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Low-frequency dynamics of a Nd-doped glass laser
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We study a Nd-doped microchip glass laser that emits in two polarizations and in many longitudinal modes.
Saturation of the inversion by standing waves causes spatial inhomogeneity of both the longitudinal and
azimuthal distributions of the laser gain. These nonlinear inhomogeneities couple the modes and result in
low-frequency oscillation$10—500 kHz of the light flux in the individual laser modes. These oscillations are
steadily driven by quantum noise and appear as 15% fluctuations of the power in each mode. In-phase
fluctuations in the laser modes appear at the frequency of the main relaxation oscillation of the total laser
power. Antiphase fluctuations appear at other frequencies in individual longitudinal and polarization laser
modes only. The dominant frequency of these fluctuations is determined by the light power in the mode.
Numerical simulations of rate equations, including Langevin forces, satisfactorily reproduce the experimental
results. These phenomena must be taken into account when lasers are applied as stable coherent optical light
sources, and also with sensitive absorption measurements in the laser cavity.
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I. INTRODUCTION only a few modes oscillate. In these lasers the gain medium
fills the entire length of the cavity, and both linear polariza-

Practical applications of multimode lasers are often hamtions are excited. Spatial inhomogene(tiiole burning”) of
pered by complex spectral dynamics of the output. The ultithe gain in longitudina]18,19 and azimuthal direction0]
mate sensitivity of intracavity absorption measurements, foprovides strong mode coupling in these lasers. It results in
instance, is restricted by dynamic processes occurring iantiphase cross-saturation dynamics of the transient modal
these laser§l]. Theoretical consideration of rate equationsemission featuring low-frequency relaxation oscillations.
for multimode solid-state or dye lasers predicts that the staMeasurements performed with short cavities that are partly
tionary laser emission is staljlg,3]. However, the damping filled with gain medium{21-24] show similar features.
rate of weak oscillations near the stationary state of such The stationary emission of a laser with spatial inhomoge-
multimode laser is usually small. Therefore, even a veryneity is stable. Therefore, laser dynamics in solid-state lasers
weak driving force, such as quantum fluctuations, may resulivas studied frequently in the transient regifid,16. Alter-
in large scale fluctuations of the modal emissj8¥]. natively, these lasers were investigated by introducing sinu-

Nonlinear coupling of laser modes significantly modifies soidal modulation of the pump power. This modulation leads
the dynamical properties of the system. Fluctuations of laseto the resonant excitation of relaxation oscillations and, if
modes may become very strong, as has been observed withis modulation is strong, to period doubling, bifurcation,
dye laserd5]. Nonlinear mode coupling responsible for the and to chaotic relaxation oscillatiof$5]. However, experi-
emission dynamics of cw dye lasers has been identified amients show that the individual modes of these lasers are
four-wave mixing by stimulated Brillouin scattering and fluctuating even in the stationary stafis,17 predominantly
population pulsation$5—-7]. When the coupling is strong, at the frequencies of relaxation oscillations. It has been sug-
the stationary solution becomes unstable, and the laser showssted that this is the result of technical noise and it has been
chaotic[8] or even periodid9] spectral dynamics with its modeled by introducing an auxiliary noise source in the dy-
effective number of emitting modes reduced. Other types ohamical variables of the lasgt5]. However, quantum noise
mode coupling may be responsible for the instability of lasel[3,25] that is naturally present in all lasers has not been con-
spectral dynamics as well, e.g., intracavity second-harmonisidered so far. In this paper we show that quantum noise in
generatior{ 10] or excited-state absorptigd1]. With appro-  spite of its weakness is sufficient to drive modal fluctuations
priate parameters of these lasers, mode coupling may alstomparable to those observed in experiments. No additional
improve emission stability12,13. excitation is then required for the numerical simulation of

In contrast to dye lasers, solid-state lasers show decagser dynamics.
rates of the upper laser level much smaller than the decay The number of frequencies in the spectrum of modal fluc-
rate of the light in the cavity. Therefore the inversion doestuations, i.e., the number of relaxation modes, can be as large
not follow adiabatically the light power, and the transientas the number of oscillating light modgz6]. Modal fluctua-
laser dynamics shows relaxation oscillations. A laser desigtions at the highest frequency are correlated. They represent
frequently used in practice is that of chip solid-state lasersthe well-known relaxation oscillations of the total laser out-
with mirrors directly coated on both facets of the laser crystaput. Modal fluctuations at lower frequencies are anticorre-
and that is pumped by diode las¢fst—17. This construc- lated and they may completely cancel in the total output. For
tion is useful for the investigation of the emission dynamicsa large number of oscillating modes low-frequency relax-
since it is not very sensitive to mechanical instabilities andation oscillations are expected to disappear from the laser
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dynamics[26]. However, so far all experiments have been

performed with short-cavity lasers and with homogeneously| Millennia V 530mm Ti-Sa 3900S $100m AODI =
broadened gain media. The number of oscillating longitudi-

nal modes in these lasers is relatively small<10) and PD1
allows easier modeling and numerical simulations of laser

dynamics. The opposite case of a large number of longitudi- M3 oD
nal lasing modes/>1) is also important. Such lasers are M2 Ml
applied, e.g., for sensitive intracavity absorption measure- N/
ments[1] and for noise suppression by intracavity second- X AOD2 O’F‘H
harmonic generatiof27]. There are some specific features in PD2 % L2 L1
these multimode lasers that lead to significant simplifications Nd-Glass

and make it possible to derive an analytical solution of the PM1

corresponding laser equatiof8,29. Spectrograph 1| o0 ] | Spectrograph2 | PM2

In this paper we investigate a multimode las&r10)
with a chip of Nd*-doped glass used as the active medium
instead of a crystal. The large contribution of inhomogeneous

