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Collective modes in a dilute Bose-Fermi mixture
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Here we study the collective excitations of a dilute spin-polarized Bose-Fermi mixture at zero temperature,
considering, in particular, the features arising from the interaction between the two species. We show that a
propagating zero-sound mode is possible for the fermions even when they do not interact among themselves.
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Recent experimental progress in atomically trapped gases/stem under external perturbing potentials. Collective
has led to a resurgence of interest in quantum fluids. A parmodes of the system will show up as resonances of these
ticular notable feature is the number of systems availableresponses.
ranging from a single-component Bose gas in the original The Hamiltonian density is given by
experiments, where Bose-Einstein condensation was first )
achieved 1] to a binary Bose mixturg2], a spinor conden-
sate in optical trap$3], and a degenerate Fermi gak5]. H=2—me¢Z,V¢b—,ubwg¢b+2—rmV¢;rV Y= i
Other systems also received much recent attention, in par-
ticular a Bose-Fermi mixture. This last mentioned system
occurs naturally if “sympathetic cooling” is employed to
reduce the kinetic energy of the fermiof]. There have
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already been several studies on the properties of this system. ~ +¥1#1Vf, (1)
Questions addressed include stability against phase separa-
tion [7,8] and collective excitationEs]. where the subscripts and f denote bosons and fermions,

Although Bose-Fermi mixtures have been studied intenyespectively;y; and ¢, are the field operatorsn, and my
sively in low-temperature physics in the context®fe-*He  the massesy, and u; are the chemical potentials; amf*
mixtures[9], atomically trapped gases offer many additionaland V¢ are the external potentials. All’'s and V®<'s are

possibilities. By the choice of atoms, the concentration of th‘?mplicitly at the same physical poimtin space. The interac-
various components, or the control of interaction strengthjg, parametersy,, and g, are related to the scattering
among them by external field40], one can unmask phe- |engths a,, and ay,; by gyy=4mh%ay,/My, and
nomena previously unobservable. In this paper, we ShaE;bf=27rﬁ2abf/m where m, is the reduced massm( *
study one example of this by considering the density oscil_ -1 -7 ' '
lations of a Bose-Fermi mixture at low temperatures. We We shall treat the interactior,, andg within the Bo-

shall show that a variety of phenomena can arise due to th&oliubov and random-phase approximations, respectively

coupling between the two components for suitable params . . )
eters, such as the ratio of the sound velocity of the Bose g 11]. The results can be written in the physically transparent

to the Fermi velocity of the fermions. In particular, we shall fms

show that it is possible to have a propagating fermionic _ ext

sound mode even in the absence of interaction among the ONp(0, @) = = xp[ pr SNy + V',

fermions themselves. Sound propagation was also considered . 2
in Ref. [8], which, however, did not investigate the effects oNn¢(q, )= — x[GprdNp+ V{1,

being studied here. We shall comment on this later.
We shall then consider a mixture of weakly interactingexpressing the response of the bosons and fermions to the

Bose and Fermi gases at zero temperature. Both gases gretentials due to the other species and the external perturba-

assumed to be spin polarized, such as would usually be th#ns (the terms in the square bracketslere 5ny(q,w) and

case in magnetic traps. For a dilute mixture, interactionsn;(q,w) are the deviations of the bosonic and fermionic

among the bosons themselves and between the bosons amehsities from equilibrium at wave vectgrand frequency

fermions can be characterized by the scattering lenaths o, and

and a,; in the swave channels. However, the fermions do

not interact among themselves since they are spin polarized. 1 { cig? }

()

For simplicity we shall consider a uniform system. We shall Xb= = S

Ibb wz_cng_(q2/2mb)2

further assume that the gas is stable against phase separation
unless explicitly specified. We are interested in the density
waves of this system. As we shall see, in general the moded"
may be damped. Also since the density oscillations are likely
to be studied by exciting the systems with external poten- N1 o
tials, we shall instead consider the density responses of the X1
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are the ¢I- and w-dependentresponses of the pure boson 400

and fermion systems, respectively, to effective external po-

tentials.Ny=psm; /272 is the density of states for the fer-

mions. E¢=(6m2ny)*® is the Fermi momentum,v; 200

=ps/m;) For simplicity, in Eq.(4), | left out terms that are

small if q<p;. o should be interpreted as having a small

and positive imaginary part. 0
Equation(2) can be rearranged as

( 1 9beb> ( 5nb) _
Optxs 1 ong

Then, finally,

(5%) o 1 ( 1 _gbeb)
ong 1—g2expxr | — IbXr 1 "
6
The normalization is chosen such that=1 in the static

