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Violations of local realism with quantum systems described byN-dimensional Hilbert spaces
up to NÄ16
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1FUND, Free University of Brussels, Pleinlaan 2, B-1050 Brussels, Belgium

2Instytut Fizyki Dos´wiadczalnej, Uniwersytet Gdan´ski, PL-80-952 Gdan´sk, Poland
3Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

4Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdan´ski, PL-80-952, Gdan´sk, Poland
~Received 18 January 2001; published 10 July 2001!

Predictions for systems in entangled states cannot be described in local realistic terms. However, after
admixing some noise such a description is possible. We show that for two quantum systems described by
N-dimensional Hilbert spaces~quNits! in a maximally entangled state the minimal admixture of noise increases
monotonically withN. The results are a direct extension of those of Kaszlikowskiet al. @Phys. Rev. Lett.85,
4418~2000!#, where results forN<9 were presented. The extension up toN516 is possible when one defines
for eachN a specially chosen set of observables. We also present results concerning the critical detectors
efficiency beyond which a valid test of local realism for entangled quNits is possible.
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In early 1990s Peres and Gisin@1# have shown that if one
considers certaindichotomicobservables applied to a max
mally entangled state of two particles described by
N-dimensional Hilbert space~quNits!, the violation of local
realism, or more precisely of the CHSH inequalities, s
vives the limit ofN→` and is maximal there. However, fo
any dichotomic quantum observables the CHSH inequali
give violations bounded by the Tsirelson limit@2#, i.e., it is
limited by the factor ofA2. Therefore, the question wheth
the violation of local realism increases with growingN was
still left open.

It has been recently shown@3# that one indeed observes a
increase withN of the discrepancy between quantum a
local realistic description of two maximally entangled quN
observed via unbiased multiport beam splitters@4#. The re-
sults presented in@3# have been obtained via a numeric
method of linear optimization and have been limited toN
59 @5,6#.

In the present paper we extend the computations up
N516. In the case of the method presented in@3# for N
>10 the computational time was prohibitively long. W
avoid this problem here by a careful choice of a fixed se
two pairs of observables for eachN. As a result one can
avoid the time-consuming search for optimal sets of obse
ables, which was a part of the computer program used in@3#.

Another critical parameter for any Bell-type test is t
threshold efficiency of the detector to make it an uncon
tionally valid test of local realism. The efficiency of a dete
tor is usually defined as its probability to fire when the qua
tum particle enters it. The procedure used in@3# can be easily
adapted to also handle the question of inefficient detect
We report here the threshold values of efficiency forN up to
16. It decreases withN; however, the decrease is very slo

Let us consider two quNit systems described by the mi
states in the form

rN~FN!5FNrnoise1~12FN!uCmax
N &^Cmax

N u, ~1!

where uCmax
N & is a maximally entangled two quNit state
1050-2947/2001/64~2!/024101~4!/$20.00 64 0241
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rnoise5(1/N2) Î , and the positive parameterFN<1 deter-
mines the ‘‘noise fraction’’ within the full state. The thresh
old minimal FN

tr , for which the staterN(FN) allows a local
realistic model, will be our numerical value of the strength
violation of local realism by the quantum stateuCmax

N &. The
higherFN

tr is the higher the minimum noise admixture is th
is required to hide the nonclassicality of the quantum pred
tion.

To overcome the mentioned Tsirelson limit one has to
nondichotomic observables. Here, as in the previous wo
we limit ourselves to observables defined by unbiased m
tiport beam splitters.

Unbiased2N-port beam splitters@7# are devices with the
following property: if one photon enters into any single inp
port ~out of theN), its chances of exit are equally split be
tween all N output ports. The unbiased multiports are
operational realization of the concept ofmutually unbiased
bases, see@8#. Such bases are ‘‘as different as possible’’@9#,
i.e., fully complementary. The 50-50 beam splitter is the si
plest member of the family.

One can always build an unbiased multiport with the d
tinguishing trait that the elements of its unitary transiti
matrix UN are solely powers of theNth root of unity gN

5exp(i2p/N), namelyUj i
N5(1/AN)gN

( j 21)(i 21) . Devices en-
dowed with such a matrix were proposed to be called B
multiports @10#.