spectral broadening of the gain allows us to excite laser os- L L .
cillation in more than 100 longitudinal modes even if the of the initial level. An optical isolator is used to attenuate by

cavity is only a few millimeters long. Instead of spectral 30 4B the light reflected from various optical components
narrowing observed with homogeneously broadened laseRCK into the Ti:sapphire laser. _ _
[1], the emission spectrum of these lasers broadens with the The output light of the Nd:glass laser is collimated by lens
time after the pump power is switched E80]. L2 (f=60 mm and divided into two beams by AOD2. The
Resonance peaks in the fluctuation spectra of the ingidirect beam is used for measuring the total power of the laser
vidual modes and of the total output as well as correlationdy & Si photodiode PD2.0The deflected beam is split again
of various laser modal fluctuations are investigated and conil'l0 o beams by a 50% beam-splitter M3 for spectrally
pared to the results for lasers with only a few modes. oplesolved correlated two-channel recording. These two beams
served fluctuations of emission in the laser modes in the /"¢ SPectrally analyzed with two grating spectrographs

regime are well reproduced by numerical simulations, in-Whose intervals of spectral resolution are 5 Gk&pec-
cluding quantum noise. trograph 3 and 1 GHz(Spectrograph 2 This spectral reso-

This paper is organized in the following way. Section Il lution is sufficient to resolve the individual longitudinal laser

outlines the experimental setup and the results of the medl©des, which are separated in our experiment by 10 GHz.
surements. A theoretical model based on rate equatiorisduiPPed with photomultipliers PM1 and PM2, the spectro-
supplemented by Langevin forces is introduced in Sec. 1119raPhs are used as monochromators for simultaneous record-
The results of numerical simulations are given in Sec. I\v/N9 Of the emission in two different laser modes with 1-MHz
Analytical estimations of the frequencies of antiphase osciliMe resolution. Alternatively spectrograph 1 was equipped
lations in the output of individual modes of multimode lasersith @ 17.28-mm-long charge-coupled devi€eCD) (1728

is presented in Sec. V. The principal results are summarizegha@nnels, Thomson CSF TH 780fr recording the entire
in Sec. VI. emission spectrum of the laser. The time resolution of such

spectral recording is set by AOD2. The recorded signals are
stored in a two-channel digital oscilloscope with 10-bit dy-
namical and 10-MHz time resolutioiiKrenz TRB4000Q.

FIG. 1. Experimental setup.

II. EXPERIMENT

A. Experimental setup

The experimental setup is shown in Fig. 1. The multimode B. Spectral dynamics

laser is made out of a 4-mm-thick disk of Schott LG680 Emission spectra of the Nd:glass laser recorded by the
silicate-based laser glass, doped with @% weighd of Nd. CCD array at different times after the onset of laser oscil-
The Nd:glass is mounted in a thermoelectrically cooled coptations are shown in Fig. 2. The pump rate normalized to the
per housing. The lifetime of the upper laser level7g laser threshold in these records is=P/P;,=1.64. The
=0.29 ms. Both sides of the disk are coated with dielectricemission spectra consist of many peaks corresponding to in-
mirrors M1 (R=10% at 810 nm an®R=100% at 1060 nmn  dividual longitudinal laser modes, which are well resolved in
and M2 R=99% at 1060 nm The optical length of the the records. Initially, the emission dynamics is determined by
cavity is 6 mm. The Nd:glass laser is optically pumpedinhomogeneous spectral broadening of the gain caused by
through the mirror M1 by the output of a cw Ti:sapphire nonequivalent locations of the active Nd ions in the glass
laser(Spectra Physics, Model 390p& 810 nm focused into matrix[29—31. The laser starts oscillating in the modes with
the disk with lens L1 {=40 mm. The threshold pump the highest net gain, depleting their inversion. Due to the
power of the disk laser is 140 mW. The pump power isinhomogeneity, the inversion of the spectrally neighboring
monitored by a Si photodiode PD1. The Ti:sapphire laser isnodes is not depleted and their gain continues to grow until
optically pumped at 532 nm by MilleniaV-laséSpectra their lasing thresholds are reached, and these modes begin
Physicg. An acousto-optical deflectoafAOD1) is used for  oscillating. At 35 to 60us after the onset of laser oscilla-
step modulation of the pump power between 100% and 25%ons, two neighboring mode groups, spectrally separated
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FIG. 2. Emission spectra of a Nd:glass laser recorded at five |5 cyw operation the total laser power and the power in
different timest after the onset of laser oscillations normalized 10 jhdividual laser modes show characteristic fluctuations
zhe maé"mum peal; a=0. TTZ sequence of spectra represents, o, ng their mean values as it is demonstrated in Fig. 4 for

amped waves in the spectral dynamics. 7=1.19. The emission in an individual laser madettom
has been selected by the spectrograph and recorded simulta-

from the initially oscillating central modes approximately by I : |
one homogeneous linewidth,vy,,,=30 cm * [31], domi- All modes (X M)
nate the emission spectrum of the laser. At88 the emis- L1 - .
sion of these neighboring groups of modes has almost van- 1
- - A VWMV ANNNAS
ished, whereas the central modes and more distant modes

appear in the laser spectrum. The alternation of the emission
of neighboring mode groups gives rise to transient spectral
waves in the laser emission propagating from the center to
the edges of the spectrum. In cw operation these waves are
damped, and the spectral width of the emission spectrum is
determined by the spectral width of the laser gain, and by the
pump rate. With increasing pump rate the gain in the central
modes becomes saturated, whereas the gain in the distant 0.9
groups of laser modes keeps growing until their thresholds

are reached. As a result the number of oscillating motles :
increases with the pump rate, which is demonstrated in Fig.
3. This is in contrast to what is observed in a laser with Time (us)

homoggneously broadened gain that is _no_t affected by the FIG. 4. Amplitude fluctuations of the total laser powtp) and
increasing pump rate and Ieayes th? emlssmnispectrum N3YF the power in one individual modéotton), recorded simulta-
row. Therefore, a glass laser is a suitable medium for studyneously at=1.19. Emission power is normalized to the corre-
ing the dynamics of lasers with a large number of oscillatingsponding mean value. Total power is additionally shown in the bot-
modes. tom diagram by the dashed line.

