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Four-wave mixing in degenerate atomic gases
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We study the process of four-wave mixifigWM) in ultracold degenerate atomic gases. In particular, we
address the problem of FWM in boson-fermion mixtures. We develop an approximate description of such
processes using asymptotic analysis of high-order perturbation theory taking into account quantum statistics.
We perform also numerical simulations of FWM in boson-fermion mixtures and obtain an analytic and nu-
merical estimate of the efficiency of the process.
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I. INTRODUCTION ment. Section Il describes the numerical approach where the
momentum spread is emphasized. Finally, the results are
In recent years, atom optics has become a flourishing sutsummarized in Sec. IV.

ject. With the successful experiments on Bose-Einstein con-
densationBEC) [1-3], new directions in lineaf4] and non- Il. ANALYTICAL APPROACH
linear atom opticg5] with macroscopic wave packets have S _ )
emerged. So far, the most spectacular experiment in nonlin- An intuitive understanding of Bragg scattering for bosons
ear atom optics concerns the observation of four-wave mixmay be obtained considering a homogeneous condensate in a
ing of bosonic matter Wavd:ﬁ]_ In this process, three mac- box of volumeV. For such a case, the Hamiltonian has the
roscopic matter wave packets interact and produce a fourtfrm
one. Also recently, Jiret al. [7] have trapped and cooled a
sample of spin-polarized’ below the Fermi temperature.
This has triggered an outburst of activities to understand the
properties of ultracold fermionic syster®), and has stimu-
lated a great interest in the. studies of fermion—boson_mixtgreﬁ,here up=4mh?a/mV is the interaction strength propor-
[9]. In particular, the question *is nonlinear atom optics with tional to thes-wave scattering length and e; is the kinetic
fermions possible?” has been posgtD]. Recently, it has energy. Let us consider an initial state]i)

been argued that the answer to this question is positive \ N, K. N. K.} representinaN: particles of mo-
[11,17. The remaining open question is what role does the N1, k1 N2 KziN3 Ks) rep g part

statistics play in determining the efficiency of the four—wave-mentumki_ 1= 123.We assume for the mor_nent that only
mixing (FWM) process. one pémcle is sc%tterefi Ieadmg»to 9the final stéte

The recent experiment of Dergf al. [6] with BEC has  =|Nj,Ki;Nj,Ko;Ng Kg;1K,) with ky#k; for i=1,2,3.
demonstrated that FWM in bosonic gases is a truly macroAmong all the processes that conserve momentum and en-
scopic process with an efficiency of the order of 6%. In thisergy, the one corresponding to
experiment, Bragg puls¢43] were used to create three con-
densate clouds, which then interacted through collisions. Ky,=k;—ky+Kjg 2
Four-wave mixing of matter waves can also be described as
Bragg scattering from a grating. In this picture, two counter-is particularly favorable and represents in fact the first-order

propagating matter waves create the grating from which th@ragg scattering 14,15 (see Fig. 1 The above process
third wave scatters, generating a fourth one. In this paper, we
3 k4

- ot tot
H=Z ekaﬁak+§u0AZQ A A0 Ak ag, (1)
K kk',q

investigate the process of FWM in fermion-boson mixtures

and show that with an appropriate choice of parameters, it is

possible to create a macroscopic efficiency for the production k

of the fermionic fourth wave. We investigate here two

complementary regimesi) Using an asymptotic analysis of

perturbation theory, we study the regime where every fer- -

mion fulfills the Bragg condition and the spread of the mo- k _k

mentum is much smaller than the momentum of the grating. 1 2

(i) We study numerically a situation more feasible experi- R R

mentally, where the momentum spread of the fermion cloud FIG. 1. In the reference frame in whidfj andk, are collinear,

Ak becomes large so that the Bragg condition is not fulfilledthe scattering process can always be described in a plane. The cri-

for every fermion. terion k,=k,—k,+k; together with the conservation of energy
The paper is organized as follows. In Sec. I, we study|k,|=|k,| give the Bragg conditiotks, =k, with k;=—k, chosen

analytically the scattering process using a perturbative treatn the direction of thex axis.
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corresponds to the terraE aE ag ag. in the Hamiltonian, Momentum spread due to Fermi statistics. In order to fulfill
4 K2 7173

which accounts for the creation of a particle in the alreadythe Bragg condition, illustrated in Fig. 1, the momentum

s _ . o _ “spread in the fermionic sampliek must be restricted td k
macroscopical “grating statek,. This introduces a bosonic

