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Analysis of a two-atom double-slit experiment based on environment-induced measurements
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To investigate the effect of the environment on a quantum-mechanical system we consider two two-level
atoms in a free radiation field in the presence of a screen. By assuming that the screecmatirsssus ideal
measurementsn the free radiation field we derive a quantum jump description for the state of the atoms. Our
results are consistent with the master equatiordfpole interacting atoms, but give more insight in the time
evolution of asinglesystem. To illustrate this we derive a necessary and sufficient criterion for interference in
a two-atom double-slit experiment and analyze bunching in the statistics of photons emitted in a certain
direction.
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[. INTRODUCTION also has an effect on the atomic state. In case of a click on
the screen the state of the atoms changes abrupilymips
In this paper we study the effect of the environment on anto the reset state which can be obtained by applying the
simple quantum-mechanical system. The experimental setugset operator Rto the statgy) of the two atoms before the
we consider as an example is shown schematically in Fig. 1emission.
It consists of two two-level atoms continuously driven by a By deriving the reset operat; [5] we specify the quan-
resonant laser field and stored at a fixed distarfcem each ~ tum jump approach for twalipole interacting atomg6,7]
other. The atoms are surrounded by a free radiation field anyyhich predicts the no photon time evolution with the help of
spontaneously emit photons. Each photon causes a “click” afhe conditional HamiltoniarH cong but does not distinguish
a certain point on a screen. If enough photons are emittedetween photon emissions in different directiano justify
these clicks add up and form an interference pattern. the assumptions and approximations on which our results are
The HamiltonianH of the quantum-mechanical system, Pased we show that they are consistent with the master equa-
which consists here of the two atoms, the laser, and the fre@n for two dipole interacting atom$8-10. Both ap-
radiation field, is well knowri1]. However, solving the cor- Proaches, the quantum jump approach and the master equa-
responding Schidinger equation does not explain that the tion, are Wldely_ used in quantum optics and both have their
atoms spontaneously emit photons. On the other hand, rgspective merits. . . .
purely wave mechanical description of the emitted photons A.qgantum Jump desc.rlpt|0|.ﬁ11—14] is well suited for
can predict the interference pattd@3] but does not allow predicting all possible trajectories ofsingle system. Using

us to determine higher-order time correlations in the photo this approach, it has been shown, for instance, that
statistics 9 P 'Lnvironment-induced measurements can assist in the realiza-
; . . . __tion of universal gates for quantum computifih]. A pos-
The aim of this paper is to show that the experiment pic 9 d putiFip]. A p

sible application of the reset operatRf is given by a re-

tured in Fig. 1 can be explained purely quantum mechanizeny proposed scheme by Cabridoal.[16] for entangling

cally from first principles with the help of the projection gisiant atoms by interference. The master equation has con-
postulate for ideal measuremeid. We show that the en- qjeraple advantages in the description of emsembleof

vironment surrounding the system—the screen—has thgsiems and is well suited for determining stationary states.
same effect as continuous measurements on the free radiation

field. That each photon causes a click on the screen at a point

that depends only on the direction of its wave vedt@ug-
gests that the screen measures whether a Photon has bee photon emittedin |,y pi 4o
emitted or not. If so it determines its directidk/k. As a certain direction k
these measurements are caused by the interaction of the fregaser field N Vag
radiation field with the screen, we call theemvironment- :
induced measurements snfine Tevelin
. WO o-level atoms screen
Between consecutive measurements the state of the atoms at a fixed distance 7

and the field develops with the Hamiltoni&hand all com-

ponents of the quantum-mechanical system become en- FIG. 1. Experimental setup. Two two-level atoms are placed at a
tangled. A measurement on the free radiation field thereforéixed distance from each other and are continuously driven by a
resonant laser. This leads to spontaneous photon emissions. Each

photon causes a click on a screen in a direcﬁ'oaway from the
*Present address. atoms.
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The main reason to consider in this paper an experimentgj,e atoms after an emission in a certain direcfidnom first
setup withtwo atoms is that this leads to spatially dependenty i injes. If the state of the atoms just before an emission is

effects which do not occur in single atom experiments. Veri- J) it can, as we show below, immediately afterwards be
fying these effects experimentally shows that the quantun&v ritten as, '

jump approach is not only an artifact of the master equation
obtained from an unraveling of these equati¢©g] but a |A S=Rel |- &
self-consistent approach. The aim of this paper is to show =R )1I- .