0.9 - —

L I L I L
| ! |
One mode (M)

Normalized power

oA A .. # 8 AT Y
VWA AR A

023816-3



PETERS, HINKEMEIER, BAEV, AND KHANIN

PHYSICAL REVIEW A 64 023816

: T T T T | T T T T T T ] g.: 18 r r T I T T T r .
o 1 T 15k ol
10 ) W E nf o7
i . w 9F ]
£10° | l hi g °F 7
8 F Yo | 3 s 3F J
: : f VI LI I B N —H : L 0 G 1 L 1 L L L -
e yh | . . 1 2 3
<) B One mode I T
Fyo3 L | - Pump parameter 77
= | =
— | 3
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found from computer simulation&rossel The line is a linear fit
over the first six experimental points.
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Frequency v (kHz) In the total output also oscillations avg show up. These

second-harmonics oscillations are very weak and are not

FIG. 5. Low-frequency power spectra of the totalp) and of  clearly visible in the modal power because of the strong and
the modal(bottom power calculated from experimental records of broad peak at the fundamental frequengy, However, in
laser emission aty=1.19 and normalized to the zeroth Fourier the total output the second-harmonics oscillations are not
component. Frequency positions of in-phasg)(and antiphase compensated and appear almost as strong as oscillations at
(vq) relaxation oscillations are shown by dashed lines. vg-
The strongest fluctuations of the total laser power take

: - lace at the frequency of the in-phase oscillatiogs The
ly with th | -channel | Place . N1ase 0S¢
neously with the total poweftop) by a two-channel digita relative amplitudes of these oscillations in the total and

oscilloscope. In the fluctuations of the individual laser mode

—3
otom, one recognizes wo tpes of osolators i (00 S50 O 1 o e seme @0 O Mo
phase oscillations of all modes with a characteristic tim

. . y fluctuations in the pump power.
sca_le of~10 s ‘.ﬁjmd an amplitude of up to 3.%' artd) Figure 6 shows positions of the frequencigf in-phase
antiphase oscillations with a characteristic time scale Ofg|ayation oscillations measured at different pump rates. At a
~100 ps and an amplitude of up to 15%. The total lasermyggerate pump rate, the emission spectrum of the Nd:glass
power does not show slow oscillations of the second type,qqr is relatively narrow and the dependengéz) corre-

confirming the perfect cancellation of these oscillations i”sponds to the case of a laser with homogeneously broadened
different laser modes. In contrast, the fast oscillations of thegain [32]

total laser powerfirst type), show the same amplitude as
;)scillations in individual modes, proving their in-phase na- 2mvo=\yA(n—1), (2.1)
ure.

Figure 5 shows the power spectra of the observed fluctuavherey is the cavity-loss rate anél is the decay rate of the
tions of the total outputtop) and of the output in one of the upper laser level. The frequencies of these relaxation oscil-
central laser modes at=1.19. They are Fourier transforma- lations at high pump rates are slightly larger than expected
tions of long =64 m9 experimental records and are nor- from Eq. (2.1). This deviation is caused by increasing the
malized to their component at zero frequency. Therefore, altavity loss from the thermal distortion of the glass at high
power spectra show fluctuation amplitudes relative to thepump power, and by the increasing contribution of inhomo-
corresponding mean power and are compatible. In previougeneous line broadening. The linear fit of the experimental
experiments with a small number of oscillating modl&s—  data to Eq(2.1) in Fig. 6 uses the first six data points only.
17] power spectra of the modal intensities revealed manyrom this fit, and with the known value of the lifetime of the
low-frequency peaks. The number of these peaks was ohspper laser levelr,=290 ms A=3.45x10° s 1), we esti-
served to be as large as the number of modescillating in ~ mate the actual cavity-loss rate to he=8.45< 1% s 1,
the laser. In the present experiment spectra of the modathich corresponds to 3.3% loss per cavity round trip.
powers show only two peaks, one at the frequemgyof In contrast to the in-phase oscillations &, antiphase
in-phase oscillations and another one, 10 times stronger, ascillations of the modal power at, depend only on the
the frequencyy, of antiphase oscillations, which depends mean modal power, but not on the total power of the laser.
upon the modal power. Fluctuations of the total laser poweFigure 7 shows positions of, measured at different pump
(Fig. 5, top are much weaker than fluctuations of the modalrates in one of the central modes. The mean modal power
power (Fig. 5, bottom since the dominant fluctuations are does not increase linearly with the pump rate, since the num-
antiphase oscillations that cancel in the total output. Théver of oscillating modes also depends upon the pumping.
power spectrum of the total output reveals just weak residuarherefore, Fig. 7 shows the dependencevgfupon modal
oscillations atv, with less than 1% of the amplitude of an- power, but not on the pump rate, as in Fig. 6. The accuracy
tiphase modal oscillations. of measurements of the absolute modal power in the experi-
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ment was lower than that of the relative modal power. For
this reason relative values of the modal power are used in
Fig. 7; they are normalized to the value of the modal power Frequency (kHz)

