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Analysis of a two-atom double-slit experiment based on environment-induced measurements
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To investigate the effect of the environment on a quantum-mechanical system we consider two two-level
atoms in a free radiation field in the presence of a screen. By assuming that the screen causescontinuous ideal
measurementson the free radiation field we derive a quantum jump description for the state of the atoms. Our
results are consistent with the master equation fordipole interacting atoms, but give more insight in the time
evolution of asinglesystem. To illustrate this we derive a necessary and sufficient criterion for interference in
a two-atom double-slit experiment and analyze bunching in the statistics of photons emitted in a certain
direction.
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I. INTRODUCTION

In this paper we study the effect of the environment o
simple quantum-mechanical system. The experimental s
we consider as an example is shown schematically in Fig
It consists of two two-level atoms continuously driven by
resonant laser field and stored at a fixed distancer from each
other. The atoms are surrounded by a free radiation field
spontaneously emit photons. Each photon causes a ‘‘click
a certain point on a screen. If enough photons are emit
these clicks add up and form an interference pattern.

The HamiltonianH of the quantum-mechanical system
which consists here of the two atoms, the laser, and the
radiation field, is well known@1#. However, solving the cor-
responding Schro¨dinger equation does not explain that t
atoms spontaneously emit photons. On the other han
purely wave mechanical description of the emitted phot
can predict the interference pattern@2,3# but does not allow
us to determine higher-order time correlations in the pho
statistics.

The aim of this paper is to show that the experiment p
tured in Fig. 1 can be explained purely quantum mecha
cally from first principles with the help of the projectio
postulate for ideal measurements@4#. We show that the en
vironment surrounding the system—the screen—has
same effect as continuous measurements on the free radi
field. That each photon causes a click on the screen at a p
that depends only on the direction of its wave vectork sug-
gests that the screen measures whether a photon has
emitted or not. If so it determines its directionk̂5k/k. As
these measurements are caused by the interaction of the
radiation field with the screen, we call themenvironment-
induced measurements.

Between consecutive measurements the state of the a
and the field develops with the HamiltonianH and all com-
ponents of the quantum-mechanical system become
tangled. A measurement on the free radiation field there
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also has an effect on the atomic state. In case of a click
the screen the state of the atoms changes abruptly. Itjumps
into the reset state which can be obtained by applying
reset operator Rk̂ to the stateuc& of the two atoms before the
emission.

By deriving the reset operatorRk̂ @5# we specify the quan-
tum jump approach for twodipole interacting atoms@6,7#
which predicts the no photon time evolution with the help
the conditional HamiltonianHcond but does not distinguish
between photon emissions in different directionsk̂. To justify
the assumptions and approximations on which our results
based we show that they are consistent with the master e
tion for two dipole interacting atoms@8–10#. Both ap-
proaches, the quantum jump approach and the master e
tion, are widely used in quantum optics and both have th
respective merits.

A quantum jump description@11–14# is well suited for
predicting all possible trajectories of asinglesystem. Using
this approach, it has been shown, for instance, t
environment-induced measurements can assist in the rea
tion of universal gates for quantum computing@15#. A pos-
sible application of the reset operatorRk̂ is given by a re-
cently proposed scheme by Cabrilloet al. @16# for entangling
distant atoms by interference. The master equation has
siderable advantages in the description of anensembleof
systems and is well suited for determining stationary sta

FIG. 1. Experimental setup. Two two-level atoms are placed
fixed distancer from each other and are continuously driven by
resonant laser. This leads to spontaneous photon emissions.

photon causes a click on a screen in a directionk̂ away from the
atoms.
©2001 The American Physical Society06-1
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CHRISTIAN SCHÖN AND ALMUT BEIGE PHYSICAL REVIEW A 64 023806
The main reason to consider in this paper an experime
setup withtwo atoms is that this leads to spatially depend
effects which do not occur in single atom experiments. Ve
fying these effects experimentally shows that the quan
jump approach is not only an artifact of the master equati
obtained from an unraveling of these equations@17# but a
self-consistent approach. The aim of this paper is to sh
that the quantum jump approach can be applied to all exp
ments in which a single system spontaneously emits pho
and is surrounded by ‘‘white’’ walls of a laboratory formin
the screen.

