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Collective modes in a dilute Bose-Fermi mixture

S. K. Yip
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

~Received 18 January 2001; published 18 July 2001!

Here we study the collective excitations of a dilute spin-polarized Bose-Fermi mixture at zero temperature,
considering, in particular, the features arising from the interaction between the two species. We show that a
propagating zero-sound mode is possible for the fermions even when they do not interact among themselves.
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Recent experimental progress in atomically trapped ga
has led to a resurgence of interest in quantum fluids. A p
ticular notable feature is the number of systems availa
ranging from a single-component Bose gas in the origi
experiments, where Bose-Einstein condensation was
achieved@1# to a binary Bose mixture@2#, a spinor conden-
sate in optical traps@3#, and a degenerate Fermi gas@4,5#.
Other systems also received much recent attention, in
ticular a Bose-Fermi mixture. This last mentioned syst
occurs naturally if ‘‘sympathetic cooling’’ is employed t
reduce the kinetic energy of the fermions@6#. There have
already been several studies on the properties of this sys
Questions addressed include stability against phase se
tion @7,8# and collective excitations@8#.

Although Bose-Fermi mixtures have been studied int
sively in low-temperature physics in the context of3He-4He
mixtures@9#, atomically trapped gases offer many addition
possibilities. By the choice of atoms, the concentration of
various components, or the control of interaction stren
among them by external fields@10#, one can unmask phe
nomena previously unobservable. In this paper, we s
study one example of this by considering the density os
lations of a Bose-Fermi mixture at low temperatures.
shall show that a variety of phenomena can arise due to
coupling between the two components for suitable para
eters, such as the ratio of the sound velocity of the Bose
to the Fermi velocity of the fermions. In particular, we sh
show that it is possible to have a propagating fermio
sound mode even in the absence of interaction among
fermions themselves. Sound propagation was also consid
in Ref. @8#, which, however, did not investigate the effec
being studied here. We shall comment on this later.

We shall then consider a mixture of weakly interacti
Bose and Fermi gases at zero temperature. Both gase
assumed to be spin polarized, such as would usually be
case in magnetic traps. For a dilute mixture, interact
among the bosons themselves and between the boson
fermions can be characterized by the scattering lengthsabb
and ab f in the s-wave channels. However, the fermions
not interact among themselves since they are spin polari
For simplicity we shall consider a uniform system. We sh
further assume that the gas is stable against phase sepa
unless explicitly specified. We are interested in the den
waves of this system. As we shall see, in general the mo
may be damped. Also since the density oscillations are lik
to be studied by exciting the systems with external pot
tials, we shall instead consider the density responses o
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system under external perturbing potentials. Collect
modes of the system will show up as resonances of th
responses.

The Hamiltonian density is given by

H5
\2

2mb
“cb

†
“cb2mbcb

†cb1
\2

2mf
“c f

†
“c f2m fc f

†c f

1
1

2
gbbcb

†cb
†cbcb1gb fcb

†c f
†c fcb1cb

†cbVb
ext

1c f
†c fVf

ext, ~1!

where the subscriptsb and f denote bosons and fermion
respectively;c f and cb are the field operators;mb and mf

the masses;mb andm f are the chemical potentials; andVb
ext

and Vf
ext are the external potentials. Allc ’s and Vext’s are

implicitly at the same physical pointrW in space. The interac
tion parametersgbb and gb f are related to the scatterin
lengths abb and ab f by gbb54p\2abb /mbb and
gb f52p\2ab f /mr where mr is the reduced mass (mr

21

[mf
211mb

21).
We shall treat the interactionsgbb andgb f within the Bo-

goliubov and random-phase approximations, respectiv
@11#. The results can be written in the physically transpar
forms

dnb~q,v!52xb@gb fdnf1Vb
ext#,

~2!
dnf~q,v!52x f@gb fdnb1Vf

ext#,

expressing the response of the bosons and fermions to
potentials due to the other species and the external pertu
tions ~the terms in the square brackets!. Herednb(q,v) and
dnf(q,v) are the deviations of the bosonic and fermion
densities from equilibrium at wave vectorq and frequency
v, and

xb52
1

gbb
F cb

2q2

v22cb
2q22~q2/2mb!2G ~3!