= =2 - . <|k,—K,|. This condition can be achieved by trapping the
enhanceme_nt factoyN, +1 n th.e tran§|t|on amplitude O.f fermions initially in a sufficiently shallow trap, which results
the proces$i)— |f). From this point of view, due to bosonic

nhancement. Br ttering is the most probable or in a well-localized momentum distribution.
enhancement, bragg scattering IS the most probable Process.,  qar tg estimate the FWM efficiency, we develop a

Let us extend the previous analysis to the case of MaANYimilar approach to the one outlined above, based on an

particles. The final state we are interested in is of the fom}asymptotic perturbative analysis using plane waves. We
[f)=IN1,Kq;N3 ko;Ng K3; Ny Ky), wherek, is given by  sgdy the efficiency of the process starting with the fermionic

E](qe.rthJhThis final state must respect the conservation of mo'state|i)=|1,123+)21; o ;1123+)?N3) and consider a generic
final state withN, states created arourﬂ that fulfill the
3 3 . . N . .
_ _ - Bragg condition. There ane=(°) different orthogonal final
> Niki= >, N/Ki+NgKy, (3) o N
i=1 i=1 stateslfj). In order to simplify the problem, we assume that
_ _ the transition amplitude does not depend strongly| i,
and the conservation of the particle number which is a valid assumption as long ak<|Kk;—k,|. We
3 3 then evaluate the probabilit?(N,) of scatteringN, par-
/ ticles by averaging the transition amplitude so tRgN
> N=D NN, 4) S by . ging ic p RN ,)
i=1 i=1 ~(Nj)|Tifj| . The mean efficiency of the process

=(N,)/N3 is calculated by using the distributid®(N,). We
stress that the aim of this calculation is not to obtain an exact

the reference frame in whick, andk, are collinear, the expression for the efficiency, but rather to check whether it
scattering process is planar. Thus, we have five equationsyn attain macroscopic values.

with six parameters; ,_N4,I?4. The actual value oN, can We begin by calculating;, between the initial stat)
be determined by maximizing the transition probabikty . and the final statf,), which corresponds to depletion i,

Using perturbation theory with respect to the off-diagonal . > .
A states of the Fermi sea aroukgl The macroscopically popu-
elements of the Hamiltonian in E@L), we calculate the tran- : . ; '
lated states of the bosonic grating provide a bosonic en-

sition amplitudeTNif. ForN;=N,= N3, this quantity exhibits hancement factor{(N,+ p) (p=1.2,...NJ). Let us de-
a divergence fom=N,/N=5~16.7%, whereNy is the g0 Uge=8mh2a/mV, wherea denotes the fermion-boson
wave scattering length anch the (same mass for both

Equations(2), (3), and(4) imply conservation of energy. In

total number of particles. This divergence appears due to thg.

simplicity of the model and can be removed by using waveie mions and bosons. Using a time-dependent perturbative
packets instead of plane waves. In any ca3g, will be method[21], one obtains for théN,th order inUge,
strongly peaked al,~N;,/6. The actual efficiency of the

process—which in principle has to be calculated

nonperturbatively—will be of the same order of magnitude. r

N

Furthermore, our analysis predicts a saturation of the effi- TiflocUBé(Ei_EN ). (E;—Ey)’ ®)
ciency with an increasing number of atoms, as a consequence N
of the Bose statistics. The results obtained from our simple
model are in good agreement with the experimental results offhere the bosonic enhancement amounts to
Ref. [6] and with the more rigorous calculations of Refs.
[16-18.

We turn now to the case of fermions. The previous analy- = ‘/N_l!V(N2+ Ny)! 6)
sis clearly stresses the role of bosonic enhancement; the mac- V(N;—Ny)! \/N_zl

roscopic occupation of the states that form the grating select

the Bragg scattering as the most favorable scattering process. ) ) _ )
From this point of view, the use of a fermionic grating would The energies of the intermediate states corresponding to
lead to a poor Bragg scattering. For this reason, we considdgrmions Bragg-scattered are given by

Bragg scattering of an incoming cloud of fermions on a

bosonic grating. A pure fermionic grating leading to a well- 2/ Ng p
defined scattering could in principle be created, as pointed E =g + —| > (Ks+x)2+ 2, (Ks+x)2| (7
out in Ref.[11], by considering a fermionic cloud that is in a PR 2m j=p+1 A j=1 A

single momentum state along tkeaxis but occupies many
momentum states along tixeandy axes. ) o . - -

In our model, fermions and bosons interact via two-bodyWith the initial energyE; =E,_ o andk,=kze,= —ki&,. We
swave scattering. The incoming fermions must obey mo-denote byEg the energy of the bosons, which is constant
mentum and energy conservation as in the case of bosoflUring the process. Thik;; is the transition amplitude cor-
boson scattering. For fermions, there will inevitably be aresponding to one of th&,! possible paths going from
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FIG. 2. Analytical estimate of the Bragg process efficiency. The
model is limited by the assumptiop<1. For small values o#, the
efficiency decreases with increasing.

|i) to[f1). Hence there ardl,! different Tj 's and we esti-
mate their contribution by taking an average value. To thi

aim, we consider the ’s as independent random variables
distributed between-kg and kg with a top hat probability
distribution « 6(kg* x). Neglecting correlations between
different )_{’s is a valid approximation ifN,<<N5. Conse-
guently, we restrict ourselves to the valuesNf<0.1Ns.
The resulting probability of havingl, Bragg-scattered fer-

mions is
N3—Ng4 1
) (N3

—Ny)!