The experimental setup shown in Fig. 1 has been
cussed widely in the literature@3,18–22# and it has been
realized as a quantum mechanical two-atom double-slit
periment by Eichmannet al. @23# in 1993. The slits of the
classical version of this experiment are there replaced by
atoms which are likewise the sources of the light reach
the screen. In spite of its simplicity and the fact that th
experiment is one of the basic experiments in quantum
chanics its discussion never came to an end. For other re
and related quantum-mechanical double-slit experiments
Refs.@24–28#.

Here we show, in agreement with Refs.@29# and@30#, that
the reset operatorRk̂ allows us to determinedirectly the in-
terference pattern of the experiment by Eichmannet al. @23#.
To demonstrate the advantage of the quantum jump appr
we derive anecessary and sufficientcriterion for interfer-
ence. In good agreement with Refs.@25# and @31–33#, it is
shown that interference arises from the fact that in quan
mechanics the wave functions, and not the probabilities
different paths contributions have to be added to determ
the probability for a certain event to happen. Other auth
attributed interference in quantum mechanical double-slit
periments to the position-momentum uncertainty relati
Bohr’s complementarity principle, and to the absence of
which wayinformation @26,34–43#. It is shown here for the
experimental setup of Fig. 1 that the interference vanishe
and only if the which way information is, at least in prin
ciple, available in the experiment.

To give a further application of our results we analyze
effect of bunching in the statistics of photons emitted in
certain directionk̂. In agreement with Refs.@44# and@30# we
predict arbitrary strong bunching even if the atoms are s
eral wavelengths apart from each other. An intuitive exp
nation for this effect is given following the reasoning of Re
@6#.

This paper is organized as follows. In Sec. II we der
the reset operatorRk̂ which represents the main result of o
paper. In Sec. III we give a short overview of the quantu
jump approach and show its consistency with the ma
equation for two dipole interacting atoms@10#. In Sec. IV we
discuss the experimental setup shown in Fig. 1 and deriv
necessary and sufficient interference criterion. Afterwards
discuss spatially dependent bunching in the statistics of
photons emitted by the two atoms. Finally, our results
summarized in Sec. VI.

II. THE RESET OPERATOR

In this section we derive an analytic expression for
reset operatorRk̂ which can be used to determine the state
02380
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the atoms after an emission in a certain directionk̂ from first
principles. If the state of the atoms just before an emissio
uc& it can, as we show below, immediately afterwards
written as

uĉ k̂&[Rk̂uc&/i•i , ~1!

which is a pure state. This equation defines the operatoRk̂
up to a proportionality factor. For practicality we choose th
factor such that the probability density for a photon emiss
in the k̂ direction,I k̂(c), equals

I k̂~c![iRk̂uc&i2, ~2!

which is a density in time and solid angle.
To derive an analytic expression for the reset operator

us first write down the Hamiltonian of the quantum
mechanical system consisting of two two-level atoms and
free radiation field. In the followingu1& i and u2& i denote the
ground state and the excited state of atomi and Si

2

5u1& i i ^2u and Si
15u2& i i ^1u are the corresponding lowerin

and raising operators. The energy separation between the
els is given by\v0. The annihilation operator for a singl
photon of the mode (k,l) of the free radiation field is de
noted byakl wherek is its wave vector,l characterizes its
polarization, andekl is the polarization vector. The couplin
constant between the free radiation field and atomi is given
by gkl

( i ) . For simplicity we assume that both atoms have
same transition dipole momentD21 which givesgkl

(1)5gkl
(2)

5gkl with

gkl5 ieS vk

2e0\L3D 1/2

D21•ekl , ~3!

wherevk5k/c andL3 is the quantization volume. In addi
tion, we assume that both atoms are irradiated by a laser
which has the~complex! Rabi frequencyV ( i ) with respect to
atomi. If both atoms interact with the same laser the relat
phase of the two Rabi frequencies depends on the direc
of the incoming beam. Using this notation the interacti
Hamiltonian H I with respect to the interaction-free Hami
tonian is given by

H I5\ (
i 51,2

(
k,l

ei(v02vk)teik•r igklaklSi
11H.c.

1
\

2 (
i 51,2

V ( i )Si
11H.c. ~4!