and

x f5NfF12
v

2v fq
lnS v1v fq

v2v fq
D G ~4!
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are the (q- and v-dependent! responses of the pure boso
and fermion systems, respectively, to effective external
tentials.Nf[pfmf /2p2 is the density of states for the fe
mions. (pf5(6p2nf)

1/3 is the Fermi momentum,v f
5pf /mf) For simplicity, in Eq.~4!, I left out terms that are
small if q!pf . v should be interpreted as having a sm
and positive imaginary part.

Equation~2! can be rearranged as

S 1 gb fxb

gb fx f 1 D S dnb

dnf
D 52S xbVb

ext

x fVf
extD . ~5!

Then, finally,

S dnb

dnf
D 52

1

12gb f
2 xbx f

S 1 2gb fxb

2gb fx f 1 D S xbVb
ext

x fVf
extD .

~6!

In the case wheregb f50, dnb52xbVb
ext, and dnf5

2x fVf
ext, and the responses thus reduce to those of the

Bose and Fermi gases. The corresponding formulas forxb
andx f were already given in Eqs.~3! and~4! above. Before
we proceed, we shall recall the behavior of these respo
@11#, and thus the collective modes. For simplicity we sh
restrict ourselves to small wave vectors, i.e.,q!mbcb and
pf , and without loss of generalityv.0. The bosonic re-
sponse Imxb consists of ad function at the excitation fre-
quencyv5cbq. This is due to the Bogoliubov mode, whic
is purely propagating and undamped. For the fermions, h
ever, there is no collective behavior. The absorptive p
Im x f , is finite for a whole range of frequenciesuvu,v fq,
known as the particle-hole continuum, arising from the ma
possibilities of independent particle-hole excitations. Rexb

is simple. It is given bygbb
21 at v50, and diverges to6` as

v→cbq from below and above, respectively. Rex f is given
by Nf at v50. It decreases with increasingv, changes sign
at aroundv;0.83v fq, and approaches2` asv→v fq from
both above and below. Forv.v fq, it remains negative, with
its magnitude gradually approaching zero asv→`.

Now we return to the Bose-Fermi mixture. The respon
dnb to an external potentialVb

ext, acting on the bosons only
is given byxb /(12gb f

2 xbx f). The existence and the dispe
sion of the bosonic collective mode are determined by
solution to the equation (xb)212gb f

2 x f50, i.e.,

F2v21cb
2q21S q2

2mb
D 2G2S gb f

2

gbb
D ~cb

2q2!x f50. ~7!

It will be convenient to discuss the normalized response

x̃b[gbbxb /~12gb f
2 xbx f !, ~8!

x̃b51 in the static limit (v50, q→0), when there is no
boson-fermion interaction (gb f50).

Similiarly the fermionic response to an external poten
acting on the fermions alone isx f /(12gb f

2 xbx f). We shall
discuss the behavior of the normalized quantity
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x̃ f[Nf
21x f /~12gb f

2 xbx f !. ~9!

The normalization is chosen such thatx̃ f51 in the static
limit ( v50, q→0), when there is no boson-fermion inte
action (gb f50).

Before proceeding, let us first examine the response
v50. Stability requires that the density responsesxb /(1
2gb f

2 xbx f) and x f /(12gb f
2 xbx f) be positive. Using thev

50 values ofxb and x f above, these necessary conditio
can be rewritten asgbb.0 andW[Nfgb f

2 /gbb,1. Using the
expression ofNf given earlier, the last inequality give

nf
1/3gb f

2 ,
2
3

Agbb where A[(\2/2mf)(6p2)2/3 as defined in

Ref. @7#. These conditions were derived earlier in Refs.@7#
and @8# using slightly different considerations. For boso
and fermions with similar masses, we shall see shortly t
W, a dimensionless parameter, serves as a useful measu
the coupling between the bosons and fermions. If the bos
and fermions have similar masses,uWu is of order
uab f

2 /abbnf
21/3u, and thus is typically small for dilute gase

unlessuab fu@uabbu. We shall limit ourselves only to the case
whereuWu ’s are small.