that the quantum jump approach can be applied to all experjziqp, is a pure state. This equation defines the opeftor

and is surrounded by “white” walls of a laboratory formin r]f'p to a proportionality factor. For practicality we choose this
the screen y y 9 factor such that the probability density for a photon emission

The experimental setup shown in Fig. 1 has been disl" thek direction,li(¢), equals
cussed widely in the literaturf3,18—27 and it has been (o) =IR: o 2
realized as a quantum mechanical two-atom double-slit ex- () =Rl I, @
Classical version of his expenment are there replaced by t4Tich 1 & density in time and sofid angle.
atoms which are likewise the sources of the light reachin Tq derlve_ an analytic expression f_or the reset operator let
s first write down the Hamiltonian of the quantum-

the screen. In spite of its simplicity and the fact that this hanical svst isti f 1o two-level at dth
experiment is one of the basic experiments in quantum melechanical system consisting of two two-level aloms and the

chanics its discussion never came to an end. For other recelig€ radiation field. In the f°”_°W'n¢1>i and|2); denote the
and related quantum-mechanical double-slit experiments s¢gound state and the excited state of atomand S
Refs.[24-2§. =|1);(2] and S =|2);;(1] are the corresponding lowering

Here we show, in agreement with Reff29] and[30], that  and raising operators. The energy separation between the lev-
the reset operatdR; allows us to determindirectly the in-  els is given byhwg. The annihilation operator for a single
terference pattern of the experiment by Eichmanal.[23].  photon of the modek|\) of the free radiation field is de-
To demonstrate the advantage of the quantum jump approaefoted bya,, wherek is its wave vectorh characterizes its
we derive anecessary and sufficiemtiterion for interfer-  polarization, and, is the polarization vector. The coupling
ence. In good agreement with Ref5] and[31-33, itis  constant between the free radiation field and atdsngiven
mechanics the wave fanctions, and not the probabilties, oY, ki FOr SImplicity we assume that both atoms have the

y y g . . . 1 _ 2

different paths contributions have to be add([a)d to determind> ¢ transition dipole momeit,, which glvesgﬁk)—g(kk)

the probability for a certain event to happen. Other authors 9k with

attributed interference in quantum mechanical double-slit ex- ® 12
periments to the position-momentum uncertainty relation, gkxzie<_ Dy1- € s (3)
Bohr’s complementarity principle, and to the absence of the 2eohL®

which wayinformation[26,34—43. It is shown here for the

experimental setup of Fig. 1 that the interference vanishes itherewx=ki/c andL*® is the quantization volume. In addi-
and only if the which way information is, at least in prin- tion, we assume that both atoms are irradiated by a laser field

ciple, available in the experiment. which has thécomplex Rabi frequency ") with respect to

To give a further application of our results we analyze thedtomi. If both atoms interact with the same laser the relative
effect of bunching in the statistics of photons emitted in aPhase of the two Rabi frequencies depends on the direction

certain directiork. In agreement with Ref$44] and[30] we of th_e in_coming _beam. Using this _notatior_l the interact?on
predict arbitrary strong bunching even if the atoms are sev{-_'am'lt(.)ma.n H, gwth respect to the interaction-free Hamil-
eral wavelengths apart from each other. An intuitive expla-on'an IS given by
nation for this effect is given following the reasoning of Ref.

[6]. Hi=h 2, > elwomedteh g, a, S +H.c.