In the experimental setup of Fig. 1, each emitted pho
causes a click at a certainpoint on the screen. To describ
this we assume that the presence of the screen leads t
peated measurements on the free radiation field as to whe
a photon has been emitted or not. If so it determines
direction k̂. Here we do not discuss what exactly caus
these environment-induced measurements but show later
the results derived from this assumption are consistent w
the master equation for two dipole interacting atoms@10# and
in good agreement with the experimental results of Ref.@23#.
6-2
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ANALYSIS OF A TWO-ATOM DOUBLE-SLIT . . . PHYSICAL REVIEW A64 023806
To determine the state of the atoms in the case of a click
make use of the projection postulate for ideal measurem
@4#.

Let us first consider a situation in which the screen
replaced by detectors which measure with each photon
its wave vectork and polarizationl. As in Ref. @14#, we
assume that the atoms are initially in stateuc& and the free
radiation field is in the vacuum stateu0ph&. After a timeDt,
which should not be too long so that inDt only the one-
photon states become populated, the detector perform
measurement on the free radiation field. According to
projection postulate the unnormalized state of the atom-fi
system in the case of a click caused by a photonu1kl& equals

u1kl&uckl&[u1kl&^1kluU I~Dt,0!u0ph&uc&. ~5!

HereU I(Dt,0) is the time development operator with respe
to the interaction Hamiltonian~4! which entangles the stat
of the atoms with the state of the free radiation field. T
measurement of the free radiation field therefore also ha
effect on the atomic state. It makes the atomsjump into the
stateuckl&.

A comparison of both sides of Eq.~5! shows that the
unnormalized state of the atoms after the click of the dete
equals

uckl&5^1kluU I~Dt,0!u0ph&uc&. ~6!

From first-order perturbation theory and Eq.~4! we find

uckl&52 igkl* E
0

Dt

dt e2 i(v02vk)t (
i 51,2

e2 ik•r iSi
2uc&. ~7!

According to the projection postulate@4#, the squared norm
of this vector equals the probability density for the emiss
of a photon u1kl& during the time intervalDt. Assuming
Dt@1/v0 we obtain in analogy to Ref.@14#

I kl~c!5 lim
Dt→0

i uckl&i2

Dt

52pugklu2d~v02vk!I (
i 51,2

e2 ik•r iSi
2uc&I 2

. ~8!

The proportionality of this equation tod(v02vk) shows
that all emitted photons have, within the approximatio
made, the wave numberk05v0c. The normalized state o
the atoms after an emission therefore equals

uĉ k̂&5S (
i 51,2

e2 ik0k̂•r iSi
2uc& D Y i•i , ~9!

which depends only on the directionk̂ of the emitted photon
but not onk andl.

Let us now consider again the situation where each e
ted photon is detected by a click on the screen which de
mines only its directionk̂. To find the state of the atoms afte
an emission in this case we can proceed as above but ha
replace the projectoru1kl&^1klu in Eq. ~5! by
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Pk̂5(
k,l

u1kk̂l&^1kk̂lu. ~10!

This operator projects onto all one-photon states with a w
vector in thek̂ direction. By doing so we find that the res
state of the atom-field system equals

(
k,l

u1kk̂l&uckk̂l&[(
k,l

u1kk̂l&^1kk̂luU I~Dt,0!u0ph&uc&.

~11!

As shown above, only terms withk5k0 contribute with a
nonvanishing amplitude to the right-hand side of this eq
tion. From Eq.~9! one can then see that Eq.~11! is of the
form

(
k,l

u1kk̂l&uckk̂l&5(
l

clu1k0k̂l&uĉ k̂&, ~12!

where cl is a complex number. Normalizing this state w
find that uĉ k̂& of Eq. ~9! is indeed the reset state~1! of the
atoms.

The probability density for a click on the screen in th
direction k̂ away from the atoms can be obtained from t
relation

I k̂~c!5(
l

S L

2p D 3E
0

`

dk k2I kk̂l~c!. ~13!

Using Eq.~8! this leads to

I k̂~c!5
3A

8p
~12uD̂21• k̂u2!I (

i 51,2
e2 ik0k̂•r iSi

2uc&I 2

,

~14!

where

A5
e2v0

3uD21u2

3pe0\c3
~15!

is the spontaneous decay rate of a single atom.
From Eqs.~9! and~14! we can now derive an expressio

for the reset operatorRk̂ of Eqs.~1! and ~2! and find

Rk̂5Rk̂
(1)

1Rk̂
(2)

~16!

with

Rk̂
( i )

5F3A

8p
~12uD̂21• k̂u2!G1/2

e2 ik0k̂•r iSi
2 . ~17!

