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Reconstruction of SU1,1) states
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We show how group symmetries can be used to reconstruct quantum states. The method we propose is
presented in the context of the two-mode($\1) states of the radiation field. In our scheme for($\J) states,
the input field passes through a nondegenerate parametric amplifier and one measures the probability of finding
the output state with a certain numkesually zerg of photons in each mode. The density matrix in the Fock
basis is retrieved from the measured data by the least-squares method after singular value decomposition of the
design matrix followed by Tikhonov regularization. Several illustrative examples involving the reconstruction
of a pair coherent state, a Perelomov coherent state, and a coherent superposition of pair coherent states are

considered.
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[. INTRODUCTION were reported for electronic angular momentum states of hy-

drogen[21], vibrational quantum states of a diatomic mol-

The problem of the reconstruction of quantum states wagcule[22], and motional states of a single trapped af@3.
first considered by Paufil] and Fand2]. Since a quantum Vasilyevet al.[24] have reported tomographic measurement
system is completely described by its density matrix, the tasRf joint photon statistics of the two-mode quantum state pro-
is essentially to reconstruct the density matrix of a systenfluced in parametric amplification.
from information obtained by a set of measurements per- While extensive work has been done on states of a two-
formed on an ensemble of identically prepared systems. Tgode field, there are very many physical situations in which
that end, the seminal work of Vogel and RisK&} showed the state to be reconstructed has certain group symmetry. For
that for a single-modeoptical field, the histograms of €xample, in the process of downconversion, the two photons
quadrature amplitude distributions measuredhmnodyne are produced together. In this case, the difference in the pho-
detection are just the Radon transfofor tomography of ~ ton number in the two modes is conserved and the state has
the corresponding Wigner function. One can thus obtain théhe symmetry property of the SU1) group. Clearly, one
Wigner function by taking the inverse Radon transform ofcould benefit considerably from the use of the group symme-
the data. Finally, the density matrix in the position representry properties in the reconstruction of the stag5]. In a
tation is obtained from the Wigner function by Fourier trans-previous publication, one of us discussed how the underlying
formation. This is the basis afptical homodyne tomography SU(2) symmetry of a state can be utilized very efficiently for
[3—6]. The technique was experimentally realized byits reconstructioi26]. In this paper, we consider reconstruc-
Smitheyet al.[4], who obtained the Wigner function and the tion of states whose symmetry group is @) [27]. The
density matrix of vacuum and quadrature-squeezed states Bfethod we propose is demonstrated in the context of two-
a mode of the electromagnetic field by using balanced homdnode states of the radiation field. Note that propagation in
dyne detection. Much progress has been achieved in thiee space, characterized by the Hamiltonigpt, is also an
field over the past few yeaf$]. It is now well known, for ~exmple of SU1,1) symmetry and so is the more general
example, that one can determine the density matrix directijlamiltonian of the formap?®+ gx*+ yxp, which can be
from the measured quadrature distribution without having tgvritten as linear combinations of $U1) generators. Thus
evaluate the Wigner function. Additionally, parallel tomogra- SU(1,1) ideas will directly be applicable to, for example,
phic schemes such as symplectic tomografjyand photon ~atom optics. Furthermore, a variety of @LL) coherent
number tomographj8] have been suggested for the recon-states for trapped ior{28] and for phonon$29] have been
struction of quantum states of the light field which can everconstructed.
be multimode[9]. Other quantum systems for which recon- ~ The plan of the paper is as follows. In Sec. II, we present
struction procedures were proposed include one-dimensionalgroup theoretic perspective of a general reconstruction pro-
wave packet$10], harmonic and anharmonic molecular vi- cedure for quantum states. In Sec. Ill, we apply our method
brations[11], motional states of atom bearfis2?], motional  to reconstruct some important §1)1) states. The paper ends
state of a trapped atofi 3], Bose-Einstein condensatgist], ~ with concluding remarks in Sec. IV.
cyclotron states of a trapped electrdb], atomic Rydberg
wave functiong16], atoms in optical lattice§l7], systems
with a finite-dimensional state spag., for spin[18], and
states in cavity QE19,20. Experimental reconstructions