at the second data point. FIG. 9. Power spectra of the laser power emitted in two polar-

izations, calculated similarly to Fig. 5.
D. Polarization dynamics

Since the facets of the Nd-doped glass are coated direct§scillations is the same for both polarizations. However, the
with mirrors, there is no selection of polarization, and therelative amplitude differs since the mean power in the two
laser generally emits elliptically polarized light. Spatial inho- Polarizations is different.
mogeneity of the gain in the azimuthal direction gives rise to
antiphase oscillations of polarization mod@$]. This phe- E. Mode correlations

nomena is also present in our experiment. Figure 8 shows the Antiphase modal dynamics is characterized by the com-

e”}'SSO” '|nftwo ofrtr;]ogor?al pplanza‘uong, measureq W't.h %ensation of the oscillations in one individual mode by the
polarizer in r?”t ofthe p thd_'Ode PD2 in Fig. 1. ATQ’ N FI9. rest of modes, so that these oscillations disappear in the total
4 notice fast in-phase oscillations #§, and slow antiphase |ser gutput. In order to find out how this compensation is

oscillations at frequency,, . Figure 9 shows power spectra. yistrihyted in the spectrum, the outputs of two particular la-

of the total output at each polarization. The records of the,o; modes have been recorded simultaneously using both

emission at the two polarizations in Fig. 8 are not SynChro'spectrographs shown in Fig. 1. As an example, Fig. 10 shows

nized, therefore the antiphase character of slow oscillationg,q |aser power emitted in two neighboring modes. In order

does not show up in the diagrams. However, when the polak, see the strength of correlation between different pairs of

izer is removed a slow frequency componentgj, vanishes  q4eg we have calculated their correlation functions accord-
almost completely, as can be seen from a comparison of Figg,q to

5 and 9. The absolute amplitude of the observed polarization

Polarization |l

e
=
=)
|

Polarization |

0.14 W AN A A A Wal

0.12 |- -

Normalized power
Normalized power

0 100 200 300
Time ¢ (l1s) Time ¢ (us)

FIG. 8. Laser intensity measured in two orthogonal polariza- FIG. 10. Simultaneously recorded power of two neighboring
tions. The power in each polarization is normalized to the mearaser modesM, andM ;. Each record is normalized to its mean
total power and not synchronized. power.
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L 'Aql=+7'4 ] Here M, is the photon number in the axial laser magle
B A AR AAAAANANNAANNAA with distribution ¢4(z) along the optical axis of the cavity
I —+8 — (z=0 is the position on the optical axis at mirror MB is
O mwvw/vvwxwww/%nlw the gain rate per one inverted ion and one photon in ngpde
.§ - Ag=+1 1 v is the cavity-loss rate assumed to be equal for all mades,
2 f\’“’\’v"w‘/\/\/\/\’“\/\/"\’\/\/\/‘/"s’\’j is the resonator lengtiN(z) andP(z) are the inversion and
o n QA(\ n A pump rate densities per cavity length, respectively, Ang
% 5 Ag=-1 - the decay rate of the upper laser levE|, and Fy(z) are
e f\r\fvvvv~/vv\/\/\/\/"\/\/\/VV\»«/V\/\NV\/v= Langevin forces describing the quantum noise of the photon
5 i Ag=-8 number in the cavity and inversion, respectively. Their defi-
1 A4 NN TV nition is given in Sec llIC. The variable®l, N(2), Fq,
2 0 2 andF(z) are always functions of time, which is not always
Time & (ms) explicitly written.

In a cavity of the Fabry-Perot type the axial power distri-
FIG. 11. Correlation functior€,4(4t) of the central mode re- bution ¢, of the modal power is
corded in the experiment with other modes separated dpynode
spacings. Positive values dfg indicate an increase of the optical . 2mq
frequency of the laser mode. The autocorrelation functidm ( g(2)=1—cogkqz) with kq:T' 33
=0) is scaled down by a factor of 4; correlation functionsAaf

#+0 are shifted successively along thexis. Rate equation$3.1) and (3.2 can be simplified by Fourier

expanding the spatial dependence in terms of modal func-

Co (st ~AMg—=(Mg)) (Mg aq(t+ ) —(Mgiag))) tions. Fourier components of the laser inversion, pump
aq( 1) = (Mq—(M)XM g aq—(Mqiaq)) ' power, and Langevin forces are calculated according to
(2.2) )
Figure 11 shows the calculated from the experimental data N(z,t)=Ng+ 2iil;1 N; cogk;z), (3.9

correlation function of one of the central laser modes with
other modes separated Byg mode spacings in both direc-
tions in the spectrum. These data show that the correlation
between laser modes decreases as their spectral separation
increases. Strong correlation exists only in the group of
neighboring modes of about the same amplitude. That means ”

that low-frequency oscillations at frequencieg in indi- P(z,t)=Po+ %ﬂ% P; cogk;z), (3.6
vidual modes are compensated via antiphase oscillations e

only in the neighboring modes. As a result, the low- 1L

frequency spectrum of modal intensity shows only one or Pi(t)= _f dz P(z,t)cogk;z), (3.7
maybe just a small number of overlapped relaxation oscilla- LJo

tion frequencies corresponding to antiphase oscillations in

1L
N;(t)= Efo dz N(z,t)cogk;z), (3.5

the neighboring modes. Oscillations at other frequencies, ”
corresponding to distant modes of different amplitudes, are Fn(z ) =Fy,+ 2,71;1 Fy,cogkiz), (3.8
very weak and they do not appear in the spectfage Fig. e
5). 1L
Fy, (D= Ef dz Fy(z,t)cogk;z). (3.9
IIl. THEORETICAL MODEL 0