Let us now imagine spatially separated Alice and B
who perform the experiment of Eq.~1!. The maximally en-
tangled state of the two quNits

uCmax
N &5

1

AN
(

m51

N

um,A&um,B&, ~2!

where, e.g.,um,A& describes a photon in modem propagat-
ing to Alice, can be prepared with the aid of parametric do
conversion~see@10#!. The two sets ofN phase shifters at the
inputs of the multiports, which are denoted asN-dimensional
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW A 64 024101
‘‘vectors of phases’’fW A5(fA
1 ,fA

2 , . . . ,fA
N) for Alice and

fW B5(fB
1 ,fB

2 , . . . ,fB
N) for Bob, introduce phase facto

ei (fA
m

1fB
m) in front of themth component of the initial state

~2!, wherefA
m and fB

m denote the local phase shifts. Alic
measures two observablesA1 ,A2 defined by sets of phas
shifts fW A1

,fW A2
, whereas Bob measures two observab

B1 ,B2 defined by sets of the phase shiftsfW B1
,fW B2

~see Fig.
1!.

Each set of local phase shifts constitutes the interferom
ric realizations of the ‘‘knobs’’ at the disposal of the observ
controlling the local measuring apparatus which incorpora
also the Bell multiport andN detectors. In this way the loca
observable is defined. Its eigenvalues refer simply to re
tration at one of theN detectors behind the multiport. Th
quantum prediction for the joint probabilityPFN

QM(k,l ) to de-

tect a photon at thekth output of the multiportA and another
one at thel th output of the multiportB calculated for the
state~1! is given by

PFN

QM~k,l ;fA
1 , . . .fA

N ,fB
1 , . . .fB

N!

5
12FN

N U (
m51

N

exp@ i ~fA
m1fB

m!#Umk
N Uml

N U2

1
FN

N2

5
12FN

N3 S N12 (
m.n

N

cos~Fkl
m2Fkl

n !D 1
FN

N2 , ~3!

whereFkl
m[fA

m1fB
m1@m(k1 l 22)#(2p/N). The counts at

a single detector, of course, do not depend upon the l
phase settings:PFN

QM(k)5PFN

QM( l )51/N.

The essential result of@3# is that quNits violate local re-
alism more strongly than qubits in the following sense:
required minimal admixture of pure noise to the maxima
entangled state, such that a local realistic description of
quantum predictions becomes possible, increases withN.
This result has been obtained via numerical methods of
ear optimization. Here we give a brief account of the meth
sending the reader for a more detailed description to@3#.

It is well known ~see, e.g.,@11,14#! that the hypothesis o
local hidden variables is equivalent to the existence o
~non-negative! joint probability distribution involving all
four observables (A1 ,A2 ,B1 ,B2) from which it should be

FIG. 1. The experiment of Alice and Bob with entangled quNi
Each of their measuring apparata consist of a set ofN phase shifters
~PS! just in front of a 2N port Bell multiport, andN photon detec-
tors Dk ,Dl ~perfect, in the gedanken situation described he!
which register photons in the output ports of the device. The ph
shifters serve the role of the devices which set the free macrosc
classical parameters which can be controlled by the experimen
The source produces a beam-entangled two-particle state.
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possible to obtain all the quantum predictions as margin
Let us denote this hypothetical joint distribution b
PHV(k1 ,k2 ,l 1 ,l 2), wherek1 and k2 represent the outcom
values for Alice8s measurement of observablesA1 and A2,
and l 1 and l 2 represent the outcome values for Bob’s me
surement of observablesB1 and B2. In quantum mechanics
one cannot even define such a distribution, since it invol
mutually incompatible measurements. A given set of qu
tum predictions, herePFN

QM(ki ,l j uAi ,Bj ), is reproducible by

PHV(k1 ,k2 ,l 1 ,l 2), if and only if

PFN

QM~ki ,l j uAi ,Bj !5(ki 11
( l j 11

PHV~k1 ,k2 ,l 1 ,l 2!, ~4!

whereki 11 and l j 11 are understood as modulo 2. The Be
theorem, within this context, says that there are quan
predictions, which forFN below a certain threshold canno
be modeled by Eq.~4!, i.e., there exists a criticalFN

tr below
which one cannot have any local realistic model. The 4N2

linear equations~4! imposed onN4 local hidden probabilities
PHV(k1 ,k2 ,l 1 ,l 2) form the full set of necessary and suffi
cient conditions for the existence of local and realistic d
scription of the experiment. This is a typical linear optimiz
tion problem with N411 non-negative unknowns
PHV(k1 ,k2 ,l 1 ,l 2) andFN , and 4N2 linear conditions~4!.

In the previous work@3# an involved computer algorithm
@12# was used to~i! solve the linear optimization problem fo
finding a minimal thresholdFN

tr for which, under specific
chosen settings, Eq.~4! is satisfied, and~ii ! find such settings
for which ~i! gives the highest possible valueFN

tr ~the so-
called ‘‘amoeba’’ procedure was used@13#!. Since the task
~ii ! makes the computation, for highN, highly time consum-
ing ~since for each set of settings~i! has to be solved!, the
results of@3# reach onlyN59.

