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Four-wave mixing in degenerate atomic gases
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We study the process of four-wave mixing~FWM! in ultracold degenerate atomic gases. In particular, we
address the problem of FWM in boson-fermion mixtures. We develop an approximate description of such
processes using asymptotic analysis of high-order perturbation theory taking into account quantum statistics.
We perform also numerical simulations of FWM in boson-fermion mixtures and obtain an analytic and nu-
merical estimate of the efficiency of the process.
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I. INTRODUCTION

In recent years, atom optics has become a flourishing s
ject. With the successful experiments on Bose-Einstein c
densation~BEC! @1–3#, new directions in linear@4# and non-
linear atom optics@5# with macroscopic wave packets hav
emerged. So far, the most spectacular experiment in non
ear atom optics concerns the observation of four-wave m
ing of bosonic matter waves@6#. In this process, three mac
roscopic matter wave packets interact and produce a fo
one. Also recently, Jinet al. @7# have trapped and cooled
sample of spin-polarized40K below the Fermi temperature
This has triggered an outburst of activities to understand
properties of ultracold fermionic systems@8#, and has stimu-
lated a great interest in the studies of fermion-boson mixtu
@9#. In particular, the question ‘‘is nonlinear atom optics wi
fermions possible?’’ has been posed@10#. Recently, it has
been argued that the answer to this question is pos
@11,12#. The remaining open question is what role does
statistics play in determining the efficiency of the four-wav
mixing ~FWM! process.

The recent experiment of Denget al. @6# with BEC has
demonstrated that FWM in bosonic gases is a truly mac
scopic process with an efficiency of the order of 6%. In t
experiment, Bragg pulses@13# were used to create three co
densate clouds, which then interacted through collisio
Four-wave mixing of matter waves can also be described
Bragg scattering from a grating. In this picture, two count
propagating matter waves create the grating from which
third wave scatters, generating a fourth one. In this paper
investigate the process of FWM in fermion-boson mixtu
and show that with an appropriate choice of parameters,
possible to create a macroscopic efficiency for the produc
of the fermionic fourth wave. We investigate here tw
complementary regimes.~i! Using an asymptotic analysis o
perturbation theory, we study the regime where every
mion fulfills the Bragg condition and the spread of the m
mentum is much smaller than the momentum of the grat
~ii ! We study numerically a situation more feasible expe
mentally, where the momentum spread of the fermion clo
Dk becomes large so that the Bragg condition is not fulfil
for every fermion.

The paper is organized as follows. In Sec. II, we stu
analytically the scattering process using a perturbative tr
1050-2947/2001/64~2!/023606~5!/$20.00 64 0236
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ment. Section III describes the numerical approach where
momentum spread is emphasized. Finally, the results
summarized in Sec. IV.

II. ANALYTICAL APPROACH

An intuitive understanding of Bragg scattering for boso
may be obtained considering a homogeneous condensate
box of volumeV. For such a case, the Hamiltonian has t
form

Ĥ5(
kW

ekWakW
†
akW1

1
2 u0 (

kW ,kW8,qW
akW1qW

†
akW82qW

†
akW8akW , ~1!

where u054p\2a/mV is the interaction strength propor
tional to thes-wave scattering lengtha andekW is the kinetic
energy. Let us consider an initial stateu i &
5uN1 ,kW1 ;N2 ,kW2 ;N3 ,kW3& representingNi particles of mo-
mentumkW i , i 51,2,3. We assume for the moment that on
one particle is scattered leading to the final stateu f &
5uN18 ,kW1 ;N28 ,kW2 ;N38 ,kW3 ;1,kW4& with kW45” kW i for i 51,2,3.
Among all the processes that conserve momentum and
ergy, the one corresponding to

kW45kW12kW21kW3 ~2!

is particularly favorable and represents in fact the first-or
Bragg scattering@14,15# ~see Fig. 1!. The above process

FIG. 1. In the reference frame in whichkW1 andkW2 are collinear,
the scattering process can always be described in a plane. The

terion kW45kW12kW21kW3 together with the conservation of energ

ukW4u5ukW3u give the Bragg conditionk3x5k1 with kW152kW2 chosen
in the direction of thex axis.
©2001 The American Physical Society06-1
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P. VILLAIN et al. PHYSICAL REVIEW A 64 023606
corresponds to the termakW4

†
akW2

†
akW1

akW3
in the Hamiltonian,

which accounts for the creation of a particle in the alrea
macroscopical ‘‘grating state’’kW2. This introduces a bosoni
enhancement factorAN211 in the transition amplitude o
the processu i &→u f &. From this point of view, due to bosoni
enhancement, Bragg scattering is the most probable pro

Let us extend the previous analysis to the case of m
particles. The final state we are interested in is of the fo
u f &5uN18 ,kW1 ;N28 ,kW2 ;N38 ,kW3 ;N4 ,kW4&, where kW4 is given by
Eq. ~2!. This final state must respect the conservation of m
mentum

(
i 51

3

NikW i5(
i 51

3

Ni8kW i1N4kW4 , ~3!

and the conservation of the particle number

(
i 51

3

Ni5(
i 51

3

Ni81N4 . ~4!