In the same way as shown here for two atoms, one can de
the reset operator for the situation when only atomi is emit-
ting photons while the other atom is far away and can
emit a photon onto the same point on the screen. Procee
as above we find that the reset operator in this case is g
6-3
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CHRISTIAN SCHÖN AND ALMUT BEIGE PHYSICAL REVIEW A 64 023806
by Rk̂
( i ) of Eq. ~17! alone. The reset operator forbothatoms is

the sum of the reset operators for each individual atom. T
fact will play an important role in the discussion of a tw
atom double-slit experiment in Sec. IV.

III. QUANTUM JUMP APPROACH
VERSUS MASTER EQUATION

Before we apply our results to the experimental setup
Fig. 1 we shortly summarize the quantum jump approa
@45# and show that the results obtained in Sec. II are con
tent with the master equation for two dipole interacting
oms @10#.

A. The quantum jump approach

The quantum jump approach@11–14# can be used to pre
dict all possible trajectories of a single quantum-mechan
system which stochastically emits photons. At all timest the
probability density for a photon emission is known. If th
happens the state of the atoms changes abruptly. It ju
into another state which can be determined with the help
the reset operator. Between two photon emissions the sy
undergoes a continuous time evolution which can be
scribed by the conditional HamiltonianHcond.

To deriveHcond for two dipole interacting atoms one ca
proceed as in Sec. II. Assuming again that the environm
performs repeated measurements on the free radiation
one can determine the state of the system in the case o
photon emission by replacing the projectoru1kl&^1klu in Eq.
~5! by the projector onto the vacuum stateu0ph&^0phu. In this
way one finds that the state of the atom-field system eq
in the case of no photon emission after a time intervalDt

u0ph&Ucond~Dt,0!uc&[u0ph&^0phuU I~Dt,0!u0ph&uc&.
~18!

Using second-order perturbation theory this leads, as in
@6#, to

Hcond5
\

2i FA (
i 51,2

Si
1Si

21C(
iÞ j

Si
1Sj

2G
1

\

2 (
i 51,2

V ( i )Si
11H.c. ~19!

with the complex dipole interaction coupling constant

C5
3A

2
eik0rF 1

ik0r
~12uD̂21• r̂ u2!

1S 1

~k0r !2
2

1

i~k0r !3D ~123uD̂21• r̂ u2!G . ~20!

As in Sec. II, we assume here that the dipole momentD21 is
the same for both atoms.
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The probability for no photon emission inDt can be ob-
tained from Eq.~18! by taking the norm squared and equa

P0~Dt,c!5iUcond~Dt,0!uc&i2. ~21!

B. Consistency with the master equation
for two dipole interacting atoms

Another way to describe two atoms inside a free radiat
field is to use the master equation. It provides linear diff
ential equations which govern the time evolution of the de
sity matrix r corresponding to an ensemble of single sy
tems. It can be derived by averaging over all possi
trajectories. By doing so we show here that our results
consistent the with master equation for two dipole interact
atoms.

Let us now consider an ensemble of systems with ini
stater. After a timeDt this ensemble consists of many su
ensembles. The subensemble without photon emissions
velops with the conditional HamiltonianHcond and can, at
time Dt, be described by the density matrix

r0~Dt !5Ucond~Dt,0!rUcond
† ~Dt,0!. ~22!

Equation~21! shows that the trace over this matrix is equ
to the probability for no photon emission in (0,Dt) and to the
relative size of the subensemble without photon emissio
Using Eqs.~1! and ~2! we see that the density matrix of th
subensemble of systems with a photon emission ink̂ direc-
tion equals

r k̂Dt5Rk̂rRk̂
†
Dt ~23!

and the trace over this matrix gives the relative size of t
subensemble.

If Dt is not too long so that the probability for more tha
one emission can again be neglected, the density matri
the whole ensemble atDt equals

r~Dt !5r0~Dt !1(
k̂

r k̂Dt. ~24!

