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Multiplayer quantum games
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Recently the concept of quantum information has been introduced into game theory. Here we present the first
study of quantum games with more than two players. We discover that such games can possess an alternative
form of equilibrium strategy, one which has no analog either in traditional games or even in two-player
guantum games. In these “coherent” equilibria, entanglement shared among multiple players enables different
kinds of cooperative behavior: indeed it can act as a contract, in the sense that it prevents players from
successfully betraying one another.
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Game theory is a mature field of applied mathematics. Ivery natural way to do this is by considering the flow of
formalizes the conflict between competing agents, and hasformation; see Fig. (). This classical physical model is
found applications ranging from economics through to biol-then to be quantized. Our quantization procedure is the most
ogy [1,2]. Quantum information is a young field of physics. natural one that meets the following requiremeri&: The
At its heart is the realization that information is ultimately a classical information carriergits) are to be generalized to
physical quantity, rather than a mathematical abstra¢Bhn  quantum system@ubits, (b) these qubits are to be mutually
It is known that various problems in this field can be usefullyentangled 14]; and(c) the resulting game must begener-
thought of as games. Quantum cryptography, for example, ialization of the classical game: the identity operat@hould
readily cast as a game between_the individuals who wish t@orrespondto “don't flip,” and the bit-flipping operatorF
communicate, and those who wish to eavesdlpQuan-  _5 should correspondto “flip” [15], in the sense that
tum cloning has been thought of as a physicist playing &yhen all the players restrict themselves to choosing from

game against natu&], and indeed even the measurement,~ + .
orocess itself may be thought of in these tefiék Further- {F,I}, then the payoffs of the classical game are recovered.

! . To simultaneously meet requiremefits and(c), we employ
more, Meyer{7,8] has pointed out that the algorithms con- , i of entangling gates as shown in Figb)l and insist
ceived for quantum computers may be usefully thought of a?hatfl commutes with any operator formed trof and 1

games between classical and quantum agents. Against this.. = . X . )
background, it is natural to seek a unified theory of gameé"ICtIng in the ;ubspaceg of different q.Ub'tS' If we restrict our-
and quantur’n mechani¢e—11] Selves to unitary, maximally entangling gafgs] that act

Formally agameinvolves of a number of agents ptay- ~ Symmetrically on ones and zeros, then we may spegify
ers who are allowed a certain set of movesaations The  without loss of generality17]: J=1/y2(1*N+iF ®N),
payoff function$() specifies how the players will be re-
warded after they have performed their actions. ithelay-

er's strategy s;, is her procedure for deciding which action (j)
to play, depending on her information. Tk&ategy space 57—
S={s}, is the set of strategies available to hersthategy = &
profile s=(s;,s,, ... ,Sy) IS an assignment of one strategy &
to each player. We will use the teraguilibrium purely in its (b) o=
game theoretic sense, i.e., to refer to a strategy profile with e®|0> _|
degree of stability; for example, in a Nash equilibrium no &
player can improve her expected payoff by unilaterally 210) =
changing her strategy. The study of equilibria is fundamental ¢ -
in game theonf1]. The games we consider here atatic g e et
they are played only once so that there is no history for the E‘r|0>
players to consider. Moreover, each player has complete
knowledge of the game’s structure. Thus the set of allowe
acnons, corresponds directly to the space of thermm'sngystem(a bit) in the zero state. They locally manipulate their bit in
strategies. . _ _ . whatever way they wish: under classical physics their choices are
Our procedure for quantizing games is a generalization ofggly just to flip, or not to flip. They then return the bits for mea-
the elegant scheme introduced by Eisetrtl. [12,13. We  syrement, from which the payoff is determingti) Our N-player
reason as follows. Game theory, being a branch of applieguantized game. Throughout this paper, “measurement’” means
mathematics, defines games without reference to the physicaleasurement in the computational bagig),|1)}. (c) The effect of
universe. However, quantum mechanics is a physical theoryhtroducing totaldecoherenceof the quantum information. RND
and must be applied to a physical system. We therefore begifenotes a random classical bit, the vertical lines denote CONTROL-
by creating a physical model for the games of interest. Avort.