A. Rate equations HereNy, Py, andFy  are mean values of the laser inversion,

In order to explain the experimental observations, and esPump power, and Langevin forces in the cavity, respectively.
pecia”y the cw emission dynamicsy we shall use rate equa\Nith the power distributior\i3.3) and the Fourier expansions
tions for a multimode laser including spatial inhomogeneity(3.9—(3.9), the rate equationé3.1) and(3.2) become
[18], inhomogeneous pumping along the cavity9], and
Langevin forces modeling quantum noisb],

d

GiMa(D=Bg(Mg+1)L(No—Ng)—~ yMq+Fq,

d L

giMa(D=Bg(Mq+ 1)f0 dz[¢q(2N(2)]— YMq+Fq, (3.10

(3.0) 9 NP N
G NI(O=Pi—N;

A+ Bqu)
q
J
EN(z,t)=P(z)—AN(z)—E BqM qa(2)N(2) + Fyy(2). .
q (3.2 > %(Nq+i+N\q—i|)+FNi- (3.1
’ q
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In these equations the indexis the number of standing

B B
half-waves of modey in the cavity,q=2L/\,. It takes\ —m (T)z(;{b M.+ —2 (Np—Ng) —Mg| +F o
different values corresponding to all lasing modes. Inidéx dr AT A a a 4 a2
addition to all values ofy, includes the zero Fourier compo- (3.20

nentsi =0 describing corresponding mean quantities. Indices

i with half-integer values in Eq$3.4)—(3.9) disappear after

integrating over the cavity length. Equati@10 shows that —n (7)=1n—
the modal power is affected only by the corresponding inver-

sion componenN, . However, each inversion component is F
affected by other laser modes and inversion components as " N
weII..Mlxed 'termSEQ(BquIZ)(NqHJrN|q_i‘.) in Eq. (3.1;) NomA

consist of highNg,;, and low,N,_;, spatial frequencies.

In the following numerical calculations we use equations in- _
cluding just the strongest components of the invershay, C. Langevin forces
and, if necessary, the high and the low Fourier components Generally, rate equations describe the averaged dynamics
of the inversion. The latter one is important in the case off lasers. For instance, the loss rate in the cavity mpde
inhomogeneous distribution of the pump power along theepresented by the mean valyM,. However, in a particu-
cavity, e.g., when the gain medium fills only a part of the|ar laser this rate fluctuates. The same is true for the stimu-
cavity, or if the absorption length of the pump is shorter thanated emission, for pumping, and for the decay of the inver-
the cavity [19]. In this case, the Fourier components of sion. The reason for these fluctuations is quantum noise
pumping are in resonance with low-frequency components oippearing from the quantization of light-atom interaction.

bmq

+2

- (nq+|+n\q ||)

1+2 bgmg | +
q

(3.21)

the inversion. Quantum noise can be satisfactorily modeled in the rate
equations by introducing stochastic Langevin forf825|.
B. Normalized variables The amplitudes of the Langevin forces are normalized as
The stationary inversiomy,, at laser threshold, when (Fq(1))=0, 3.22

stimulated emission compensates the loss only in the mode
go with the highest gaiquO, is calculated from Eq(3.10

with spontaneous emission neglected as (Fn(z 1) =0, (3.23
Nogh =5 (3.12 -
0th Bl ' (Fo()F4(t"))=|Bg(Mq+ 1)J0 dz4(2)N(2) + qu}
The pump ratePy,, required to reach the laser threshold in X o(t—t"), (3.29
the modeqq is calculated with Eqs3.11) and(3.12) as
Ay Fn(z,)Fn(Z' 1)Y= P(2)+AN(2)
Potn=o— (3.13 (P N )
Bg. L
0
In order to generalize the results for various types of lasers +% BaMqiq(2)N(2) |5(t 1)
we introduce normalized variables
X 8(z—27'). (3.29
7=Pi/Poth, (3.19
With these forces all of the above rates become Poisson dis-
N;=N;/Noyn, (3.15  tributed around their mean values. For simplicity we did not
take into account possible correlations between different
b.=B./B (3.16 parts of the Langevin forces, e.g., correlation of the fluctua-
tions of laser inversion and photon numbers in laser modes
due to stimulated emission.
Mg=MqBq, /A, (3.17) The Fourier components of the Langevin force for the
laser inversion, required for Eq3.21), are calculated by
F=At, (3.18 using Eq.(3.25,
=qvlA. (3.19

4 (L L
<FNi(t)F,\,j(t’)>=FJ0 dzfO dz'[cogkjz)cogk;z')
Including these variables in Eq&.10 and(3.11) we obtain
the normalized rate equations X(Fn(z,t)Fn(Z',t))] (3.2
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whereT is the transmission of the output mirr@t%), c is
the velocity of light,h is Planck’'s constant, andl is the
wavelength of laser emission. The expressin) is derived
from the stationary solution of the simplified rate equation
(3.11) for the mean value of the inversiod, (i=0) and
without the Langevin force. With 20.5-mW output at
=1.6 we getB, =4.7<10°° s *.

