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Multiplayer quantum games
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Recently the concept of quantum information has been introduced into game theory. Here we present the first
study of quantum games with more than two players. We discover that such games can possess an alternative
form of equilibrium strategy, one which has no analog either in traditional games or even in two-player
quantum games. In these ‘‘coherent’’ equilibria, entanglement shared among multiple players enables different
kinds of cooperative behavior: indeed it can act as a contract, in the sense that it prevents players from
successfully betraying one another.
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Game theory is a mature field of applied mathematics
formalizes the conflict between competing agents, and
found applications ranging from economics through to bi
ogy @1,2#. Quantum information is a young field of physic
At its heart is the realization that information is ultimately
physical quantity, rather than a mathematical abstraction@3#.
It is known that various problems in this field can be usefu
thought of as games. Quantum cryptography, for example
readily cast as a game between the individuals who wis
communicate, and those who wish to eavesdrop@4#. Quan-
tum cloning has been thought of as a physicist playing
game against nature@5#, and indeed even the measureme
process itself may be thought of in these terms@6#. Further-
more, Meyer@7,8# has pointed out that the algorithms co
ceived for quantum computers may be usefully thought o
games between classical and quantum agents. Against
background, it is natural to seek a unified theory of gam
and quantum mechanics@9–11#.

Formally agameinvolves of a number of agents orplay-
ers, who are allowed a certain set of moves oractions. The
payoff function$() specifies how the players will be re
warded after they have performed their actions. Thei th play-
er’s strategy, si , is her procedure for deciding which actio
to play, depending on her information. Thestrategy space,
S5$si%, is the set of strategies available to her. Astrategy
profile s5(s1 ,s2 , . . . ,sN) is an assignment of one strateg
to each player. We will use the termequilibriumpurely in its
game theoretic sense, i.e., to refer to a strategy profile wi
degree of stability; for example, in a Nash equilibrium
player can improve her expected payoff by unilatera
changing her strategy. The study of equilibria is fundamen
in game theory@1#. The games we consider here arestatic:
they are played only once so that there is no history for
players to consider. Moreover, each player has comp
knowledge of the game’s structure. Thus the set of allow
actions corresponds directly to the space of determini
strategies.

Our procedure for quantizing games is a generalization
the elegant scheme introduced by Eisertet al. @12,13#. We
reason as follows. Game theory, being a branch of app
mathematics, defines games without reference to the phy
universe. However, quantum mechanics is a physical the
and must be applied to a physical system. We therefore b
by creating a physical model for the games of interest
1050-2947/2001/64~3!/030301~4!/$20.00 64 0303
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very natural way to do this is by considering the flow
information; see Fig. 1~a!. This classical physical model i
then to be quantized. Our quantization procedure is the m
natural one that meets the following requirements:~a! The
classical information carriers~bits! are to be generalized to
quantum systems~qubits!, ~b! these qubits are to be mutuall
entangled@14#; and ~c! the resulting game must be agener-

alizationof the classical game: the identity operatorÎ should
correspondto ‘‘don’t flip,’’ and the bit-flipping operatorF̂
5ŝx should correspondto ‘‘flip’’ @15#, in the sense tha
when all the players restrict themselves to choosing fr

$F̂, Î %, then the payoffs of the classical game are recove
To simultaneously meet requirements~b! and~c!, we employ
a pair of entangling gates as shown in Fig. 1~b!, and insist
that Ĵ commutes with any operator formed fromF̂ and Î
acting in the subspaces of different qubits. If we restrict o
selves to unitary, maximally entangling gates@16# that act
symmetrically on ones and zeros, then we may specifĴ

without loss of generality@17#: Ĵ51/A2(Î ^ N1 i F̂ ^ N).

FIG. 1. ~a! A physical model for a game in which each play
has two possible actions: we send each player a classical two-
system~a bit! in the zero state. They locally manipulate their bit
whatever way they wish: under classical physics their choices
really just to flip, or not to flip. They then return the bits for me
surement, from which the payoff is determined.~b! Our N-player
quantized game. Throughout this paper, ‘‘measurement’’ me
measurement in the computational basis,$u0&,u1&%. ~c! The effect of
introducing totaldecoherenceof the quantum information. RND
denotes a random classical bit, the vertical lines denote CONTR
NOT.
©2001 The American Physical Society01-1
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The representation in Fig. 1~b! allows one to regard quan
tized games as simple quantum algorithms. The games
consider below could in fact be realized in a quantum co
puter possessing very few qubits~between one and three qu
bits per player, depending on the generality of the strat
space!; NMR quantum computers are already adequate
this purpose@18#. Far more speculatively, one may envisa
a market negotiating its trades quantum mechanically.
results below suggest that it ispossiblethat a well-designed
quantum scheme could help to prevent certain types of n
tive ‘‘herd’’ behavior without the ad hoc imposition of dis
tortative trading rules.