measurement

ts i

FIG. 1. (a) A physical model for a game in which each player
as two possible actions: we send each player a classical two-state
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The representation in Fig(ld) allows one to regard quan- In the multiplayer games below, we discover that equilib-
tized games as simple quantum algorithms. The games wéa for all of S;cp can consist of strategies drawnly from
consider below could in fact be realized in a quantum coms; . We will refer to these special equilibria asire, or co-
puter possessing very few qubitsetween one and three qu- herent They arefundamentallyquantum mechanical, in that
bits per player, depending on the generality of the strategyhey disappear when the quantum correlations implicit in the
space; NMR quantum computers are already adequate foentangled states are replaced with classical correlations, as in
this purposg 18]. Far more speculatively, one may envisageFig. 1(c). In analogous two-player gaméshere both play-

a market negotiating its trades quantum mechanically. Ougrs are permitte@;cp), it is impossible for “pure” equilibria
results below suggest that it ossiblethat a well-designed [19] to occur; instead, equilibria exist only when the players
quantum scheme could help to prevent certain types of negahoose to degrade the entanglement. Unsurprisingly there-
tive “herd” behavior without the ad hoc imposition of dis- fore, those equilibria do persist in the Figcllvariant.

tortative trading rules. Consider the classic&l-player Minority Gamg21]. Here

In comparing the quantum and classical games, the choicgach player privately chooses between two options, say “0”
of strategy space is fundamental. The classical game is to kghd “1.” The choices are then compared and the players who
embedded in the quantum game, therefore the space sholdve made the minority decision are rewardeyl one point,
include playing the “classical” action$T,l3}, but in prin-  say. If there is an even split, or if all players have made the
ciple we could choose any superset of this classical spacsame choice, then there is no reward. The structure of this
Previous studies have considered two-player games, arghme reflects many common social dilemmas, for example,
have employed strategy sets of limited generality. For exchoosing a route in rush hour, choosing which evening to
ample, in Ref[8] Meyer explored the consequences of giv- visit an overcrowded bar, or trading in a financial market. We
ing one player a full unitary strategy space while constrainan immediately quantize this game as discussed above.
ing the other to use only the “classical” space. Meyer has We begin withN=3. Does quantization introduce new
provided[7] an interesting interpretation of such one-sidedequilibria? Yes: for example, the players can coordinate their
games wherein the players are a quantum computer and igstions simply by measuring their qubits and exploiting the
operator. In a second approaftB], Eisertet al. permitted  classical correlations. However, such strategies are of limited
both players the same strategy set, but introduced a coriterest in the present context, since they also function in the
straint into that sef19], which amounted to permitting a decoherent circuit of Fig.(&). In fact, we can quickly prove
certain strategy) while forbidding the logical counter strat- that all pure quantum strategies simply reduce to classical
egy. As one might intuitively expec@ emerges as the ideal strategies. The most general pure strategy for plagan be
strategy. In contrast to these earlier approaches, throughowtitten s;=a{(8{iox+ Blioy) +al (¥ +y7io,), where
the present paper we allow all of our players to perform anyall the «,8, and y coefficients are real anda€)2+(a?)2
action on their qubits that is quantum mechanically possible= (8%)2+ (88)2= (y*)2+ (y?)?=1. Then simply by apply-
This includes adjoining arbitrarily large ancillas, performing ing theJ gates and deriving measurement probabilities in the

measurements and applying operations conditioned on th&andard fashion, we find that tigand y terms disappear,
outcomes of those measurements. We believe this to be ”}ﬁ‘elding PROBplayer 1 in minority= (a®aba’)?

most natural generalization of our classical model, where the_ (a”aBaB

< , Tasa3)?, and similarly for players 2 and 3. But these
only restrictions on the actions of the players were those, o just the probabilities that occur in the classical game

imposed by classical physics. General quantum operatior‘when playeri flips with probability (@®)2, reducing the
are represented by trace-preserving, completely-positiv yantum game to the classical game v
maps, and we denote the space of strategies corresponding 0Surprisingly, the situation is comp.letely different in the

all such operations b$rcp. . ...._four-player Minority Game. Classically, the players have no
. In traditional game theory, there is qfuqdame_ntal dIStInC'better strategy than to choose randomly between the 0 and 1
tion between so-called “pure” strategies, in which players

choose their actions deterministically, and “mixed” strate- actions. The expected payoff for each player is then one
. X . ucally, ar : eighth of a point, i.e., the game only ‘pays out’ half the time.