The spectral dependence of the gain is approximated by a
Lorentzian profile

The zeroth Fourier components of the distribution of

pumping and inversion along the cavity are much larger than 1

all other components if the pumping distribution is reason- Bq=Bq, 5B 2 (4.2
ably smooth. In the following all nonzero components in Eq. 1+ B—(q—%)

(3.27 will be neglected. Taking into account that the mixed fo

terms(FNi(t)FNj(t’» have zero Fourier components only if

i=], Eq. (3.27 simplifies into

5
(Fn(DF y (t))= 1 8(t=t)

Po+ANy+ > BquNo>.
q
(3.28

With Egs.(3.24) and(3.28 the rate equation&3.20 and
(3.21) for the normalized variables can be written as

B

d q
E_mq(r)zG by mquT0 (no—nq)—mq}
BqOG qu
tNa bq Mg+ - (No—Ng)+ My | &4(7),
(3.29
d b,m
E_ni(T):ﬂi_ni 1+% quq +§ %(anri‘*'nlq,il)
1+ 6g;
+ \/VSLI 770+n0+§q: quq(n0+nq) fNi(T)y
(3.30

where &(7) is a stochastic variable withé;(7))=0 and

(&i(n¢(T))=06; 8(r—7").

IV. NUMERICAL SIMULATION

whereq is the mode number, ang}, the central mode. The
reduction of gain,éB, outside the center of the emission
spectrum is adjusted individually for each pumping level to
have the same number of oscillating modes in the simula-
tions as in the experiment. This corresponds to adjusting the
width of the homogeneous gain profile in order to simulate a
broad emission spectrufsee Fig. 3.

In the experiment, the active medium fills the entire reso-
nator. Thus, the pump power distribution decays exponen-
tially along the laser axis resulting from the 90% pump ab-
sorption in the glass. A Fourier transform of this distribution
provides a rapidly declining series of valueg> n,>- - -
> »; so that only the lowest-order ones need to be taken into
account.

The largest number of modes assumed oscillating in our
simulations was\/=55 and the time increment 18 s. Two
types of simulations were made: The first type took into ac-
count only the Fourier componentg, of the inversion di-
rectly corresponding to the laser modgsnd assuming a
homogeneous pump distributiofonly one component of
pump, 770, is present The second type includes, in addition,
Fourier components of the inversidty, ... Ny, at dif-
ference frequencies anwzqo_(N_l), o Nogor (-1 at
sum frequencies, and the first Fourier components. . .,
nn—1 Of pump power distribution.

Figure 12 shows totaltop) and modal(bottom laser
powers obtained in the simulations of the first type, with the
same values of the laser parameters as present in the experi-
ment of Fig. 4(cw regime atp=1.19 and\V=>55). All char-

._acteristic properties of the experimental results are well re-

. gBroduced in the simulation. Quantum fluctuations turn out to
Egs. (3.29 and (3.30 with laser parameters, L, G, By be strong enough to excite large scale antiphase oscillations
by, and#; taken from the experiment. The decay rate of thejn individual laser modes. In both simulation and experi-
population on the upper laser leved=3.45<10° s*, is  ment, these fluctuations cancel in the total output such that
taken from the data sheet on silicate glass LG680 suppliegnly residual, in-phase oscillations of smaller amplitude and
by Schott. The optical length of the cavity is set to the ex-at the highest frequency survive.

perimental value ot =6 mm. The cavity loss ratg and the Figure 13 shows Fourier spectra obtained from the simu-
parameteG [Eq. (3.19] are found from the experiment us- |ations shown in Fig. 12 for the totétop) and modal(bot-

ing Eqg. (2.1). With the data in Fig. 6 we obtaiG=2.45 tom) laser output. As in the experiment, the low-frequency
X 10°. The gain rate is calculated from the output power ofspectrum of the modal power shows two peaks: one at the
the lasel measured at a particular pump rajeaccording to  frequencyv, of in-phase oscillations and another, ten-times
stronger, at the frequency, of antiphase oscillations. No-
tice, in addition, two small peaks at the second harmomig 2
and at the difference frequeney =+ v,. The observed spec-

A(p—1)Tc?h

B 2LAI '

4.1
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12 L All modes ( = M, ) N_ss
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L ] 1 ] L

Normalized power

Time ¢ (us)

FIG. 12. Amplitude fluctuations of the totdtop) and modal
laser power(botton) obtained from simulations. The emission
power is normalized to the corresponding mean value. The total
power is presented for comparison in the bottom diagram by the
dashed line.

tral peaks in the simulation are higher and narrower than in
the experiment. The amplitude of the fluctuations in the
simulations is also somewhat larger than in the experiment.
This reason for that might be insufficient spectral resolution

of the expel’lment . . ) Frequency V(kHz)
In previous experiments with a small number of oscillat-
ing modes (V<10) [15-17 power spectra of modal inten- FIG. 14. Low-frequency spectra of the total power and of the

sities have revealed as many low-frequency peaks as thower in different individual modes obtained in simulationg (
number of oscillating mode4/. In order to reproduce these =1.19) with different numbers of oscillating modas Neighbor-
results and to study the transition between the regime witfnd curves are separated by one order of magnitude offset. Fre-
single and several distinguishable frequencies of antiphas®/ency positions of in-phasev{) and antiphase(,) relaxation
oscillation we have simulated the laser dynamics with a dif-0Scillations are shown by dashed lines fo-55.

ferent number of modes. Figure 14 shows power spectra of
simulated laser dynamics with/=3,7, and 55. In these

