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Maximum-likelihood estimation of quantum measurement
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Maximum-likelihood estimation is applied to the determination of an unknown quantum measurement. The
calibrated measuring apparatus carries out measurements on many different quantum states and the positive
operator-valued measure governing the measurement statistics is then inferred from the collected data via the
maximum-likelihood principle. In contrast to the procedures based on linear inversion, our approach always
provides a physically sensible result. We illustrate the method on the case of the Stern-Gerlach apparatus.
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I. INTRODUCTION

Let us imagine that we possess an apparatus that perf
some measurement on a certain quantum mechanical sy
such as the spin of an electron. We are not sure which m
surement is associated with the measuring device and
would like to calibrate it.

Suppose that the apparatus can respond withk different
measurement outcomes. As is well known from the theory
quantum measurement@1#, such a device is completely cha
acterized by the positive operator-valued measure~POVM!

whosek elementsP̂ l govern the measurement statistics. T
probabilityplm that the apparatus will respond with outcom
P̂ l when measuring the quantum state with density ma
%̂m can be expressed as

plm5Tr@P̂ l %̂m#, ~1!

where Tr stands for the trace. The POVM elements are p
tive semidefinite Hermitian operators,

P̂ l>0, ~2!

which decompose the unit operator,

(
l 51

k

P̂ l5 Î . ~3!

The condition~2! ensures thatplm>0 and Eq.~3! follows
from the requirement that the total probability is normaliz
to unity, ( l 51

k plm51.
In order to determine the POVM we have to perform a

of measurements on various known quantum states and
estimate theP̂ l from the collected experimental data. Th
strategy belongs to the broad class of quantum reconstruc
procedures that have attracted considerable attention
cently. Quantum state reconstruction has been widely stu
and now represents a well established technique in m
branches of quantum physics~for a review, see, e.g.,@2,3#!.
The estimation of quantum mechanical processes, i.e., in
output transformations of quantum devices, was discusse
@4# and the problem of complete characterization of an a
trary measurement process was recently addressed in@5#.

The POVM can be most easily estimated by direct lin
inversion of Eq.~1!. Let f lm denote the total number of de
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tections ofP̂ l for the measurements performed on the qu
tum state%̂m . Assuming that the theoretical detection pro
ability plm given by Eq.~1! can be replaced with relative
frequency, we may write

Tr @P̂ l %̂m#[ (
i , j 51

N

P l ,i j %m, j i 5
f lm

(
l 851

k

f l 8m

, ~4!

whereN is the dimension of the Hilbert space on which t
operatorsP̂ l act. Formula~4! establishes a system of linea
equations for matrix elements of the unknown operatorsP̂ l .
If a sufficient amount of data is available then Eq.~4! can be
inverted~e.g., by the least squares method! and we can de-
termineP̂ l . This approach is a direct analog of linear reco
struction algorithms devised for quantum state and quan
process reconstructions. The linear inversion is simple
straightforward, but it also has one significant disadvanta
The linear procedure cannot guarantee the required pro
ties of P̂ l , namely, the conditions~2!. Consequently, the
linear estimation may lead to an unphysical POVM, predi
ing negative probabilitiesplm for certain input quantum
states. To avoid such problems, one should resort to m
sophisticated nonlinear reconstruction strategy.

In this paper we show that the maximum-likelihood~ML !
estimation is suitable and can be successfully used for
calibration of the measuring apparatus. ML estimation h
been recently applied to reconstruction of quantum sta
@6,7# and quantum processes~completely positive maps be
tween density matrices! @8#. Here we employ it to reconstruc
an unknownquantum measurement, thereby demonstrating
again the remarkable versatility and usefulness of ML e
mation. Apart from providing physically sensible results t
ML estimation also achieves higher accuracy than lin
methods, which is an important practical advantage.

