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Violations of local realism with quantum systems described byN-dimensional Hilbert spaces
up to N=16
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Predictions for systems in entangled states cannot be described in local realistic terms. However, after
admixing some noise such a description is possible. We show that for two quantum systems described by
N-dimensional Hilbert spacdguNits) in a maximally entangled state the minimal admixture of noise increases
monotonically withN. The results are a direct extension of those of Kaszlikowsldl. [Phys. Rev. Lett85,
4418(2000], where results foN<9 were presented. The extension upNte 16 is possible when one defines
for eachN a specially chosen set of observables. We also present results concerning the critical detectors
efficiency beyond which a valid test of local realism for entangled quNits is possible.

DOI: 10.1103/PhysRevA.64.024101 PACS nuntber03.65.Ta, 42.50.Dv

In early 1990s Peres and Gidih|] have shown that if one Proise= (1IN, and the positive parametdfy<1 deter-
considers certainlichotomicobservables applied to a maxi- mines the “noise fraction” within the full state. The thresh-
mally entangled state of two particles described by ary|d minimal FY, for which the statey(Fy) allows a local
N-dimensional Hilbert spacgguNits), the violation of local  realistic model, will be our numerical value of the strength of
realism, or more precisely of the CHSH inequalities, Sur;isjation of local realism by the quantum stdté"_ ). The
vives the limit ofN—¢ and is maximal there. However, for onerFtr s the higher the minimum noise admixture is that

any dichotomic quantum observables the CHSH inequalities . . g -
give violations bounded by the Tsirelson linjR], i.e., it is Esornequwed to hide the nonclassicality of the quantum predic

limited by the factor ofy2. Therefore, the question whether ™" \ercome the mentioned Tsirelson limit one has to use
the violation of local realism increases with growiNgwas g gichotomic observables. Here, as in the previous work,

still left open. _ we limit ourselves to observables defined by unbiased mul-
It has been recently showB] that one indeed observes an tiport beam splitters.

increase withN of the discrepancy between quantum and ™ piased2N-port beam splitter§7] are devices with the

local realistic description of two maximally entangled quNits ¢ 6ying property: if one photon enters into any single input
observed via unp|ased multiport bear_n sphtF[a@ The re- port (out of theN), its chances of exit are equally split be-
sults presented iii3] have been obtained via a numerical tween allN output ports. The unbiased multiports are an

method of linear optimization and have been limitedNO  ,nerational realization of the concept miutually unbiased
=9 [5,6] bases seg[8]. Such bases are “as different as possidie},

In the present paper we extend the computations up tP.e., fully complementary. The 50-50 beam splitter is the sim-
N=16. In the case of the method presented3h for N plest member of the family.

=10 the computational time was prohibitively long. We * gng can always build an unbiased multiport with the dis-
avoid this problem here by a careful choice of a fixed set Okjngishing trait that the elements of its unitary transition
two.éJarl]rs of observables for e":]d? As a relsult onfe cban matrix UN are solely powers of theNth root of unity yy
avoid the time-consuming search for optimal sets of observz_ g, 6>\ namelyU) = (1//N) 4~ 20-1) Devices en-

ables, which was a part of the computer program us¢glin dowed with such a matrix were proposed to be called Bell

Another critical parameter for any Bell-type test is the _
threshold effici f the detector t ke it gi.multiports[10].
resnolc Sliciency of the corector o maxe 1 an Hneon Let us now imagine spatially separated Alice and Bob

tionally valid test of local realism. The efficiency of a detec- : - _
tor is usually defined as its probability to fire when the quan-Who perform the experiment of Eq1). The maximally en

tum particle enters it. The procedure usedidhcan be easily tangled state of the two quNits

adapted to also handle the question of inefficient detectors.

We report here the threshold values of efficiencyNoup to

16. It decreases witN; however, the decrease is very slow.
Let us consider two quNit systems described by the mixed

states in the form

N

>, Im,A)m,B), )

|\pN Q:i
ma \/Nm:].

where, e.g.|m,A) describes a photon in mode propagat-
Pn(FN)=Fnpnoiset (1= F) | PR (PRI, (1)  ingto Alice, can be prepared with the aid of parametric down
conversion(seg[10]). The two sets oN phase shifters at the
where | _) is a maximally entangled two quNit state, inputs of the multiports, which are denotedMslimensional
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¢! ¢! possible to obtain all the quantum predictions as marginals.