In the case whereg,=0, dnp=—x,Vp*, and on¢=  Jimit (w=0, g—0), when there is no boson-fermion inter-
—x:V{, and the responses thus reduce to those of the purgction (g,;=0).
Bose and Fermi gases. The corresponding formulasyfor Before proceeding, let us first examine the responses at
and ys were already given in Eq$3) and(4) above. Before w=0. Stability requires that the density responggd(1
we proceed, we shall recall the behavior of these responsesg?y,xs) and x;/(1—g2:xnx:) be positive. Using thev
[11], and thus the collective modes. For simplicity we shall=0 values ofy, and y; above, these necessary conditions
restrict ourselves to small wave vectors, i@smyC, and  can be rewritten agpp>0 andWENfggf/gbb<1_ Using the

ps, and without loss of generality>0. The bosonic re- expression ofN; given earlier, the last inequality gives
sponse Imy,, consists of a5 function at the excitation fre-

2 . .
quencyw=cyq. This is due to the Bogoliubov mode, which nfllsgﬁf<§Agbb where A= (#%/2m;) (672)?? as defined in
is purely propagating and undamped. For the fermions, hOWget (7] These conditions were derived earlier in R4,

ever, ”.‘er? IS no collective behavior. The apsorptlve partyng [8] using slightly different considerations. For bosons
Im x;, is finite for a whole range of frequenci¢®|<vd,  ,nd fermions with similar masses, we shall see shortly that
known as the particle-hole continuum, arising from the manyy; 5 gimensionless parameter, serves as a useful measure of
possibilities of independent particle-hole excitations.yge the coupling between the bosons and fermions. If the bosons
is simple. It is given byg,; atw=0, and diverges (= as  ang fermions have similar masse$W| is of order
w—Ccyq from below and above, respectively. Reis given |agf/abbnf—1/3|' and thus is typically small for dilute gases

by N¢ at w=0. It decreases with increasing changes sign njesqa, |>|ay,|. We shall limit ourselves only to the cases
at aroundw~ 0.8 ¢q, and approaches « asw—uv:q from where|W['s are small.

both above and below. Fey>uv:q, it remains negative, with . .~ ~ .
vid g We shall discuss now the behaviorsgf and y¢ in turn.

its magnitude gradually approaching zeroaas: . o . .
Now we return to the Bose-Fermi mixture. The responseThe results are qualitatively different depending on whether

&ny, to an external potentiatS', acting on the bosons only. Cp=vy. The velocity ratiou=c, /vy can be re-expressed as
is given beb/(l—gﬁbeXf). The existence and the disper- m; (4132 (nyap,) 2

sion of the bosonic collective mode are determined by the U= 16 3
solution to the equationy) ~*—g2x;=0, i.e., b Ny

X ngXt
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FIG. 1. Dimensionless bosonic responsesyRend Imy,, for
u=c,/v{>1 andW=0.01. Lines for the imaginary parts are deco-
et rated with circles.
XbVb

X fV?Xt

Xi=N; "x /(1= g xpxi)- 9

The value ofu can basically be arbitrary without violating

2\2 2
b tability criterion(not only the linear stability condition
— w2+ c2q2+ _) _(_) c202) v =0. 7 any stability nly tt y
@ bd 2m, Obb (Ca7) Xt @ above but also others derived in RET))
It will be convenient to discuss the normalized response BOSONIC RESPONSE
I 2
Xb=9bbXb /(1= GpXpX1), 8 (1) c,>v;: In this regime a propagating bosonic mode

_ exists. It can be easily verifiete.g., graphically that the
xp=1 in the static limit ¢=0, g—0), when there is no mode frequencyw satisfiesw>c,q (>v¢q). The original
boson-fermion interactiong,:=0). bosonic mode atv=cyq is pushed upward by the particle-
Similiarly the fermionic response to an external potentialhole “modes” lying below. Some examples are shown in
acting on the fermions alone bgf/(l—gﬁfxbxf). We shall  Fig. 1. This mode “repulsion” is generally expectddf.
discuss the behavior of the normalized quantity coupled harmonic oscillatorsHowever, it is of interest to
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FIG. 2. Same as Fig. 1, but far=c, /ug<1 andW=0.01. FIG. 3. Dimensionless fermionic responsesyRand Imy; for

] ) ] u=c,/vi=1 and W=0.1. The imaginary part¢lines decorated
examine the microscopic nature of the mode. At the modeyith circles contain the particle-hole continua<v;q and sharp

frequency bothy, and x; are negative. Thus, e.g., Gyt  spikes at the bosonic mode frequencies.

>0, &ny, and én; are of the same sigisee Eq.(5)]. The

repulsion between the two species provides the enhanced riermions. The system has become even more unstable. This
storing force and oscillation frequency. This frequency shiftmode ha_sﬁnb and on¢ of opposite signs, and Corresponds to

is typically small since usualyv<1. phase separation as expected.
(2) cp<v¢: In this case the original bosonic mode lies
inside the particle-hole continuum of the fermions. The FERMIONIC RESPONSE

bosonic mode is thus Landau damped. For weak
coupling the damping, and thus the width of the response, (1) c,>v;: In this case the fermionic response for O
can be estimated easily using Eq(7) to be <w<qus is only slightly modified. A feature appears near
~[wagﬁfMgbb][cb/vf](cbq). Examples are shown in Fig. o~cy,q>v¢g due to the coupling to the bosonic mode. An
2. There is a small shift of the mode due to Re The shift example is as shown in Fig. 3.
is toward higher frequency far sufficiently close to 1, but (2) cy<v;: In this regime there are two important fea-
opposite otherwise (Re<(>)0 for w/v;q>(<)0.83) tures of the fermionic response. Uf=cy/v; is sufficiently