Our method is completely generic and does not rely
anya priori assumptions about the measuring apparatus s
ject to calibration. Of course, in most cases we appro
mately know what kind of measurement is performed by
apparatus. In some cases we could use thisa priori informa-
tion and characterize the device by several parameters w
are to be estimated. As a simple example we can mention
photodetector, which can be fully characterized by its qu
tum efficiencyh @9#. However, a calibration restricted b
©2001 The American Physical Society02-1
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somea priori assumptions need not provide an exact
scription of the calibrated apparatus because the device
behave in a slightly different way than assumed. On the o
hand, the accuracy of the calibration technique presente
this paper is limited only by the number of performed me
surements and can be arbitrarily high. Our calibrat
method may thus find practical applications in cases w
one requires a very precise knowledge of the measurem
carried out by the measuring device.

II. MAXIMUM-LIKELIHOOD ESTIMATION

The estimated operatorsP̂ l should maximize the likeli-
hood functional

L@$P̂ l%#5)
l 51

k

)
m51

M

~Tr@P̂ l %̂m# ! f lm, ~5!

whereM is the number of different quantum states%̂m used
for the reconstruction. The maximum of the likelihood fun
tional ~5! has to be found in the subspace of physically
lowed operatorsP̂ l . We can decompose each operatorP̂ l as

P̂ l5 (
q51

N

r lquf lq&^f lqu, ~6!

where r lq>0 are the eigenvalues ofP̂ l and uf lq& are the
corresponding orthonormal eigenstates. The maximum
L@$P̂ l%# can be found from the extremum conditions. It
convenient to work with the logarithm of the original likel
hood functional and the constraint~3! has to be incorporated
by introducing a Hermitian operatorl̂ whose matrix ele-
mentsl i j 5l j i* are Lagrange multipliers. The extremum co
ditions then read

]

]^f lqu F (
l 851

k

(
m51

M

f l 8m lnS (
q851

N

r l 8q8^f l 8q8u%̂muf l 8q8& D
2 (

l 851

k

(
q851

N

r l 8q8^f l 8q8ul̂uf l 8q8&G50. ~7!

Thus we immediately find

r lquf lq&5R̂l r lquf lq&, ~8!

where

R̂l5l̂21 (
m51

M
f lm

plm
%̂m. ~9!

Let us now multiply Eq.~8! by ^f lqu from the right and sum
over q. Thus we obtain

P̂ l5R̂lP̂ l . ~10!

It follows from this formula thatP̂ l5P̂ l R̂l
† . On inserting

this expression into the right-hand side of Eq.~10!, we obtain
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P̂ l5R̂lP̂ l R̂l
† . ~11!

The constraint~3! provides a formula for the operator o
Lagrange multipliers,

l̂21Ĝl̂215 Î , ~12!

whereĜ is the positive operator

Ĝ5(
l 51

k

(
m,m851

M
f lm

plm

f lm8

plm8

%̂m8P̂ l %̂m . ~13!

Upon solving Eq.~12! we getl̂5Ĝ1/2. We fix the branch of
the square root ofĜ by requiring thatl̂ should be a positive
definite operator. We can factorize the matrixĜ as Ĝ

5Û†L̂Û whereÛ is a unitary matrix andL̂ is a diagonal
matrix containing eigenvalues ofĜ. We define L̂1/2

5diag(L11
1/2, . . . ,LNN

1/2) and we can write

l̂5Û†L̂1/2Û. ~14!

The extremum Eqs.~11! and ~14! can be conveniently
solved by means of repeated iterations. Notice that both c
ditions ~2! and ~3! are exactly fulfilled at each iteration ste
because the transformationP̂ l→R̂lP̂ l R̂l

† preserves the posi

tivity of P̂ l .
If there exists a POVM whose elementsP̂ l meet con-

straints~2! and~3! and exactly solve the linear Eqs.~4! then
the ML estimate agrees with the linear inversion. In this ca
it holds exactly for alll ,m that

plm5
f lm

(
l 851

k

f l 8m

. ~15!

On inserting this expression into Eq.~10!, we find after some
algebra that the set ofk Eqs.~10! reduces to the formula fo
the operator of Lagrange multipliers

l̂5 (
m51

M

(
l 51

k

f lm%̂m . ~16!

