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Maximum-likelihood estimation of quantum measurement
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Maximume-likelihood estimation is applied to the determination of an unknown quantum measurement. The
calibrated measuring apparatus carries out measurements on many different quantum states and the positive
operator-valued measure governing the measurement statistics is then inferred from the collected data via the
maximume-likelihood principle. In contrast to the procedures based on linear inversion, our approach always
provides a physically sensible result. We illustrate the method on the case of the Stern-Gerlach apparatus.
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. INTRODUCTION tections off, for the measurements performed on the quan-

) , tum stateg,,. Assuming that the theoretical detection prob-
Let us imagine that we possess an apparatus that perfor

. i MBility py, given by Eq.(1) can be replaced with relative
some measurement on a certain quantum mechanical SySthBquency we may write

such as the spin of an electron. We are not sure which mea-

surement is associated with the measuring device and we N f

would like to calibrate it. Tr[,0,]= > T 0mi= Im (4)
Suppose that the apparatus can respond witifferent 1SmIT e s K

measurement outcomes. As is well known from the theory of 2 firm

guantum measuremefit], such a device is completely char-
acterized by the positive operator-valued meags@®VM)

whosek elementd1, govern the measurement statistics. The
probability p,, that the apparatus will respond with outcome

II, when measuring the quantum state with density matri

whereN is the dimension of the Hilbert space on which the
operatorsil, act. Formula(4) establishes a system of linear

equations for matrix elements of the unknown operakbrs
%f a sufficient amount of data is available then E4j.can be

0 can be expressed as inverted(e.g., by the least squares methathd we can de-
I terminefh . This approach is a direct analog of linear recon-
Pim=TrII,Qm], (1) struction algorithms devised for quantum state and quantum

rocess reconstructions. The linear inversion is simple and
straightforward, but it also has one significant disadvantage.
The linear procedure cannot guarantee the required proper-

@) ties of [T, namely, the condition2). Consequently, the
linear estimation may lead to an unphysical POVM, predict-
which decompose the unit operator, ing negative probabilitiesp|m for certain input quantum
states. To avoid such problems, one should resort to more
k sophisticated nonlinear reconstruction strategy.
> 1=, (3) In this paper we show that the maximum-likeliho@ddL )
=1 estimation is suitable and can be successfully used for the
. calibration of the measuring apparatus. ML estimation has
The condition(2) ensures thapi,=0 and Eq.(3) follows  peen recently applied to reconstruction of quantum states
from the requirement that the total probability is normallzed[6,7] and quantum processésompletely positive maps be-
to unity, 31 ; pym=1. tween density matric$8]. Here we employ it to reconstruct
In order to determine the POVM we have to perform a SEb.n unknownquantum measuremeﬂhereby demonstrating
of measurerrlents on various known quantum states and thegain the remarkable versatility and usefulness of ML esti-
estimate thdl, from the collected experimental data. This mation. Apart from providing physically sensible results the
strategy belongs to the broad class of quantum reconstructidviL estimation also achieves higher accuracy than linear
procedures that have attracted considerable attention reaethods, which is an important practical advantage.
cently. Quantum state reconstruction has been widely studied Our method is completely generic and does not rely on
and now represents a well established technique in mangnya priori assumptions about the measuring apparatus sub-
branches of quantum physi¢fr a review, see, e.g[2,3]). ject to calibration. Of course, in most cases we approxi-
The estimation of quantum mechanical processes, i.e., inputrately know what kind of measurement is performed by the
output transformations of quantum devices, was discussed mpparatus. In some cases we could usealhpsiori informa-
[4] and the problem of complete characterization of an arbition and characterize the device by several parameters which
trary measurement process was recently addressis].in are to be estimated. As a simple example we can mention the
The POVM can be most easily estimated by direct lineaphotodetector, which can be fully characterized by its quan-
inversion of Eq.(1). Let f,,, denote the total number of de- tum efficiency » [9]. However, a calibration restricted by

where Tr stands for the trace. The POVM elements are pos
tive semidefinite Hermitian operators,

I1,=0,

1050-2947/2001/62)/0241024)/$20.00 64 024102-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A 64 024102

somea priori assumptions need not provide an exact de- ﬂ|=ﬁ.ﬂ|ﬁ<.*- (11)
scription of the calibrated apparatus because the device may

behave in a slightly different way than assumed. On the othethe constraint(3) provides a formula for the operator of
hand, the accuracy of the calibration technique presented inagrange multipliers,

this paper is limited only by the number of performed mea-

surements and can be arbitrarily high. Our calibration AIGA =T, (12)
method may thus find practical applications in cases when

one requires a very precise knowledge of the measuremeQere is the positive operator

carried out by the measuring device.