Equations~2!, ~3!, and~4! imply conservation of energy. In
the reference frame in whichkW1 and kW2 are collinear, the
scattering process is planar. Thus, we have five equat
with six parametersNi8 ,N4 ,kW4. The actual value ofN4 can
be determined by maximizing the transition probabilityPi f .
Using perturbation theory with respect to the off-diagon
elements of the Hamiltonian in Eq.~1!, we calculate the tran
sition amplitudeTi f . ForN15N25N3, this quantity exhibits
a divergence forh̃5N4 /Ntot5

1
6 '16.7%, whereNtot is the

total number of particles. This divergence appears due to
simplicity of the model and can be removed by using wa
packets instead of plane waves. In any case,Pi f will be
strongly peaked atN4;Ntot/6. The actual efficiency of the
process—which in principle has to be calculat
nonperturbatively—will be of the same order of magnitud
Furthermore, our analysis predicts a saturation of the e
ciency with an increasing number of atoms, as a consequ
of the Bose statistics. The results obtained from our sim
model are in good agreement with the experimental result
Ref. @6# and with the more rigorous calculations of Re
@16–18#.

We turn now to the case of fermions. The previous ana
sis clearly stresses the role of bosonic enhancement; the
roscopic occupation of the states that form the grating se
the Bragg scattering as the most favorable scattering proc
From this point of view, the use of a fermionic grating wou
lead to a poor Bragg scattering. For this reason, we cons
Bragg scattering of an incoming cloud of fermions on
bosonic grating. A pure fermionic grating leading to a we
defined scattering could in principle be created, as poin
out in Ref.@11#, by considering a fermionic cloud that is in
single momentum state along thez axis but occupies many
momentum states along thex andy axes.

In our model, fermions and bosons interact via two-bo
s-wave scattering. The incoming fermions must obey m
mentum and energy conservation as in the case of bo
boson scattering. For fermions, there will inevitably be
02360
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momentum spread due to Fermi statistics. In order to fu
the Bragg condition, illustrated in Fig. 1, the momentu
spread in the fermionic sampleDk must be restricted toDk

!ukW12kW2u. This condition can be achieved by trapping t
fermions initially in a sufficiently shallow trap, which result
in a well-localized momentum distribution.

In order to estimate the FWM efficiency, we develop
similar approach to the one outlined above, based on
asymptotic perturbative analysis using plane waves.
study the efficiency of the process starting with the fermio
stateu i &5u1,kW31xW 1 ; . . . ;1,kW31xW N3

& and consider a generi

final state withN4 states created aroundkW4 that fulfill the
Bragg condition. There arej 5(N4

N3) different orthogonal final

statesu f j&. In order to simplify the problem, we assume th
the transition amplitude does not depend strongly onu f j&,
which is a valid assumption as long asDk!ukW12kW2u. We
then evaluate the probabilityP(N4) of scatteringN4 par-
ticles by averaging the transition amplitude so thatP(N4)
'(N4

N3)uT̄i f j
u2. The mean efficiency of the processh

5^N4&/N3 is calculated by using the distributionP(N4). We
stress that the aim of this calculation is not to obtain an ex
expression for the efficiency, but rather to check whethe
can attain macroscopic values.

We begin by calculatingTi f 1
between the initial stateu i &

and the final stateu f 1&, which corresponds to depletion ofN4

states of the Fermi sea aroundkW3. The macroscopically popu
lated states of the bosonic grating provide a bosonic
hancement factorA(N21p) (p51,2, . . . ,N4). Let us de-
fine UBF58p\2a/mV, wherea denotes the fermion-boso
s-wave scattering length andm the ~same! mass for both
fermions and bosons. Using a time-dependent perturba
method@21#, one obtains for theN4th order inUBF ,

Ti f 1
}UBF

N4
G

~Ei2EN4
!•••~Ei2E1!

, ~5!

where the bosonic enhancement amounts to

G5
AN1!A~N21N4!!

A~N12N4!!AN2!
. ~6!