gies, which can involve probabilistic choices. An |mportantBut when we quantize the game, for the first time we dis-

consequence of adopting a general quantum model is that tr& 9 '

. . ) Qver fully coherent equilibria. One examp®@?2] is the pro-
players can implement any probabilistic strategy entirely defile s—(aaaa), where a=1/\2 cos@16)(l+icy)
terministically through the use of ancillary qubits. For ex- Lol . X
ample, such qubits could function as a random number gen- 1\2 sin(r/16)(ioy+io7). Then the final state prior to
erator controlling the operations applied to the primary qubit.measurement is, up to a global phase,

Even so, there is a subset 8f.p that is in many ways

analogous to the classical deterministic strategies, namely2~%2]1000+|0100 +|0010 +|0001)—|1110 —|1101)
the set of all strategies that correspond directly to a unitary

action. Strategies from this subset, which we l&g] imply —[101D)-[011D).

coherent manipulations of the local qubits, i.e., manipula-

tions without the addition of ancillary qubits. Another way of  Thus, each player has expected payjpffwhich is twice
identifying the setS is that they are precisely the strategiesthe performance of the classical game and the logical maxi-
that do not destroy any of the entanglement introduced bynum for a cooperative solution. The reasoning below proves
the J gate[20]. that the profilesis a true Nash equilibrium: even though the
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players are allowed the full generality &cp, no player (a) (b) ()
can improve her expected payoff by unilaterally defecting  0="Cooperate’ Measured | Payoff to Payoff to
from s. 1—"Defect e State Players _ Players

(i) (i) Note that the Minority Game has the special prop-  [Measured| Payoffto §§ :?88; ((?’_g’_g)) ?2‘:3':3;
erty that the same expected payoffs result whether or not we | St | Players 5% lo10>| (9 19| (9 8-9
apply the second gaté,T, prior to measurement. This can be e iy § % :8?1; ('?":’;) ('g”?’ ?)
seen by noting thali" transforms any basis vectéabcd) :(1)(1); Egg; 82 111015 §9i i 93 5-1 g 1%
only ~within the subspace spanned by vectors R (1’ . A»H 1 ‘13; EZ 2’ ;; 217 173;
{|abcd),|abcd)}, wherex=NOT(x), which have the same ’ e

pay_qff value. . . FIG. 2. Games possessing a dominant-strategy equilibrigm:
(i) BAecause of(i), we can focus attention on the state the prisoner's Dilemma. Each player reasons thus: ‘If my partner
prior to J'. This state has the property that measurement ofvere to cooperate, my best action would be to defect. If he were to
any three of the four qubits will yield one of the eight out- defect, my best action is still to defect. So | havdaninantstrat-
comes, (000), (001),..,(111), with equal probability. €9y “always defect.” ’(b) A thre_e-player dilemma game. Classi-
This must remain true regardless of any local action percaly: each player has the dominant strategy “choose 1.” Conse-
formed on the fourth qubit. Note that violation of this physi- duently, each player's payoff is just two points, despite the
cal principle would permit superluminal communication. existence of strategy profiles, such as ‘choose 1 with probability

. . . 80%', where all the players have greater expected paytffsi

(iii) Six of .these eight outcomes aCmWInnablebY the game where quantun? pI):alyers td!ssvsell than thF:zir cIassF,)icZ\I coun-

fourth player: if, for example, measurement of the first threeterparts.

qubits yields (001), then neitha 0 or a 1will put the fourth

player in the minority. Thus, because of the equal weighting . . _ )

of the outcomes, her expected payoff cannot exceeBut ~ 'um (and isstrict for players A apd C:.any unilateral devia-

this is just the payoff each player has with the originally tion necessarily leads teductionin their expected payoffs

proposed strategy profile. Note that there is no m—p_rmuple d|_ff|cultly with the asym-
Thus in moving from theN=3 to theN=4 player Mi-  Metry[24] of the profile, since in this game we are permit-

nority Game, a fundamentally nonclassical equilibrium be-ing players to communicate with each other prior to playing.

comes available. This equilibrium is optimal and fair: the The Proof that this profile is a Nash equilibrium runs as

game always pays out the maximum amoantd the ex-  follows. L

pected payoff for each of the players is the same. In the Let |¢)=({®1/y2(ax+0,)®1)I|000)be the state after

classical Minority Game, thisan be achieved, but only by the actions of players A and B, and suppose that player C

sharing additional classical informatid@3]. We are there- applies a general open quantum operationi.e., a com-

fore led to ask, are there games with pure quantum equilibrigletely positive, trace-preserving map on density operators.