We shall discuss now the behaviors ofx̃b and x̃ f in turn.
The results are qualitatively different depending on whet
cb:v f . The velocity ratiou[cb /v f can be re-expressed a

u5
mf

mb

~4/3!1/3

p1/6

~nbabb!
1/2

nf
1/3

.

The value ofu can basically be arbitrary without violatin
any stability criterion~not only the linear stability condition
above but also others derived in Ref.@7#!

BOSONIC RESPONSE

~1! cb.v f : In this regime a propagating bosonic mod
exists. It can be easily verified~e.g., graphically! that the
mode frequencyv satisfiesv.cbq (.v fq). The original
bosonic mode atv5cbq is pushed upward by the particle
hole ‘‘modes’’ lying below. Some examples are shown
Fig. 1. This mode ‘‘repulsion’’ is generally expected~cf.
coupled harmonic oscillators!. However, it is of interest to

FIG. 1. Dimensionless bosonic responses Rex̃b and Imx̃b for
u[cb /v f.1 andW50.01. Lines for the imaginary parts are dec
rated with circles.
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examine the microscopic nature of the mode. At the mo
frequency bothxb and x f are negative. Thus, e.g., ifgb f
.0, dnb , anddnf are of the same sign@see Eq.~5!#. The
repulsion between the two species provides the enhance
storing force and oscillation frequency. This frequency sh
is typically small since usuallyW!1.

~2! cb,v f : In this case the original bosonic mode lie
inside the particle-hole continuum of the fermions. T
bosonic mode is thus Landau damped. For we
coupling the damping, and thus the width of the respon
can be estimated easily using Eq.~7! to be
;@pNfgb f

2 /4gbb#@cb /v f #(cbq). Examples are shown in Fig
2. There is a small shift of the mode due to Rex f . The shift
is toward higher frequency foru sufficiently close to 1, but
opposite otherwise (Rex f,(.)0 for v/v fq.(,)0.83.!

~3! It is also of interest to study the bosonic mode f
gbb,0. This is in fact the case for the6Li- 7Li mixture in-
vestigated in Ref.@6#, where the7Li bosons have a negativ
scattering length of'21.5 nm. In this case the origina
bosonic system is unstable, and the Bogoliubov mode ha
imaginary frequency for sufficiently small wave vector (q
,qc52mbucbu/\, hereucbu[@ ugbbunb /mb#1/2). SinceNfgb f

2

.0.gbb , the system is still unstable in the presence
fermions@7# ~also see above!. Of interest is the effect of the
fermions on the unstable mode. Now for imaginary frequ
ciesv5 ia,

x f~q,ia!5Nf H 12
a

v fq
Fp2 2tan21

a

v fq
G J

is purely real and positive.x f decreases monotonically wit
a from x f5Nf at a50 to 0 asa→`. It can be easily
verified that there is areal solution for a to the dispersion
relation @cf. Eq. ~7!#

@a22ucbu2q2#2S gb f
2

ugbbu
D ~ ucbu2q2!x f~q,ia!50 ~10!

for sufficiently smallq ~which includes the physically mos
relevant region wherea attains its maximum, i.e., the faste
growing instability!. Thus the instability isnot damped by
the particle-hole degree of freedom. In fact it can be verifi
easily that, for givenq, a is increased in the presence of th

FIG. 2. Same as Fig. 1, but foru[cb /v f,1 andW50.01.
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fermions. The system has become even more unstable.
mode hasdnb anddnf of opposite signs, and corresponds
phase separation as expected.

FERMIONIC RESPONSE

~1! cb.v f : In this case the fermionic response for
,v,qv f is only slightly modified. A feature appears ne
v;cbq.v fq due to the coupling to the bosonic mode. A
example is as shown in Fig. 3.