k M
R fim fimr~ o -
Il. MAXIMUM-LIKELIHOOD ESTIMATION 6= X oM. (13
R I=1 m’m’=1 plm p|ml
The estimated operatold, should maximize the likeli- A
hood functional Upon solving Eq(12) we get\ =GY2 We fix the branch of
KoM the square root ofs by requiring that\ should be a positive
E[{ﬂl}]ZH IT (it e, fm, (5) dein:rufeA operatoAr. .We ca}n factonz'e theA r.nat|®<'as G
=1 m=1 =U'AU whereU is a unitary matrix and\ is a diagonal

matrix containing eigenvalues ofs. We define A2

whereM is the number of different quantum states, used =diag(A}2 AY2) and we can write
- 11 -+ »*NN

for the reconstruction. The maximum of the likelihood func-
tional (5) has to be found in the subspace of physically al- R = OtAY2() (14)
lowed operatordl, . We can decompose each operdigras '
N The extremum Eqgs(1l) and (14) can be conveniently
fl= 2 1ol b1 ial ®) sg!ved by means of repeated ite(ations. Noticg that_ both con-
ey Al el ditions (2) and (3) are exactly fulfilled at each iteration step
i because the transformatidh — R IT|R/ preserves the posi-
wherer ;=0 are the eigenvalues di; and|¢|q) are the tivity of IT,.
corresponding orthonormal eigenstates. The maximum of If there exists a POVM whose elemenik meet con-

L[{I1;}] can be found from the extremum conditions. It is straints(2) and (3) and exactly solve the linear Eqg}) then
convenient to work with the logarithm of the original likeli- the ML estimate agrees with the linear inversion. In this case
hood functional and the constraif) has to be incorporated jt holds exactly for alll,m that

by introducing a Hermitian operator whose matrix ele-

mentsA; =)\}‘i are Lagrange multipliers. The extremum con- fim

ditions then read Pm="% (19

E fl’m

k M N
J “ I"=1
W 2 E fl’mln( 2 rl’q’<¢l’q’|9m|¢l’q’>) . . . . . )
lal [ 17=2 m=1 q'=1 On inserting this expression into EJ.0), we find after some
K N algebra that the set &fEqgs.(10) reduces to the formula for
-2 2 rl’q’<¢’l’q’|x|¢|'q/>l =0. (7) the operator of Lagrange multipliers
I"'=1q'=1 Mk
Thus we immediately find )‘:mE:l Izl fim@m- (16)
Figl 1) =Ririql 1a), ®  Notice thath is positive definite. We emphasize that Etf)
where holds only in the special case when the ML and linear esti-
mates coincide. Notice that the operat&sgiven by Eq.(9)
M . . . & . . .
A g fim~ contain the inversion oh. The reconstruction is possible
Ri=A =~ QO- 9 only on such a subspace of the total Hilbert space where the

inversion A ! exists. This restriction can easily be under-

Let us now multiply Eq(8) by (¢,q| from the right and sum stood if we make use of Eq16). The experimental data
overg. Thus we obtain contain only information on the Hilbert subspace probed by

o the density matriceg,, and the reconstruction of the POVM

=R, (100 must be restricted to this subspace.

o The principal advantage of ML estimation lies in its abil-
It follows from this formula thatll,=II,R/. On inserting ity to correctly handle any experimental data and provide
this expression into the right-hand side of EL0), we obtain  reliable estimates in cases when linear algorithms fail. As
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mentioned in the Introduction, the linear inversions may pro-

vide unphysical estimates, namely, operafdisthat are not p'm:; @mnnlin - (18)
positive definite. It should be noted that such a failure of
linear inversion is rather typical and can occur with high Instead of solving the extremum equations, one may di-

probability. This is most apparent if the operatd?[$ are  rectly search for the maximum qif[{fh}] with the help of a

projectors; hencél— 1 eigenvalues of eacHl, are equal to  downhill-simplex algorithni7]. To implement this algorithm
zero. For a sufficiently large number of measured data, theuccessfully, it is necessary to use a minimal parametrization.

linear estimate of a matrix element bf; is a random vari- If we deal vgith anN-level system, then ead, is param-
able with Gaussian distribution centered at the true value. I@trized byN< real numbers. Since the constrai8} allows

the basis where the projectdl, is diagonal, itsN—1 diag- ~ us to determine the operatdt, in terms of the remaining
onal elements fluctuate around zero. It follows that in mosk—1 operators, the number of independent real parameters
cases at least one diagonal element is negative and the linggadsN*(k— 1). Furthermore, we may take advantage of the
inversion yields a nonpositive POVM which cannot describeCholesky decomposition,
any measuring device. L