This paper is organized as follows. In Sec. Il we derive 1=1.2 kih
the reset operatdr; which represents the main result of our h (et
paper. In Sec. Ill we give a short overview of the quantum +t3 i=129 S’ +H.c. 4
jump approach and show its consistency with the master ’
equation for two dipole interacting atorfis0]. In Sec. IV we In the experimental setup of Fig. 1, each emitted photon

discuss the experimental setup shown in Fig. 1 and derive gauses a click at a certapoint on the screen. To describe
necessary and sufficient interference criterion. Afterwards Wehis we assume that the presence of the screen leads to re-
discuss spatially dependent bunching in the statistics of thgeated measurements on the free radiation field as to whether
photons emitted by the two atoms. Finally, our results argy photon has been emitted or not. If so it determines its

summarized in Sec. V1. direction k. Here we do not discuss what exactly causes
these environment-induced measurements but show later that
the results derived from this assumption are consistent with

In this section we derive an analytic expression for thethe master equation for two dipole interacting atda® and
reset operatoRj; which can be used to determine the state ofin good agreement with the experimental results of Rzs].

Il. THE RESET OPERATOR
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To determine the state of the atoms in the case of a click we
make use of the projection postulate for ideal measurements )FKEX | L) Licka - (10

[4].

Let us first consider a situation in W.h'Ch the screen ISThis operator projects onto all one-photon states with a wave
replaced by detectors which measure with each photon also

its wave vectork and polarizationn. As in Ref.[14], we vector in thek direction. By doing so we find that the reset
assume that the atoms are initially in stage and the free ~ State of the atom-field system equals
radiation field is in the vacuum staf@,). After a timeAt,

which should not be too long so that ikt only the one- 2 L) | o) = 20 | L) (Lida| U1(AL,0)[ Opi) | ).
photon states become populated, the detector performs a kx K
measurement on the free radiation field. According to the (13)

projection postulate the unnormalized state of the atom-field

system in the case of a click caused by a phoigq) equals ~As shown above, only terms witk=Kk, contribute with a
nonvanishing amplitude to the right-hand side of this equa-

| Lo | 100 = Lo ) (L | U1 (A,0) [ Opr) | ) - (5) ]'Eion. From Eq.(9) one can then see that E@1) is of the
orm
HereU,(At,0) is the time development operator with respect
to the interaction Hamiltonia4) which entangles the state , A Y
of the atoms with the state of the free radiation field. The g |1kk)\>|¢’kk)\>:; Cal L) [ ¥ (12
measurement of the free radiation field therefore also has an ’

:tf;etgltlr/(,)n;he atomic state. It makes the atqmmapinto the  pere c, is a complex number. Normalizing this state we
kn)

A comparison of both sides of Ed5) shows that the find that| ) of Eq. (9) is indeed the reset staté) of the

! . toms.
unnormalized state of the atoms after the click of the detectof - . . .
equals The probability density for a click on the screen in the

direction k away from the atoms can be obtained from the
[h1) = (Lin | Ui (AL,00[Op | ). (6)  relation

From first-order perturbation theory and E¢) we find

L\3 (=
(=2 (5) fodkkzlm(w). (13

At A ‘
Wo)=—igh [ ate o S ekng y @) .
i e Using Eq.(8) this leads to

According to the projection postulafd], the squared norm 3A o o
of this vector equals the probability density for the emission ()= §(1—|D21- k|2)‘ 2 e Kok TigT | )
of a photon|1,,) during the time intervalAt. Assuming 1=12

2

At>1/wy we obtain in analogy to Ref14] (14)
h
el where
ha(¢)= lim ——
e e®wp| Dyl 15
2 [ —
i — 3
=27 g |? (0o — wi) ig,ze*'k'risI o) . (8 3meghc

is the spontaneous decay rate of a single atom.
The proportionality of this equation té(wy— wy) shows From Egs.(9) and(14) we can now derive an expression
that all emitted photons have, within the approximationsfor the reset operatd®; of Egs.(1) and(2) and find
made, the wave numbég= woc. The normalized state of
the atoms after an emission therefore equals Ri= R(kl)“L R(&Z) (16)

i) = i_Elze“koﬁ"isrlw)/||~||, (9  with

3A . . 1/2 .
= (1=|Dyy-k[?)| e *okrigT, 17)

M _
R 8w

which depends only on the directidnof the emitted photon
but not onk and\.