~2! cb,v f : In this regime there are two important fea
tures of the fermionic response. Ifu5cb /v f is sufficiently
close to 1, the imaginary part contains a sharp resonanc
v above the particle-hole continuum~Figs. 4 and 5!. There
are two ways of understanding this mode. It can be regar
as a continuation of the situation fromcb.v f , i.e., it is due
to the bosonic mode which is itself slightly pushed up
frequency~cf., Fig. 3; note, in particular, the result foru
51!. Alternatively, this mode can be considered as a ze
sound mode induced by the bosons. The form forx̃ f in Eq.
~9! is precisely that of aninteractingFermi gas withs-wave
interactiongf f @and therefore necessary with more than o
spin species, where the response is given byx f /(11gf fx f)#,
though with an effectivefrequency-dependentinteraction
gf f→2gb f

2 xb , i.e., an effectives-wave Landau paramete

FIG. 3. Dimensionless fermionic responses Rex̃ f and Imx̃ f for
u[cb /v f>1 and W50.1. The imaginary parts~lines decorated
with circles! contain the particle-hole continuav,v fq and sharp
spikes at the bosonic mode frequencies.

FIG. 4. Dimensionless fermionic response Imx̃ f for u[cb /v f

,1 showing the zero-sound modes induced by the bosonsW
50.1. Also shown is Imx f for a pure Fermi gas (gb f50) for com-
parison.
9-3
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S. K. YIP PHYSICAL REVIEW A 64 023609
given by F0→W/@(v/cbq)221#. The bosonic modev
;cbq, for cb sufficiently close to but belowv f , will thus
induce a zero-sound mode for the fermions, just as an in
action among the fermions will@12#. Note, however, that
there cannot be a reals-wave interaction among the ferm
ons, as they are of equal spin. Thus this modecannot be
obtained by considering the effective interaction among
fermions, as in Ref.@8#.

The frequency of this propagating mode can be estima
by using the well-known dispersion relation of the zero
sound v/v fq'112e22[11(1/F0)] , with the effective F0
→W/@(1/u)221# as suggested above. In order for the velo
ity of the mode to be, say, 1% abovev f , thencb has to be
within around 7% ofv f if W50.1. This estimate agrees wit
the numerical results of Fig. 4.

The second interesting feature is that, near the orig
bosonic mode frequencyv;cbq, there is a reduction in the
absorptive part Imx̃ f ~see Fig. 6!. In fact, Imx̃ f→0 as v

→cbq. This, as well as the corresponding behavior of Rex̃ f ,
can be seen easily mathematically from Eq.~5! due to the
resonance nature ofxb at this frequency. Physically this ca
be regarded as due to mode-mode repulsion—the bos

FIG. 5. Same as Fig. 4, except that now Rex̃ f is shown.
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mode has pushed away the particle-hole ‘‘modes’’ nearv
;cbq. This feature is present even for small couplingW. A
larger W mainly increases the width of this ‘‘transparen
region. Thus, in fact, the frequency dependence of Rex̃ f is
actuallystrongerfor smallerW’s.

The energy absorption by the Bose-Fermi mixture fro
an external perturbation acting on the fermions is thus s
stantially reduced for frequencies within this transparent
gion. The width of this region can be estimated by using
observation that the fermionic response is roughly redu
by the factor 11W@(cbq)2/v22(cbq)2# for these frequen-
cies. For the fermionic response to be reduced to, say, 1/
its bare value, thenuv2cbqu/cbq,W/2. This estimate
agrees very roughly with the numerical results in Fig. 6.
conclusion, I have investigated the collective modes o
Bose-Fermi mixture, and have shown that there is import
mode-mode coupling effects, especially ifv f;cb .

I thank David Edwards for helpful correspondences. T
research was supported by the National Science Counc
Taiwan under Grant No. 89-2112-M-001-105.

FIG. 6. Imaginary part of the dimensionless fermionic respo

Im x̃ f for u[cb /v f,1, showing mainly the regionv,v fq.
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