The energies of the intermediate states correspondingp
fermions Bragg-scattered are given by

Ep5EB1
\2

2m S (
j 5p11

N3

~kW31xW j !
21(

j 51

p

~kW41xW j !
2D ~7!

with the initial energyEi5Ep50 andkW25k2êx52k1êx . We
denote byEB the energy of the bosons, which is consta
during the process. ThisTi f 1

is the transition amplitude cor

responding to one of theN4! possible paths going from
6-2
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FOUR-WAVE MIXING IN DEGENERATE ATOMIC GASES PHYSICAL REVIEW A64 023606
u i & to u f 1&. Hence there areN4! different Ti f 1
’s and we esti-

mate their contribution by taking an average value. To t
aim, we consider thexW ’s as independent random variabl
distributed between2kF and kF with a top hat probability
distribution }u(kF6x). Neglecting correlations betwee
different xW ’s is a valid approximation ifN4!N3. Conse-
quently, we restrict ourselves to the values ofN4<0.1N3.
The resulting probability of havingN4 Bragg-scattered fer
mions is

P~N4!}S 1

a2D N32N4 1

~N32N4!!
, ~8!

where we have setN15N2. This Poissonian distribution de
pends onN3 and on the parameter

a5
2A10panb

k2kF
, ~9!

which is alsoN3-dependent through the Fermi momentu
kF . The parametera contains also the boson densitynb . In
Fig. 2, we display the efficiencyh, as a function ofN3 and
the N3-independent parameteraN3

1/3. We observe that for
small values ofa, the efficiency decreases with increasi
N3. On the contrary, with largera the efficiency can reach
larger values, limited only by the assumptions of the mod
i.e., h<0.1.

This simple analysis shows that under certain conditio
in particular if the number of fermions is sufficiently large,
macroscopic efficiency for the fermionic fourth wave can
created.

III. NUMERICAL RESULTS

The approximate results obtained above are a direct re
of the Fermi-Bose statistics. Solving the complete ma
body scattering problem for the fermions is a formidab
task. We can simplify the situation assuming a polariz
Fermi gas, i.e., noninteracting@19#. Second, we model the
bosonic grating by a potential proportional to the local~in
general time-dependent! BEC density. In fact, Fermi statis

FIG. 2. Analytical estimate of the Bragg process efficiency. T
model is limited by the assumptionh!1. For small values ofa, the
efficiency decreases with increasingN3.
02360
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tics appears in our model only through the initial state, wh
must obey the Pauli principle. In the simplest approach,
also neglect backaction from the fermions on the boso
This approximation is valid in a situation where the bos
density is much larger than the fermion density. We perfo
however, also a full self-consistent simulation where the
namics of the grating is taken into account. Due to numer
limitations, the latter could only be simulated for small num
bers of fermions. In order to mimic the effect of high fermio
densities, we used in this case a high value of the fermi
boson interaction strength. Finally, we restrict our numeri
simulations to 2D. With these assumptions, we solveN3
Schrödinger equations for the fermions with an external p
tential Vf(x,y)5uBFnb(x,y), with uBF58p\2a/mL and L
the thickness of the cloud in thez direction, andnb(x,y)
being the density of the condensate. For the bosons, the
potential is a combination of a harmonic potential in they
direction and a periodic structure in thex direction created,
for instance, by a standing-wave laser,Vb(x,y)5 1

2 mVc
2y2

1Ul cos2(ukW12kW2ux). We have solved numerically the Gros
Pitaevskii~GP! equation with the potentialVb(x,y) in order
to determine the equilibrium bosonic densitynb(x,y), which,
in turn, results in a periodic potentialVf(x,y) for the fermi-
ons. The backaction of fermions on bosons, where the fer
ons affect the dynamics of the bosons and the bosons a
the fermions, can be neglected provideduBFnf(x,y,t)/m
!1, wherem is the chemical potential of the trapped co
densate andnf(x,y,t) is the fermion density. In our simula
tion for the static case~no backaction!, this ratio was kept
smaller than 0.01. In the full self-consistent treatment, ap
from N3 equations for the fermions, we solve simultaneou
the GP equation with the boson-fermion potent
uBFnf(x,y,t) adjusted at each time step.

Initially, the fermions are trapped in a 2D potential of th
form V(x,y)5mV2(x21y2) centered at (x0 ,y0). The num-
ber of fermions is such that the Fermi level may not fulfi
the conditionkF!ukW12kW2u. The trap is then removed and
momentum\kW3 is given to the fermions using a Bragg puls
@6,20#. Finally, we monitor the density of fermions to obta
the efficiency of the process.