Let us now consider again the situation where each emitm the same way as shown here for two atoms, one can derive
ted photon is detected by a click on the screen which detethe reset operator for the situation when only atosiemit-
mines only its directiork. To find the state of the atoms after ting photons while the other atom is far away and cannot
an emission in this case we can proceed as above but havedmit a photon onto the same point on the screen. Proceeding
replace the projectdi,, ){1,| in Eq. (5) by as above we find that the reset operator in this case is given
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by Rf;i) of Eq.(17) alone. The reset operator foothatoms is ‘The probability for no photon emission it can be ob-
the sum of the reset operators for each individual atom. Thifdined from Eq(18) by taking the norm squared and equals

fact will play an important role in the discussion of a two- P.(At. ) =|U At.0 2 21
atom double-slit experiment in Sec. IV. ol AL =[Ucond ALO )" @)

B. Consistency with the master equation
l1. QUANTUM JUMP APPROACH for two dipole interacting atoms

VERSUS MASTER EQUATION . - L
Q Another way to describe two atoms inside a free radiation

Bef | Its 1o th . tal set gield is to use the master equation. It provides linear differ-
elore we apply our results 10 the experimental SEIUp Ok g, equations which govern the time evolution of the den-

Fig. 1 we shortly summarize the quantum jump approach: . : . )
[45] and show that the results obtained in Sec. Il are consirs%"ty matrix p corresponding to an ensemble of single sys

tent with the master equation for two dipole interacting at- ems. It can be derived by averaging over all possible
oms[10] q P 9 trajectories. By doing so we show here that our results are

consistent the with master equation for two dipole interacting
atoms.
A. The quantum jump approach Let us now consider an ensemble of systems with initial

The quantum jump approaghl—14 can be used to pre- statep. After a timeAt this ensemble consists of many sub-
dict all possible trajectories of a single quantum-mechanicafnSembles. The subensemble without photon emissions de-
system which stochastically emits photons. At all tiréise ~ V€l0PS with the conditional Hamiltonial cong and can, at
probability density for a photon emission is known. If this ime At, be described by the density matrix
happens the state of the atoms changes abruptly. It jumps _ t
into another state which can be determined with the help of Po(AD=Ucond ALO)pUcond AL,0)- (22)

the reset operator. Between two photon emissions the systeftyation(21) shows that the trace over this matrix is equal
unqlergoes a contln_u.ous time _evollut|on which can be deg the probability for no photon emission in (@) and to the
scribed by the conditional Hamiltonief cong. relative size of the subensemble without photon emissions.

proceed as in Sec. II. Assuming again that the environment, b ensemble of systems with a photon emissiok ilirec-
performs repeated measurements on the free radiation fie n equals

one can determine the state of the system in the case of no
photon emission by replacing the projectiy, ){1y,| in Eq. piAt= RQPREM (23)
(5) by the projector onto the vacuum stg€g,)(Opy. In this

way one finds that the state of the atom-field system equalgng the trace over this matrix gives the relative size of this
in the case of no photon emission after a time integval subensemble.

_ If At is not too long so that the probability for more than
|0p U cond At,0)[4) = 0pr{0pnl U1 (A,0)|Opi) ). one emission can again be neglected, the density matrix of

the whole ensemble att equals

Using second-order perturbation theory this leads, as in Ref.
[6], to p(AD)=po(AD) + 2, ppAt. (24)
k