1

(12

P(Ng) )

where we have sé{l,=N,. This Poissonian distribution de-
pends orN; and on the parameter

B Zmﬂanb

a= Kok (9

which is alsoN3z-dependent through the Fermi momentum
ke . The parametex contains also the boson density. In
Fig. 2, we display the efficiency, as a function oN; and
the N3-independent parameterN. We observe that for
small values ofa, the efficiency decreases with increasing
N3. On the contrary, with larget the efficiency can reach
larger values, limited only by the assumptions of the model
i.e.,, 7=<0.1.

This simple analysis shows that under certain conditions
in particular if the number of fermions is sufficiently large, a
macroscopic efficiency for the fermionic fourth wave can be
created.

III. NUMERICAL RESULTS

The approximate results obtained above are a direct result
of the Fermi-Bose statistics. Solving the complete many-

body scattering problem for the fermions is a formidable

PHYSICAL REVIEW A64 023606

tics appears in our model only through the initial state, which
must obey the Pauli principle. In the simplest approach, we
also neglect backaction from the fermions on the bosons.
This approximation is valid in a situation where the boson
density is much larger than the fermion density. We perform,
however, also a full self-consistent simulation where the dy-
namics of the grating is taken into account. Due to numerical
limitations, the latter could only be simulated for small num-
bers of fermions. In order to mimic the effect of high fermion
densities, we used in this case a high value of the fermion-
boson interaction strength. Finally, we restrict our numerical
simulations to 2D. With these assumptions, we sdNg
Schralinger equations for the fermions with an external po-
tential V¢(X,y) = Ugeny(X,y), with uge=8w#%a/mL and L

the thickness of the cloud in the direction, andny(X,y)
being the density of the condensate. For the bosons, the trap
potential is a combination of a harmonic potential in the
direction and a periodic structure in thledirection created,

sfor instance, by a standing-wave Iasla’rb(x,y):%mﬂﬁy2

+U, co(|k;—ky|x). We have solved numerically the Gross-
Pitaevskii(GP) equation with the potential,(x,y) in order
to determine the equilibrium bosonic densiy(x,y), which,
in turn, results in a periodic potentigl(x,y) for the fermi-
ons. The backaction of fermions on bosons, where the fermi-
ons affect the dynamics of the bosons and the bosons affect
the fermions, can be neglected providaden:(x,y,t)/u
<1, whereu is the chemical potential of the trapped con-
densate and;(x,y,t) is the fermion density. In our simula-
tion for the static caséno backaction this ratio was kept
smaller than 0.01. In the full self-consistent treatment, apart
from N3 equations for the fermions, we solve simultaneously
the GP equation with the boson-fermion potential
ugen;(X,y,t) adjusted at each time step.

Initially, the fermions are trapped in a 2D potential of the
form V(x,y) =mQ?(x2+y?) centered atXy,Y,). The num-
ber of fermions is such that the Fermi level may not fulfill
the conditionkg<|K;—K,|. The trap is then removed and a
momentun‘ﬁl@ is given to the fermions using a Bragg pulse
[6,20]. Finally, we monitor the density of fermions to obtain
the efficiency of the process.

The wave functions of the noninteracting fermions fulfill

all the same Schringer equation,
' 0.08 0.4
' 0.06 0.3
Ak
M oos 02 K 1)
0.02 0.1
% 20 40 60"

task. We can simplify the situation assuming a polarized FIG. 3. Numerical estimate of the efficienayversus the num-

Fermi gas, i.e., noninteractifd 9]. Second, we model the
bosonic grating by a potential proportional to the loGal

ber of incoming fermiondN;. # decreases for larger values §
due to the spread of the momentutvk/|k, —k,| on the right axis,

general time-dependenBEC density. In fact, Fermi statis- for the incoming fermions.
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a) b) C) Static
P =N = . FIG. 4. A snapshot of the den-
- k}é_\\ ' =1 k(B \)\ ﬁ(«@%ﬁa sity of the fermionic cloud after
oS4 (((‘Qﬁ\x R é\//’% the scattering. In(@), 3% of the
T SN K = atoms are found in the Bragg di-
1 Il:IITIIIIIIIIIIII O IIll'r“TIIIIIIIII L ] reCtIon(See Flg $' The effICIenCy
=k S S in (b), »=0.091 is still of the
ol T / same order as in(c) with »
= ) o / =0.149. The grating is repre-
' ¥ \ sented by the two counterpropa-
160 5 160 0 5 0 gating wavek;= —K,.
xIu ml xIu ml xlu ml