From Eqs.~17!, ~19!, and~20! we find

(
k̂

r k̂5~A1ReC!R1rR1
† 1~A2ReC!R2rR2

† ~25!

with

R65~S1
26S2

2!/A2. ~26!

ConsideringDt as a continuous parameter this leads to
differential equation

ṙ52
i

\
@Hcondr2rHcond

† #1~A1ReC!R1rR1
†

1~A2ReC!R2rR2
† . ~27!

A comparison with Ref.@10# shows that this is the maste
equation for two dipole interacting atoms.
6-4
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ANALYSIS OF A TWO-ATOM DOUBLE-SLIT . . . PHYSICAL REVIEW A64 023806
IV. ANALYSIS OF THE TWO-ATOM DOUBLE-SLIT
EXPERIMENT

To demonstrate the usefulness of the reset operatorRk̂ we
apply it in this section to the two-atom double-slit expe
ment shown in Fig. 1. A necessary and sufficient criterion
interference is derived. The interference pattern we pre
has the same spatial dependence as the one observed e
mentally by Eichmannet al. @23#.

A. A necessary and sufficient criterion for interference

Before we discuss the two-atom double-slit experimen
which the atoms are continuously driven by a laser field,
us first consider a simplified version of the setup shown
Fig. 1. We assume that the atoms are repeatedly prepar
the same pure stateuc&. By observing the emitted photon
one can measure the spatially dependent probability den
I k̂(c).

To calculateI k̂(c) we determine first the unnormalize
reset stateuc k̂& of the two atoms in the case of an emission
the k̂ direction. From Eqs.~1! and ~16! we find that it is a
superposition of two wave functions, each corresponding
different situation, but both leading to a click at the sam
point on the screen,

uc k̂&5Rk̂
(1)uc&1Rk̂

(2)uc&. ~28!

The amplitudeRk̂
( i )uc& describes the state of the atoms afte

photon emission by atomi alone. We denote the probabilit
density for such an emission byI k̂

( i )(c). Analogously to Eq.
~2! it equals

I k̂
( i )

~c!5iRk̂
( i )uc&i2. ~29!

The probability densityI k̂(c) can be obtained by taking th
squared norm of the reset stateuc k̂& and we find

I k̂~c!5I k̂
(1)

~c!1I k̂
(2)

~c!12 Rê cuRk̂
(2)†

Rk̂
(1)uc&. ~30!

This differs by the last term from the sum of the probabil
densities for an emission either by atom 1 or atom 2 a
describes theinterferencein the light emitted by the two
atoms quantitatively. Interference results from the joint co
pling of both atoms to the same free radiation field. There
only no interference if the last term in Eq.~30! vanishes for
all directionsk̂, i.e.,

Rê cuRk̂
(2)†

Rk̂
(1)uc&50 for all k̂. ~31!

This condition is equivalent to the reset statesRk̂
(1)uc& and

Rk̂
(2)uc& being orthogonal to each other and we find using E

~17! that

^cuS2
1S1

2uc&Þ0 ~32!

is a necessary and sufficient criterion for interferen
Whether this criterion is fulfilled or not depends only on t
initial stateuc& of the atoms.
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Summarizing this, we have shown that interference in
two-atom double-slit experiment can be attributed to the f
that the amplitudes of the wave function corresponding t
click at the same point on the screen have to be adde
determine the probability for this to happen. This is oppos
to classical probability theory where the probabilities of
contributing paths have to be added, and which would
yield the last term in Eq.~30!. Attributing interference to the
superposition of wave functions is one of the basic conce
in quantum mechanics@32,33#. However, the quantum jump
approach allowed us to calculate the amplitudes of the w
function for the concrete experimental setup shown in Fig
explicitly and to identify each amplitude with a certain pat

B. The which way information

Other authors showed that interference in quantu
mechanical double-slit experiments vanishes in the prese
of the which way information~see, for instance, Scully an
Drühl @34#!. Englert@39# derived an inequality which relate
the fringe visibility to the which way knowledge available
the experiment. In the following, we show that this is in go
agreement with the criterion given in Eq.~32!.