From Egs.(17), (19), and(20) we find
Hens= 5 A, §'S+C, 'S S, (19, andin
i=1,2 e
> pi=(A+ReC)R,pR! +(A—ReC)R_pR! (25
k

i -
+ = Qs +H.c. (19
252 .
with
with the complex dipole interaction coupling constant Ri=(Sl’tSZ’)/\/§. (26)
3A 1 ConsideringAt as a continuous parameter this leads to the
=" ek’ -~ (1=ID..-r|? differential equation
C 2 € Ikor(l |D21 r| )
: i
1 1 . p=—7[Hoon~ pH{ond + (A+ReC)R, pR’
+ 5 (1-3[D-r[?) | (20
(Kor)? i(kor)®

+(A—ReC)R_pR" . (27)

As in Sec. Il, we assume here that the dipole monigntis A comparison with Ref[10] shows that this is the master
the same for both atoms. equation for two dipole interacting atoms.
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IV. ANALYSIS OF THE TWO-ATOM DOUBLE-SLIT Summarizing this, we have shown that interference in the
EXPERIMENT two-atom double-slit experiment can be attributed to the fact

To demonstrate the usefulness of the reset opeRtove that the amplitudes of the wave function corresponding to a
apply it in this section to the two-atom double-slit experi- click at the same point on the screen have to be added to

ment shown in Fig. 1. A necessary and sufficient criterion ford€termine the probability for this to happen. This is opposed
interference is derived. The interference pattern we predicdf classical probability theory where the probabilities of all

has the same spatial dependence as the one observed expefbtributing paths have to be added, and which would not
mentally by Eichmanret al. [23]. yield the last term in Eq(30). Attributing interference to the

superposition of wave functions is one of the basic concepts
in quantum mechanids2,33. However, the quantum jump

approach allowed us to calculate the amplitudes of the wave

Before we discuss the two-atom double-slit experiment iy, nction for the concrete experimental setup shown in Fig. 1
which the atoms are continuously driven by a laser field, le

us first consider a simplified version of the setup shown in]éXpIICItIy and to identify each amplitude with a certain path.
Fig. 1. We assume that the atoms are repeatedly prepared in
the same pure stafe/). By observing the emitted photons
one can measure the spatially dependent probability density
k(). Other authors showed that interference in quantum-
To calculatel () we determine first the unnormalized Mechanical double-slit experiments vanishes in the presence
reset statéy;) of the two atoms in the case of an emission inof the which way informatior(see, for instance, Scully and
thel2 direction. From Eqs(l) and (16) we find that it is a DI’Uh|' [34]).-E.ng'lert[39] deriyed an inequality Which'relate.s
superposition of two wave functions, each corresponding to 1€ fringe visibility to the which way knowledge available in
different situation, but both leading to a click at the samethe experiment. In the following, we show that this is in good

A. A necessary and sufficient criterion for interference

B. The which way information

point on the screen, agreement with the criterion given in E@2).
) ) To do so we first point out that a which way interpretation
|z//|;>=R(|; )|¢,//)+R(|; )|¢//). (29 automatically implies the assumption that each photon is

_ emitted either by atom 1 or by atom 2. Assuming this, the
The amplitudeR(Iz')| ) describes the state of the atoms after aquantum jump approach predicts that the reset state of the

photon emission by atormalone. We denote the probability atoms for a certain emission equﬂg)lzp) with the corre-

density for such an emission by’(1). Analogously to Eq. sponding probability densityR!’|)|> wherei equals 1 or
(2) it equals 2. This is in contradiction with E30) which shows that the
I(Ri)(z,b)=||R(|;i)| W2, (29) probabilzity density fgg an Smiss(izc;n in 2trfedirection equals
IRl )[[* and notl| Ry} |+ R |
The probability density;() can be obtained by taking the  Nevertheless, there is one situation in which one cannot
squared norm of the reset stdtg) and we find distinguish whether both atoms are cooperatively emitting or

0 @) 21 (D) whether one can assign each photon to one of the two atoms.
(=1 () + 1.7 () + 2 REYIRT R [4). (30)  This s the case if

This differs by the last term from the sum of the probability R(Izl)|z,/;>¢ R(If)|zp> for all k. (33
densities for an emission either by atom 1 or atom 2 and
describes thanterferencein the light emitted by the two

atoms quantitatively. Interference results from the joint COUThen one can find out which atom emitted the photon by

pling of both atoms to the same free radiation field. There is : . .
only no interference if the last term in E(80) vanishes for "'easuring whether the atoms are either in the Rtdy)

all directionsk, i.e., orin R&2)|¢>. Equation(17) shows that Eqs(31) and (33
are equivalent. This means that the interference vanishes if
Re( 4] REZ)TR(QDW):O for all k. (31  and only if the which way information is available in the
experiment.