In comparing the quantum and classical games, the ch
of strategy space is fundamental. The classical game is t
embedded in the quantum game, therefore the space sh
include playing the ‘‘classical’’ actions$ Î ,F̂%, but in prin-
ciple we could choose any superset of this classical sp
Previous studies have considered two-player games,
have employed strategy sets of limited generality. For
ample, in Ref.@8# Meyer explored the consequences of g
ing one player a full unitary strategy space while constra
ing the other to use only the ‘‘classical’’ space. Meyer h
provided @7# an interesting interpretation of such one-sid
games wherein the players are a quantum computer an
operator. In a second approach@13#, Eisert et al. permitted
both players the same strategy set, but introduced a
straint into that set@19#, which amounted to permitting a
certain strategyQ while forbidding the logical counter strat
egy. As one might intuitively expect,Q emerges as the idea
strategy. In contrast to these earlier approaches, throug
the present paper we allow all of our players to perform a
action on their qubits that is quantum mechanically possi
This includes adjoining arbitrarily large ancillas, performin
measurements and applying operations conditioned on
outcomes of those measurements. We believe this to be
most natural generalization of our classical model, where
only restrictions on the actions of the players were th
imposed by classical physics. General quantum operat
are represented by trace-preserving, completely-pos
maps, and we denote the space of strategies correspond
all such operations bySTCP .

In traditional game theory, there is a fundamental disti
tion between so-called ‘‘pure’’ strategies, in which playe
choose their actions deterministically, and ‘‘mixed’’ strat
gies, which can involve probabilistic choices. An importa
consequence of adopting a general quantum model is tha
players can implement any probabilistic strategy entirely
terministically through the use of ancillary qubits. For e
ample, such qubits could function as a random number g
erator controlling the operations applied to the primary qu
Even so, there is a subset ofSTCP that is in many ways
analogous to the classical deterministic strategies, nam
the set of all strategies that correspond directly to a unit
action. Strategies from this subset, which we labelSU , imply
coherent manipulations of the local qubits, i.e., manipu
tions without the addition of ancillary qubits. Another way
identifying the setSU is that they are precisely the strategi
that do not destroy any of the entanglement introduced
the Ĵ gate@20#.
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In the multiplayer games below, we discover that equil
ria for all of STCP can consist of strategies drawnonly from
SU . We will refer to these special equilibria aspure, or co-
herent. They arefundamentallyquantum mechanical, in tha
they disappear when the quantum correlations implicit in
entangled states are replaced with classical correlations,
Fig. 1~c!. In analogous two-player games~where both play-
ers are permittedSTCP!, it is impossible for ‘‘pure’’ equilibria
@19# to occur; instead, equilibria exist only when the playe
choose to degrade the entanglement. Unsurprisingly th
fore, those equilibria do persist in the Fig. 1~c! variant.

Consider the classicalN-player Minority Game@21#. Here
each player privately chooses between two options, say
and ‘‘1.’’ The choices are then compared and the players w
have made the minority decision are rewarded~by one point,
say!. If there is an even split, or if all players have made t
same choice, then there is no reward. The structure of
game reflects many common social dilemmas, for exam
choosing a route in rush hour, choosing which evening
visit an overcrowded bar, or trading in a financial market. W
can immediately quantize this game as discussed above

We begin withN53. Does quantization introduce ne
equilibria? Yes: for example, the players can coordinate th
actions simply by measuring their qubits and exploiting t
classical correlations. However, such strategies are of lim
interest in the present context, since they also function in
decoherent circuit of Fig. 1~c!. In fact, we can quickly prove
that all pure quantum strategies simply reduce to class
strategies. The most general pure strategy for playeri can be
written si5a i