These problems of linear algorithms stem from the differ- ,=C/C, (19
ence between recorded relative frequencies and theoretical .
probabilities, which are assumed to be equal in @y.The  WhereC, is a lower triangular matrix with real elements on
frequencied,,, are fluctuating quantities with a multinomial its main diagonal. The parametrizatiéh9) is used for the
distribution characterized by probabilitipg, . In an experi-  first k—1 operators, and the last one is calculated from Eq.
ment we can, in principle, detect ary,,. However, some (3),

sets of relative frequencies do not coincide with any theoret- k-1
ical probabilities(1) calculated for given quantum states, ne=i-> c/c, (20)
used for the calibratiori.e., in some cases there does not =1

exist a POVM that would yield probabilitigs,,, equal to the o . L

detected relative frequencieand direct linear inversion of thus achlevmg minimal parametrization. For each parameter
Eq. (4) may then provide an unphysical result. The observaset whereC[{I1,}] is evaluated, one has to check whether the
tion of several different quantum states by a single measuioperator(20) is positive semidefinite. If this does not hold
ing apparatus is equivalent to measurement of several nomken one setsz{:[{f[,}]=0, thereby restricting the numerical
commuting observables on many copies of a given quantursearch for the maximum to the domain of physically allowed
state. In our scheme, however, the role of the quantum staigperators. This domain is a finite volume subspace of an
and the measurement are interchanged, because we emplojN&k— 1)-dimensional space.

known g, to probell, . Thus the ML estimation of the quan-

tum measurement can be interpreted as a synthesis of infor- lll. STERN-GERLACH APPARATUS

mation from mutually incompatible observatiof&. . _ . .

The determination of the quantum measurement can be In this section we |.Ilustra.te the developed formalism by
simplified considerably if we have some reliatdepriori means of n.umerlcgl S|mulat.|ons for a Stern—GerIgch appara-
information about the apparatus. As an example let us briefi{S measuring a spin-1 particle. We compare the linear inver-
consider a class of optical detectors that are sensitive only t&jon @nd ML estimation and demonstrate that the ML algo-
the number of photons in a single mode of the electromagtthm outperforms the linear estimation. S
netic field. The elementdl, of the POVM describing a _ -€tSx Sy, ands, denote the operators of spin projections

phase-insensitive detector are all diagonal in the Fock basif0 @X€sx, ¥, andz, respectively. We choose the three eigen-
states of, as the basis states,|s,)=s,|s,), s,=—1,0,1. In
our numerical simulations, nine different pure quantum states

=2 rlnXn|, (17)  are used for the calibration: three eigenstates,ofind six
n superposition states

1 1.
E(|Jz>+|kz>)a E(|Jz>+||kz>)a

and the ML estimation reduces to the determination of the
eigenvalues |,=0. The extremum Eq911) and (14) sim-

lify to
Py wherej,,k,=—1,0,1 andj,<k,. The measurement on each
M state is performedV times. In the simulations, we assumed
" _Tin fl_mg two slightly different detectors. The first device is an ideal
NN 2 Py ™ Stern-Gerlach apparatus which measures the projection of

the spin component along directim?fn:(l,l,l)/\/§. The op-
erators[1, are projectors

m=1 151 Pim I=1iaal, ja=—101, (21)
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0.25 — T T T T from the simulated experimental data. The ML estimates
(a) ] ﬁj,ML were obtained by iterative solution of the extremum
020 ’ equations(11) and (14). The linear estimatesl; ;, were
g o5l 1 found by solving the system of Eq&l). In order to compare
sz ) these two procedures, we define the variances of the esti-
- mates as
Nég 010} .
0.05 | ~an T UfAL=<E Tr[Aﬁjz,ML]> ,
~ﬁ~-ﬁ“ﬂ——ﬂ—-ﬂ J ens
—-A
0.00 L— ' - - - (23
50 100 150 200 250 300 9 ~
o= > THAIL il )
N j '
ens
0.25 o 1 where ALl vy =11y —11;, AL jin =11 jin =11}, and(Yens
(b) T denotes averaging over the ensemble of all possible experi-
0.20 1 ] mental outcomes.

g We have repeated the reconstruction of the POVM for 100
B 0.15 T different simulated experimental data sets and the ensemble
2 o010k ] averages yielded,, and o%,. The variances were deter-

Y mined for ten different\" and the results are shown in Fig. 1.
0.05 | AL | We can see that the ML estimates exhibit lower fluctuations
) Rt N than the linear ones. Upon comparing Fig&) and 1b) we
0.00L— . . ! ! L find that the difference between the two methods is more
50 100 150 200 250 300 pronounced when the “truell; are projectors but the ML
N estimation is significantly better than linear inversion in both
cases.

FIG. 1. Variances of linear@) and ML (A) estimates versus
the number of measurememsé The figure shows results for both
an ideal(a) and a nonidealb) Stern-Gerlach apparatus.

In summary, we have shown how to reconstruct a generic
quantum measurement with the use of the maximum-
likelihood principle. Our method guarantees that the esti-
~ . o - A~ A A mated POVM, which fully describes the measuring appara-
wheres;|j ) =Jnlin) ands,;:(s)'(+sy+sz)/\/§. As asecond s meets the required positivity constraints. This restriction
example we consider a nonideal Stern-Gerlach apparatyg physically allowed POVMs significantly improves recon-
characterized by a POVM whose elements are incoherenfyction accuracy, which is a considerable practical advan-
mixtures of the projector&l), tage of the ML estimation over linear inversions.

1;=0.951,+0.02511_,+1I,), (22
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