The wave functions of the noninteracting fermions fulfi
all the same Schro¨dinger equation,

FIG. 3. Numerical estimate of the efficiencyh versus the num-
ber of incoming fermionsN3 . h decreases for larger values ofN3

due to the spread of the momentum,Dk/ukW12kW2u on the right axis,
for the incoming fermions.
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FIG. 4. A snapshot of the den
sity of the fermionic cloud after
the scattering. In~a!, 3% of the
atoms are found in the Bragg di
rection~see Fig. 3!. The efficiency
in ~b!, h50.091 is still of the
same order as in~c! with h
50.149. The grating is repre
sented by the two counterpropa

gating waveskW152kW2.
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2m
¹ i

21Vf~x,y,t !GC i , i 51, . . . ,N3 ,

~10!

but with orthogonal initial conditions for each fermion. Th
initial states are the eigenstates of the displaced harm
potential used for trapping the fermions,

Cnx ,ny
~x,y!}eikW3•xWe2 1/2(x̃21 ỹ2)Hnx

~ x̃!Hny
~ ỹ!, ~11!

where x̃5(x2x0)/A\/mV, ỹ5(y2y0)/A\/mV, and Hnx

denotes the Hermite polynomials.
The scattering of the fermions can now be numerica

simulated one by one in the static case and simultaneo
for the self-consistent case. For the fermion cloud, we
40K atoms and a trap frequency ofV/2p510 Hz, while for
the bosonic trap we use a frequency ofVc540 V. This
produces a narrow grating compared to the size of the fe
onic cloud. Furthermore, we have taken the scattering len
both for boson-boson and fermion-boson asa56.0 nm and
L530 mm with Nc523105 bosons in the condensate. Th
grating has a wave number ofk151.3 mm21 (kW152kW2)
and kF /k1,0.7. The initial fermion cloud is positioned a
x05y05240 mm and the momentum kick is settled tokW3
5(1.3,1.3) mm21.

In Fig. 3, we show the efficiencyh5N4 /N3 of the Bragg
process as a function of the total number of fermionsN3 and
the momentum spreadDk. With an increasing number o
particles (N3), the efficiency decreases due to the increas
the momentum spread of the fermions. Although this e
ciency is very similar to the efficiency shown in Fig. 2, o
should not be misled to compare the two results, since t
correspond to two different regimes@22#. Figure 4 displays a
snapshot of the cloud after the scattering. In Fig. 4~a!, which
corresponds to the situation in Fig. 3, we observe that
proximately 3% of the cloud is scattered in the Bragg dir
tion. In this figure, one can also see that a part of the fer
onic cloud is reflected due to the chosen relation between
incoming fermion kinetic energy and the shape of the grat
potential. Note also the appearance of the reflected w
packet in the direction2kW3, which corresponds to a Brag
reflection. It is important to remember that the condensat
trapped in a harmonic trap in they direction, which will
consequently give ay component in the momentum from th
02360
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grating. In Fig. 4~b!, we present the self-consistent simul
tion where the dynamics of the grating is taken into accou
Here we see that even if the densities for the bosons
fermions are of the same order, the effect is very similar
the situation with a static grating shown in Fig. 4~c!. In these
calculations, we have used only six fermions and a co
spondingly low condensate density due to numerical lim
tions. The boson-fermion interaction energyuBFnb, f , on the
other hand, was similar to Fig. 4~a!. Reflections are drasti
cally reduced if the scattering length is negative since in t
case the potentialVf(x,y) becomes attractive. The Brag
scattering relies on the periodicity and contrast of the grat
and it is present for both positive and negative scatter
lengths. Also, for a fixed interaction time the efficiency
the Bragg process decreases with decreasing contrast o
grating.

The self-consistent simulation presented here offer
new tool to study nonlinear dynamical properties of boso
fermion mixtures. So far such static properties as differ
geometrical configurations for the ground state have b
investigated@9#. With the time-dependent self-consistent a
proach, nonlinear phenomena such as spontaneous geom
cal symmetry breaking of metastable configurations could
studied in situ. Also, the nonlinear shape oscillations for
boson-fermion mixture can be investigated by solving
coupled boson Gross-Pitaevskii equation and the ferm
Schrödinger equations.

IV. CONCLUSIONS

In summary, we have discussed the effects of Bose
Fermi statistics on four-wave-mixing processes. For a p
bosonic process, the Bose statistics sets a fundamental
for the efficiency. In the case of an incoming fermion
cloud, the result depends strongly on the various phys
parameters involved in the problem. On the one hand,
numerical analysis shows that the momentum spreadDk

!ukW12kW2u is a crucial parameter in order to obtain
macroscopic efficiency for the fourth wave. On the oth
hand, the analytical treatment, which assumes that the B
condition is always fulfilled, exhibits an interplay betwee
the statistical and collisional effects leading to an efficien
6-4
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decreasing for smallN3 and aN3
1/3,0.3. For smalla, the

value of ^N4& is negligible, meaning a small efficiency. O
the contrary, for sufficiently large values ofa, the efficiency
can attain macroscopic values of the order of a few perc
indicating the creation of a macroscopic fermionic fou
wave.
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