II. USING GROUP SYMMETRIES FOR STATE
RECONSTRUCTION

Let us first recall the principles of photon number tomog-
raphy. Several workers have suggested a procedure whereby
*Also at Jawaharlal Nehru Center for Advanced Scientific Re-the initial state of the radiation field described by the density
search, Bangalore, India. matrix, p", is displaced by different amounts,
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p(in)*)p(out): DT(a)p(in)D(a),
Parametric
Device

D(a)=expaa’—a*a). (1)

(in) (out)

Y Detector
One then measures the distribution of photons in the dis-
placed field. The photon count in the output field is used to Pump (2)
reconstruct thes-ordered distribution function of the input
field. This method was very successfully used to measure the FIG. 1. Schematic of the reconstruction procedure.
vibrational state of a trapped iof23]. There is a related
suggestion in the context of cavity QED, which yields the p(out)(q,o):<q,0|p(out)|q,0>
characteristic function of the radiation fiel&0]. In both of _
these situations, one measures atomic populations with rather =(q,08"(2)p™S(2)|q,0)
high efficiency. Though a direct photon-counting measure- (N[ —
ment suffers from questions of poor efficiency of photode- =¢(dp™[2)q=Q(a,2), 6)
tectors, there exist several proposals on how to overcome the

where |z), is defined in analogy to Eq4) with [0,0) re-
placed by|q,0). We would now like to demonstrate how
(Weasurements 0f(q,2z) for a range of values of can be
. used to reconstruct the input staté”. In this case, as indi-
for the SU2) group. This has been shown to enable one to ated in Fig. 1" can be obtained from(™ by passing

reconstruct the states of spin systems, states of polarizatioff; . . .

etc. [26]. This is also closely related to a proposal in the e Input s'Fate .through_a nondegenerate _parqmetnc Tar?phﬂer

context of Bose-Einstein condensaf#4]. The displacement whose action IS described by the'Hamlltonlbh=')\.e'1 b
+H.c., where\ is related to the nonlinear susceptibility. The

of the state is physically realize@ay) by using external o . .
fields in the case of two-level atoms or spins. In the case of Perator S(z) is simply the evolution operator for this
fHamiltonian withz=1i\t.

radiation fields, such a displacement is realized by optica . . ; o
P yop Using the disentangling theorem f8rand substituting in

components such as waveplafgg]. g ) ; i
We next consider the case in which the underlying symhe expression fo@(q,z), we can write this probability as a
function of two auxiliary,experimentally controllegharam-

metry of the state is of the SW,1) group. In a two-mode
realization of this group, the generators are eters,

problem[30].

z
K,=a'b’, K_=ab, K,=(a'a+b'b+1)/2, (2) y=tantt|z], ¢=i|n(m). 7

wherea'a—b'b=const=q (say. Without any loss of gen-  After some algebra, one obtains
erality, one can assume thg&0. In that case, the vacuum

state is given by the two-mode Fock statg0) with the 9(q,2)=9(q,Y,¢)

property K_|q,0)=0. The displacement operator for this L

group is the well-known squeezing operator parametrized by ~(1-y)d D [(m+q)!(n+Qq)!

a complex quantity: - q! mato min!
S(z)=expza'b'—z*ab). 3) x glm=mey M2y (q). ®

) . For the sake of clarity, we have used the notation
Acting on the|0,0) state, it produces the squeezed Vacuum+q,n|p('“)|m+q,m>=pn,m(q). At this point, we make the

state physically reasonable assumption that

2)0=5(2)[0,0). 4 Pnm(@)=0 for m,n>np,, (€)

It should be noted that even though we are dealing with thdf Nmax iS suitably large[32]. Next we introduce the Fourier
two-mode field, the underlying symmetry makg) differ- transform of the probability data with respect to the phase
ent from the producD(a)D(B) of the displacement opera- angle¢:

tors. We can now proceed in the spirit of earlier constructions 2

for the Heisenberg-Weyl and the ) groups. We consider gk(qu):f _¢eik¢Q(q,y,¢), (10)