Notice thatl̂ is positive definite. We emphasize that Eq.~16!
holds only in the special case when the ML and linear e
mates coincide. Notice that the operatorsR̂l given by Eq.~9!

contain the inversion ofl̂. The reconstruction is possibl
only on such a subspace of the total Hilbert space where
inversion l̂21 exists. This restriction can easily be unde
stood if we make use of Eq.~16!. The experimental data
contain only information on the Hilbert subspace probed
the density matrices%̂m and the reconstruction of the POVM
must be restricted to this subspace.

The principal advantage of ML estimation lies in its ab
ity to correctly handle any experimental data and prov
reliable estimates in cases when linear algorithms fail.
2-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 024102
mentioned in the Introduction, the linear inversions may p
vide unphysical estimates, namely, operatorsP̂ l that are not
positive definite. It should be noted that such a failure
linear inversion is rather typical and can occur with hi
probability. This is most apparent if the operatorsP̂ l are
projectors; henceN21 eigenvalues of eachP̂ l are equal to
zero. For a sufficiently large number of measured data,
linear estimate of a matrix element ofP̂ l is a random vari-
able with Gaussian distribution centered at the true value
the basis where the projectorP̂ l is diagonal, itsN21 diag-
onal elements fluctuate around zero. It follows that in m
cases at least one diagonal element is negative and the l
inversion yields a nonpositive POVM which cannot descr
any measuring device.

These problems of linear algorithms stem from the diff
ence between recorded relative frequencies and theore
probabilities, which are assumed to be equal in Eq.~4!. The
frequenciesf lm are fluctuating quantities with a multinomia
distribution characterized by probabilitiesplm . In an experi-
ment we can, in principle, detect anyf lm . However, some
sets of relative frequencies do not coincide with any theo
ical probabilities~1! calculated for given quantum states%̂m
used for the calibration~i.e., in some cases there does n
exist a POVM that would yield probabilitiesplm equal to the
detected relative frequencies! and direct linear inversion o
Eq. ~4! may then provide an unphysical result. The obser
tion of several different quantum states by a single mea
ing apparatus is equivalent to measurement of several
commuting observables on many copies of a given quan
state. In our scheme, however, the role of the quantum s
and the measurement are interchanged, because we emp
known%̂m to probeP̂ l . Thus the ML estimation of the quan
tum measurement can be interpreted as a synthesis of i
mation from mutually incompatible observations@6#.

The determination of the quantum measurement can
simplified considerably if we have some reliablea priori
information about the apparatus. As an example let us bri
consider a class of optical detectors that are sensitive on
the number of photons in a single mode of the electrom
netic field. The elementsP̂ l of the POVM describing a
phase-insensitive detector are all diagonal in the Fock ba

P̂ l5(
n

r lnun&^nu, ~17!

and the ML estimation reduces to the determination of
eigenvaluesr ln>0. The extremum Eqs.~11! and ~14! sim-
plify to

r ln5
r ln

ln
(

m51

M
f lm

plm
%m,nn ,

ln5 (
m51

M

(
l 51

k
f lm

plm
%m,nnr ln ,
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plm5(
n

%m,nnr ln . ~18!

Instead of solving the extremum equations, one may
rectly search for the maximum ofL@$P̂ l%# with the help of a
downhill-simplex algorithm@7#. To implement this algorithm
successfully, it is necessary to use a minimal parametrizat
If we deal with anN-level system, then eachP̂ l is param-
etrized byN2 real numbers. Since the constraint~3! allows
us to determine the operatorP̂k in terms of the remaining
k21 operators, the number of independent real parame
readsN2(k21). Furthermore, we may take advantage of t
Cholesky decomposition,

P̂ l5Ĉl
†Ĉl , ~19!

whereĈl is a lower triangular matrix with real elements o
its main diagonal. The parametrization~19! is used for the
first k21 operators, and the last one is calculated from
~3!,

P̂k5 Î 2 (
l 51

k21

Ĉl
†Ĉl , ~20!

thus achieving minimal parametrization. For each param
set whereL@$P̂ l%# is evaluated, one has to check whether t
operator~20! is positive semidefinite. If this does not hol
then one setsL@$P̂ l%#50, thereby restricting the numerica
search for the maximum to the domain of physically allow
operators. This domain is a finite volume subspace of
N2(k21)-dimensional space.