A(b i
Aisx1b i

Bisy)1a i
B(g i

AI 1g i
Bisz), where

all the a,b, and g coefficients are real and (a i
A)21(a i

B)2

5(b i
A)21(b i

B)25(g i
A)21(g i

B)251. Then simply by apply-
ing theJ gates and deriving measurement probabilities in
standard fashion, we find that theb andg terms disappear
yielding PROB~player 1 in minority!5 (a1

Ba2
Aa3

A)2

1(a1
Aa2

Ba3
B)2, and similarly for players 2 and 3. But thes

are just the probabilities that occur in the classical ga
when player i flips with probability (a i

A)2, reducing the
quantum game to the classical game.

Surprisingly, the situation is completely different in th
four-player Minority Game. Classically, the players have
better strategy than to choose randomly between the 0 a
actions. The expected payoff for each player is then o
eighth of a point, i.e., the game only ‘pays out’ half the tim
But when we quantize the game, for the first time we d
cover fully coherent equilibria. One example@22# is the pro-
file s5(a,a,a,a), where a51/A2 cos(p/16)(I 1 isx)
21/A2 sin(p/16)(isy1 isz). Then the final state prior to
measurement is, up to a global phase,

223/2~ u1000&1u0100&1u0010&1u0001&2u1110&2u1101&

2u1011&2u0111&).

Thus, each player has expected payoff1
4 , which is twice

the performance of the classical game and the logical m
mum for a cooperative solution. The reasoning below pro
that the profiles is a true Nash equilibrium: even though th
1-2
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players are allowed the full generality ofSTCP , no player
can improve her expected payoff by unilaterally defect
from s.

~i! ~i! Note that the Minority Game has the special pro
erty that the same expected payoffs result whether or no

apply the second gate,Ĵ†, prior to measurement. This can b

seen by noting thatĴ† transforms any basis vectoruabcd&
only within the subspace spanned by vecto

$uabcd&,uāb̄c̄d̄&%, wherex̄5NOT(x), which have the same
payoff value.

~ii ! Because of~i!, we can focus attention on the sta

prior to Ĵ†. This state has the property that measuremen
any three of the four qubits will yield one of the eight ou
comes, (000), (001),. . . ,(111), with equal probability.
This must remain true regardless of any local action p
formed on the fourth qubit. Note that violation of this phys
cal principle would permit superluminal communication.

~iii ! Six of these eight outcomes areunwinnableby the
fourth player: if, for example, measurement of the first th
qubits yields (001), then neither a 0 or a 1will put the fourth
player in the minority. Thus, because of the equal weight
of the outcomes, her expected payoff cannot exceed1

4 . But
this is just the payoff each player has with the origina
proposed strategy profile.

Thus in moving from theN53 to theN54 player Mi-
nority Game, a fundamentally nonclassical equilibrium b
comes available. This equilibrium is optimal and fair: t
game always pays out the maximum amountand the ex-
pected payoff for each of the players is the same. In
classical Minority Game, thiscan be achieved, but only by
sharing additional classical information@23#. We are there-
fore led to ask, are there games with pure quantum equili
whose performancecannot be matched classicallyeven in
the presence of free communication? Surprisingly, the
swer is yes. To demonstrate, we exploit the concept
‘‘dominant’’ strategies.

A player has a dominant strategy if this strategy yield
higher payoff than any alternative,regardlessof the strate-
gies adopted by other players. A rational player will inevi
bly adopt such a strategy, even if players freely conve
before playing~unless we introduce some kind of bindin
contract, which amounts to switching to another payoff ta
entirely!. If every player has a dominant strategy, then
game’s inevitable outcome is thedominant-strategy equilib-
rium. The famous Prisoner’s Dilemma, shown in Fig. 2~a!,
has the dominant-strategy equilibrium~‘‘defect,’’ ‘‘defect’’ !.
As noted above, no maximally entangled two-player qu
tum game can have equilibria in the strategy spaceSU . Thus,
quantization of Prisoner’s Dilemma removes the domina
strategy equilibrium@12#, but does not provide alternativ
coherent equilibria that might offer better payoffs.