To do so we first point out that a which way interpretati
automatically implies the assumption that each photon
emitted either by atom 1 or by atom 2. Assuming this, t
quantum jump approach predicts that the reset state of
atoms for a certain emission equalsRk̂

( i )uc& with the corre-

sponding probability densityiRk̂
( i )uc&i2 where i equals 1 or

2. This is in contradiction with Eq.~30! which shows that the

probability density for an emission in thek̂ direction equals
iRk̂uc&i2 and notiRk̂

(1)uc&i21iRk̂
(2)uc&i2.

Nevertheless, there is one situation in which one can
distinguish whether both atoms are cooperatively emitting
whether one can assign each photon to one of the two ato
This is the case if

Rk̂
(1)uc&'Rk̂

(2)uc& for all k̂. ~33!

Then one can find out which atom emitted the photon
measuring whether the atoms are either in the stateRk̂

(1)uc&

or in Rk̂
(2)uc&. Equation~17! shows that Eqs.~31! and ~33!

are equivalent. This means that the interference vanishe
and only if the which way information is available in th
experiment.

C. Interference from two continuously driven atoms

In the previous two subsections we assumed that the s
of the atoms by the time of an emission is alwaysuc&. This
is not the case for the experimental setup of Fig. 1 in wh
the atoms are continuously driven by a laser field. To ap
our results to this situation we have to describe the atom
the time of an emission by the steady-state matrixrss. From
6-5
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CHRISTIAN SCHÖN AND ALMUT BEIGE PHYSICAL REVIEW A 64 023806
Eq. ~2! we find that the probability density for an emission
the k̂ direction equals

I k̂~rss!5Tr~Rk̂r
ssRk̂

†
!. ~34!

In analogy to Eq.~32! a necessary and sufficient criterion f
interference is now given by the condition

Tr~S2
1S1

2rss!5Tr~S1
2rssS2

1!Þ0. ~35!

Using Eqs.~16! and ~17! we obtain

I k̂~rss!5
3A

8p
~12uD̂21• k̂u2!@Tr~S1

2rssS1
1!1Tr~S2

2rssS2
1!

12 Re Tr~e2 ik0•(r12r2)S1
2rssS2

1!#, ~36!

where the last term describes the interference effects.
To discuss a concrete example, it is convenient to in

duce Dicke states,

ug&5u11&, us&5~ u12&1u21&)/A2,

ue&5u22&, ua&5~ u12&2u21&)/A2, ~37!

and to use the spatial anglesq andw as defined in Fig. 2. In
the following we choose the dipole momentsD21 to be per-
pendicular to the line connecting both atoms. Using this
tation we find from Eq.~36! in good agreement with Ref
@21#

I k̂~rss!5
3A

8p
sin2q@2ree1rss1raa

1~rss2raa!cos~k0r sinq cosw!

12 Imrsasin~k0r sinq cosw!#, ~38!

whererxy[^xurssuy& are the matrix elements of the stead
state density matrixrss. The last two terms in Eq.~38! de-
scribe the interference and result from the last term in
~36!.

In the classical double-slit experiment, interference v
ishes if the waves emanating from both slits have a rand

FIG. 2. Coordinate system with the spatial anglesq andw char-
acterizing the direction of the wave vectork. We assume that the
atomic dipole momentD21 is perpendicular to the line connectin
both atoms.
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phase relation. The same is true for the phase differenc
the Rabi frequencies driving both atoms. It enters Eq.~38!
through the steady-state matrixrss. As an example, we as
sume in the following that both atoms see the same~real!
Rabi frequency

V (1)5V (2)5V. ~39!

From Eq.~27! and the conditionṙss50 we find

rgg5
~A21V2!21A2~2A1ReC!ReC1A2~ Im C!2

N
,

rss5
V2~2A21V2!

N
, ree5raa5

V4

N
, Im rsa50

~40!

with

N5~A212V2!21A2~2A1ReC!ReC1A2~ Im C!2.
~41!

As it can be seen from these equations, the dipole interac
between the atoms has only a small influence on the de
but does not affect the form of the interference pattern.
r .2l0 one can neglect all terms proportional to the dipo
coupling constantC. This leads to@46#

I k̂~rss!5
3

4p

AV2

~A212V2!2
sin2q@A212V2

1A2cos~k0r sinq cosw!# ~42!

which is in good agreement with experimental results
Eichmannet al. @23#.