III. STERN-GERLACH APPARATUS

In this section we illustrate the developed formalism
means of numerical simulations for a Stern-Gerlach app
tus measuring a spin-1 particle. We compare the linear in
sion and ML estimation and demonstrate that the ML alg
rithm outperforms the linear estimation.

Let ŝx , ŝy , andŝz denote the operators of spin projectio
to axesx, y, andz, respectively. We choose the three eige
states ofŝz as the basis states,ŝzusz&5szusz&, sz521,0,1. In
our numerical simulations, nine different pure quantum sta
are used for the calibration: three eigenstates ofŝz and six
superposition states

1

A2
~ u j z&1ukz&),

1

A2
~ u j z&1 i ukz&),

where j z ,kz521,0,1 andj z,kz . The measurement on eac
state is performedN times. In the simulations, we assume
two slightly different detectors. The first device is an ide
Stern-Gerlach apparatus which measures the projectio
the spin component along directionnW 5(1,1,1)/A3. The op-
eratorsP̂ l are projectors

P̂ j5u j nW&^ j nW u, j nW521,0,1, ~21!
2-3



at
re

ea
V

tes
m

esti-

eri-

00
ble

r-
1.
ns

ore

th

eric
m-
sti-
ra-
ion
n-
an-

e-
icle

h

BRIEF REPORTS PHYSICAL REVIEW A 64 024102
whereŝnW u j nW&5 j nW u j nW& and ŝnW5( ŝx1 ŝy1 ŝz)/A3. As a second
example we consider a nonideal Stern-Gerlach appar
characterized by a POVM whose elements are incohe
mixtures of the projectors~21!,

P̂1850.95P̂110.025~P̂211P̂0!, ~22!

and the expressions forP̂218 and P̂08 can be obtained by
cyclic permutations of the subscripts21,0,1.

We have performed Monte Carlo simulations of the m
surements and have subsequently reconstructed the PO

FIG. 1. Variances of linear (s) and ML (n) estimates versus
the number of measurementsN. The figure shows results for bot
an ideal~a! and a nonideal~b! Stern-Gerlach apparatus.
ry
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from the simulated experimental data. The ML estima
P̂ j ,ML were obtained by iterative solution of the extremu
equations~11! and ~14!. The linear estimatesP̂ j , lin were
found by solving the system of Eqs.~4!. In order to compare
these two procedures, we define the variances of the
mates as

sML
2 5K (

j
Tr@DP̂ j ,ML

2 #L
ens

,

~23!

s lin
2 5K (

j
Tr@DP̂ j , lin

2 #L
ens

,

whereDP̂ j ,ML5P̂ j ,ML2P̂ j , DP̂ j , lin5P̂ j , lin2P̂ j , and^&ens
denotes averaging over the ensemble of all possible exp
mental outcomes.

We have repeated the reconstruction of the POVM for 1
different simulated experimental data sets and the ensem
averages yieldedsML

2 and s lin
2 . The variances were dete

mined for ten differentN and the results are shown in Fig.
We can see that the ML estimates exhibit lower fluctuatio
than the linear ones. Upon comparing Figs. 1~a! and 1~b! we
find that the difference between the two methods is m
pronounced when the ‘‘true’’P̂ j are projectors but the ML
estimation is significantly better than linear inversion in bo
cases.

In summary, we have shown how to reconstruct a gen
quantum measurement with the use of the maximu
likelihood principle. Our method guarantees that the e
mated POVM, which fully describes the measuring appa
tus, meets the required positivity constraints. This restrict
to physically allowed POVMs significantly improves reco
struction accuracy, which is a considerable practical adv
tage of the ML estimation over linear inversions.

ACKNOWLEDGMENTS

I would like to thank Z. Hradil, M. Jezˇek, and J. Rˇ eháček
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