the operator defined by o 2w

pO=ST(Z)p(NS(z) (5) and construct the quantity
- gk(q.y)y 2
and the measurement ¢@gay q photons in modea and no f(Q,y)= ————. (1)
photons in modd, i.e., the quantity (1—y)att
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The construction is legitimate since the potentially singularorthogonal matrix so thatUTu=VTv=vV'=1l,, the
pointsy=0 andy=1 are inaccessible to the experimenter.M X M unit matrix. The matriXxJ consists oM orthonormal-
The pointy=0 corresponds to “doing nothing” to the input ized eigenvectors associated with tkelargest eigenvalues
state, whereag=1 would correspond t¢z| (and hence ei- of GG', and the matrixV consists of the orthonormalized
ther the pump amplitude or the duration of the experimenteigenvectors ofG'G. The diagonal elements & are the
being infinity. non-negative square roots of the eigenvalueS b® and are
The integration oveg yields a Kronecke# function and  cajled thesingular valuesif U; andv; are theith columns of
one obtains a simple power series expansionf i6q,y): U andV, respectively, then the solution can be writtenaas
Nnax— K =3M (U;-b/o)v;. The variance in the estimated param-
fl@y)= 2 Budpmekm(@y™ (12 etersa; can be written ag*(a{") == v%/07 . It can thus
m=0 be seen that the error will be rather large for smal] and
dropping such terms will reduce the errors at the cost of
increasing the mean-square deviation slightly. The columns
1 [(m+k+q)!(m+q)! of V corresponding to smatk; identify the linear combina-
Bmk(a) = q Mkl (13)  tion of variables, which contribute little towards reducigg
' ' ' but make a large contribution in the standard deviation. Thus
The task now is to obtain the density-matrix elements from@Ven if some of the singular values are not small enough to

tabulated values of,(q,y). This can be done, in principle, Causeé round-off problems, they can have a huge effect on the
by least-squares inversid82,33. least-squares solution in the presence of noise.

A systematic way of giving lower weight to small singular
values is via Tikhonov regularizatid4]. Tikhonov regular-
ization is a widely used technique for regularizing discrete

We write f(q,y) in the formfk(q,y)=2}“:1a§'v')¢j(y), ill-posed problems. One introduces a regularization param-
where ¢;(y)=y!"* are the basis functions,a®  eterx and filter factorsT; that depend on and the singular
=Bj_1x(a)pj-1+kj-1(q) contain the unknown density- valueso; as
matrix elements, antl =n,,,— k+ 1. Here the superscript ) ,

(M) denotes that the coefficients depend in general on the T — T _ 1 if o>\,
number of basis functions included in the approximation. Let "ot HN? | 0PIN? if o<,

Y1.Y2, ....yn be a set of points at which the values of
f.(q,y) are measured. We denote fthe measured value at

y; with an errorf,— f,(q,y;). It is generally assumed that the
error at different points is uncorrelated. The design magix
is an NXM matrix whoseijth element is given byGj;

where

A. Least-squares method

(14

The regularized least-squares solution is given £>,y
=3M T,(U;-b/o;)v;. Comparison with the “naive” or un-
regularized least-squares solution=0) shows that the fil-
ter factors essentially filter out the contributions&pcorre-

B ¢j£3i‘); We introduce two vectora={a;a, ... au} sponding to the small singular values, while they leave the
andb={f,,f5, ... fy}. In the least-squares method, the co-gyp components corresponding to large singular values vir-
eT'C'gntirzi are determined by minimizing the quantipf tually unaffected. A possible choice af is based on thé
=|Ga—Db|“.

|2 versus|Ga, — b|? for
ifferent values of\. The points on the horizontal branch
correspond to large noise, whereas the points on the vertical

ficients pm.,m(q) only for small values ofm. This IS SO pranch correspond to large data misfit. The optimum choice
because for large values of, the corresponding normal o ) corresponds to points near the corner of theurve
equations become ill-conditioned. Hence we cannot expec{%s]

to solve them unless very high precision arithmetic is used:

Even then, a slight change in the datle, for example, to

round-off erroj may change the solution significantly. This Il. RESULTS AND DISCUSSION

ill-conditioning can be traced to the fact that for large values

of m, the basis functiong™ are not really independent inthe  In this section, we will reconstruct the density matrix
sense that there will be little difference between terms offom a simulation of the corresponding probability data for a
(say y° and y'° if the precision in the measured data is Pair coherent state86], a Perelomoy37] coherent state, and
unable to resolve it. In such cases, one usually proceeds with coherent superposition of pair coherent states.