3; - 02 5 —* Di Let us denote this hypothetical joint distribution by
¢ B I = A * PHV(ky,kz,14,15), wherek, andk, represent the outcome
D o o . values for Alicés measurement of observablas and A,,
d ' ' g andl; andl, represent the outcome values for Bob’s mea-

surement of observabld®;, andB,. In qguantum mechanics
Each of their measuring apparata consist of a sét pfiase shifters one Cannpt even Qeflne such a dlstrlbutlon., since it involves
(PS just in front of a 2N port Bell multiport, andN photon detec- mutually _mc_:ompat'bleQTAeasurementS' _A given Se_t of quan-
tors D,D, (perfect, in the gedanken situation described here (UM predictions, her@g “(k; J1ilAi,Bj), is reproducible by
which register photons in the output ports of the device. The phas€™V(ky,k,11,15), if and only if

shifters serve the role of the devices which set the free macroscopic,

classical parameters which can be controlled by the experimenters. oM Hy

The source produces a beam-entangled two-particle state. PFN (ki '|i|Ai 'Bj): Eki+12|j+1p (ky.ka,l1,02),  (4)

FIG. 1. The experiment of Alice and Bob with entangled quNits.

@ ny _ 1 2 N H
vectors of phases'da=(¢u.da. - . .¢a) for Alice and wherek;, 1 andl;, ; are understood as modulo 2. The Bell

bs=(05. 85, ... .¢5) for Bob, introduce phase factor theorem, within this context, says that there are quantum
el (PA+48) in front of the mth component of the initial state predictions, which forFy below a certain threshold cannot
(2), where ¢} and ¢ denote the local phase shifts. Alice be modeled by Eq4), i.e., there exists a criticaﬂt,\ﬁ below
measures two observablés ,A, defined by sets of phase which one cannot have any local realistic model. Ti¢? 4
shifts (ZAl'(ZAZ’ whereas Bob measures two observabledinéar equationg4) imposed orN“ local hidden probabilities

. P _ PHV(ky,kp,14,1,) form the full set of necessary and suffi-
B1,B, defined by sets of the phase shiitg ,¢s, (see Fig.  ient conditions for the existence of local and realistic de-

1). scription of the experiment. This is a typical linear optimiza-
Each set of local phase shifts constitutes the interferometion problem with N*+1 non-negative unknowns,
ric realizations of the “knobs” at the disposal of the observerp"V(k, k,,l,,l,) andFy, and AN? linear conditiong(4).
controlling the local measuring apparatus which incorporates |n the previous work3] an involved computer algorithm
also the Bell multiport andN detectors. In this way the local [12] was used tdi) solve the linear optimization problem for
observable is defined. Its eigenvalues refer simply to regisfinding a minimal threshold=}, for which, under specific
tration at one of theN detectors behind the multiport. The ¢hosen settings, E¢4) is satisfied, andii) find such settings
quantum prediction for the joint probabiliE"'(k,!) to de-  for which (i) gives the highest possible vald! (the so-
tect a photon at thkth output of the multiporA and another called “amoeba” procedure was us¢ii3]). Since the task
one at thelth output of the multiporB calculated for the (i) makes the computation, for hid, highly time consum-

state(1) is given by ing (since for each set of settings has to be solved the
results of[3] reach onlyN=9.
PRV (K, . - - dp ba, - - - BB) Here we avoid this problem by dropping the poiiib
\ ) altogether. We search féf}, for a specific single set of ob-
_1-Fy S exeli (40 SN UN |+ Fn servablesA(Y, AN B{M, BMY for each N. We have
N @ HI(at de) lUmlm| + 2 used the phase settings in the following fornaﬁﬁA1
B =(0,0,...,0)pa =(0,m/N,2w/N, ..., (N—1)m/N) for
I:N FN 2

=z

N
N+2 > cog®df—df)

m>n

tN2 @ Alice and ¢g =(0m/2N,27/2N, ..., (N—1)7/2N), bg =
—&Bl for Bob. For N=2 ¢i1=0, ¢,§2=77/2, ¢251

where®{j= g3+ o5 +[m(k+1-2)](27/N). The counts at = /4, ¢§2=—7r/4. These are the standard phases for the
a single detector, of course, do not depend upon the IOCZ?1l1aximal violations of local realism in a two-qubit experi-