whose performanceannotbe matched classicallgvenin  We can, therefore, writ&(p) = =M kpl\hl, with the restric-

the presence of free communication? Su.rprisingly, the anFon EKMIMKZT [25]. We may think of this expansion as

féver.ls yes. To demonstrate, we exploit the concept Ofgpresenting &-outcome measurement, where it is allowed
ominant” strategies. . o . to perform unitary operations conditioned on the outcome of
A player has a dominant strategy if this strategy yields §ne measurement. The state-change corresponding to out-

higher payoff than any alternativeggardlessof the strate- L AR 1o _
gies adopted by other players. A rational player will inevita—comek is given by[¢)—> (UMM ¢))"*M|¢). Since

bly adopt such a strategy, even if players freely convers@layer C only applies local operations, the most genktal
before playing(unless we introduce some kind of binding =1®1®C,, where C, is any 2<2 matrix. But it is then

contract, which amounts to switching to another payoff tablesimple to show, by applying this!, followed by the gatd,
entirely). If every player has a dominant strategy, then thethat player C's expected payoff is maximized only Gf

game’s inevitable outcome is tlminant-strategy equilib- - . o
rium. The famous Prisoner’s Dilemma, shown in Figa)2 = “x- Thus, the only strategy for player C which maximizes
has the dominant-strategy equilibriuftdefect,” *defect” ). her expected payoff for every one qf her measurement out-
As noted above, no maximally entangled two-player quanSOMeS IS, up to global phase;, . Similar arguments for
tum game can have equilibria in the strategy sgageThus, players A and B verify thas is indeed a Nash equilibrium for
quantization of Prisoner’s Dilemma removes the dominantih€ full quantum strategy spa&cep. .
We have seen that superior quantum coherent equilibria

strategy equilibrium[12], but does not provide alternative _ k
coherent equilibria that might offer better payoffs. occur in some gameghe three-player Dilemma and the 4

To investigate the multiplayer case, we quantize the gamBlayer Minority Gamg, but are absent in othefthe three-

of Fig. 2b). We find that coherent equilibrido occur. The ~ Player Minority, and any maximally entangled fair two-
classically inevitable outcome, now written &s,E,F), be- player gamg But do quantum players always fare at least as

Nash ilibri but oth dicall . well as their classical counterparts? No. Figufe) 2s the
Co”f‘?s .a ash equiiibnum — but 0 er,. radicaly SL{per'orpayoff table for a game with a very high-performing domi-
equilibria emerge. For example, the profie (i, 1V2(ox  pant strategy; since all other outcomes have much lower total

+0,),0), with expected payoffs (5,9,5), is a Nash equilib- payoffs, this classically inevitable outcome is optimal. But in
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the quantized game this profile, now written &5 ,F), is  escape the classical Dilemma entirely: they can play coop-
no longer even a Nash equilibrium: any player can unilatereratively knowing that no player can successfully “defect”
ally improve her payoff by switching te= o, with severe against the others. In this respect, quantum entanglement ful-
consequences for the other players. Hence any equilibria ifills the role of a contract. A subsequent analy26] has
the quantum game will be inferior to the classical equilib-examined the impact of a noisy environment on our Di-
rium: in this game, entanglement “spoils” classical coopera-lemma game.
tion. _— . . -

To conclude, we have performed the first investigation of. SB was |n|t|ally attrgcted to this topic by_several Inspir-
multiplayer quantum games, finding that such games can e49 discussions with Neil Johnson, who conjectured that al-
hibit forms of pure quantum equilibrium that have no ar](,J“o(‘:]ternatlve forms of equilibria would result from the complex-

in classical games, or even in two-player quantum games. I}y Of the N>2 player minority game. We also acknowledge
the Minority Game, we found that the players were able tdhelpful discussions with Julia Kempe, Art Pittenger, Guy
exploit entanglement to overcome the frustration in the clasSteele Jr., and Vlatko Vedral. The authors were supported by
sical variant, and so play the game “perfectly.” More dra- EPSRC, the Rhodes Trust, and the EU QAIP project under
matically, in our Dilemma game the quantum players carContract No. EC-IST-1999 11234,
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