Here we avoid this problem by dropping the point~ii !
altogether. We search forFN

tr for a specific single set of ob
servablesA1

(N) , A2
(N) , B1

(N) , B2
(N) for each N. We have

used the phase settings in the following form:fW A1

5(0,0, . . . ,0),fW A2
5„0,p/N,2p/N, . . . , (N21)p/N… for

Alice and fW B1
5„0,p/2N,2p/2N, . . . ,(N21)p/2N…,fW B2

5

2fW B1
for Bob. For N52 fA1

2 50, fA2

2 5p/2, fB1

2

5p/4, fB2

2 52p/4. These are the standard phases for

maximal violations of local realism in a two-qubit exper
ment ~the first phase in each ‘‘phase vector’’ is irrelevan!.
For N53, fW A1

5(0,0,0), fW A2
5(0,p/3,2p/3) and fW B1

5(0,p/6,p/3), fW B2
5(0,2p/6,2p/3) give maximal viola-

tion of local realism~a result of@3# discussed in@15#!. For
N>4 the phases were guessed. However, for up toN59
these phases have given exactly the same results as tha
tained with the second stage of optimization in@3#. Of
course, we do not know if they are really optimal forN
>10 because there is no data for comparison. Neverthe
the violation of local realism obtained for these phases s
grows withN as it is depicted in Fig. 2 and the growth ha
the same character as forN<9.
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BRIEF REPORTS PHYSICAL REVIEW A 64 024101
Another interesting question that may be raised here c
cerns the critical quantum efficiency of detectors bel
which there exists a local and realistic description of
system in the case without noise. It was showed@17# that for
N52 the critical efficiency equals 2A222('0.828). Taking
into account that violation of local realism grows withN one
may expect that for higher dimensions of Hilbert space
critical efficiency is lower than for two qubits. This proble
has not been investigated in our previous work. Here
show that the presented method can be just as well applie
study this.

To this end it is necessary to modify the conditions~4! so
as to take into account the probabilities of nondetect
events, which are characterized by the quantum efficienc
detectorsh (0<h<1) ~for simplicity we assume that th
efficiencies of all detectors are the same!. This can be
achieved as follows. To a local nondetection event we
cribe the additional value that differs from the values
cribed to the firings of detectors, say 0. In this case there
more local hidden probabilities and more linear constra
imposed on them for now the indices enumerating poss
events extend from 0 toN ~before the range was 1, . . . ,N).

For non-ideal detectors, each endowed with identical
efficiency, the quantum probabilitiesPFN ,h

QM (ki ,l j uAi ,Bj ) of

coincidences between detectorki at Alice’s side and detecto
l j at Bob’s side (ki ,l jÞ0) while measuring observable
Ai ,Bj are equal to the corresponding probabilities with id
detectors (h51) multiplied byh2, i.e., PFN ,h

QM (ki ,l j uAi ,Bj )

FIG. 2. Dependence of the critical noise admixture to the ma
mally entangled state~2! on the dimension of the Hilbert space of
single subsystem. For larger noise than shown here local rea
description exists. The increase of the value is interpreted a
objective measure of the increasing withN nonclassicality of pairs
of entangled quNits.
tt.
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5h2PFN

QM(ki ,l juAi ,Bj). The quantum probabilities

PFN ,h
QM (0,l j uAi ,Bj ) and PFN ,h

QM (ki ,0uAi ,Bj ) ( l iÞ0,kiÞ0) of
events when one detector fails to fire at one of the sides
the experiment equals (1/N)h(12h) whereas the probabil
ity of the event when both detectors fail to fir
PFN ,h

QM (0,0uAi ,Bj ) is (12h)2. Replacing the left-hand side
of Eq. ~4! by appropriate quantum probabilities, i.e
PHV(ki ,l j uAi ,Bj )5Ph,FN

QM (ki ,l j uAi ,Bj ), one again obtains a

linear optimization problem with respect toFN , in which
there are now (N11)4 local hidden probabilities and 4(N
11)2 linear constrains.

Due to the fact thath enters into equations quadratical
it is not possible to optimize it by means of linear progra
ing methods. The simple way of solving this difficulty is th
following. One decreases the value ofh ~in our case by
1% ! starting fromh51 and keeping the local phases fixe
until the program returnsFN50, which signals that for this
efficiency there is already a local and realistic description.
course, the critical efficiency applies only to the case of
observables chosen here. Once different observables or
haps some nonmaximally entangled state~compare@16#! are
chosen it may be lower. The results are depicted in Fig
We see that critical efficiency decreases very slowly but c
tinuously from the value obtained by Garg and Mermin@17#
for two qubits (N52).
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FIG. 3. Dependence of critical quantum efficiency of detect
hN

cr versus the dimension of the Hilbert spaceN.
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