givglb]. The measurement that €
leads to the minimum error probability will have POM ele-

M N
ments, that satisfy the two conditiong —5] b= > |4.0(s ]l =MNp, (8
j=1k=1 " '

(P ) (] = Pl v (i) m=0, (3) .
(Pl =Pt e wherep is thea priori density operator. It is clear from the

M A form of the states thall will commute with &, but the
121 Pil )il 7 — Pl i) (¥ =0. (4)  requirement tha¥/ also commutes withb is an additional
condition. Note that there iso requirement that) and V
The first of these conditions is required to hold forjaéind  should commutg18]. Given these conditions, the minimum
k. The second is a statement that the eigenvalues of the opfror probability will be realized by a POM with the ele-
erator on the left-hand side must be greater than or equal tments
zero and it is required to hold for dl The explicit form of . A A
the required POM elements has been found for some special i k=D Wy W D Y2 9

1050-2947/2001/68)/0303033)/$20.00 64 030303-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

STEPHEN M. BARNETT PHYSICAL REVIEW A64 030303R)

These POM elements are an example of the so-called squarehere we have used the Cauchy-Schwarz inequality. It fol-
root measuremer[tl9-21. The associated minimum error lows that our POM satisfies the necessary and sufficient con-

probability is then

M

Pe=1———

1
MN ;

N
kzl (im0 =1= K| &y
(10)

=1

Our proof that the POM element9) give the minimum
possible error probability follows closely one given for the
symmetric states by Baet al. [5] and consists of showing
that the POM elements satisfy the conditiof® and (4).
Inserting our POM elements int{@) gives

1 . ~
Wﬂ'j,kq‘r/fj,k><l/’j,k|_|’/’j’,k'><‘//j’,k’|)77j’,k’

:ﬁ®71/2|wi,k>Fj,k;j’,k’<¢j/,k/|(’l\)71/2, (11)
whereF; ;s « is thec number
Fijr = (VIO 20K kG =1y
X((Y| VI Y271 )
—(VITRTIRI ). (12)

In obtaining Eq.(12) we have made use of the fact tHat

commutes withd. If we also enforce the conditiofV,®]
=0, then the term in parenthesis vanishes to dyg.;: s
=0. It follows, therefore, that the first of our conditio(®
is satisfied.

The fact that Eq(3) is satisfied means that the operator

1 M N
I'=¥N le kzl |71 7 (13)

ditions (3) and (4) and therefore gives the minimum proba-
bilty for error in assigning the state selected by Alice.

As an example, consider the multiply symmetric states
generated from an entangled two-qubit state of the form

lyy=al+1,—2)+b|—1,+2), (17)

wherea andb are complex coefficients, by the action of two
unitary operators

U=cos(|+1)(—1|+|—1)(+1])

+sing(|+ )+ 1= = )(— 1), (18
V=coso(|+1)(+ 1| == 1)(—1l)
=sind(|+ )(— 1|+ )(+1]). 19

The set of four multiply symmetric states produced in this
way is
|prp=al+1,—2)+b[—1,+2), (20)
|12 =alcosd|— 1) +sind|+1)]| —2) +b[cosb| + 1)
—sind|—1)]|+2), (21)

|, p=a[ —sind| — 1)+ cosb| +1)]| =) —b[sin o] + ;)

+cosd|—)]|+2), (22)
| =al—1,—2)=b[+1,+2). (23

The operatoﬁD for these states is
d=20 @ (|a]?| = )(—2l+[b][+2)(+2]), (29

which clearly commutes with botll andV. The correspond-

is Hermitian and therefore has real eigenvalues. This impliegig minimum error probability is found by use of EQ.0) to

that it is meaningful to test the conditiqd). We write the
left-hand side of this inequality in the form

.1 1. N A i
_ k’* r_ it *k’
F_W|¢j',k'><¢j/,k'|—WU Wi-igyt-igt-k,
(14
whereG is the Hermitian operator
G=(y|d ¥4y d 2~ [y)(yl. (15)

The operator(14) is unitarily equivalent todG and therefore

be

1

Pe=5—labl. (25)

This error probability is zero ifa|=|b| corresponding to
four mutually orthogonal states. It takes its maximum value
of 1/2 if either|a| or |b| is zero, in which case the problem
becomes one of discriminating between four multiply sym-
metric states of qubit 1.

It is straightforward to demonstrate that our example does
not correspond to any of the previously mentioned cases for

has the same eigenvalues. It is sufficient, therefore, to showhich the required POM has been construcféd,5,17.

thatG is a positive semidefinite operator and this will be true

if (u|G|u)=0 for all stategu). From the definition of> we
have

(ulGJu)=(y| ¥y (u|dqu) ~ Kulp)P

=l o~V D Y u)P—Kulp)P=0, (16

The reduced density operator for qubit 2 has the same form
for each of the four states, and hence, it is not possible to

construct the identity operatdr,®1, from projectors onto

the four states. The simplest way to see that the states are not
simply a symmetric set is to consider the case in whHich
=0. For a symmetric set of states it is necessary to find a

single unitary operato¥, the action of which generates all
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the states in the forntb). This is clearly not possible unless for which state discrimination with minimum error probabil-

9=nml4. Futhermore, the operatots andV do not com- ity ¢an be demonstrated. Recent experimental prodrsls
mute and so our states are not a geometrically uniform set.meﬁnT tgat itis pc_)l_shS|bIe to |m|plement_3uch op'ilma:]strﬁtehgles
; ; ) In the laboratory. The states also provide a tool with which to
Itis stralghtfprward o S.h(.JW that the square .r.oot MeasUr€iast ideas in quantum communication and measurement in-
ment also provides the minimum error probability for multi-

. . cluding studies of quantum channel capacities and quantum
ply symmetric states. These are equiprobable states 9englay distribution.

ated by the action of multiple unitary operatotsf,jl...jn>
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