10° simulations the pump rate was kept constant, but the gain
width was varied. The power spectra of simulations with the
104 total mode numbe/=3 shows three well-resolved peaks
ﬁ corresponding to compensated and uncompensated oscilla-
£10° tions, as expected. With'=7 seven different oscillation fre-
& E quencies appear in the modal power. They are not all well
§10-2 T resolved, but are marked in Fig. 14 by vertical dashed lines.
o The frequencies are divided in groups of two, with one fre-

quency of compensated oscillations that are present only in
two modes symmetric to the center and another frequency of
in-phase oscillations shared by all modes and by the total
output. Each mode has its preferred oscillation frequency
with the highest peak. WithV=>55 these individual peaks
0 50 100 150 become dominant, whereas oscillations at other frequencies
disappear. Only one in-phase oscillation remains in the spec-
trum of the total power. Its frequenay, increases slightly
FIG. 13. Low-frequency power spectra of the tdt@ip) and of ~ With the number of oscillating modes growing. This ten-
the modal (bottom) power obtained in simulationsz=1.19,/  dency indicates better depletion of the inversion and higher
=55), and normalized to the zeroth Fourier component. Frequencgfficiency when more modes are oscillating.
positions of in-phasei(y) and antiphase(;) relaxation oscillations The frequency of the in-phase oscillations obtained from
are shown by dashed lines. simulations is shown as a function of the pump rate together

—
<
w

10+

Frequency v (kHz)
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é.: T T T T T | T T T
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B J'G Ag=+8
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2 &= Ag=0
0 L l L | g 0
0 107 2:107 2 r Ag=-1 A
Photon number A, Té
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FIG. 15. Square of the frequency of antiphase relaxation oscil- 1 A . , | , \ .

lations v, measured in the modal power of the lageircles and 1 0 1
obtained from numerical simulatior{srosses vs photon numbers Time &
in laser modes. The straight line shows the dependence given by Eq. ime of (ms)

(5.13.

FIG. 16. Correlation function of one simulated laser mode with
other modes separated Ay} mode spacings. Positive values/d
with the experimental results in Fig. 6. As expected, thendicate an increase of the optical frequency of the laser mode. The
simulated results overlap perfectly with the fit line used to@utocorrelation functionXq=0) is scaled down by a factor of 4;
calculate the cavity losy and the paramete®. The mode other cqrrelatlon functionsXq=+ 0) are shifted successively along
number in these simulations was varied from 7 to 55. they axis.

In contrast, the frequency of the antiphase relaxation os- , ,
cillation vy is different for each mode and depends upon themall group of laser modes with comparable power. This
power in this mode only, but not upon the total power. Figurecorrelatlon quds 'to th'e effective compensation of all low-
15 shows the dependence of the square of this frequend‘pe;qu_ency_oscnlatlons in thr_e total Ia_ser_power, except for the
upon the modal power obtained from numerical simulationgrincipal in-phase relaxation oscillation common to all
(crossesin comparison to the experimental data from Fig. 7modes.

(circles. Laser dynamics was simulated at 1.23 with

=55 modes, and ap= 1.5 with N=25 modes. The Lorent- V. ANALYTICAL ESTIMATION

zian gain profiles were adjusted such that the modes far from OF RELAXATION FREQUENCIES

the center were very weak and the number of photons in all . . I S
the modes is spread over a large range sufficient to present The ;requencE)es doftrela?(atlgn oslt:ll!aggn]s II:n |ntdh|V|tduaI la-
the dependenceg(Mq) in Fig. 15. The photon numbers of ser modes can be determined analyticalg]. For that pur

laser modes in the experiment of Fig. 7 are measured witho- e US€ original rate equatiai@sl) and(3.2) with nor-

high relative, but low absolute, accuracy. Therefore, themallzed variables, ~ Egs. (3.19~(3.19, and neglect

power at one experimental poifthird point with v,=19 spontaneous emission and Langevin forces:

kHz) is normalized to the photon number in the laser mode d 1 (L

showing the same oscillation frequency in numerical simula- —my(7)= qumq_f dz[n(2)¢y(2)]-1, (5.
tions. Taking into account that the total laser output in that dr LJo

measurement was 19 m\W; & 1.6) and the total number of

oscillating modesV=95, the estimated photon number in

the experiment was (4:350%)x 1(°. This value compares gN@7n=71=n(2)
rather well with the valueM ,=7.17x 10° taken as a refer-

ence in the simulations. The main phenomenon demonstrated Assuming that the steady-state solutiamg and n are

In Fig. 15 is that the values plotted vs the mode power in known, we write linearized rate equations for small devia-

the simulation as well as in the experiment perfectly fit to a . — —
straight line. tions dmy=my,—m, and sn=n—n from these photon num-

In the results presented above no essential difference w&ers and inversion density, respectively.
found when using the two different types of simulations.

. (5.2

1+ zq: bqMq4(2)

However, some other features, e.g., the stationary emission i _ - EJL

spectrum of the lasdB3] or the mode correlation functions, drémq Gbymg LJo dz(onyyq), .3
are modified when using nonuniform pumping and include

difference and sum Fourier frequencies of inversion in the d SN

simulations. Figure 16 shows the correlation function —5n= ,7:_@ by(Mp) . (5.4)
Caq(6t) of one of the laser modes from a type-2 simulation dr n p

with other modes separated by a varying number of mode

spacingsAg. As in the experimentsee Fig. 11, the corre-  Substituting{ dmg, én} by {dmg,dn’}exp(\7) and inserting
lation function decreases with increasing spectral separatioim Egs.(5.3) the solution forsn from Eq.(5.4), we obtain the
between modes. The largest correlation is observed in eharacteristic equations
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1 Ep o modal eigenfunctiong,, we obtain a homogeneous set of
AéméJerqqu > by( 5m"3)f )\—q/p_dz= 0. algebraic equations for the eigenvaluesand eigenvectors
p + n/in m,,
55
1 — _
Assuming that the saturation of the active medium by omg N(A+ 77)+§qu +qu§p: om,=0. (5.6

many longitudinal modes in the laser is uniforme£1), that
the relative gain rates in all oscillating modes are close tdrhe eigenvalues are found by equating to zero the determi-
unity (bq=1), and taking into account orthogonality of the nant of this set of equations:

3 _ _ —
A()\+ﬂ)+§qumin Gr.nqminJrl qumax
mqmin )\()\—'_ 77)+ szqminJrl o qumax :0’ (57)
Gm, Gm, 3em
I”nqmin mqmin+l o AN+ 7)+ Equmax'
|

whereq,n andgnay are the first and last laser modes at the 7 7\2 Gﬁq
red and blue side of the emission spectrugg,{— qmin=/N" Ng=— Ei (E) - (5.1

—1). Equation(5.7) can be modified into
_ _ With most solid-state laser&>1 (e.g., in our experiment
1+2 Gm H {M)\Jr )+ Gqu} -0 G=245000), and Eq(5.11) can be approximated as
BRI NIl \/Tﬁq
5.9 N=E\ - (5.12
Assuming that the power in all laser modes is different, EqsjnceG and _q are positive numbers, the solutions of Egs.

(5.8) is equivalent to (5.12 are complex and the photon numbers in the laser
modes,émy=m,—my, oscillate with frequencies

o
1+ mql =0. (5.9 i
q N+ 77) + Equ 2Ty = EquoMq’ (5.13

where physical variables are used again instead of normal-
Ij‘ged variables. This dependence is shown in Fig. 15 by the
straight line. It matches very well both the simulated and
experimental data points and thus proves the validity of the
approximations for the multimode laser described above.
The large eigenvalug, can be also calculated from Eg.

(5.9 assuming in addition that A\2>1Gm, as
my

1 1 Ao=1/—G>D m,. 5.1
—Gmi<—)\i()\i+77)<§Gmi_1. (51@ 0 % L ( 4)

2

[N(N+ 77)+%qu=0], the first term reciprocally ap-
proaches infinity.

Analysis of Eq.(5.9 shows that its roots include one
large value)y, and N—1 much smaller values,;, located
at

Going back to physical variables and taking into account that
Here the enumeration of the laser modes is taken to eXte%e Stationary So|ution for the tota' photon numbeEi{?\Aq
from the strongest mode wii=0 to the weakest mode with = (A/B)(»—1), we can easily obtain from Eq5.14) the
i=N—1. Taking into account that with a large number of ell-known solution given by Eq(2.1). From Egs.(5.12)
oscillating modesn;_;=m; we estimate the values of the and(5.14 one can notice that if the laser haéeffectively
N—1 smaller eigenvalues to be oscillating modes of the same amplitude, then
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large. Similar oscillations appear in polarization laser modes
(5.15  Wwhen the output power is recorded behind a polarizer. They
are determined by the spatial inhomogeneity of the azimuthal
distribution of the laser gain.
Antiphase oscillations in individual modes are compen-
This relation agrees well with the experimental data insated by all other modes, such that they disappear in the total
Fig. 5 withvo=118 kHz,v,=11.8 kHz, andV=55(Fig. 3.  |aser output. Cross-correlation functions of modal power
The reason for a small deviation of this value froW=50,  show that sufficient compensation is ensured by the neigh-
calculated with Eq(5.19), is that the recorded mode was horing modes of about the same power. Therefore, only one
located in the center of the laser emission such that its powegfequency peak of the dominant antiphase oscillations is ob-
was higher than the average. Thus the effective number dferved in the modal power in a really multimode lase¥s (

vq= Vo

Ny

oscillating modes at that power is reduced. >10). This is in contrast to lasers where only 2 to 8 modes
are oscillating, and all relaxation frequencies can show up in
VI. SUMMARY each of the laser mod¢$1,14—-17,23,24

The low-frequency dvnamics of multimode class-B lasers Numerical simulations are based on the Tang, Statz, and
quency dynar . deMars rate equations that are extended by mixed-frequency
has been studied theoretically and experimentally for 3erms. and by Langevin forces simulating quantum noise.

3+_ . . . .
Nd™"-doped glass chip laser. This laser oscillates in manBf\/lixed-frequency terms are important for the description of

longitudinal modes duetoa Ia_rge contribution .Of Inh(.)moge'laser dynamics if the inversion density varies along the cav-
neous broadening of the gain. In cw operation this lase

[ty. This happens, e.g., when the pump light is strongly ab-

shows 15% fluctuations of the modal power and 3% quctua-SOrbed by the gain medium and/or if the gain medium does

tions of the total laser power that are driven by quantunhot occupy the total length of the cavity
noise. The _strength of these fluctuations is. dgtermined by The results obtained by numerical simulations show that
mode coupling that emerges here from spatial mhomogen%—uamum noise is an important feature, which cannot be ne-

ity. lected in simulating the dynamics of class-B lasers. This
lone results in the observed strong fluctuations of the modal
nd total output. This feature will be especially important for
‘the preparation of stable laser light sources, and for sensitive
Sabsorption measurements in the laser cavity.

Power spectra of the modal emission reveal two dominan
frequencies of these fluctuation§) the highest frequency a
vg, Which is common for all modes and corresponds to in
phase oscillations of all laser modes, diid the lower fre-
quencyrg, Which is specific for each mode and correspond
to antiphase oscillations. The frequency of in-phase oscilla- ACKNOWLEDGMENTS
tions depends on the total power of the laser and represents
the well-known relaxation oscillations in class-B lasers. The The authors gratefully acknowledge helpful discussions
frequency of the antiphase oscillation does not depend on theith Professor P.E. Toschek and with Professor N.B. Abra-
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