This condition is equivalent to the reset stalégl)W) and

Rf;z)| ) being orthogonal to each other and we find using Eq.

(19 that C. Interference from two continuously driven atoms
a

In the previous two subsections we assumed that the state
(Y|S, S |y #0 (32  of the atoms by the time of an emission is alwy$. This
is not the case for the experimental setup of Fig. 1 in which
is a necessary and sufficient criterion for interferencethe atoms are continuously driven by a laser field. To apply
Whether this criterion is fulfilled or not depends only on the our results to this situation we have to describe the atoms at
initial state|y) of the atoms. the time of an emission by the steady-state maifik From
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/7w 0.5

0 0.25 0.5 0.75 1
e/m

FIG. 3. Density plot of the emission ratg(p® for two con-
) ] . tinuously driven two-level atoms,=\,/7 and () =0.3A. White

FIG. 2. Coordinate system with the spatial angleand¢ char-  areas correspond to spatial angles with maximal intensity.
acterizing the direction of the wave vector We assume that the

atomic dipole momenbD,, is perpendicular to the line connecting

phase relation. The same is true for the phase difference of
both atoms.

the Rabi frequencies driving both atoms. It enters &)
through the steady-state matgiXS As an example, we as-
sume in the following that both atoms see the saneal)
Rabi frequency

Eq. (2) we find that the probability density for an emission in
the k direction equals

+
I (p>)=Tr( RRPSSR;;)- (34 Ob=0@=0. (39
In analogy to Eq(32) a necessary and sufficient criterion for o _
interference is now given by the condition From Eq.(27) and the conditiorp**=0 we find
Tr(S; S, p%=Tr(S; p>5, ) #0. (35 (A2+0?)2+ A2(2A+ReC)ReC+A?%(Im C)?
Pgg™ '
Using Egs.(16) and(17) we obtain N
o 3A A, . . Q?(2A%2+Q2) 04
li(p 5'):g(l_|D21'k| (S, p 581)+Tr(82p SSZ) Pssva Pee:Paa:Wa Imps,=0
(40)

+2 ReT(e ko (1=r2g S5, (36)
. . with
where the last term describes the interference effects.
To discuss a concrete example, it is convenient to intro-
duce Dicke states,

=110, [9=(19+ |21>)/\/§' As it can be seen from these equations, the dipole interaction
_ _ B between the atoms has only a small influence on the depth
le)=122), |ay=(]12)—|21))/2, (7 but does not affect the form of the interference pattern. For
and to use the spatial anglésand ¢ as defined in Fig. 2. In "> 2)o One can neglect all terms proportional to the dipole
the following we choose the dipole momeiis, to be per-  COUPling constanC. This leads td46]
pendicular to the line connecting both atoms. Using this no-

N=(A%+20?)°+ A?(2A+ReC)ReC+A%(ImC)>.
(41)

tation we find from Eq.(36) in good agreement with Ref. e 3 AQ? ) ) 5
[21] l(p™)=7— (A2+292)25|n21‘}[A +20
+ A?cogKor sind cose)] (42)

s 3A
li(p®= %sz‘?[zl)ee"' PssT Paa

which is in good agreement with experimental results by
Eichmannet al.[23].
+2 Im pg,sin(kor sind cose)], (39 To illustrate this we show in Figs. 3 and 4 density plots of
the emission ratd(p®9 for different atomic distances.
wherep,,=(x|p*]y) are the matrix elements of the steady- White areas correspond to spatial angles with maximal inten-
state density matriy®S The last two terms in E(38) de-  sity. The interference effects of the photons emitted by the
scribe the interference and result from the last term in Eqtwo atoms are more distinct in Fig. 4 which shows stronger
(36). oscillations of the intensity with the polar angle These
In the classical double-slit experiment, interference vanbecome more frequent the larger the distance between the
ishes if the waves emanating from both slits have a randomatoms.