To investigate the multiplayer case, we quantize the ga
of Fig. 2~b!. We find that coherent equilibriado occur. The
classically inevitable outcome, now written as (F̂,F̂,F̂), be-
comes a Nash equilibrium – but other, radically super
equilibria emerge. For example, the profiles5„Î , 1/A2(ŝx

1ŝz),ŝx…, with expected payoffs (5,9,5), is a Nash equili
03030
-
e

s

of

r-

e

g

-

e

ia

n-
f

a

-
e

e
e

-

t-

e

r

rium ~and isstrict for players A and C: any unilateral devia
tion necessarily leads toreductionin their expected payoffs!.
Note that there is no in-principle difficultly with the asym
metry @24# of the profile, since in this game we are perm
ting players to communicate with each other prior to playin
The proof that this profile is a Nash equilibrium runs
follows.

Let uc&5„Î ^ 1/A2(ŝx1ŝz) ^ Î …Ĵu000&be the state after
the actions of players A and B, and suppose that playe
applies a general open quantum operationR, i.e., a com-
pletely positive, trace-preserving map on density operat
We can, therefore, writeR(r)5(kM̂ krM̂ k

† , with the restric-

tion (kM̂ k
†M̂k5 Î @25#. We may think of this expansion a

representing ak-outcome measurement, where it is allow
to perform unitary operations conditioned on the outcome
the measurement. The state-change corresponding to
comek is given by uc&°(^cuM̂ k

†M̂ kuc&)21/2M̂ kuc&. Since

player C only applies local operations, the most generalM̂ k

5 Î ^ Î ^ Ĉk , where Ĉk is any 232 matrix. But it is then
simple to show, by applying thisM̂k followed by the gateĴ†,
that player C’s expected payoff is maximized only ifĈk

}ŝx . Thus, the only strategy for player C which maximiz
her expected payoff for every one of her measurement
comes is, up to global phase,sx . Similar arguments for
players A and B verify thats is indeed a Nash equilibrium fo
the full quantum strategy spaceSTCP .

We have seen that superior quantum coherent equili
occur in some games~the three-player Dilemma and the
player Minority Game!, but are absent in others~the three-
player Minority, and any maximally entangled fair two
player game!. But do quantum players always fare at least
well as their classical counterparts? No. Figure 2~c! is the
payoff table for a game with a very high-performing dom
nant strategy; since all other outcomes have much lower t
payoffs, this classically inevitable outcome is optimal. But

FIG. 2. Games possessing a dominant-strategy equilibrium:~a!
The Prisoner’s Dilemma. Each player reasons thus: ‘If my part
were to cooperate, my best action would be to defect. If he wer
defect, my best action is still to defect. So I have adominantstrat-
egy: ‘‘always defect.’’ ’ ~b! A three-player dilemma game. Class
cally, each player has the dominant strategy ‘‘choose 1.’’ Con
quently, each player’s payoff is just two points, despite t
existence of strategy profiles, such as ‘choose 1 with probab
80%’, where all the players have greater expected payoffs.~c! A
game where quantum players dolesswell than their classical coun
terparts.
1-3
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the quantized game this profile, now written as (F̂,F̂,F̂), is
no longer even a Nash equilibrium: any player can unila
ally improve her payoff by switching tos5sy , with severe
consequences for the other players. Hence any equilibri
the quantum game will be inferior to the classical equil
rium: in this game, entanglement ‘‘spoils’’ classical coope
tion.

To conclude, we have performed the first investigation
multiplayer quantum games, finding that such games can
hibit forms of pure quantum equilibrium that have no ana
in classical games, or even in two-player quantum games
the Minority Game, we found that the players were able
exploit entanglement to overcome the frustration in the c
sical variant, and so play the game ‘‘perfectly.’’ More dr
matically, in our Dilemma game the quantum players c
zo
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escape the classical Dilemma entirely: they can play co
eratively knowing that no player can successfully ‘‘defec
against the others. In this respect, quantum entanglemen
fills the role of a contract. A subsequent analysis@26# has
examined the impact of a noisy environment on our D
lemma game.

S.B. was initially attracted to this topic by several insp
ing discussions with Neil Johnson, who conjectured that
ternative forms of equilibria would result from the comple
ity of the N.2 player minority game. We also acknowledg
helpful discussions with Julia Kempe, Art Pittenger, G
Steele Jr., and Vlatko Vedral. The authors were supported
EPSRC, the Rhodes Trust, and the EU QAIP project un
Contract No. EC-IST-1999 11234.
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