the singular value decompositi¢8VD) of the design matrix In a real experiment, the parametgrand ¢ can take only

in which one works directly with the design mati&rather @ finite (but large number of values. In the absence of any
than with G'G (as in the least-squares method withoutPriori knowledge about the input state, we choose a set of
SVD). Thus the ill-conditioning becomes very reduced. Thevalues of¢ equally distributed between 0 andr232,38:
design matrixG is written in the formG=U3ZVT, whereU ~ $s=2ms/(Ny—1), and a set of values of that are equis-

is an NXM matrix, 3 is an M XM diagonal matrix with  paced betweeq,;;=0.01 andy .= 0.26: Y= YmintT (Ymax
diagonal elements;, o5, ... ,0on, andVis anM XM —Ymin(N—1)/(N—1). Then the Fourier transform with re-

curve, which is a log-log plot ofa
Although the method of least squares is used extensivela gogp fou

in the literature, it will give meaningful values for the coef-
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FIG. 3. Reconstruction of the density-matrix elemepts, of
the pair coherent stata(3,0)) by the least-squares method. The

FIG. 2. R fructi f the di | densit trix el ttruncation parameter was setrat,,= 10. (a) Exact valuesyb) re-
- <. Reconstruction of the diagonal density-matrix elements, , o, qteq valued(c) the absolute difference between the exact
pii of the pair coherent stateb(3,0)) [see Eqs(16) and(17)] by and the reconstructed values.
the least-squares method. The truncation parameter was set at

Nmax=10. The singular values;, the values of|u;-b|, and the
ratios |U;- b|/o; are plotted in(a), (b), and (c), respectively. The

correspondingd- curve for the problem is plotted ifd). The regu- . .
larization parametek has the values 16 (top left, 1077, 1076, =101, andn,5= 10 in the calculations to follow. The data

10°5, 10°%, 1073 (come, 1072, 10" %, and unity(bottom righ. were simulated in the following way. We add to the exact
In (e), we plot the bar charts for the exact valushaded grayof probability data fk(qS/i) an error term &f (q,y;)

yis of orderN~2 and can be made arbitrarily small by taking
a sufficiently large value oN. We have setN,=21, N

the diagonal elements and the computed va(sbhaded blackwith =RG(f k(q,’g,i)), /fk(Q&i)/T, whereR is a real random num-
A =0.001. ber uniformly distributed between 1 and 1,G is a Gaussian

i Eq. (10 i , d by adi Fouri distribution with zero mean and unit variang@9], and
tsrgfg‘;?x in Eq. (10) is approximated by a discrete Fourier =20000 is the number of trials at=y;. All our calcula-
tions have been carried out using the software package
MATHEMATICA. For the record, the random numbers were

N,—1
< generated with a seed value of 45.

.1 A -
gAY = 5 EO e NsQ(q,y;,2msINy). (15)
¢ =

Thus apart from truncation error due to the assumpt®n A. Reconstruction of a pair coherent state

one will also have to deal with error due discretizationof Pair coherent states of the radiation field can be generated
the variablesy and ¢. The systematic error due to phase via the competition of four-wave mixing and two-photon ab-
discretization can be reduced to zero by choosMg  sorption in a nonlinear mediufi36]. Pair coherent states can
=2n,a+ 1 [32,38, whereas the error in the discretization of also be realized for the motion of a trapped i@8]. One
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FIG. 4. Same as in Fig. 3 but for a Perelomov coherent state F|G. 5. Same as in Fig. 3 but for a coherent superposition of pair

V¥ (0.5,0)[see Eqgs(18) and(19)].

coherent stategb (= 3,0)) [see Eq.(20)].

drives the ion with a laser on resonance and two other lasers The |east-squares reconstruction from the simulated data

with appropriately chosen directions of propagation an

tuned to the second lower vibrational side band. In th

Lamb-Dicke limit, the ion is found in a pair coherent state.
The state vector for a pair coherent state has the form

n

B - 3
|<I><§,p>>—N<f,p>n§0 —mlnw,m,

]

§2n
> H

n=0 n!(n+p)!