+(pss— Paa)CO Kol Sind cose)
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) (= |

FIG. 4. As in Fig. 3 but withr = 10\,. FIG. 5. The second-order photon correlation func@zﬂ(O) as

) ) a function of for O =0.3A, r=10n,, and 9= 7/2.
Finally we note that every change of the stationary state

p>in Eq. (36) can affect the depth of the interference pat- A. The photon correlation function

tern. This has been discussed in Rg45] and[48] where an for two continuously driven atoms

additional coupling of the two atoms via the mode of an _ ) ) .

optical cavity has been assumed. Another situation, in which With present ion trapping technology atomic distances
the density matrixSis different from Eq.(40) is when the Iqrger than a feyv wavelengt.hs are easier to prepare. We con-
atomic state is continuously monitored. This can be don&ider therefore in the following the case-2\, and neglect
with the help of an additional rapidly decaying level and a29@in the dipole interaction between the atoms. Assuming, as
second laser fiel@i34,49 or by using two four-level atoms " Eq. (39), that the Rabi freque_ncy of the driving laser field
and detecting the polarization of the emitted phot@gs31. IS the same for both atoms we find from E(E5), (17), (40),
Alternatively, it has been proposed to use two microwave2nd (41)

cavities as which way detectof85]. As a consequence of . 2

the knowledge of the which way information in these setups gg2)(0): 1 cogKor sind cose)

the interference vanishes. This is in good agreement with our  ~« g .

discussion in the previous subsection. +cogkor sind cose)

1+2

A
(44)
V. BUNCHING EFFECTS IN THE PHOTON STATISTICS
OF TWO DISTANT ATOMS As can be seen from this result, bunching occurs for all di-

As another application of the quantum jump approach Werectlonsk with coskgr sindcose)<0 and does not depend

: : o : . ., on the concrete choice of the Rabi frequeri@y This is
investigate in this section the second-order correlations in thgifferent from the statistics of bhotons emitted iabspatial
photon statistics of two continuously driven two-level atoms. P P

The experimental setup we consider is again the same as gr%rections where bunching can only occur for distances with
Fig. 1 but in the following we replace the screen by a singler<2.)‘O [6].

photon detector which registers only photons emitted in a Figure 5 sho(\gs as an e>_<amp|e the s_econd—order correla-
certain directiork. In this section we predict strong spatially tion function g,~(0) for different spatial ang'esi; M
dependenbunching— the effect that a photon emission in = /2, r =10\o, and)=0.3A. For these paramete@ (0)
the k direction increases the probability density for yet an-can adopt values larger than 40 which corresponds to very
other emission in the same directifti]. Our results are in Strong bunching. For weaker drivin)/A—0, the correla-
good agreement with the results of RES0]. An intuitive tion fun_ctlon can even become infinitely Iarg_e. This seems
explanation for bunching, following the reasoning of Ref unphysical but corresponds to angles for which the photon

[6], is given. "intensity (42) vanishes fo)/A—0.
To obtain a simple mathematical description of bunching
we define, analogously to E@4) of Ref. [6], the second- B. An intuitive explanation of strong bunching

order correlation function by The quantum jump approach allows us not only to calcu-

o seat late easily photon correlation functions but also to obtain a
gz)(o _ I (Rep >R/ Tr(-)) 43) good intuitive understanding of this phenomenon. To do so
9k a 1i(p% ' we proceed as proposed in RE§] and investigate how the
state of the atoms changes during a photon emission in a
The denominator of this function is the steady-state photoslirection with bunching. According to E¢44) we get maxi-

emission rate in thé direction while the numerator equals mal bunching if
the probability density for an emission in the same direction
immediatelyafter an emission. Therefore the photons emitted