_ %2 ) _ grating. In Fig. 4b), we present the self-consistent simula-
ih—Wi= =5 Vi +Vf(X,y,t)}‘I’i , 1=1,... Ns, tion where the dynamics of the grating is taken into account.
(100 Here we see that even if the densities for the bosons and
fermions are of the same order, the effect is very similar to
but with orthogonal initial conditions for each fermion. The the situation with a static grating shown in Figcy In these
initial states are the eigenstates of the displaced harmonigalculations, we have used only six fermions and a corre-
potential used for trapping the fermions, spondingly low condensate density due to numerical limita-
Ko i 1262432) - - tions. The boson-fermion interaction enengpeny ¢, on the
nx,ny(X’Y)“e ¥'e an(X)Hny(y)v (1D other hand, was similar to Fig.(@. Reflections are drasti-
_ _ cally reduced if the scattering length is negative since in this
where x= (X—Xo)/NAIME, y=(y—Yyo)/Vii/mQ, andH,  case the potential/;(x,y) becomes attractive. The Bragg
denotes the Hermite polynomials. scattering relies on the periodicity and contrast of the grating
The scattering of the fermions can now be numericallyand it is present for both positive and negative scattering
simulated one by one in the static case and simultaneouslgngths. Also, for a fixed interaction time the efficiency of
for the self-consistent case. For the fermion cloud, we uséne Bragg process decreases with decreasing contrast of the
4% atoms and a trap frequency 6/27=10 Hz, while for grating.
the bosonic trap we use a frequency @f=40 (. This The self-consistent simulation presented here offers a
produces a narrow grating compared to the size of the ferminew tool to study nonlinear dynamical properties of boson-
onic cloud. Furthermore, we have taken the scattering lengtfermion mixtures. So far such static properties as different
both for boson-boson and fermion-bosonaas6.0 nm and  gepmetrical configurations for the ground state have been
L=30 um with N;=2x 10 bosons in the condﬁensaﬂf- The investigated 9]. With the time-dependent self-consistent ap-
grating has a wave number &i=1.3 um™* (k;=—k;)  proach, nonlinear phenomena such as spontaneous geometri-
and kg /k;<<0.7. The initial fermion cloud is positioned at cal symmetry breaking of metastable configurations could be
Xo=Yo=—40 wm and the momentum kick is settled kg  studiedin situ. Also, the nonlinear shape oscillations for a
=(1.3,1.3) um L. boson-fermion mixture can be investigated by solving the
In Fig. 3, we show the efficiency=N,/N; of the Bragg  coupled boson Gross-Pitaevskii equation and the fermion
process as a function of the total number of fermibigsand  Schralinger equations.
the momentum spreadk. With an increasing number of
particles (\3), the efficiency decreases due to the increase of
the momentum spread of the fermions. Although this effi- IV. CONCLUSIONS
ciency is very similar to the efficiency shown in Fig. 2, one
should not be misled to compare the two results, since they )
correspond to two different regimé®2]. Figure 4 displays a In summary, we have discussed the effects of Bose and
snapshot of the cloud after the scattering. In Fig)dvhich ~ Fermi statistics on four-wave-mixing processes. For a pure
corresponds to the situation in Fig. 3, we observe that apPosonic process, the Bose statistics sets a fundamental limit
proximately 3% of the cloud is scattered in the Bragg direcfor the efficiency. In the case of an incoming fermionic
tion. In this figure, one can also see that a part of the fermicloud, the result depends strongly on the various physical
onic cloud is reflected due to the chosen relation between thearameters involved in the problem. On the one hand, our
incoming fermion kinetic energy and the shape of the gratinqiumerical analysis shows that the momentum spraad
potential. Note also the appearance of the reflected wave |k, —k,| is a crucial parameter in order to obtain a

packet in the direction- I23, which corresponds to a Bragg macroscopic efficiency for the fourth wave. On the other
reflection. It is important to remember that the condensate iband, the analytical treatment, which assumes that the Bragg
trapped in a harmonic trap in the direction, which will  condition is always fulfilled, exhibits an interplay between-
consequently give g component in the momentum from the the statistical and collisional effects leading to an efficiency

v
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