To illustrate this we show in Figs. 3 and 4 density plots
the emission rateI k̂(r

ss) for different atomic distancesr.
White areas correspond to spatial angles with maximal int
sity. The interference effects of the photons emitted by
two atoms are more distinct in Fig. 4 which shows strong
oscillations of the intensity with the polar anglew. These
become more frequent the larger the distance between
atoms.

FIG. 3. Density plot of the emission rateI k̂(r
ss) for two con-

tinuously driven two-level atoms,r 5l0 /p and V50.3A. White
areas correspond to spatial angles with maximal intensity.
6-6
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Finally we note that every change of the stationary st
rss in Eq. ~36! can affect the depth of the interference p
tern. This has been discussed in Refs.@47# and@48# where an
additional coupling of the two atoms via the mode of
optical cavity has been assumed. Another situation, in wh
the density matrixrss is different from Eq.~40! is when the
atomic state is continuously monitored. This can be do
with the help of an additional rapidly decaying level and
second laser field@34,49# or by using two four-level atoms
and detecting the polarization of the emitted photons@23,31#.
Alternatively, it has been proposed to use two microwa
cavities as which way detectors@35#. As a consequence o
the knowledge of the which way information in these setu
the interference vanishes. This is in good agreement with
discussion in the previous subsection.

V. BUNCHING EFFECTS IN THE PHOTON STATISTICS
OF TWO DISTANT ATOMS

As another application of the quantum jump approach
investigate in this section the second-order correlations in
photon statistics of two continuously driven two-level atom
The experimental setup we consider is again the same a
Fig. 1 but in the following we replace the screen by a sin
photon detector which registers only photons emitted i
certain directionk̂. In this section we predict strong spatial
dependentbunching— the effect that a photon emission
the k̂ direction increases the probability density for yet a
other emission in the same direction@1#. Our results are in
good agreement with the results of Ref.@30#. An intuitive
explanation for bunching, following the reasoning of R
@6#, is given.

To obtain a simple mathematical description of bunch
we define, analogously to Eq.~4! of Ref. @6#, the second-
order correlation function by

gk̂
(2)

~0![
I k̂„Rk̂r

ssRk̂
†/Tr~• !…

I k̂~rss!
. ~43!

The denominator of this function is the steady-state pho
emission rate in thek̂ direction while the numerator equa
the probability density for an emission in the same direct
immediatelyafter an emission. Therefore the photons emit
in the k̂ direction are bunched ifgk̂

(2)(0).1 and antibunched

if gk̂
(2)(0)<1.

FIG. 4. As in Fig. 3 but withr 510l0.
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A. The photon correlation function
for two continuously driven atoms

With present ion trapping technology atomic distanc
larger than a few wavelengths are easier to prepare. We
sider therefore in the following the caser .2l0 and neglect
again the dipole interaction between the atoms. Assuming
in Eq. ~39!, that the Rabi frequency of the driving laser fie
is the same for both atoms we find from Eqs.~16!, ~17!, ~40!,
and ~41!

gk̂
(2)

~0!5F 12
cos~k0r sinq cosw!

112S V

A D 2

1cos~k0r sinq cosw!G 2

.

~44!

As can be seen from this result, bunching occurs for all
rectionsk̂ with cos(k0r sinq cosw),0 and does not depen
on the concrete choice of the Rabi frequencyV. This is
different from the statistics of photons emitted intoall spatial
directions where bunching can only occur for distances w
r ,2l0 @6#.

Figure 5 shows as an example the second-order corr
tion function gk̂

(2)(0) for different spatial anglesw, q

5p/2, r 510l0, andV50.3A. For these parametersgk̂
(2)(0)

can adopt values larger than 40 which corresponds to v
strong bunching. For weaker driving,V/A→0, the correla-
tion function can even become infinitely large. This see
unphysical but corresponds to angles for which the pho
intensity ~42! vanishes forV/A→0.

B. An intuitive explanation of strong bunching

The quantum jump approach allows us not only to cal
late easily photon correlation functions but also to obtain
good intuitive understanding of this phenomenon. To do
we proceed as proposed in Ref.@6# and investigate how the
state of the atoms changes during a photon emission
direction with bunching. According to Eq.~44! we get maxi-
mal bunching if

cos~k0r sinq cosw!521. ~45!