. oo . .(2) .
n thfk direction are bunched g, (0)>1 and antibunched  por this direction the corresponding reset operi@ can
if g& )(0)s1. be written as

cogkor sind cose)=—1. (45)
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(a) (b) VI. CONCLUSIONS

le> le>

As long as a quantum-mechanical system does not couple
Is> la> Is> la> to its environment one can predict its time evolution by the
Schralinger equation. This is not possible for open systems
lg> like spontaneously emitting atoms. To describe them the
guantum jump approad®5] has been derived from the as-
sumption that the environment performs continuous mea-
surements on the free radiation field as to whether a photon
) ) L ; . is emitted by the atoms or not. The time evolution of the
after the emission of a photon into a direction with maximal bunch- . L
ing (b) pictured by circles. The area of each circle is proportional toatoms. under the C(.)n.dltlon of nq photon emission can .be
the population of the corresponding level. d_escrlbed _by a Schdinger equation based on the _cor_1d|—
tional HamiltonianH ,,4. In the case of a photon emission
the state of the atoms changes abruptly.
Ri=a(|a)(e[—[g)al), (46) In this paper we assumed that the environment of the
atom-field system, here in form of a screen, detects each
where a is a complex number. For the same direction theemitted photon and, if so, determines its directianThis
probability density for an emissiof84) equals ansatz was motivated by the experimental setup of Fig. 1 in
which each photon causes a click at a certain point on the
screen. From this assumption of environment-induced mea-
surements we derived in Sec. Il the reset operRtarlt can
be used to determine the state of the atoms immediately after
k ) e ) an emission in thé direction. Initially in a pure state, the
Figure a) illustrates the population in the atomic levels gia1e of the atoms remains always pure. This extension of the
for the steady state matrpc®and Fig. 6b) for the state of o ,antum jump approach allows us now to predict all indi-
the atoms immediately after an emission in the direck@f  vidual trajectories of a single atomic system. We think that
Eq. (45. The area of each circle is proportional to the popu-all quantum optical experiments with “white” walls in the
lation of the corresponding level. In the steady state, there igboratory can be described by a quantum jump approach.

lg>

FIG. 6. The population of the Dicke statgp, |s), |a), and|e)
for the steady statg®® (a) and for the normalized state immediately

IIZ(PSS):|a|2(Pee+ Paa) (47)

and is proportional to the population in the std@sand|e).

nearly no population in the levessande and the probability In Sec. Il we showed that our results are consistent with
density f(_)r an emission in the direction of Eg5) is there-  the master equations for two dipole interacting atqit@).
fore relatively low. It equals The dipole interaction results from the fact that both atoms

interact with the same free radiation field and exchange vir-
tual photons. This is described by the dipole coupling con-

s 20 a? stantC in the conditional Hamiltoniam .onq. Also the reset
(P =5 (49 ; nailc ]
(A2+20)2)2 operatorR;, leads to terms proportionél in the master equa

tion.

The advantage of our generalization of the quantum jump
During an emission a redistribution of the population takesaPproacti6,7] is that it can now be applied to further experi-
place according to the reset operat8). The population of ~Ments such as the scheme by Cabrétaal. [16] to entangle
|eve|agoes over to |ev@ and the popu|ati0n of leved goes distant atoms by interference. In this paper we discussed in
to level a while the population of the two other levels van- Sec. IV, as an example, the two-atom double-slit experiment
ishes. Afterwards the reset state has to be normalized. Ahown in Fig. 1 and derived a necessary and sufficient inter-
comparison of Figs. @) and (b) shows that the emission of ference criterion. Another application of the reset opergfor
a photon causes in this way an increase of the population iwas given in Sec. V, where we predicted in agreement with
the statega) and|e) and therefore also an increase of the Ref. [30] strong bunching for the photons emitted into cer-
probability density for a further emission in the same direc-tain directionsk. An intuitive explanation for this effect was
tion, which is given by given.
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