(3) It is also of interest to study the bosonic mode forclose to 1, the imaginary part contains a sharp resonance at
0p,<0. This is in fact the case for th&Li-‘Li mixture in- o above the particle-hole continuu(figs. 4 and & There
vestigated in Ref[6], where the’Li bosons have a negative are two ways of understanding this mode. It can be regarded
scattering length of~—1.5 nm. In this case the original as a continuation of the situation frooy>vy, i.e., it is due
bosonic system is unstable, and the Bogoliubov mode has da the bosonic mode which is itself slightly pushed up in
imaginary frequency for sufficiently small wave vectay ( frequency(cf., Fig. 3; note, in particular, the result far
<Qe=2my|cy|/%, here|cb|E[|gbb|nb/mb]1/2)_ SinceNfgﬁf =1). Alternatively, this mode can be considered as a zero-
>0>g,,, the system is still unstable in the presence ofsound mode induced by the bosons. The formxfpin Eq.
fermions[7] (also see aboyeOf interest is the effect of the (9) is precisely that of amteracting Fermi gas withs-wave
fermions on the unstable mode. Now for imaginary frequeninteractiong; [and therefore necessary with more than one

ciesw=ia, spin species, where the response is givery M1+ gsixs) ],
though with an effectivefrequency-dependeninteraction
[ a [W L@ ] Ori— —Oi¢xb, i-e., an effectiveswave Landau parameter
Jda)=Ny{1— —|=—tan ~—
x(q f vl 2 v 2

is purely real and positivey; decreases monotonically with

a from ys=N; at =0 to 0 asa—-oe. It can be easily 10
verified that there is a@eal solution for « to the dispersion

relation[cf. Eq. (7)]

0
2 2.2 ggf 2.2 LN
[a”—[cy|?q7]— T9es] (|eol“a®) x(q,ic)=0  (10)
%05 100 gg 1.05

for sufficiently smallg (which includes the physically most

relevant region where attains its maximum, i.e., the fastest |G, 4. Dimensionless fermionic response ymfor u=c, /v;
growing instability. Thus the instability isnot damped by <1 showing the zero-sound modes induced by the bos@ns.
the particle-hole degree of freedom. In fact it can be verified=0.1. Also shown is Iny; for a pure Fermi gasg,;=0) for com-
easily that, for givery, « is increased in the presence of the parison.
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FIG. 5. Same as Fig. 4, except that now Rds shown.
FIG. 6. Imaginary part of the dimensionless fermionic response

given by Fo—WI/[(w/cpq)?—1]. The bosonic modew  Im’y; for u=c,/v <1, showing mainly the regiom<uv;q.
~cpQ, for ¢y, sufficiently close to but below;, will thus ,
induce a zero-sound mode for the fermions, just as an intef0de has pushed away the particle-hole “modes” near
action among the fermions will12]. Note, however, that ~Cbd- This feature is present even for small couplgA
there cannot be a reatwave interaction among the fermi- larger W mainly increases the width of this “translaarent”
ons, as they are of equal spin. Thus this mea@@notbe  region. Thus, in fact, the frequency dependence ojRis
obtained by considering the effective interaction among thectually strongerfor smallerW's.
fermions, as in Ref[8]. The energy absorption by the Bose-Fermi mixture from

The frequency of this propagating mode can be estimateén external perturbation acting on the fermions is thus sub-
by using the well-known dispersion relation of the zerothstantially reduced for frequencies within this transparent re-
sound w/vq~1+2e 21*1Fl with the effective F,  gion. The width of this region can be estimated by using the
—WI/[(1/u)?>—1] as suggested above. In order for the veloc-observation that the fermionic response is roughly reduced
ity of the mode to be, say, 1% above, thenc, has to be by the factor W[ (c,0)?/ w?—(c,q)?] for these frequen-
within around 7% ob ; if W=0.1. This estimate agrees with cies. For the fermionic response to be reduced to, say, 1/2 of
the numerical results of Fig. 4. its bare value, thenw—cyq|/c,g<W/2. This estimate

The second interesting feature is that, near the originahgrees very roughly with the numerical results in Fig. 6. In
bosonic mode frequenay~ c,q, there is a reduction in the conclusion, | have investigated the collective modes of a
absorptive part Iy, (see Fig. 6. In fact, Imy;—0 ase  BOse-Fermi mixture, and have shown that there is important

—c,0. This, as well as the corresponding behavior ofyRe mode-mode coupling effects, especiallyif~Cy .

can be seen easily mathematically from E5). due to the | thank David Edwards for helpful correspondences. This
resonance nature gf, at this frequency. Physically this can research was supported by the National Science Council of
be regarded as due to mode-mode repulsion—the bosoniaiwan under Grant No. 89-2112-M-001-105.
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