phase settlngsPS,L"'(k): P(an’;vl(l): IN. ment (the first phase in each “phase vector” is irrelevant
The essential result 48] is that quNits violate local re- gq, N=3, (ZA =(0,0,0), (ZA =(0,7/3,27/3) and (ZB
alism more strongly than qubits in the following sense: the : 2 ) . ot
required minimal admixture of pure noise to the maximally =(0,7/6,7/3), ¢g,=(0,— 7/6,— 7/3) give maximal viola-
entangled state, such that a local realistic description of théion of local realism(a result of{3] discussed irj15]). For
quantum predictions becomes possible, increases With N=4 the phases were guessed. However, for ufNte9
This result has been obtained via numerical methods of linthese phases have given exactly the same results as that ob-
ear optimization. Here we give a brief account of the methodained with the second stage of optimization [i8]. Of
sending the reader for a more detailed descriptiof8to course, we do not know if they are really optimal fiur
It is well known (see, e.g.[11,14]) that the hypothesis of =10 because there is no data for comparison. Nevertheless,
local hidden variables is equivalent to the existence of ahe violation of local realism obtained for these phases still
(non-negative joint probability distribution involving all  grows withN as it is depicted in Fig. 2 and the growth has
four observablesA;,A,,B;,B,) from which it should be the same character as fNi<9.
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FIG. 2. Dependence of the critical noise admixture to the maxi-
mally entangled stat€?) on the dimension of the Hilbert space of a
single subsystem. For larger noise than shown here local realistid
description exists. The increase of the value is interpreted as a&,fp?'\"(ki ,|].|A1. ,Bj). The quantum probabilities
objective measure of the increasing withnonclassicality of pairs Mo M
) 9 YOLPals  pRM (0l|A;.B;) and PRV (k,0[A;,B;) (I;#0k#0) of

of entangled quNits. . . .
events when one detector fails to fire at one of the sides of

) ) ] ) the experiment equals (1) »(1— ») whereas the probabil-
Another interesting question that may be raised here conty of the event when both detectors fail to fire

cerns the critical quantum efficiency of detectors beIOngM7](0,qAi ,B)) is (1— 7)2. Replacing the left-hand side

\évhlch there exists a local ar_ld realistic description of the Eq. (4) by appropriate quantum probabiliies, ie.,
ystem in the case without noise. It was shoWEd that for PHY(k; |j|Ai B)= PQl\éI (k |j|Ai B,), one again obtains a
— .- . . _ ~ . i) i) 7], N i) ’ i)

N=2 the criical efficiency equals2—2(~0.828). Taking linear optimization problem with respect #y, in which

into account that violation of local realism grows withone 4 X N
may expect that for higher dimensions of Hilbert space théher% are nowl(l+1_) local hidden probabilities and A(
+1)“ linear constrains.

critical efficiency is lower than for two qubits. This problem Due to the fact thaty enters into equations quadratically

has not been investigated in our previous work. Here we, . . L >
: - "t is not possible to optimize it by means of linear program-
show that the presented method can be just as well appI'EdTﬂg methods. The simple way of solving this difficulty is the

study this. following. One decreases the value gf (in our case by
To this end it is necessary to modify the conditidA5S0 194 starting fromy=1 and keeping the local phases fixed
as to take. into account the probabilities of non<_:ie_tect|oqmti| the program return =0, which signals that for this
events, which are characterized by the quantum efficiency oftficiency there is already a local and realistic description. Of
detectorsy (0<#=1) (for simplicity we assume that the course, the critical efficiency applies only to the case of the
efficiencies of all detectors are the sam@&his can be opservables chosen here. Once different observables or per-
achieved as follows. To a local nondetection event we ashaps some nonmaximally entangled staempard 16]) are
cribe the additional value that differs from the values aschosen it may be lower. The results are depicted in Fig. 3.
cribed to the firings of detectors, say 0. In this case there ar@/e see that critical efficiency decreases very slowly but con-
more local hidden probabilities and more linear constraintginuously from the value obtained by Garg and Merrfii]
imposed on them for now the indices enumerating possibléor two qubits N=2).
events extend from O tbl (before the range was 1. . ,N). M.Z. and D.K. were supported by the KBN Grant No. 5
For non-ideal detectors, each endoned with identical in—PO3B 088 20; D.K. was supported by Fundacja na
efficiency, the quantum probabilitie82" (ki .|j|A;B;) of  pec, Nauki Polskiej. T.D. is affiliated with the Fund for
coincidences between detectgrat Alice’s side and detector Scientific ResearctFWO), Flanders, and is a member of the
l; at Bob's side k;,|;#0) while measuring observables research group FUNDV.U.B.). This paper was written in
A; ,B; are equal to the corresponding probabilities with idealthe framework of the Flemish-Polish Scientific Collaboration
detectors =1) multiplied by %°, i.e., P2 (k;,I]|A;,Bj)  Program No. 007.

FIG. 3. Dependence of critical quantum efficiency of detectors
N\ versus the dimension of the Hilbert spade
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