-1/2

N(¢,p)= (16)

Here ¢ is a complex parameter aq=0 is an integer. The
corresponding exact density matrix elements in the Fock b
sis are given by

gr‘lg*m
Jni(n+p)'m(m+p)!"

Pn,m(p)=|N(§ap)|2 (17

Note thatppm n(p)=p5 w(P), and for real values of the
density matrix is symmetric.

ails in this casdgsome of the diagonal elements assume ab-
&olute values of the order of 1@r so even with SVD when
the tolerance parameter is set to its default value 616,
wherep is the machine precision. The failure is dueoteer-
fitting, that is, the use of a higher degree polynomial for

fo(0y;) than necessary. As a result, the design matrix be-
comes ill-conditioned and some of the diagonal elements of
> become very small. We mention parenthetically that the
default tolerance removes none of these sing(daralmost
singulapy values.

For a better understanding of the problem, we plot the
singular valueso;, the values of|u;-b|, and the ratios
A_Gi -b|/o; in Figs. 4a), 2(b), and Zc), respectively. It is seen
that the values ofu;-b| reach a noise floor of about 16
after i=3. The singular values continue to decay. Conse-
quently, the ratio$u; - b|/o; increase rapidly. It is clear from
the plot that we cannot expect to obtain useful information
from the singular values beyorié=3. In Fig. 2d), we plot
theL curve for various values of the regularization parameter
\. The point on the corner of thie curve corresponds th
=0.001, which indeed lies between, ando,. The regular-
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ized solution is then given by, wherex=0.001. The result Struction is found to be satisfactory. Using the method of

is in excellent agreement with the exact results as seen i@ptical homodyne tomography, Vasilyev al. [24] have, for

Fig. 2(e). Proceeding as above, one can obtain a regularizethe first time, reconstructed the diagonal elements of the two-
solution for other values ok as well. The reconstruced Mode Perelomov coherent state produced by a parametric

density-matrix elements are in reasonable agreement with triRmplifier. Their experiment also demonstrates how well the
exact results as seen in Fig. 3. SU(1,1) symmetry holds in parametric amplification.

C. Reconstruction of a coherent superposition of pair
coherent states

B. Reconstruction of a Perelomov coherent state

It is well known that Perelomov coherent states can be
produced in parametric interactions. The state vector for a Our final example is the reconstruction of a coherent su-
Perelomov coherent state is given by perposition of pair coherent statgb(+ 3,0)):

_ A \/W
W“’””‘T;} 7\ T 1P tap),

(18)

It can be easily shown that thremth density-matrix element
of |¢) will be nonzero only when both andm are even, in

where 7 iS, in genera'i a Comp|ex parameter Wlth|<1! which case its value will equal themth density-matrix ele-
and q=0 is an integer. The corresponding exact densityment of[®(=3,0)). As a result, onlyevenvalues ofk and
matrix elements in the Fock basis have the expression ~ evenpowers ofy appear in the modeling of,(0y). As

shown in Fig. 5, satisfactory agreement is obtained between
(1—|7|»9*t  [(n+qg)!(m+q)! C e the exact and reconstructed density-matrix elements.
Pnm(Q)= o \ g 7

For q=0 and real values ofy, the density matrix is We have suggested a schefd®] for the reconstruction
not only symmetric but also has the following additional of two-mode SW1,1) states using parametric amplifiers. The
symmetries: ppy ok n(0)=pnrkn+k(0) and ppyox+10(0) probability of the output state being in a certain two-mode
=pn+k+1n+k(0). Consequently, onlyfo(0,y) and f,(0)y) number state is measured. The probability data are then “in-
need to be measured and modeled. We chaps®, »  verted” to extract the density matrix of the input state by
=0.6, and sen,,,,=10. Proceeding as before, we plot the taking advantage of certain symmetries in the input state. We
exact density-matrix elements in Fig. 4 along with the com-have shown that this inversion can be achieved by the least-

puted elements reconstructed by the least-squares metheduares method after singular value decomposition of the
with singular value decomposition. Once again, the reconeesign matrix followed by Tikhonov regularization.

(19 IV. CONCLUSION
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