For this direction the corresponding reset operator~16! can
be written as

FIG. 5. The second-order photon correlation functiongk̂
(2)(0) as

a function ofw for V50.3A, r 510l0, andq5p/2.
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CHRISTIAN SCHÖN AND ALMUT BEIGE PHYSICAL REVIEW A 64 023806
Rk̂5a~ ua&^eu2ug&^au!, ~46!

where a is a complex number. For the same direction t
probability density for an emission~34! equals

I k̂~rss!5uau2~ree1raa! ~47!

and is proportional to the population in the statesua& andue&.
Figure 6~a! illustrates the population in the atomic leve

for the steady state matrixrss and Fig. 6~b! for the state of
the atoms immediately after an emission in the directionk̂ of
Eq. ~45!. The area of each circle is proportional to the pop
lation of the corresponding level. In the steady state, ther
nearly no population in the levelsa ande and the probability
density for an emission in the direction of Eq.~45! is there-
fore relatively low. It equals

I k̂~rss!5
2V4uau2

~A212V2!2
. ~48!

During an emission a redistribution of the population tak
place according to the reset operator~46!. The population of
level a goes over to levelg and the population of levele goes
to level a while the population of the two other levels va
ishes. Afterwards the reset state has to be normalized
comparison of Figs. 6~a! and ~b! shows that the emission o
a photon causes in this way an increase of the populatio
the statesua& and ue& and therefore also an increase of t
probability density for a further emission in the same dire
tion, which is given by

I k̂~Rk̂r
ssRk

†/Tr~• !!5 1
2 uau2, ~49!

which is larger thanI k̂(r
ss) of Eq. ~48!.

Summarizing this, we see that bunching results from
fact that the detection of a photon is always connected wi
measurement on the atomic state. During this measurem
the state of the atoms might change in such a way that
probability density for a further emission in the same dire
tion is increased.

FIG. 6. The population of the Dicke statesug&, us&, ua&, andue&
for the steady staterss ~a! and for the normalized state immediate
after the emission of a photon into a direction with maximal bun
ing ~b! pictured by circles. The area of each circle is proportiona
the population of the corresponding level.
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VI. CONCLUSIONS

As long as a quantum-mechanical system does not co
to its environment one can predict its time evolution by t
Schrödinger equation. This is not possible for open syste
like spontaneously emitting atoms. To describe them
quantum jump approach@45# has been derived from the as
sumption that the environment performs continuous m
surements on the free radiation field as to whether a pho
is emitted by the atoms or not. The time evolution of t
atoms under the condition of no photon emission can
described by a Schro¨dinger equation based on the cond
tional HamiltonianHcond. In the case of a photon emissio
the state of the atoms changes abruptly.

In this paper we assumed that the environment of
atom-field system, here in form of a screen, detects e
emitted photon and, if so, determines its directionk̂. This
ansatz was motivated by the experimental setup of Fig. 1
which each photon causes a click at a certain point on
screen. From this assumption of environment-induced m
surements we derived in Sec. II the reset operatorRk̂ . It can
be used to determine the state of the atoms immediately a
an emission in thek̂ direction. Initially in a pure state, the
state of the atoms remains always pure. This extension of
quantum jump approach allows us now to predict all in
vidual trajectories of a single atomic system. We think th
all quantum optical experiments with ‘‘white’’ walls in the
laboratory can be described by a quantum jump approac

In Sec. III we showed that our results are consistent w
the master equations for two dipole interacting atoms@10#.
The dipole interaction results from the fact that both ato
interact with the same free radiation field and exchange
tual photons. This is described by the dipole coupling co
stantC in the conditional HamiltonianHcond. Also the reset
operatorRk̂ leads to terms proportionalC in the master equa
tion.

The advantage of our generalization of the quantum ju
approach@6,7# is that it can now be applied to further exper
ments such as the scheme by Cabrilloet al. @16# to entangle
distant atoms by interference. In this paper we discusse
Sec. IV, as an example, the two-atom double-slit experim
shown in Fig. 1 and derived a necessary and sufficient in
ference criterion. Another application of the reset operatorRk̂
was given in Sec. V, where we predicted in agreement w
Ref. @30# strong bunching for the photons emitted into ce
tain directionsk̂. An intuitive explanation for this effect was
given.
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